WeightedReservoirSampleStateStrategy.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.operator.aggregation.differentialentropy;
import com.facebook.presto.spi.PrestoException;
import io.airlift.slice.SliceInput;
import io.airlift.slice.SliceOutput;
import static com.facebook.presto.operator.aggregation.differentialentropy.EntropyCalculations.calculateFromSamplesUsingVasicek;
import static com.facebook.presto.spi.StandardErrorCode.INVALID_FUNCTION_ARGUMENT;
import static com.google.common.base.Verify.verify;
import static java.lang.String.format;
public class WeightedReservoirSampleStateStrategy
implements DifferentialEntropyStateStrategy
{
private final WeightedDoubleReservoirSample reservoir;
public WeightedReservoirSampleStateStrategy(long maxSamples)
{
if (maxSamples <= 0) {
throw new PrestoException(
INVALID_FUNCTION_ARGUMENT,
format("In differential_entropy UDF, max samples must be positive: %s", maxSamples));
}
if (maxSamples >= WeightedDoubleReservoirSample.MAX_SAMPLES_LIMIT) {
throw new PrestoException(
INVALID_FUNCTION_ARGUMENT,
format("In differential_entropy UDF, max samples must be capped: max_samples=%s, cap=%s", maxSamples, WeightedDoubleReservoirSample.MAX_SAMPLES_LIMIT));
}
reservoir = new WeightedDoubleReservoirSample((int) maxSamples);
}
private WeightedReservoirSampleStateStrategy(WeightedReservoirSampleStateStrategy other)
{
reservoir = other.reservoir.clone();
}
private WeightedReservoirSampleStateStrategy(WeightedDoubleReservoirSample reservoir)
{
this.reservoir = reservoir;
}
@Override
public void validateParameters(
long maxSamples,
double sample,
double weight)
{
if (weight < 0.0) {
throw new PrestoException(INVALID_FUNCTION_ARGUMENT, format("In differential_entropy UDF, weight must be non-negative: %s", weight));
}
if (maxSamples != reservoir.getMaxSamples()) {
throw new PrestoException(
INVALID_FUNCTION_ARGUMENT,
format("In differential_entropy UDF, inconsistent maxSamples: %s, %s", maxSamples, reservoir.getMaxSamples()));
}
}
@Override
public void mergeWith(DifferentialEntropyStateStrategy other)
{
verify(other instanceof WeightedReservoirSampleStateStrategy,
format("class should be an instance of WeightedReservoirSampleStateStrategy: %s", other.getClass().getSimpleName()));
reservoir.mergeWith(((WeightedReservoirSampleStateStrategy) other).reservoir);
}
@Override
public void add(double value, double weight)
{
reservoir.add(value, weight);
}
@Override
public double getTotalPopulationWeight()
{
return reservoir.getTotalPopulationWeight();
}
@Override
public double calculateEntropy()
{
return calculateFromSamplesUsingVasicek(reservoir.getSamples());
}
@Override
public long getEstimatedSize()
{
return reservoir.estimatedInMemorySize();
}
@Override
public int getRequiredBytesForSpecificSerialization()
{
return reservoir.getRequiredBytesForSerialization();
}
public static WeightedReservoirSampleStateStrategy deserialize(SliceInput input)
{
return new WeightedReservoirSampleStateStrategy(WeightedDoubleReservoirSample.deserialize(input));
}
@Override
public void serialize(SliceOutput out)
{
reservoir.serialize(out);
}
@Override
public DifferentialEntropyStateStrategy clone()
{
return new WeightedReservoirSampleStateStrategy(this);
}
@Override
public DifferentialEntropyStateStrategy cloneEmpty()
{
return new WeightedReservoirSampleStateStrategy(reservoir.getMaxSamples());
}
}