TestNoisyAvgGaussianDoubleAggregation.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.operator.aggregation.noisyaggregation;
import com.facebook.presto.common.Page;
import com.facebook.presto.common.type.StandardTypes;
import com.facebook.presto.common.type.Type;
import com.facebook.presto.metadata.FunctionAndTypeManager;
import com.facebook.presto.metadata.MetadataManager;
import com.facebook.presto.operator.scalar.AbstractTestFunctions;
import com.facebook.presto.spi.PrestoException;
import com.facebook.presto.spi.function.JavaAggregationFunctionImplementation;
import com.facebook.presto.testing.LocalQueryRunner;
import com.facebook.presto.testing.MaterializedResult;
import com.facebook.presto.testing.MaterializedRow;
import org.testng.annotations.Test;
import java.util.Arrays;
import java.util.List;
import static com.facebook.presto.block.BlockAssertions.createDoublesBlock;
import static com.facebook.presto.block.BlockAssertions.createRLEBlock;
import static com.facebook.presto.common.type.BigintType.BIGINT;
import static com.facebook.presto.common.type.DoubleType.DOUBLE;
import static com.facebook.presto.operator.aggregation.AggregationTestUtils.assertAggregation;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.DEFAULT_TEST_STANDARD_DEVIATION;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.avg;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.buildColumnName;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.buildData;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.createTestValues;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.equalDoubleAssertion;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.notEqualDoubleAssertion;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.withinSomeStdAssertion;
import static com.facebook.presto.sql.analyzer.TypeSignatureProvider.fromTypes;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertNull;
public class TestNoisyAvgGaussianDoubleAggregation
extends AbstractTestFunctions
{
private static final String FUNCTION_NAME = "noisy_avg_gaussian";
private static final FunctionAndTypeManager FUNCTION_AND_TYPE_MANAGER = MetadataManager.createTestMetadataManager().getFunctionAndTypeManager();
@Test
public void testNoisyAvgGaussianDoubleDefinitions()
{
getFunction(DOUBLE, DOUBLE); // (col, noiseScale)
getFunction(DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, randomSeed)
getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE); // (col, noiseScale, lower, upper)
getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, lower, upper, randomSeed)
}
// Test DOUBLE noiseScale < 0
@Test(expectedExceptions = PrestoException.class)
public void testNoisyAvgGaussianDoubleInvalidNoiseScale()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, true);
double expected = avg(values);
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale) with noiseScale < 0 which means errors",
new Page(
createDoublesBlock(values),
createRLEBlock(-123.0, numRows)),
expected);
}
// Test DOUBLE noiseScale == 0
@Test
public void testNoisyAvgGaussianDoubleZeroNoiseScale()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, true);
double expected = avg(values);
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale) with noiseScale=0 which means no noise",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleZeroNoiseScaleWithNull()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, true);
double expected = avg(values);
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale) with noiseScale=0 and 1 null row which means no noise",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows)),
expected);
}
// Test DOUBLE noiseScale > 0
@Test
public void testNoisyAvgGaussianDoubleSomeNoiseScale()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, true);
double expected = avg(values);
assertAggregation(
function,
notEqualDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale) with noiseScale > 0 which means some noise",
new Page(
createDoublesBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleSomeNoiseScaleWithinSomeStd()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE);
int numRows = 1000;
List<Double> values = createTestValues(numRows, false, 1.0, true);
double expected = avg(values);
assertAggregation(
function,
withinSomeStdAssertion,
"Test noisy_avg_gaussian(double, noiseScale) within some std from mean",
new Page(
createDoublesBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows)),
expected);
}
// Test DOUBLE vs. normal AVG
@Test
public void testNoisyAvgGaussianDoubleNoiseScaleVsNormalAvg()
{
// Test DOUBLE AVG(col) producing the same values
int numRows = 10;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.REAL,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.DOUBLE);
String query1 = String.format("SELECT AVG(%s) FROM %s", columnName, data);
String query2 = String.format("SELECT %s(%s, %f) FROM %s", FUNCTION_NAME, columnName, 0.0, data);
List<MaterializedRow> actualRows = runQuery(query1);
double result1 = Double.parseDouble(actualRows.get(0).getField(0).toString());
actualRows = runQuery(query2);
double result2 = Double.parseDouble(actualRows.get(0).getField(0).toString());
assertEquals(result2, result1);
}
// Test DOUBLE with clipping
@Test
public void testNoisyAvgGaussianDoubleClippingZeroNoiseScale()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, false);
double lower = 2.0;
double upper = 8.0;
double expected = 4.7; // first value 0 is clipped to 2
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper) with noiseScale=0 which means no noise, and clipping",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test(expectedExceptions = PrestoException.class)
public void testNoisyAvgGaussianDoubleClippingInvalidBound()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, false);
double lower = 2.0;
double upper = -8.0;
double expected = 4.5;
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper) with clipping lower > upper ",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleClippingZeroNoiseScaleWithNull()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, false);
double lower = 2.0;
double upper = 8.0;
double expected = 5; // 45 / 9
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper) with noiseScale=0 which means no noise, and clipping, with null values",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleClippingSomeNoiseScale()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, false);
double lower = 2.0;
double upper = 8.0;
double expected = 5; // 45 / 9
assertAggregation(
function,
notEqualDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper) with noiseScale > 0 which means some noise",
new Page(
createDoublesBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleClippingSomeNoiseScaleWithinSomeStd()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, false);
double lower = 2.0;
double upper = 8.0;
double expected = 5;
assertAggregation(
function,
withinSomeStdAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper) within some std from mean",
new Page(
createDoublesBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
// Test DOUBLE with clipping and randomSeed
@Test
public void testNoisyAvgGaussianDoubleClippingRandomSeed()
{
// Test DOUBLE with clipping
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, DOUBLE, DOUBLE, BIGINT);
int numRows = 10;
List<Double> values = createTestValues(numRows, false, 1.0, false);
double lower = 2.0;
double upper = 5.0;
double expected = 3.8 + 10.4961467597545; // 10.4961467597545 is from noiseScale=12 and randomSeed=10
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, lower, upper, randomSeed)",
new Page(
createDoublesBlock(values),
createRLEBlock(12.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows),
createRLEBlock(10, numRows)),
expected);
}
// Test DOUBLE with randomSeed
@Test
public void testNoisyAvgGaussianDoubleZeroNoiseScaleZeroRandomSeed()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, BIGINT);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, false);
double expected = avg(values);
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, randomSeed) with noiseScale=0 which means no noise",
new Page(
createDoublesBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(0, numRows)),
expected);
}
@Test
public void testNoisyAvgGaussianDoubleSomeNoiseScaleFixedRandomSeed()
{
JavaAggregationFunctionImplementation function = getFunction(DOUBLE, DOUBLE, BIGINT);
int numRows = 10;
List<Double> values = createTestValues(numRows, true, 1.0, false);
assertAggregation(
function,
equalDoubleAssertion,
"Test noisy_avg_gaussian(double, noiseScale, randomSeed) with noiseScale=0 which means no noise",
new Page(
createDoublesBlock(values),
createRLEBlock(12.0, numRows),
createRLEBlock(10, numRows)),
15.496146759754); // 10.4961467597545 is from noiseScale=12 and randomSeed=10
}
// Test DOUBLE 0-row input returns NULL
@Test
public void testNoisyAvgGaussianDoubleNoInputRowsWithoutGroupBy()
{
int numRows = 100;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.REAL,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.DOUBLE);
String query = "SELECT " + FUNCTION_NAME + "(" + columnName + ", 0) + 1 FROM " + data
+ " WHERE false";
List<MaterializedRow> actualRows = runQuery(query);
assertEquals(actualRows.size(), 1);
assertNull(actualRows.get(0).getField(0));
}
@Test
public void testNoisyAvgGaussianDoubleNoInputRowsWithGroupBy()
{
int numRows = 100;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.REAL,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.DOUBLE);
String query = "SELECT " + FUNCTION_NAME + "(" + columnName + ", 0) + 1 FROM " + data
+ " WHERE false GROUP BY " + columnName;
List<MaterializedRow> actualRows = runQuery(query);
assertEquals(actualRows.size(), 0);
}
private List<MaterializedRow> runQuery(String query)
{
LocalQueryRunner runner = new LocalQueryRunner(session);
MaterializedResult actualResults = runner.execute(query).toTestTypes();
return actualResults.getMaterializedRows();
}
private JavaAggregationFunctionImplementation getFunction(Type... arguments)
{
return FUNCTION_AND_TYPE_MANAGER.getJavaAggregateFunctionImplementation(
FUNCTION_AND_TYPE_MANAGER.lookupFunction(FUNCTION_NAME, fromTypes(arguments)));
}
}