TestNoisySumGaussianLongAggregation.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.operator.aggregation.noisyaggregation;
import com.facebook.presto.common.Page;
import com.facebook.presto.common.type.StandardTypes;
import com.facebook.presto.common.type.Type;
import com.facebook.presto.metadata.FunctionAndTypeManager;
import com.facebook.presto.metadata.MetadataManager;
import com.facebook.presto.operator.scalar.AbstractTestFunctions;
import com.facebook.presto.spi.PrestoException;
import com.facebook.presto.spi.function.JavaAggregationFunctionImplementation;
import com.facebook.presto.testing.LocalQueryRunner;
import com.facebook.presto.testing.MaterializedResult;
import com.facebook.presto.testing.MaterializedRow;
import org.testng.annotations.Test;
import java.util.Arrays;
import java.util.List;
import java.util.function.BiFunction;
import static com.facebook.presto.block.BlockAssertions.createLongsBlock;
import static com.facebook.presto.block.BlockAssertions.createRLEBlock;
import static com.facebook.presto.block.BlockAssertions.createTypedLongsBlock;
import static com.facebook.presto.common.type.BigintType.BIGINT;
import static com.facebook.presto.common.type.DoubleType.DOUBLE;
import static com.facebook.presto.common.type.IntegerType.INTEGER;
import static com.facebook.presto.common.type.SmallintType.SMALLINT;
import static com.facebook.presto.common.type.TinyintType.TINYINT;
import static com.facebook.presto.operator.aggregation.AggregationTestUtils.assertAggregation;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.buildColumnName;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.buildData;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.createTestValues;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.equalDoubleAssertion;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.notEqualDoubleAssertion;
import static com.facebook.presto.operator.aggregation.noisyaggregation.TestNoisyAggregationUtils.sumLong;
import static com.facebook.presto.sql.analyzer.TypeSignatureProvider.fromTypes;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertNull;
public class TestNoisySumGaussianLongAggregation
extends AbstractTestFunctions
{
private static final String FUNCTION_NAME = "noisy_sum_gaussian";
private static final FunctionAndTypeManager FUNCTION_AND_TYPE_MANAGER = MetadataManager.createTestMetadataManager().getFunctionAndTypeManager();
private static final double DEFAULT_TEST_STANDARD_DEVIATION = 1.0;
@Test
public void testNoisySumGaussianLongDefinitions()
{
getFunction(TINYINT, DOUBLE); // (col, noiseScale)
getFunction(TINYINT, DOUBLE, BIGINT); // (col, noiseScale, randomSeed)
getFunction(TINYINT, DOUBLE, DOUBLE, DOUBLE); // (col, noiseScale, lower, upper)
getFunction(TINYINT, DOUBLE, DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, lower, upper, randomSeed)
getFunction(SMALLINT, DOUBLE); // (col, noiseScale)
getFunction(SMALLINT, DOUBLE, BIGINT); // (col, noiseScale, randomSeed)
getFunction(SMALLINT, DOUBLE, DOUBLE, DOUBLE); // (col, noiseScale, lower, upper)
getFunction(SMALLINT, DOUBLE, DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, lower, upper, randomSeed)
getFunction(INTEGER, DOUBLE); // (col, noiseScale)
getFunction(INTEGER, DOUBLE, BIGINT); // (col, noiseScale, randomSeed)
getFunction(INTEGER, DOUBLE, DOUBLE, DOUBLE); // (col, noiseScale, lower, upper)
getFunction(INTEGER, DOUBLE, DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, lower, upper, randomSeed)
getFunction(BIGINT, DOUBLE); // (col, noiseScale)
getFunction(BIGINT, DOUBLE, BIGINT); // (col, noiseScale, randomSeed)
getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE); // (col, noiseScale, lower, upper)
getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE, BIGINT); // (col, noiseScale, lower, upper, randomSeed)
}
// Test TINYINT type, noiseScale == 0
@Test
public void testNoisySumGaussianTinyIntZeroNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(TINYINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(tinyint, noiseScale) with noiseScale=0 which means no noise",
new Page(
createTypedLongsBlock(TINYINT, values),
createRLEBlock(0.0, numRows)),
expected);
}
// Test SMALLINT type, noiseScale == 0
@Test
public void testNoisySumGaussianSmallIntZeroNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(SMALLINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(smallint, noiseScale) with noiseScale=0 which means no noise",
new Page(
createTypedLongsBlock(SMALLINT, values),
createRLEBlock(0.0, numRows)),
expected);
}
// Test INTEGER type, noiseScale == 0
@Test
public void testNoisySumGaussianIntZeroNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(INTEGER, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(integer, noiseScale) with noiseScale=0 which means no noise",
new Page(
createTypedLongsBlock(INTEGER, values),
createRLEBlock(0.0, numRows)),
expected);
}
// Test TINYINT vs. normal SUM
@Test
public void testNoisySumGaussianTinyIntNoiseScaleVsNormalSum()
{
// Test SUM(col) producing the same values
int numRows = 10;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.TINYINT,
StandardTypes.DOUBLE,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.TINYINT);
String query1 = String.format("SELECT SUM(%s) FROM %s", columnName, data);
String query2 = String.format("SELECT %s(%s, %f) FROM %s", FUNCTION_NAME, columnName, 0.0, data);
List<MaterializedRow> actualRows = runQuery(query1);
double result1 = Double.parseDouble(actualRows.get(0).getField(0).toString());
actualRows = runQuery(query2);
double result2 = Double.parseDouble(actualRows.get(0).getField(0).toString());
assertEquals(result2, result1);
}
// Test SMALLINT vs. normal SUM
@Test
public void testNoisySumGaussianSmallIntNoiseScaleVsNormalSum()
{
// Test SUM(col) producing the same values
int numRows = 10;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.SMALLINT,
StandardTypes.DOUBLE,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.SMALLINT);
String query1 = String.format("SELECT SUM(%s) FROM %s", columnName, data);
String query2 = String.format("SELECT %s(%s, %f) FROM %s", FUNCTION_NAME, columnName, 0.0, data);
List<MaterializedRow> actualRows = runQuery(query1);
double result1 = Double.parseDouble(actualRows.get(0).getField(0).toString());
actualRows = runQuery(query2);
double result2 = Double.parseDouble(actualRows.get(0).getField(0).toString());
assertEquals(result2, result1);
}
// Test INTEGER vs. normal SUM
@Test
public void testNoisySumGaussianIntegerNoiseScaleVsNormalSum()
{
// Test SUM(col) producing the same values
int numRows = 10;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.INTEGER,
StandardTypes.DOUBLE,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.INTEGER);
String query1 = String.format("SELECT SUM(%s) FROM %s", columnName, data);
String query2 = String.format("SELECT %s(%s, %f) FROM %s", FUNCTION_NAME, columnName, 0.0, data);
List<MaterializedRow> actualRows = runQuery(query1);
double result1 = Double.parseDouble(actualRows.get(0).getField(0).toString());
actualRows = runQuery(query2);
double result2 = Double.parseDouble(actualRows.get(0).getField(0).toString());
assertEquals(result2, result1);
}
// Test LONG noiseScale < 0
@Test(expectedExceptions = PrestoException.class)
public void testNoisySumGaussianLongInvalidNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, true);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale) with noiseScale < 0 which means errors",
new Page(
createLongsBlock(values),
createRLEBlock(-123.0, numRows)),
expected);
}
// Test BIGINT type, noiseScale == 0
@Test
public void testNoisySumGaussianLongZeroNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale) with noiseScale=0 which means no noise",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongZeroNoiseScaleWithNull()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, true);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale) with noiseScale=0 and 1 null row which means no noise",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows)),
expected);
}
// Test DOUBLE noiseScale > 0
@Test
public void testNoisySumGaussianLongSomeNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, true);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
notEqualDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale) with noiseScale > 0 which means some noise",
new Page(
createLongsBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongSomeNoiseScaleWithinSomeStd()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE);
BiFunction<Object, Object, Boolean> withinSomeStdAssertion = (actual, expected) -> {
double actualValue = new Double(actual.toString());
double expectedValue = new Double(expected.toString());
return expectedValue - 50 * DEFAULT_TEST_STANDARD_DEVIATION <= actualValue && actualValue <= expectedValue + 50 * DEFAULT_TEST_STANDARD_DEVIATION;
};
int numRows = 1000;
List<Long> values = createTestValues(numRows, false, 1L, true);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
withinSomeStdAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale) within some std from mean",
new Page(
createLongsBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows)),
expected);
}
// Test BIGINT vs. normal SUM
@Test
public void testNoisySumGaussianLongNoiseScaleVsNormalSum()
{
// Test SUM(col) producing the same values
int numRows = 10;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.BIGINT);
String query1 = String.format("SELECT SUM(%s) FROM %s", columnName, data);
String query2 = String.format("SELECT %s(%s, %f) FROM %s", FUNCTION_NAME, columnName, 0.0, data);
List<MaterializedRow> actualRows = runQuery(query1);
double result1 = Double.parseDouble(actualRows.get(0).getField(0).toString());
actualRows = runQuery(query2);
double result2 = Double.parseDouble(actualRows.get(0).getField(0).toString());
assertEquals(result2, result1);
}
// Test BIGINT with clipping
@Test
public void testNoisySumGaussianLongClippingZeroNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double lower = 2.0;
double upper = 8.0;
long expected = 47;
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper) with noiseScale=0 which means no noise, and clipping",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test(expectedExceptions = PrestoException.class)
public void testNoisySumGaussianLongClippingInvalidBound()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double lower = 2.0;
double upper = -8.0;
double expected = 47;
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper) with clipping lower > upper ",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongClippingZeroNoiseScaleWithNull()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, false);
double lower = 2.0;
double upper = 8.0;
double expected = 45;
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper) with noiseScale=0 which means no noise, and clipping, with null values",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongClippingSomeNoiseScale()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE);
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, false);
double lower = 2.0;
double upper = 8.0;
double expected = 45;
assertAggregation(
noisySumGaussian,
notEqualDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper) with noiseScale > 0 which means some noise",
new Page(
createLongsBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongClippingSomeNoiseScaleWithinSomeStd()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE);
BiFunction<Object, Object, Boolean> withinSomeStdDoubleAssertion = (actual, expected) -> {
double actualValue = new Double(actual.toString());
double expectedValue = new Double(expected.toString());
return expectedValue - 5 * DEFAULT_TEST_STANDARD_DEVIATION <= actualValue && actualValue <= expectedValue + 5 * DEFAULT_TEST_STANDARD_DEVIATION;
};
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, false);
double lower = 2.0;
double upper = 8.0;
double expected = 45;
assertAggregation(
noisySumGaussian,
withinSomeStdDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper) within some std from mean",
new Page(
createLongsBlock(values),
createRLEBlock(DEFAULT_TEST_STANDARD_DEVIATION, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows)),
expected);
}
// Test BIGINT with clipping and randomSeed
@Test
public void testNoisySumGaussianLongClippingRandomSeed()
{
// Test with clipping
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, DOUBLE, DOUBLE, BIGINT);
int numRows = 10;
List<Long> values = createTestValues(numRows, false, 1L, false);
double lower = 2.0;
double upper = 5.0;
double expected = 48.4961467597545;
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, lower, upper, randomSeed)",
new Page(
createLongsBlock(values),
createRLEBlock(12.0, numRows),
createRLEBlock(lower, numRows),
createRLEBlock(upper, numRows),
createRLEBlock(10, numRows)),
expected);
}
// Test BIGINT with randomSeed
@Test
public void testNoisySumGaussianLongZeroNoiseScaleZeroRandomSeed()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, BIGINT);
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, false);
double expected = sumLong(values);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, randomSeed) with noiseScale=0 which means no noise",
new Page(
createLongsBlock(values),
createRLEBlock(0.0, numRows),
createRLEBlock(0, numRows)),
expected);
}
@Test
public void testNoisySumGaussianLongSomeNoiseScaleFixedRandomSeed()
{
JavaAggregationFunctionImplementation noisySumGaussian = getFunction(BIGINT, DOUBLE, BIGINT);
int numRows = 10;
List<Long> values = createTestValues(numRows, true, 1L, false);
assertAggregation(
noisySumGaussian,
equalDoubleAssertion,
"Test noisy_sum_gaussian(bigint, noiseScale, randomSeed) with noiseScale=0 which means no noise",
new Page(
createLongsBlock(values),
createRLEBlock(12.0, numRows),
createRLEBlock(10, numRows)),
55.496146759754); // x + 10 is when true sum = x, noiseScale=12 and randomSeed=10
}
// Test LONG 0-row input returns NULL
@Test
public void testNoisySumGaussianLongNoInputRowsWithoutGroupBy()
{
int numRows = 100;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.REAL,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.BIGINT);
String query = "SELECT " + FUNCTION_NAME + "(" + columnName + ", 0) + 1 FROM " + data
+ " WHERE false";
List<MaterializedRow> actualRows = runQuery(query);
assertEquals(actualRows.size(), 1);
assertNull(actualRows.get(0).getField(0));
}
@Test
public void testNoisySumGaussianLongNoInputRowsWithGroupBy()
{
int numRows = 100;
String data = buildData(numRows, true, Arrays.asList(
StandardTypes.BIGINT,
StandardTypes.DOUBLE,
StandardTypes.REAL,
StandardTypes.DECIMAL));
String columnName = buildColumnName(StandardTypes.BIGINT);
String query = "SELECT " + FUNCTION_NAME + "(" + columnName + ", 0) + 1 FROM " + data
+ " WHERE false GROUP BY " + columnName;
List<MaterializedRow> actualRows = runQuery(query);
assertEquals(actualRows.size(), 0);
}
private List<MaterializedRow> runQuery(String query)
{
LocalQueryRunner runner = new LocalQueryRunner(session);
MaterializedResult actualResults = runner.execute(query).toTestTypes();
return actualResults.getMaterializedRows();
}
private JavaAggregationFunctionImplementation getFunction(Type... arguments)
{
return FUNCTION_AND_TYPE_MANAGER.getJavaAggregateFunctionImplementation(
FUNCTION_AND_TYPE_MANAGER.lookupFunction(FUNCTION_NAME, fromTypes(arguments)));
}
}