TestHistogram.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.spi.statistics;
import org.apache.commons.math3.distribution.RealDistribution;
import org.testng.annotations.Test;
import static java.lang.Double.NEGATIVE_INFINITY;
import static java.lang.Double.POSITIVE_INFINITY;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertThrows;
import static org.testng.Assert.assertTrue;
public abstract class TestHistogram
{
abstract ConnectorHistogram createHistogram();
abstract RealDistribution getDistribution();
abstract double getDistinctValues();
@Test
public void testInverseCumulativeProbability()
{
ConnectorHistogram hist = createHistogram();
RealDistribution dist = getDistribution();
assertThrows(IllegalArgumentException.class, () -> hist.inverseCumulativeProbability(Double.NaN));
assertThrows(IllegalArgumentException.class, () -> hist.inverseCumulativeProbability(-1.0));
assertThrows(IllegalArgumentException.class, () -> hist.inverseCumulativeProbability(2.0));
assertEquals(hist.inverseCumulativeProbability(0.0).getValue(), dist.getSupportLowerBound(), .001);
assertEquals(hist.inverseCumulativeProbability(0.25).getValue(), dist.inverseCumulativeProbability(0.25), .001);
assertEquals(hist.inverseCumulativeProbability(0.5).getValue(), dist.getNumericalMean(), .001);
assertEquals(hist.inverseCumulativeProbability(1.0).getValue(), dist.getSupportUpperBound(), .001);
}
@Test
public void testCumulativeProbability()
{
ConnectorHistogram hist = createHistogram();
RealDistribution dist = getDistribution();
assertTrue(hist.cumulativeProbability(Double.NaN, true).isUnknown());
assertEquals(hist.cumulativeProbability(NEGATIVE_INFINITY, true).getValue(), 0.0, .001);
assertEquals(hist.cumulativeProbability(NEGATIVE_INFINITY, false).getValue(), 0.0, .001);
assertEquals(hist.cumulativeProbability(POSITIVE_INFINITY, true).getValue(), 1.0, .001);
assertEquals(hist.cumulativeProbability(POSITIVE_INFINITY, false).getValue(), 1.0, .001);
assertEquals(hist.cumulativeProbability(dist.getSupportLowerBound() - 1, true).getValue(), 0.0, .001);
assertEquals(hist.cumulativeProbability(dist.getSupportLowerBound(), true).getValue(), 0.0, .001);
assertEquals(hist.cumulativeProbability(dist.getSupportUpperBound() + 1, true).getValue(), 1.0, .001);
assertEquals(hist.cumulativeProbability(dist.getSupportUpperBound(), true).getValue(), 1.0, .001);
assertEquals(hist.cumulativeProbability(dist.getNumericalMean(), true).getValue(), 0.5, .001);
for (int i = 0; i < 10; i++) {
assertEquals(hist.cumulativeProbability(dist.inverseCumulativeProbability(0.1 * i), true).getValue(), dist.cumulativeProbability(dist.inverseCumulativeProbability(0.1 * i)), .001);
}
}
@Test
public void testInclusiveExclusive()
{
double ndvs = getDistinctValues();
ConnectorHistogram hist = createHistogram();
// test maximums
assertEquals(hist.cumulativeProbability(hist.inverseCumulativeProbability(1.0).getValue(), false).getValue(), 1.0 - (1.0 / ndvs), .0001);
assertEquals(hist.cumulativeProbability(hist.inverseCumulativeProbability(1.0).getValue(), true).getValue(), 1.0, .0001);
// test minimums
assertEquals(hist.cumulativeProbability(hist.inverseCumulativeProbability(0.0).getValue(), false).getValue(), 0.0, .0001);
assertEquals(hist.cumulativeProbability(hist.inverseCumulativeProbability(0.0).getValue(), true).getValue(), 0.0, .0001);
// test non-max/min
double midPercent = hist.inverseCumulativeProbability(0.5).getValue();
assertEquals(hist.cumulativeProbability(midPercent, true).getValue() - hist.cumulativeProbability(midPercent, false).getValue(), 1.0 / ndvs, .0001);
}
}