/src/proftpd/src/timers.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * ProFTPD - FTP server daemon |
3 | | * Copyright (c) 1997, 1998 Public Flood Software |
4 | | * Copyright (c) 2001-2025 The ProFTPD Project team |
5 | | * |
6 | | * This program is free software; you can redistribute it and/or modify |
7 | | * it under the terms of the GNU General Public License as published by |
8 | | * the Free Software Foundation; either version 2 of the License, or |
9 | | * (at your option) any later version. |
10 | | * |
11 | | * This program is distributed in the hope that it will be useful, |
12 | | * BUT witHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | * GNU General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU General Public License |
17 | | * along with this program; if not, write to the Free Software |
18 | | * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA. |
19 | | * |
20 | | * As a special exemption, Public Flood Software/MacGyver aka Habeeb J. Dihu |
21 | | * and other respective copyright holders give permission to link this program |
22 | | * with OpenSSL, and distribute the resulting executable, without including |
23 | | * the source code for OpenSSL in the source distribution. |
24 | | */ |
25 | | |
26 | | /* Timer system, based on alarm() and SIGALRM. */ |
27 | | |
28 | | #include "conf.h" |
29 | | |
30 | | /* From src/main.c */ |
31 | | extern volatile unsigned int recvd_signal_flags; |
32 | | |
33 | | struct timer { |
34 | | struct timer *next, *prev; |
35 | | |
36 | | long count; /* Amount of time remaining */ |
37 | | long interval; /* Original length of timer */ |
38 | | |
39 | | int timerno; /* Caller dependent timer number */ |
40 | | module *mod; /* Module owning this timer */ |
41 | | callback_t callback; /* Function to callback */ |
42 | | char remove; /* Internal use */ |
43 | | |
44 | | const char *desc; /* Description of timer, provided by caller */ |
45 | | }; |
46 | | |
47 | 0 | #define PR_TIMER_DYNAMIC_TIMERNO 1024 |
48 | | |
49 | | static int current_timeout = 0; |
50 | | static int total_time = 0; |
51 | | static int sleep_sem = 0; |
52 | | static int alarms_blocked = 0, alarm_pending = 0; |
53 | | static xaset_t *timers = NULL; |
54 | | static xaset_t *recycled = NULL; |
55 | | static xaset_t *free_timers = NULL; |
56 | | static int _indispatch = 0; |
57 | | static int dynamic_timerno = PR_TIMER_DYNAMIC_TIMERNO; |
58 | | static unsigned int nalarms = 0; |
59 | | static time_t alarmed_time = 0; |
60 | | |
61 | | static pool *timer_pool = NULL; |
62 | | |
63 | | static const char *trace_channel = "timer"; |
64 | | |
65 | 0 | static int timer_cmp(struct timer *t1, struct timer *t2) { |
66 | 0 | if (t1->count < t2->count) { |
67 | 0 | return -1; |
68 | 0 | } |
69 | | |
70 | 0 | if (t1->count > t2->count) { |
71 | 0 | return 1; |
72 | 0 | } |
73 | | |
74 | 0 | return 0; |
75 | 0 | } |
76 | | |
77 | | /* This function does the work of iterating through the list of registered |
78 | | * timers, checking to see if their callbacks should be invoked and whether |
79 | | * they should be removed from the registration list. Its return value is |
80 | | * the amount of time remaining on the first timer in the list. |
81 | | */ |
82 | 0 | static int process_timers(int elapsed) { |
83 | 0 | struct timer *t = NULL, *next = NULL; |
84 | 0 | int res = 0; |
85 | |
|
86 | 0 | if (recycled == NULL) { |
87 | 0 | recycled = xaset_create(timer_pool, NULL); |
88 | 0 | } |
89 | |
|
90 | 0 | if (elapsed == 0 && |
91 | 0 | recycled->xas_list == NULL) { |
92 | 0 | if (timers == NULL) { |
93 | 0 | return 0; |
94 | 0 | } |
95 | | |
96 | 0 | if (timers->xas_list != NULL) { |
97 | | /* The value we return is a proposed timeout, for the next call to |
98 | | * alarm(3). We start with the simple count of timers in our list. |
99 | | * |
100 | | * But then we reduce the number; some of the timers' intervals may |
101 | | * less than the number of total timers. |
102 | | */ |
103 | 0 | res = ((struct timer *) timers->xas_list)->count; |
104 | 0 | if (res > 5) { |
105 | 0 | res = 5; |
106 | 0 | } |
107 | 0 | } |
108 | |
|
109 | 0 | return res; |
110 | 0 | } |
111 | | |
112 | | /* Critical code, no interruptions please */ |
113 | 0 | if (_indispatch) { |
114 | 0 | return 0; |
115 | 0 | } |
116 | | |
117 | 0 | pr_alarms_block(); |
118 | 0 | _indispatch++; |
119 | |
|
120 | 0 | if (elapsed) { |
121 | 0 | for (t = (struct timer *) timers->xas_list; t; t = next) { |
122 | | /* If this timer has already been handled, skip */ |
123 | 0 | next = t->next; |
124 | |
|
125 | 0 | if (t->remove) { |
126 | | /* Move the timer onto the free_timers chain, for later reuse. */ |
127 | 0 | xaset_remove(timers, (xasetmember_t *) t); |
128 | 0 | xaset_insert(free_timers, (xasetmember_t *) t); |
129 | |
|
130 | 0 | } else if ((t->count -= elapsed) <= 0) { |
131 | | /* This timer's interval has elapsed, so trigger its callback. */ |
132 | |
|
133 | 0 | pr_trace_msg(trace_channel, 4, |
134 | 0 | "%ld %s for timer ID %d ('%s', for module '%s') elapsed, invoking " |
135 | 0 | "callback (%p)", t->interval, |
136 | 0 | t->interval != 1 ? "seconds" : "second", t->timerno, |
137 | 0 | t->desc ? t->desc : "<unknown>", |
138 | 0 | t->mod ? t->mod->name : "<none>", t->callback); |
139 | |
|
140 | 0 | if (t->callback(t->interval, t->timerno, t->interval - t->count, |
141 | 0 | t->mod) == 0) { |
142 | | |
143 | | /* A return value of zero means this timer is done, and can be |
144 | | * removed. |
145 | | */ |
146 | 0 | xaset_remove(timers, (xasetmember_t *) t); |
147 | 0 | xaset_insert(free_timers, (xasetmember_t *) t); |
148 | |
|
149 | 0 | } else { |
150 | | /* A non-zero return value from a timer callback signals that |
151 | | * the timer should be reused/restarted. |
152 | | */ |
153 | 0 | pr_trace_msg(trace_channel, 6, |
154 | 0 | "restarting timer ID %d ('%s'), as per callback", t->timerno, |
155 | 0 | t->desc ? t->desc : "<unknown>"); |
156 | |
|
157 | 0 | xaset_remove(timers, (xasetmember_t *) t); |
158 | 0 | t->count = t->interval; |
159 | 0 | xaset_insert(recycled, (xasetmember_t *) t); |
160 | 0 | } |
161 | 0 | } |
162 | 0 | } |
163 | 0 | } |
164 | | |
165 | | /* Put the recycled timers back into the main timer list. */ |
166 | 0 | t = (struct timer *) recycled->xas_list; |
167 | 0 | while (t != NULL) { |
168 | 0 | pr_signals_handle(); |
169 | |
|
170 | 0 | xaset_remove(recycled, (xasetmember_t *) t); |
171 | 0 | xaset_insert_sort(timers, (xasetmember_t *) t, TRUE); |
172 | 0 | t = (struct timer *) recycled->xas_list; |
173 | 0 | } |
174 | |
|
175 | 0 | _indispatch--; |
176 | 0 | pr_alarms_unblock(); |
177 | | |
178 | | /* If no active timers remain in the list, there is no reason to set the |
179 | | * SIGALRM handle. |
180 | | */ |
181 | |
|
182 | 0 | if (timers->xas_list != NULL) { |
183 | | /* The value we return is a proposed timeout, for the next call to |
184 | | * alarm(3). We start with the simple count of timers in our list. |
185 | | * |
186 | | * But then we reduce the number; some of the timers' intervals may |
187 | | * less than the number of total timers. |
188 | | */ |
189 | 0 | res = ((struct timer *) timers->xas_list)->count; |
190 | 0 | if (res > 5) { |
191 | 0 | res = 5; |
192 | 0 | } |
193 | 0 | } |
194 | |
|
195 | 0 | return res; |
196 | 0 | } |
197 | | |
198 | 0 | static RETSIGTYPE sig_alarm(int signo) { |
199 | 0 | struct sigaction act; |
200 | |
|
201 | 0 | act.sa_handler = sig_alarm; |
202 | 0 | sigemptyset(&act.sa_mask); |
203 | 0 | act.sa_flags = 0; |
204 | |
|
205 | 0 | #ifdef SA_INTERRUPT |
206 | 0 | act.sa_flags |= SA_INTERRUPT; |
207 | 0 | #endif |
208 | | |
209 | | /* Install this handler for SIGALRM. */ |
210 | 0 | if (sigaction(SIGALRM, &act, NULL) < 0) { |
211 | 0 | pr_log_pri(PR_LOG_WARNING, |
212 | 0 | "unable to install SIGALRM handler via sigaction(2): %s", |
213 | 0 | strerror(errno)); |
214 | 0 | } |
215 | |
|
216 | 0 | #ifdef HAVE_SIGINTERRUPT |
217 | 0 | if (siginterrupt(SIGALRM, 1) < 0) { |
218 | 0 | pr_log_pri(PR_LOG_WARNING, |
219 | 0 | "unable to allow SIGALRM to interrupt system calls: %s", strerror(errno)); |
220 | 0 | } |
221 | 0 | #endif |
222 | |
|
223 | 0 | recvd_signal_flags |= RECEIVED_SIG_ALRM; |
224 | 0 | nalarms++; |
225 | | |
226 | | /* Reset the alarm */ |
227 | 0 | total_time += current_timeout; |
228 | 0 | if (current_timeout) { |
229 | 0 | alarmed_time = time(NULL); |
230 | 0 | alarm(current_timeout); |
231 | 0 | } |
232 | 0 | } |
233 | | |
234 | 0 | static void set_sig_alarm(void) { |
235 | 0 | struct sigaction act; |
236 | |
|
237 | 0 | act.sa_handler = sig_alarm; |
238 | 0 | sigemptyset(&act.sa_mask); |
239 | 0 | act.sa_flags = 0; |
240 | 0 | #ifdef SA_INTERRUPT |
241 | 0 | act.sa_flags |= SA_INTERRUPT; |
242 | 0 | #endif |
243 | | |
244 | | /* Install this handler for SIGALRM. */ |
245 | 0 | if (sigaction(SIGALRM, &act, NULL) < 0) { |
246 | 0 | pr_log_pri(PR_LOG_WARNING, |
247 | 0 | "unable to install SIGALRM handler via sigaction(2): %s", |
248 | 0 | strerror(errno)); |
249 | 0 | } |
250 | |
|
251 | 0 | #ifdef HAVE_SIGINTERRUPT |
252 | 0 | if (siginterrupt(SIGALRM, 1) < 0) { |
253 | 0 | pr_log_pri(PR_LOG_WARNING, |
254 | 0 | "unable to allow SIGALRM to interrupt system calls: %s", strerror(errno)); |
255 | 0 | } |
256 | 0 | #endif |
257 | 0 | } |
258 | | |
259 | 0 | void handle_alarm(void) { |
260 | | /* We need to adjust for any time that might be remaining on the alarm, |
261 | | * in case we were called in order to change alarm durations. Note |
262 | | * that rapid-fire calling of this function will probably screw |
263 | | * up the already poor resolution of alarm() _horribly_. Oh well, |
264 | | * this shouldn't be used for any precise work anyway, it's only |
265 | | * for modules to perform approximate timing. |
266 | | */ |
267 | | |
268 | | /* It's possible that alarms are blocked when this function is |
269 | | * called, if so, increment alarm_pending and exit swiftly. |
270 | | */ |
271 | 0 | while (nalarms) { |
272 | 0 | nalarms = 0; |
273 | |
|
274 | 0 | if (!alarms_blocked) { |
275 | 0 | int alarm_elapsed, new_timeout; |
276 | 0 | time_t now; |
277 | | |
278 | | /* Clear any pending ALRM signals. */ |
279 | 0 | alarm(0); |
280 | | |
281 | | /* Determine how much time has elapsed since we last processed timers. */ |
282 | 0 | time(&now); |
283 | 0 | alarm_elapsed = alarmed_time > 0 ? (int) (now - alarmed_time) : 0; |
284 | |
|
285 | 0 | new_timeout = total_time + alarm_elapsed; |
286 | 0 | total_time = 0; |
287 | 0 | new_timeout = process_timers(new_timeout); |
288 | |
|
289 | 0 | alarmed_time = now; |
290 | 0 | alarm(current_timeout = new_timeout); |
291 | |
|
292 | 0 | } else { |
293 | 0 | alarm_pending++; |
294 | 0 | } |
295 | 0 | } |
296 | |
|
297 | 0 | pr_signals_handle(); |
298 | 0 | } |
299 | | |
300 | 0 | int pr_timer_reset(int timerno, module *mod) { |
301 | 0 | struct timer *t = NULL; |
302 | |
|
303 | 0 | if (timers == NULL) { |
304 | 0 | errno = EPERM; |
305 | 0 | return -1; |
306 | 0 | } |
307 | | |
308 | 0 | if (_indispatch) { |
309 | 0 | errno = EINTR; |
310 | 0 | return -1; |
311 | 0 | } |
312 | | |
313 | 0 | pr_alarms_block(); |
314 | |
|
315 | 0 | if (recycled == NULL) { |
316 | 0 | recycled = xaset_create(timer_pool, NULL); |
317 | 0 | } |
318 | |
|
319 | 0 | for (t = (struct timer *) timers->xas_list; t; t = t->next) { |
320 | 0 | if (t->timerno == timerno && |
321 | 0 | (t->mod == mod || mod == ANY_MODULE)) { |
322 | 0 | t->count = t->interval; |
323 | 0 | xaset_remove(timers, (xasetmember_t *) t); |
324 | 0 | xaset_insert(recycled, (xasetmember_t *) t); |
325 | 0 | nalarms++; |
326 | | |
327 | | /* The handle_alarm() function also readjusts the timers lists |
328 | | * as part of its processing, so it needs to be called when a timer |
329 | | * is reset. |
330 | | */ |
331 | 0 | handle_alarm(); |
332 | 0 | break; |
333 | 0 | } |
334 | 0 | } |
335 | |
|
336 | 0 | pr_alarms_unblock(); |
337 | |
|
338 | 0 | if (t != NULL) { |
339 | 0 | pr_trace_msg(trace_channel, 7, "reset timer ID %d ('%s', for module '%s')", |
340 | 0 | t->timerno, t->desc, t->mod ? t->mod->name : "[none]"); |
341 | 0 | return t->timerno; |
342 | 0 | } |
343 | | |
344 | 0 | return 0; |
345 | 0 | } |
346 | | |
347 | 0 | int pr_timer_remove(int timerno, module *mod) { |
348 | 0 | struct timer *t = NULL, *tnext = NULL; |
349 | 0 | int nremoved = 0; |
350 | | |
351 | | /* If there are no timers currently registered, do nothing. */ |
352 | 0 | if (timers == NULL) { |
353 | 0 | return 0; |
354 | 0 | } |
355 | | |
356 | 0 | pr_alarms_block(); |
357 | |
|
358 | 0 | for (t = (struct timer *) timers->xas_list; t; t = tnext) { |
359 | 0 | tnext = t->next; |
360 | |
|
361 | 0 | if ((timerno < 0 || t->timerno == timerno) && |
362 | 0 | (mod == ANY_MODULE || t->mod == mod)) { |
363 | 0 | nremoved++; |
364 | |
|
365 | 0 | if (_indispatch) { |
366 | 0 | t->remove++; |
367 | |
|
368 | 0 | } else { |
369 | 0 | xaset_remove(timers, (xasetmember_t *) t); |
370 | 0 | xaset_insert(free_timers, (xasetmember_t *) t); |
371 | 0 | nalarms++; |
372 | | |
373 | | /* The handle_alarm() function also readjusts the timers lists |
374 | | * as part of its processing, so it needs to be called when a timer |
375 | | * is removed. |
376 | | */ |
377 | 0 | handle_alarm(); |
378 | 0 | } |
379 | |
|
380 | 0 | pr_trace_msg(trace_channel, 7, |
381 | 0 | "removed timer ID %d ('%s', for module '%s')", t->timerno, t->desc, |
382 | 0 | t->mod ? t->mod->name : "[none]"); |
383 | 0 | } |
384 | | |
385 | | /* If we are removing a specific timer, break out of the loop now. |
386 | | * Otherwise, keep removing any matching timers. |
387 | | */ |
388 | 0 | if (nremoved > 0 && |
389 | 0 | timerno >= 0) { |
390 | 0 | break; |
391 | 0 | } |
392 | 0 | } |
393 | |
|
394 | 0 | pr_alarms_unblock(); |
395 | |
|
396 | 0 | if (nremoved == 0) { |
397 | 0 | errno = ENOENT; |
398 | 0 | return -1; |
399 | 0 | } |
400 | | |
401 | | /* If we removed a specific timer because of the given timerno, return |
402 | | * that timerno value. |
403 | | */ |
404 | 0 | if (timerno >= 0) { |
405 | 0 | return timerno; |
406 | 0 | } |
407 | | |
408 | 0 | return nremoved; |
409 | 0 | } |
410 | | |
411 | | int pr_timer_add(int seconds, int timerno, module *mod, callback_t cb, |
412 | 0 | const char *desc) { |
413 | 0 | struct timer *t = NULL; |
414 | |
|
415 | 0 | if (seconds <= 0 || |
416 | 0 | cb == NULL || |
417 | 0 | desc == NULL) { |
418 | 0 | errno = EINVAL; |
419 | 0 | return -1; |
420 | 0 | } |
421 | | |
422 | 0 | if (timers == NULL) { |
423 | 0 | timers = xaset_create(timer_pool, (XASET_COMPARE) timer_cmp); |
424 | 0 | } |
425 | | |
426 | | /* Check to see that, if specified, the timerno is not already in use. */ |
427 | 0 | if (timerno >= 0) { |
428 | 0 | for (t = (struct timer *) timers->xas_list; t; t = t->next) { |
429 | 0 | if (t->timerno == timerno) { |
430 | 0 | errno = EPERM; |
431 | 0 | return -1; |
432 | 0 | } |
433 | 0 | } |
434 | 0 | } |
435 | | |
436 | 0 | if (free_timers == NULL) { |
437 | 0 | free_timers = xaset_create(timer_pool, NULL); |
438 | 0 | } |
439 | | |
440 | | /* Try to use an old timer first */ |
441 | 0 | pr_alarms_block(); |
442 | 0 | t = (struct timer *) free_timers->xas_list; |
443 | 0 | if (t != NULL) { |
444 | 0 | xaset_remove(free_timers, (xasetmember_t *) t); |
445 | |
|
446 | 0 | } else { |
447 | 0 | if (timer_pool == NULL) { |
448 | 0 | timer_pool = make_sub_pool(permanent_pool); |
449 | 0 | pr_pool_tag(timer_pool, "Timer Pool"); |
450 | 0 | } |
451 | | |
452 | | /* Must allocate a new one */ |
453 | 0 | t = palloc(timer_pool, sizeof(struct timer)); |
454 | 0 | } |
455 | |
|
456 | 0 | if (timerno < 0) { |
457 | | /* Dynamic timer */ |
458 | 0 | if (dynamic_timerno < PR_TIMER_DYNAMIC_TIMERNO) { |
459 | 0 | dynamic_timerno = PR_TIMER_DYNAMIC_TIMERNO; |
460 | 0 | } |
461 | |
|
462 | 0 | timerno = dynamic_timerno++; |
463 | 0 | } |
464 | |
|
465 | 0 | t->timerno = timerno; |
466 | 0 | t->count = t->interval = seconds; |
467 | 0 | t->callback = cb; |
468 | 0 | t->mod = mod; |
469 | 0 | t->remove = 0; |
470 | 0 | t->desc = desc; |
471 | | |
472 | | /* If called while _indispatch, add to the recycled list to prevent |
473 | | * list corruption |
474 | | */ |
475 | |
|
476 | 0 | if (_indispatch) { |
477 | 0 | if (recycled == NULL) { |
478 | 0 | recycled = xaset_create(timer_pool, NULL); |
479 | 0 | } |
480 | 0 | xaset_insert(recycled, (xasetmember_t *) t); |
481 | |
|
482 | 0 | } else { |
483 | 0 | xaset_insert_sort(timers, (xasetmember_t *) t, TRUE); |
484 | 0 | nalarms++; |
485 | 0 | set_sig_alarm(); |
486 | | |
487 | | /* The handle_alarm() function also readjusts the timers lists |
488 | | * as part of its processing, so it needs to be called when a timer |
489 | | * is added. |
490 | | */ |
491 | 0 | handle_alarm(); |
492 | 0 | } |
493 | |
|
494 | 0 | pr_alarms_unblock(); |
495 | |
|
496 | 0 | pr_trace_msg(trace_channel, 7, "added timer ID %d ('%s', for module '%s'), " |
497 | 0 | "triggering in %ld %s", t->timerno, t->desc, |
498 | 0 | t->mod ? t->mod->name : "[none]", t->interval, |
499 | 0 | t->interval != 1 ? "seconds" : "second"); |
500 | 0 | return timerno; |
501 | 0 | } |
502 | | |
503 | | /* Alarm blocking. This is done manually rather than with syscalls, |
504 | | * so as to allow for easier signal handling, portability and |
505 | | * detecting the number of blocked alarms, as well as nesting the |
506 | | * block/unblock functions. |
507 | | */ |
508 | | |
509 | 15.3k | void pr_alarms_block(void) { |
510 | 15.3k | ++alarms_blocked; |
511 | 15.3k | } |
512 | | |
513 | 15.3k | void pr_alarms_unblock(void) { |
514 | 15.3k | --alarms_blocked; |
515 | 15.3k | if (alarms_blocked == 0 && alarm_pending) { |
516 | 0 | alarm_pending = 0; |
517 | 0 | nalarms++; |
518 | 0 | handle_alarm(); |
519 | 0 | } |
520 | 15.3k | } |
521 | | |
522 | 0 | static int sleep_cb(CALLBACK_FRAME) { |
523 | 0 | sleep_sem++; |
524 | 0 | return 0; |
525 | 0 | } |
526 | | |
527 | 0 | int pr_timer_sleep(int seconds) { |
528 | 0 | int timerno = 0; |
529 | 0 | sigset_t oset; |
530 | |
|
531 | 0 | sleep_sem = 0; |
532 | |
|
533 | 0 | if (alarms_blocked || |
534 | 0 | _indispatch) { |
535 | 0 | errno = EPERM; |
536 | 0 | return -1; |
537 | 0 | } |
538 | | |
539 | 0 | timerno = pr_timer_add(seconds, -1, NULL, sleep_cb, "sleep"); |
540 | 0 | if (timerno == -1) { |
541 | 0 | return -1; |
542 | 0 | } |
543 | | |
544 | 0 | sigemptyset(&oset); |
545 | 0 | while (!sleep_sem) { |
546 | 0 | sigsuspend(&oset); |
547 | 0 | handle_alarm(); |
548 | 0 | } |
549 | |
|
550 | 0 | return 0; |
551 | 0 | } |
552 | | |
553 | 0 | int pr_timer_usleep(unsigned long usecs) { |
554 | 0 | struct timeval tv; |
555 | |
|
556 | 0 | if (usecs == 0) { |
557 | 0 | errno = EINVAL; |
558 | 0 | return -1; |
559 | 0 | } |
560 | | |
561 | 0 | tv.tv_sec = (usecs / 1000000); |
562 | 0 | tv.tv_usec = (usecs - (tv.tv_sec * 1000000)); |
563 | |
|
564 | 0 | pr_signals_block(); |
565 | 0 | (void) select(0, NULL, NULL, NULL, &tv); |
566 | 0 | pr_signals_unblock(); |
567 | |
|
568 | 0 | return 0; |
569 | 0 | } |
570 | | |
571 | 0 | void timers_init(void) { |
572 | | |
573 | | /* Reset some of the key static variables. */ |
574 | 0 | current_timeout = 0; |
575 | 0 | total_time = 0; |
576 | 0 | nalarms = 0; |
577 | 0 | alarmed_time = 0; |
578 | 0 | dynamic_timerno = PR_TIMER_DYNAMIC_TIMERNO; |
579 | | |
580 | | /* Don't inherit the parent's timer lists. */ |
581 | 0 | timers = NULL; |
582 | 0 | recycled = NULL; |
583 | 0 | free_timers = NULL; |
584 | | |
585 | | /* Reset the timer pool. */ |
586 | 0 | if (timer_pool != NULL) { |
587 | 0 | destroy_pool(timer_pool); |
588 | 0 | } |
589 | |
|
590 | 0 | timer_pool = make_sub_pool(permanent_pool); |
591 | 0 | pr_pool_tag(timer_pool, "Timer Pool"); |
592 | 0 | } |