/src/PROJ/src/projections/somerc.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | |
2 | | |
3 | | #include <errno.h> |
4 | | #include <math.h> |
5 | | |
6 | | #include "proj.h" |
7 | | #include "proj_internal.h" |
8 | | |
9 | | PROJ_HEAD(somerc, "Swiss. Obl. Mercator") "\n\tCyl, Ell\n\tFor CH1903"; |
10 | | |
11 | | namespace { // anonymous namespace |
12 | | struct pj_somerc { |
13 | | double K, c, hlf_e, kR, cosp0, sinp0; |
14 | | }; |
15 | | } // anonymous namespace |
16 | | |
17 | 0 | #define EPS 1.e-10 |
18 | 0 | #define NITER 6 |
19 | | |
20 | 1.00k | static PJ_XY somerc_e_forward(PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */ |
21 | 1.00k | PJ_XY xy = {0.0, 0.0}; |
22 | 1.00k | double phip, lamp, phipp, lampp, sp, cp; |
23 | 1.00k | struct pj_somerc *Q = static_cast<struct pj_somerc *>(P->opaque); |
24 | | |
25 | 1.00k | sp = P->e * sin(lp.phi); |
26 | 1.00k | phip = 2. * atan(exp(Q->c * (log(tan(M_FORTPI + 0.5 * lp.phi)) - |
27 | 1.00k | Q->hlf_e * log((1. + sp) / (1. - sp))) + |
28 | 1.00k | Q->K)) - |
29 | 1.00k | M_HALFPI; |
30 | 1.00k | lamp = Q->c * lp.lam; |
31 | 1.00k | cp = cos(phip); |
32 | 1.00k | phipp = aasin(P->ctx, Q->cosp0 * sin(phip) - Q->sinp0 * cp * cos(lamp)); |
33 | 1.00k | lampp = aasin(P->ctx, cp * sin(lamp) / cos(phipp)); |
34 | 1.00k | xy.x = Q->kR * lampp; |
35 | 1.00k | xy.y = Q->kR * log(tan(M_FORTPI + 0.5 * phipp)); |
36 | 1.00k | return xy; |
37 | 1.00k | } |
38 | | |
39 | 0 | static PJ_LP somerc_e_inverse(PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */ |
40 | 0 | PJ_LP lp = {0.0, 0.0}; |
41 | 0 | struct pj_somerc *Q = static_cast<struct pj_somerc *>(P->opaque); |
42 | 0 | double phip, lamp, phipp, lampp, cp, esp, con, delp; |
43 | 0 | int i; |
44 | |
|
45 | 0 | phipp = 2. * (atan(exp(xy.y / Q->kR)) - M_FORTPI); |
46 | 0 | lampp = xy.x / Q->kR; |
47 | 0 | cp = cos(phipp); |
48 | 0 | phip = aasin(P->ctx, Q->cosp0 * sin(phipp) + Q->sinp0 * cp * cos(lampp)); |
49 | 0 | lamp = aasin(P->ctx, cp * sin(lampp) / cos(phip)); |
50 | 0 | con = (Q->K - log(tan(M_FORTPI + 0.5 * phip))) / Q->c; |
51 | 0 | for (i = NITER; i; --i) { |
52 | 0 | esp = P->e * sin(phip); |
53 | 0 | delp = (con + log(tan(M_FORTPI + 0.5 * phip)) - |
54 | 0 | Q->hlf_e * log((1. + esp) / (1. - esp))) * |
55 | 0 | (1. - esp * esp) * cos(phip) * P->rone_es; |
56 | 0 | phip -= delp; |
57 | 0 | if (fabs(delp) < EPS) |
58 | 0 | break; |
59 | 0 | } |
60 | 0 | if (i) { |
61 | 0 | lp.phi = phip; |
62 | 0 | lp.lam = lamp / Q->c; |
63 | 0 | } else { |
64 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
65 | 0 | return lp; |
66 | 0 | } |
67 | 0 | return (lp); |
68 | 0 | } |
69 | | |
70 | 97 | PJ *PJ_PROJECTION(somerc) { |
71 | 97 | double cp, phip0, sp; |
72 | 97 | struct pj_somerc *Q = |
73 | 97 | static_cast<struct pj_somerc *>(calloc(1, sizeof(struct pj_somerc))); |
74 | 97 | if (nullptr == Q) |
75 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
76 | 97 | P->opaque = Q; |
77 | | |
78 | 97 | Q->hlf_e = 0.5 * P->e; |
79 | 97 | cp = cos(P->phi0); |
80 | 97 | cp *= cp; |
81 | 97 | Q->c = sqrt(1 + P->es * cp * cp * P->rone_es); |
82 | 97 | sp = sin(P->phi0); |
83 | 97 | Q->sinp0 = sp / Q->c; |
84 | 97 | phip0 = aasin(P->ctx, Q->sinp0); |
85 | 97 | Q->cosp0 = cos(phip0); |
86 | 97 | sp *= P->e; |
87 | 97 | Q->K = log(tan(M_FORTPI + 0.5 * phip0)) - |
88 | 97 | Q->c * (log(tan(M_FORTPI + 0.5 * P->phi0)) - |
89 | 97 | Q->hlf_e * log((1. + sp) / (1. - sp))); |
90 | 97 | Q->kR = P->k0 * sqrt(P->one_es) / (1. - sp * sp); |
91 | 97 | P->inv = somerc_e_inverse; |
92 | 97 | P->fwd = somerc_e_forward; |
93 | 97 | return P; |
94 | 97 | } |
95 | | |
96 | | #undef EPS |
97 | | #undef NITER |