/src/PROJ/src/projections/nell_h.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | |
2 | | |
3 | | #include <math.h> |
4 | | |
5 | | #include "proj.h" |
6 | | #include "proj_internal.h" |
7 | | |
8 | | PROJ_HEAD(nell_h, "Nell-Hammer") "\n\tPCyl, Sph"; |
9 | | |
10 | 0 | #define NITER 9 |
11 | 0 | #define EPS 1e-7 |
12 | | |
13 | 0 | static PJ_XY nell_h_s_forward(PJ_LP lp, PJ *P) { /* Spheroidal, forward */ |
14 | 0 | PJ_XY xy = {0.0, 0.0}; |
15 | 0 | (void)P; |
16 | |
|
17 | 0 | xy.x = 0.5 * lp.lam * (1. + cos(lp.phi)); |
18 | 0 | xy.y = 2.0 * (lp.phi - tan(0.5 * lp.phi)); |
19 | |
|
20 | 0 | return xy; |
21 | 0 | } |
22 | | |
23 | 0 | static PJ_LP nell_h_s_inverse(PJ_XY xy, PJ *P) { /* Spheroidal, inverse */ |
24 | 0 | PJ_LP lp = {0.0, 0.0}; |
25 | 0 | int i; |
26 | 0 | (void)P; |
27 | |
|
28 | 0 | const double p = 0.5 * xy.y; |
29 | 0 | for (i = NITER; i; --i) { |
30 | 0 | const double c = cos(0.5 * lp.phi); |
31 | 0 | const double V = (lp.phi - tan(lp.phi / 2) - p) / (1. - 0.5 / (c * c)); |
32 | 0 | lp.phi -= V; |
33 | 0 | if (fabs(V) < EPS) |
34 | 0 | break; |
35 | 0 | } |
36 | 0 | if (!i) { |
37 | 0 | lp.phi = p < 0. ? -M_HALFPI : M_HALFPI; |
38 | 0 | lp.lam = 2. * xy.x; |
39 | 0 | } else |
40 | 0 | lp.lam = 2. * xy.x / (1. + cos(lp.phi)); |
41 | |
|
42 | 0 | return lp; |
43 | 0 | } |
44 | | |
45 | 7 | PJ *PJ_PROJECTION(nell_h) { |
46 | 7 | P->es = 0.; |
47 | 7 | P->inv = nell_h_s_inverse; |
48 | 7 | P->fwd = nell_h_s_forward; |
49 | | |
50 | 7 | return P; |
51 | 7 | } |
52 | | |
53 | | #undef NITER |
54 | | #undef EPS |