Coverage Report

Created: 2025-07-18 07:18

/src/PROJ/src/generic_inverse.cpp
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 *
3
 * Project:  PROJ
4
 * Purpose:  Generic method to compute inverse projection from forward method
5
 * Author:   Even Rouault <even dot rouault at spatialys dot com>
6
 *
7
 ******************************************************************************
8
 * Copyright (c) 2018, Even Rouault <even dot rouault at spatialys dot com>
9
 *
10
 * Permission is hereby granted, free of charge, to any person obtaining a
11
 * copy of this software and associated documentation files (the "Software"),
12
 * to deal in the Software without restriction, including without limitation
13
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
14
 * and/or sell copies of the Software, and to permit persons to whom the
15
 * Software is furnished to do so, subject to the following conditions:
16
 *
17
 * The above copyright notice and this permission notice shall be included
18
 * in all copies or substantial portions of the Software.
19
 *
20
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
25
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26
 * DEALINGS IN THE SOFTWARE.
27
 ****************************************************************************/
28
29
#include "proj_internal.h"
30
31
#include <algorithm>
32
#include <cmath>
33
34
/** Compute (lam, phi) corresponding to input (xy.x, xy.y) for projection P.
35
 *
36
 * Uses Newton-Raphson method, extended to 2D variables, that is using
37
 * inversion of the Jacobian 2D matrix of partial derivatives. The derivatives
38
 * are estimated numerically from the P->fwd method evaluated at close points.
39
 *
40
 * Note: thresholds used have been verified to work with adams_ws2 and wink2
41
 *
42
 * Starts with initial guess provided by user in lpInitial
43
 */
44
PJ_LP pj_generic_inverse_2d(PJ_XY xy, PJ *P, PJ_LP lpInitial,
45
0
                            double deltaXYTolerance) {
46
0
    PJ_LP lp = lpInitial;
47
0
    double deriv_lam_X = 0;
48
0
    double deriv_lam_Y = 0;
49
0
    double deriv_phi_X = 0;
50
0
    double deriv_phi_Y = 0;
51
0
    for (int i = 0; i < 15; i++) {
52
0
        PJ_XY xyApprox = P->fwd(lp, P);
53
0
        const double deltaX = xyApprox.x - xy.x;
54
0
        const double deltaY = xyApprox.y - xy.y;
55
0
        if (fabs(deltaX) < deltaXYTolerance &&
56
0
            fabs(deltaY) < deltaXYTolerance) {
57
0
            return lp;
58
0
        }
59
60
0
        if (i == 0 || fabs(deltaX) > 1e-6 || fabs(deltaY) > 1e-6) {
61
            // Compute Jacobian matrix (only if we aren't close to the final
62
            // result to speed things a bit)
63
0
            PJ_LP lp2;
64
0
            PJ_XY xy2;
65
0
            const double dLam = lp.lam > 0 ? -1e-6 : 1e-6;
66
0
            lp2.lam = lp.lam + dLam;
67
0
            lp2.phi = lp.phi;
68
0
            xy2 = P->fwd(lp2, P);
69
0
            const double deriv_X_lam = (xy2.x - xyApprox.x) / dLam;
70
0
            const double deriv_Y_lam = (xy2.y - xyApprox.y) / dLam;
71
72
0
            const double dPhi = lp.phi > 0 ? -1e-6 : 1e-6;
73
0
            lp2.lam = lp.lam;
74
0
            lp2.phi = lp.phi + dPhi;
75
0
            xy2 = P->fwd(lp2, P);
76
0
            const double deriv_X_phi = (xy2.x - xyApprox.x) / dPhi;
77
0
            const double deriv_Y_phi = (xy2.y - xyApprox.y) / dPhi;
78
79
            // Inverse of Jacobian matrix
80
0
            const double det =
81
0
                deriv_X_lam * deriv_Y_phi - deriv_X_phi * deriv_Y_lam;
82
0
            if (det != 0) {
83
0
                deriv_lam_X = deriv_Y_phi / det;
84
0
                deriv_lam_Y = -deriv_X_phi / det;
85
0
                deriv_phi_X = -deriv_Y_lam / det;
86
0
                deriv_phi_Y = deriv_X_lam / det;
87
0
            }
88
0
        }
89
90
        // Limit the amplitude of correction to avoid overshoots due to
91
        // bad initial guess
92
0
        const double delta_lam = std::max(
93
0
            std::min(deltaX * deriv_lam_X + deltaY * deriv_lam_Y, 0.3), -0.3);
94
0
        lp.lam -= delta_lam;
95
0
        if (lp.lam < -M_PI)
96
0
            lp.lam = -M_PI;
97
0
        else if (lp.lam > M_PI)
98
0
            lp.lam = M_PI;
99
100
0
        const double delta_phi = std::max(
101
0
            std::min(deltaX * deriv_phi_X + deltaY * deriv_phi_Y, 0.3), -0.3);
102
0
        lp.phi -= delta_phi;
103
0
        if (lp.phi < -M_HALFPI)
104
0
            lp.phi = -M_HALFPI;
105
0
        else if (lp.phi > M_HALFPI)
106
0
            lp.phi = M_HALFPI;
107
0
    }
108
0
    proj_context_errno_set(P->ctx,
109
0
                           PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
110
0
    return lp;
111
0
}