/src/PROJ/src/projections/ortho.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | |
2 | | #include "proj.h" |
3 | | #include "proj_internal.h" |
4 | | #include <errno.h> |
5 | | #include <math.h> |
6 | | |
7 | | PROJ_HEAD(ortho, "Orthographic") "\n\tAzi, Sph&Ell"; |
8 | | |
9 | | namespace pj_ortho_ns { |
10 | | enum Mode { N_POLE = 0, S_POLE = 1, EQUIT = 2, OBLIQ = 3 }; |
11 | | } |
12 | | |
13 | | namespace { // anonymous namespace |
14 | | struct pj_ortho_data { |
15 | | double sinph0; |
16 | | double cosph0; |
17 | | double nu0; |
18 | | double y_shift; |
19 | | double y_scale; |
20 | | enum pj_ortho_ns::Mode mode; |
21 | | double sinalpha; |
22 | | double cosalpha; |
23 | | }; |
24 | | } // anonymous namespace |
25 | | |
26 | 8.64k | #define EPS10 1.e-10 |
27 | | |
28 | 4.00k | static PJ_XY forward_error(PJ *P, PJ_LP lp, PJ_XY xy) { |
29 | 4.00k | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
30 | 4.00k | proj_log_trace(P, |
31 | 4.00k | "Coordinate (%.3f, %.3f) is on the unprojected hemisphere", |
32 | 4.00k | proj_todeg(lp.lam), proj_todeg(lp.phi)); |
33 | 4.00k | return xy; |
34 | 4.00k | } |
35 | | |
36 | 0 | static PJ_XY ortho_s_forward(PJ_LP lp, PJ *P) { /* Spheroidal, forward */ |
37 | 0 | PJ_XY xy; |
38 | 0 | struct pj_ortho_data *Q = static_cast<struct pj_ortho_data *>(P->opaque); |
39 | 0 | double coslam, cosphi, sinphi; |
40 | |
|
41 | 0 | xy.x = HUGE_VAL; |
42 | 0 | xy.y = HUGE_VAL; |
43 | |
|
44 | 0 | cosphi = cos(lp.phi); |
45 | 0 | coslam = cos(lp.lam); |
46 | 0 | switch (Q->mode) { |
47 | 0 | case pj_ortho_ns::EQUIT: |
48 | 0 | if (cosphi * coslam < -EPS10) |
49 | 0 | return forward_error(P, lp, xy); |
50 | 0 | xy.y = sin(lp.phi); |
51 | 0 | break; |
52 | 0 | case pj_ortho_ns::OBLIQ: |
53 | 0 | sinphi = sin(lp.phi); |
54 | | |
55 | | // Is the point visible from the projection plane ? |
56 | | // From |
57 | | // https://lists.osgeo.org/pipermail/proj/2020-September/009831.html |
58 | | // this is the dot product of the normal of the ellipsoid at the center |
59 | | // of the projection and at the point considered for projection. |
60 | | // [cos(phi)*cos(lambda), cos(phi)*sin(lambda), sin(phi)] |
61 | | // Also from Snyder's Map Projection - A working manual, equation (5-3), |
62 | | // page 149 |
63 | 0 | if (Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam < -EPS10) |
64 | 0 | return forward_error(P, lp, xy); |
65 | 0 | xy.y = Q->cosph0 * sinphi - Q->sinph0 * cosphi * coslam; |
66 | 0 | break; |
67 | 0 | case pj_ortho_ns::N_POLE: |
68 | 0 | coslam = -coslam; |
69 | 0 | PROJ_FALLTHROUGH; |
70 | 0 | case pj_ortho_ns::S_POLE: |
71 | 0 | if (fabs(lp.phi - P->phi0) - EPS10 > M_HALFPI) |
72 | 0 | return forward_error(P, lp, xy); |
73 | 0 | xy.y = cosphi * coslam; |
74 | 0 | break; |
75 | 0 | } |
76 | 0 | xy.x = cosphi * sin(lp.lam); |
77 | |
|
78 | 0 | const double xp = xy.x; |
79 | 0 | const double yp = xy.y; |
80 | 0 | xy.x = (xp * Q->cosalpha - yp * Q->sinalpha) * P->k0; |
81 | 0 | xy.y = (xp * Q->sinalpha + yp * Q->cosalpha) * P->k0; |
82 | 0 | return xy; |
83 | 0 | } |
84 | | |
85 | 0 | static PJ_LP ortho_s_inverse(PJ_XY xy, PJ *P) { /* Spheroidal, inverse */ |
86 | 0 | PJ_LP lp; |
87 | 0 | struct pj_ortho_data *Q = static_cast<struct pj_ortho_data *>(P->opaque); |
88 | 0 | double sinc; |
89 | |
|
90 | 0 | lp.lam = HUGE_VAL; |
91 | 0 | lp.phi = HUGE_VAL; |
92 | |
|
93 | 0 | const double xf = xy.x; |
94 | 0 | const double yf = xy.y; |
95 | 0 | xy.x = (Q->cosalpha * xf + Q->sinalpha * yf) / P->k0; |
96 | 0 | xy.y = (-Q->sinalpha * xf + Q->cosalpha * yf) / P->k0; |
97 | |
|
98 | 0 | const double rh = hypot(xy.x, xy.y); |
99 | 0 | sinc = rh; |
100 | 0 | if (sinc > 1.) { |
101 | 0 | if ((sinc - 1.) > EPS10) { |
102 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
103 | 0 | return lp; |
104 | 0 | } |
105 | 0 | sinc = 1.; |
106 | 0 | } |
107 | 0 | const double cosc = sqrt(1. - sinc * sinc); /* in this range OK */ |
108 | 0 | if (fabs(rh) <= EPS10) { |
109 | 0 | lp.phi = P->phi0; |
110 | 0 | lp.lam = 0.0; |
111 | 0 | } else { |
112 | 0 | switch (Q->mode) { |
113 | 0 | case pj_ortho_ns::N_POLE: |
114 | 0 | xy.y = -xy.y; |
115 | 0 | lp.phi = acos(sinc); |
116 | 0 | break; |
117 | 0 | case pj_ortho_ns::S_POLE: |
118 | 0 | lp.phi = -acos(sinc); |
119 | 0 | break; |
120 | 0 | case pj_ortho_ns::EQUIT: |
121 | 0 | lp.phi = xy.y * sinc / rh; |
122 | 0 | xy.x *= sinc; |
123 | 0 | xy.y = cosc * rh; |
124 | 0 | goto sinchk; |
125 | 0 | case pj_ortho_ns::OBLIQ: |
126 | 0 | lp.phi = cosc * Q->sinph0 + xy.y * sinc * Q->cosph0 / rh; |
127 | 0 | xy.y = (cosc - Q->sinph0 * lp.phi) * rh; |
128 | 0 | xy.x *= sinc * Q->cosph0; |
129 | 0 | sinchk: |
130 | 0 | if (fabs(lp.phi) >= 1.) |
131 | 0 | lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI; |
132 | 0 | else |
133 | 0 | lp.phi = asin(lp.phi); |
134 | 0 | break; |
135 | 0 | } |
136 | 0 | lp.lam = (xy.y == 0. && (Q->mode == pj_ortho_ns::OBLIQ || |
137 | 0 | Q->mode == pj_ortho_ns::EQUIT)) |
138 | 0 | ? (xy.x == 0. ? 0. |
139 | 0 | : xy.x < 0. ? -M_HALFPI |
140 | 0 | : M_HALFPI) |
141 | 0 | : atan2(xy.x, xy.y); |
142 | 0 | } |
143 | 0 | return lp; |
144 | 0 | } |
145 | | |
146 | 8.31k | static PJ_XY ortho_e_forward(PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */ |
147 | 8.31k | PJ_XY xy; |
148 | 8.31k | struct pj_ortho_data *Q = static_cast<struct pj_ortho_data *>(P->opaque); |
149 | | |
150 | | // From EPSG guidance note 7.2, March 2020, §3.3.5 Orthographic |
151 | 8.31k | const double cosphi = cos(lp.phi); |
152 | 8.31k | const double sinphi = sin(lp.phi); |
153 | 8.31k | const double coslam = cos(lp.lam); |
154 | 8.31k | const double sinlam = sin(lp.lam); |
155 | | |
156 | | // Is the point visible from the projection plane ? |
157 | | // Same condition as in spherical case |
158 | 8.31k | if (Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam < -EPS10) { |
159 | 4.00k | xy.x = HUGE_VAL; |
160 | 4.00k | xy.y = HUGE_VAL; |
161 | 4.00k | return forward_error(P, lp, xy); |
162 | 4.00k | } |
163 | | |
164 | 4.31k | const double nu = 1.0 / sqrt(1.0 - P->es * sinphi * sinphi); |
165 | 4.31k | const double xp = nu * cosphi * sinlam; |
166 | 4.31k | const double yp = nu * (sinphi * Q->cosph0 - cosphi * Q->sinph0 * coslam) + |
167 | 4.31k | P->es * (Q->nu0 * Q->sinph0 - nu * sinphi) * Q->cosph0; |
168 | 4.31k | xy.x = (Q->cosalpha * xp - Q->sinalpha * yp) * P->k0; |
169 | 4.31k | xy.y = (Q->sinalpha * xp + Q->cosalpha * yp) * P->k0; |
170 | | |
171 | 4.31k | return xy; |
172 | 8.31k | } |
173 | | |
174 | 0 | static PJ_LP ortho_e_inverse(PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */ |
175 | 0 | PJ_LP lp; |
176 | 0 | struct pj_ortho_data *Q = static_cast<struct pj_ortho_data *>(P->opaque); |
177 | |
|
178 | 0 | const auto SQ = [](double x) { return x * x; }; |
179 | |
|
180 | 0 | const double xf = xy.x; |
181 | 0 | const double yf = xy.y; |
182 | 0 | xy.x = (Q->cosalpha * xf + Q->sinalpha * yf) / P->k0; |
183 | 0 | xy.y = (-Q->sinalpha * xf + Q->cosalpha * yf) / P->k0; |
184 | |
|
185 | 0 | if (Q->mode == pj_ortho_ns::N_POLE || Q->mode == pj_ortho_ns::S_POLE) { |
186 | | // Polar case. Forward case equations can be simplified as: |
187 | | // xy.x = nu * cosphi * sinlam |
188 | | // xy.y = nu * -cosphi * coslam * sign(phi0) |
189 | | // ==> lam = atan2(xy.x, -xy.y * sign(phi0)) |
190 | | // ==> xy.x^2 + xy.y^2 = nu^2 * cosphi^2 |
191 | | // rh^2 = cosphi^2 / (1 - es * sinphi^2) |
192 | | // ==> cosphi^2 = rh^2 * (1 - es) / (1 - es * rh^2) |
193 | |
|
194 | 0 | const double rh2 = SQ(xy.x) + SQ(xy.y); |
195 | 0 | if (rh2 >= 1. - 1e-15) { |
196 | 0 | if ((rh2 - 1.) > EPS10) { |
197 | 0 | proj_errno_set( |
198 | 0 | P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
199 | 0 | lp.lam = HUGE_VAL; |
200 | 0 | lp.phi = HUGE_VAL; |
201 | 0 | return lp; |
202 | 0 | } |
203 | 0 | lp.phi = 0; |
204 | 0 | } else { |
205 | 0 | lp.phi = acos(sqrt(rh2 * P->one_es / (1 - P->es * rh2))) * |
206 | 0 | (Q->mode == pj_ortho_ns::N_POLE ? 1 : -1); |
207 | 0 | } |
208 | 0 | lp.lam = atan2(xy.x, xy.y * (Q->mode == pj_ortho_ns::N_POLE ? -1 : 1)); |
209 | 0 | return lp; |
210 | 0 | } |
211 | | |
212 | 0 | if (Q->mode == pj_ortho_ns::EQUIT) { |
213 | | // Equatorial case. Forward case equations can be simplified as: |
214 | | // xy.x = nu * cosphi * sinlam |
215 | | // xy.y = nu * sinphi * (1 - P->es) |
216 | | // x^2 * (1 - es * sinphi^2) = (1 - sinphi^2) * sinlam^2 |
217 | | // y^2 / ((1 - es)^2 + y^2 * es) = sinphi^2 |
218 | | |
219 | | // Equation of the ellipse |
220 | 0 | if (SQ(xy.x) + SQ(xy.y * (P->a / P->b)) > 1 + 1e-11) { |
221 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
222 | 0 | lp.lam = HUGE_VAL; |
223 | 0 | lp.phi = HUGE_VAL; |
224 | 0 | return lp; |
225 | 0 | } |
226 | | |
227 | 0 | const double sinphi2 = |
228 | 0 | xy.y == 0 ? 0 : 1.0 / (SQ((1 - P->es) / xy.y) + P->es); |
229 | 0 | if (sinphi2 > 1 - 1e-11) { |
230 | 0 | lp.phi = M_PI_2 * (xy.y > 0 ? 1 : -1); |
231 | 0 | lp.lam = 0; |
232 | 0 | return lp; |
233 | 0 | } |
234 | 0 | lp.phi = asin(sqrt(sinphi2)) * (xy.y > 0 ? 1 : -1); |
235 | 0 | const double sinlam = |
236 | 0 | xy.x * sqrt((1 - P->es * sinphi2) / (1 - sinphi2)); |
237 | 0 | if (fabs(sinlam) - 1 > -1e-15) |
238 | 0 | lp.lam = M_PI_2 * (xy.x > 0 ? 1 : -1); |
239 | 0 | else |
240 | 0 | lp.lam = asin(sinlam); |
241 | 0 | return lp; |
242 | 0 | } |
243 | | |
244 | | // Using Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam == 0 (visibity |
245 | | // condition of the forward case) in the forward equations, and a lot of |
246 | | // substitution games... |
247 | 0 | PJ_XY xy_recentered; |
248 | 0 | xy_recentered.x = xy.x; |
249 | 0 | xy_recentered.y = (xy.y - Q->y_shift) / Q->y_scale; |
250 | 0 | if (SQ(xy.x) + SQ(xy_recentered.y) > 1 + 1e-11) { |
251 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
252 | 0 | lp.lam = HUGE_VAL; |
253 | 0 | lp.phi = HUGE_VAL; |
254 | 0 | return lp; |
255 | 0 | } |
256 | | |
257 | | // From EPSG guidance note 7.2, March 2020, §3.3.5 Orthographic |
258 | | |
259 | | // It suggests as initial guess: |
260 | | // lp.lam = 0; |
261 | | // lp.phi = P->phi0; |
262 | | // But for poles, this will not converge well. Better use: |
263 | 0 | lp = ortho_s_inverse(xy_recentered, P); |
264 | |
|
265 | 0 | for (int i = 0; i < 20; i++) { |
266 | 0 | const double cosphi = cos(lp.phi); |
267 | 0 | const double sinphi = sin(lp.phi); |
268 | 0 | const double coslam = cos(lp.lam); |
269 | 0 | const double sinlam = sin(lp.lam); |
270 | 0 | const double one_minus_es_sinphi2 = 1.0 - P->es * sinphi * sinphi; |
271 | 0 | const double nu = 1.0 / sqrt(one_minus_es_sinphi2); |
272 | 0 | PJ_XY xy_new; |
273 | 0 | xy_new.x = nu * cosphi * sinlam; |
274 | 0 | xy_new.y = nu * (sinphi * Q->cosph0 - cosphi * Q->sinph0 * coslam) + |
275 | 0 | P->es * (Q->nu0 * Q->sinph0 - nu * sinphi) * Q->cosph0; |
276 | 0 | const double rho = (1.0 - P->es) * nu / one_minus_es_sinphi2; |
277 | 0 | const double J11 = -rho * sinphi * sinlam; |
278 | 0 | const double J12 = nu * cosphi * coslam; |
279 | 0 | const double J21 = |
280 | 0 | rho * (cosphi * Q->cosph0 + sinphi * Q->sinph0 * coslam); |
281 | 0 | const double J22 = nu * Q->sinph0 * cosphi * sinlam; |
282 | 0 | const double D = J11 * J22 - J12 * J21; |
283 | 0 | const double dx = xy.x - xy_new.x; |
284 | 0 | const double dy = xy.y - xy_new.y; |
285 | 0 | const double dphi = (J22 * dx - J12 * dy) / D; |
286 | 0 | const double dlam = (-J21 * dx + J11 * dy) / D; |
287 | 0 | lp.phi += dphi; |
288 | 0 | if (lp.phi > M_PI_2) { |
289 | 0 | lp.phi = M_PI_2 - (lp.phi - M_PI_2); |
290 | 0 | lp.lam = adjlon(lp.lam + M_PI); |
291 | 0 | } else if (lp.phi < -M_PI_2) { |
292 | 0 | lp.phi = -M_PI_2 + (-M_PI_2 - lp.phi); |
293 | 0 | lp.lam = adjlon(lp.lam + M_PI); |
294 | 0 | } |
295 | 0 | lp.lam += dlam; |
296 | 0 | if (fabs(dphi) < 1e-12 && fabs(dlam) < 1e-12) { |
297 | 0 | return lp; |
298 | 0 | } |
299 | 0 | } |
300 | 0 | proj_context_errno_set(P->ctx, |
301 | 0 | PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
302 | 0 | return lp; |
303 | 0 | } |
304 | | |
305 | 165 | PJ *PJ_PROJECTION(ortho) { |
306 | 165 | struct pj_ortho_data *Q = static_cast<struct pj_ortho_data *>( |
307 | 165 | calloc(1, sizeof(struct pj_ortho_data))); |
308 | 165 | if (nullptr == Q) |
309 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
310 | 165 | P->opaque = Q; |
311 | | |
312 | 165 | Q->sinph0 = sin(P->phi0); |
313 | 165 | Q->cosph0 = cos(P->phi0); |
314 | 165 | if (fabs(fabs(P->phi0) - M_HALFPI) <= EPS10) |
315 | 0 | Q->mode = P->phi0 < 0. ? pj_ortho_ns::S_POLE : pj_ortho_ns::N_POLE; |
316 | 165 | else if (fabs(P->phi0) > EPS10) { |
317 | 18 | Q->mode = pj_ortho_ns::OBLIQ; |
318 | 18 | } else |
319 | 147 | Q->mode = pj_ortho_ns::EQUIT; |
320 | 165 | if (P->es == 0) { |
321 | 1 | P->inv = ortho_s_inverse; |
322 | 1 | P->fwd = ortho_s_forward; |
323 | 164 | } else { |
324 | 164 | Q->nu0 = 1.0 / sqrt(1.0 - P->es * Q->sinph0 * Q->sinph0); |
325 | 164 | Q->y_shift = P->es * Q->nu0 * Q->sinph0 * Q->cosph0; |
326 | 164 | Q->y_scale = 1.0 / sqrt(1.0 - P->es * Q->cosph0 * Q->cosph0); |
327 | 164 | P->inv = ortho_e_inverse; |
328 | 164 | P->fwd = ortho_e_forward; |
329 | 164 | } |
330 | | |
331 | 165 | const double alpha = pj_param(P->ctx, P->params, "ralpha").f; |
332 | 165 | Q->sinalpha = sin(alpha); |
333 | 165 | Q->cosalpha = cos(alpha); |
334 | | |
335 | 165 | return P; |
336 | 165 | } |
337 | | |
338 | | #undef EPS10 |