/src/PROJ/src/projections/s2.cpp
Line | Count | Source |
1 | | /****************************************************************************** |
2 | | * Project: PROJ |
3 | | * Purpose: Implementing the S2 family of projections in PROJ |
4 | | * Author: Marcus Elia, <marcus at geopi.pe> |
5 | | * |
6 | | ****************************************************************************** |
7 | | * Copyright (c) 2021, Marcus Elia, <marcus at geopi.pe> |
8 | | * |
9 | | * Permission is hereby granted, free of charge, to any person obtaining a |
10 | | * copy of this software and associated documentation files (the "Software"), |
11 | | * to deal in the Software without restriction, including without limitation |
12 | | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
13 | | * and/or sell copies of the Software, and to permit persons to whom the |
14 | | * Software is furnished to do so, subject to the following conditions: |
15 | | * |
16 | | * The above copyright notice and this permission notice shall be included |
17 | | * in all copies or substantial portions of the Software. |
18 | | * |
19 | | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
20 | | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
22 | | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
24 | | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
25 | | * DEALINGS IN THE SOFTWARE. |
26 | | ***************************************************************************** |
27 | | * |
28 | | * This implements the S2 projection. This code is similar |
29 | | * to the QSC projection. |
30 | | * |
31 | | * |
32 | | * You have to choose one of the following projection centers, |
33 | | * corresponding to the centers of the six cube faces: |
34 | | * phi0 = 0.0, lam0 = 0.0 ("front" face) |
35 | | * phi0 = 0.0, lam0 = 90.0 ("right" face) |
36 | | * phi0 = 0.0, lam0 = 180.0 ("back" face) |
37 | | * phi0 = 0.0, lam0 = -90.0 ("left" face) |
38 | | * phi0 = 90.0 ("top" face) |
39 | | * phi0 = -90.0 ("bottom" face) |
40 | | * Other projection centers will not work! |
41 | | * |
42 | | * You must also choose which conversion from UV to ST coordinates |
43 | | * is used (linear, quadratic, tangent). Read about them in |
44 | | * https://github.com/google/s2geometry/blob/0c4c460bdfe696da303641771f9def900b3e440f/src/s2/s2coords.h |
45 | | * The S2 projection functions are adapted from the above link and the S2 |
46 | | * Math util functions are adapted from |
47 | | * https://github.com/google/s2geometry/blob/0c4c460bdfe696da303641771f9def900b3e440f/src/s2/util/math/vector.h |
48 | | ****************************************************************************/ |
49 | | |
50 | | /* enable predefined math constants M_* for MS Visual Studio */ |
51 | | #if defined(_MSC_VER) || defined(_WIN32) |
52 | | #ifndef _USE_MATH_DEFINES |
53 | | #define _USE_MATH_DEFINES |
54 | | #endif |
55 | | #endif |
56 | | |
57 | | #include <cmath> |
58 | | #include <cstdint> |
59 | | #include <errno.h> |
60 | | |
61 | | #include "proj.h" |
62 | | #include "proj_internal.h" |
63 | | |
64 | | /* The six cube faces. */ |
65 | | namespace { // anonymous namespace |
66 | | enum Face { |
67 | | FACE_FRONT = 0, |
68 | | FACE_RIGHT = 1, |
69 | | FACE_TOP = 2, |
70 | | FACE_BACK = 3, |
71 | | FACE_LEFT = 4, |
72 | | FACE_BOTTOM = 5 |
73 | | }; |
74 | | } // anonymous namespace |
75 | | |
76 | | enum S2ProjectionType { Linear, Quadratic, Tangent, NoUVtoST }; |
77 | | static std::map<std::string, S2ProjectionType> stringToS2ProjectionType{ |
78 | | {"linear", Linear}, |
79 | | {"quadratic", Quadratic}, |
80 | | {"tangent", Tangent}, |
81 | | {"none", NoUVtoST}}; |
82 | | |
83 | | namespace { // anonymous namespace |
84 | | struct pj_s2 { |
85 | | enum Face face; |
86 | | double a_squared; |
87 | | double one_minus_f; |
88 | | double one_minus_f_squared; |
89 | | S2ProjectionType UVtoST; |
90 | | }; |
91 | | } // anonymous namespace |
92 | | PROJ_HEAD(s2, "S2") "\n\tMisc, Sph&Ell"; |
93 | | |
94 | | /* The four areas on a cube face. AREA_0 is the area of definition, |
95 | | * the other three areas are counted counterclockwise. */ |
96 | | namespace { // anonymous namespace |
97 | | enum Area { AREA_0 = 0, AREA_1 = 1, AREA_2 = 2, AREA_3 = 3 }; |
98 | | } // anonymous namespace |
99 | | |
100 | | // ================================================= |
101 | | // |
102 | | // S2 Math Util |
103 | | // |
104 | | // ================================================= |
105 | 0 | static PJ_XYZ Abs(const PJ_XYZ &p) { |
106 | 0 | return {std::fabs(p.x), std::fabs(p.y), std::fabs(p.z)}; |
107 | 0 | } |
108 | | // return the index of the largest component (fabs) |
109 | 0 | static int LargestAbsComponent(const PJ_XYZ &p) { |
110 | 0 | PJ_XYZ temp = Abs(p); |
111 | 0 | return temp.x > temp.y ? temp.x > temp.z ? 0 : 2 : temp.y > temp.z ? 1 : 2; |
112 | 0 | } |
113 | | |
114 | | // ================================================= |
115 | | // |
116 | | // S2 Projection Functions |
117 | | // |
118 | | // ================================================= |
119 | | |
120 | | // Unfortunately, tan(M_PI_4) is slightly less than 1.0. This isn't due to |
121 | | // a flaw in the implementation of tan(), it's because the derivative of |
122 | | // tan(x) at x=pi/4 is 2, and it happens that the two adjacent floating |
123 | | // point numbers on either side of the infinite-precision value of pi/4 have |
124 | | // tangents that are slightly below and slightly above 1.0 when rounded to |
125 | | // the nearest double-precision result. |
126 | 0 | static double STtoUV(double s, S2ProjectionType s2_projection) { |
127 | 0 | switch (s2_projection) { |
128 | 0 | case Linear: |
129 | 0 | return 2 * s - 1; |
130 | 0 | break; |
131 | 0 | case Quadratic: |
132 | 0 | if (s >= 0.5) |
133 | 0 | return (1 / 3.) * (4 * s * s - 1); |
134 | 0 | else |
135 | 0 | return (1 / 3.) * (1 - 4 * (1 - s) * (1 - s)); |
136 | 0 | break; |
137 | 0 | case Tangent: |
138 | 0 | s = std::tan(M_PI_2 * s - M_PI_4); |
139 | 0 | return s + |
140 | 0 | (1.0 / static_cast<double>(static_cast<std::int64_t>(1) << 53)) * |
141 | 0 | s; |
142 | 0 | break; |
143 | 0 | default: |
144 | 0 | return s; |
145 | 0 | } |
146 | 0 | } |
147 | | |
148 | 28.7k | static double UVtoST(double u, S2ProjectionType s2_projection) { |
149 | 28.7k | double ret = u; |
150 | 28.7k | switch (s2_projection) { |
151 | 0 | case Linear: |
152 | 0 | ret = 0.5 * (u + 1); |
153 | 0 | break; |
154 | 28.7k | case Quadratic: |
155 | 28.7k | if (u >= 0) |
156 | 14.3k | ret = 0.5 * std::sqrt(1 + 3 * u); |
157 | 14.4k | else |
158 | 14.4k | ret = 1 - 0.5 * std::sqrt(1 - 3 * u); |
159 | 28.7k | break; |
160 | 0 | case Tangent: { |
161 | 0 | volatile double a = std::atan(u); |
162 | 0 | ret = (2 * M_1_PI) * (a + M_PI_4); |
163 | 0 | break; |
164 | 0 | } |
165 | 0 | case NoUVtoST: |
166 | 0 | break; |
167 | 28.7k | } |
168 | 28.7k | return ret; |
169 | 28.7k | } |
170 | | |
171 | 0 | inline PJ_XYZ FaceUVtoXYZ(int face, double u, double v) { |
172 | 0 | switch (face) { |
173 | 0 | case 0: |
174 | 0 | return {1, u, v}; |
175 | 0 | case 1: |
176 | 0 | return {-u, 1, v}; |
177 | 0 | case 2: |
178 | 0 | return {-u, -v, 1}; |
179 | 0 | case 3: |
180 | 0 | return {-1, -v, -u}; |
181 | 0 | case 4: |
182 | 0 | return {v, -1, -u}; |
183 | 0 | default: |
184 | 0 | return {v, u, -1}; |
185 | 0 | } |
186 | 0 | } |
187 | | |
188 | 0 | inline PJ_XYZ FaceUVtoXYZ(int face, const PJ_XY &uv) { |
189 | 0 | return FaceUVtoXYZ(face, uv.x, uv.y); |
190 | 0 | } |
191 | | |
192 | | inline void ValidFaceXYZtoUV(int face, const PJ_XYZ &p, double *pu, |
193 | 14.3k | double *pv) { |
194 | 14.3k | switch (face) { |
195 | 14.3k | case 0: |
196 | 14.3k | *pu = p.y / p.x; |
197 | 14.3k | *pv = p.z / p.x; |
198 | 14.3k | break; |
199 | 0 | case 1: |
200 | 0 | *pu = -p.x / p.y; |
201 | 0 | *pv = p.z / p.y; |
202 | 0 | break; |
203 | 0 | case 2: |
204 | 0 | *pu = -p.x / p.z; |
205 | 0 | *pv = -p.y / p.z; |
206 | 0 | break; |
207 | 0 | case 3: |
208 | 0 | *pu = p.z / p.x; |
209 | 0 | *pv = p.y / p.x; |
210 | 0 | break; |
211 | 0 | case 4: |
212 | 0 | *pu = p.z / p.y; |
213 | 0 | *pv = -p.x / p.y; |
214 | 0 | break; |
215 | 0 | default: |
216 | 0 | *pu = -p.y / p.z; |
217 | 0 | *pv = -p.x / p.z; |
218 | 0 | break; |
219 | 14.3k | } |
220 | 14.3k | } |
221 | | |
222 | 0 | inline void ValidFaceXYZtoUV(int face, const PJ_XYZ &p, PJ_XY *puv) { |
223 | 0 | ValidFaceXYZtoUV(face, p, &(*puv).x, &(*puv).y); |
224 | 0 | } |
225 | | |
226 | 0 | inline int GetFace(const PJ_XYZ &p) { |
227 | 0 | int face = LargestAbsComponent(p); |
228 | 0 | double pFace; |
229 | 0 | switch (face) { |
230 | 0 | case 0: |
231 | 0 | pFace = p.x; |
232 | 0 | break; |
233 | 0 | case 1: |
234 | 0 | pFace = p.y; |
235 | 0 | break; |
236 | 0 | default: |
237 | 0 | pFace = p.z; |
238 | 0 | break; |
239 | 0 | } |
240 | 0 | if (pFace < 0) |
241 | 0 | face += 3; |
242 | 0 | return face; |
243 | 0 | } |
244 | | |
245 | 0 | inline int XYZtoFaceUV(const PJ_XYZ &p, double *pu, double *pv) { |
246 | 0 | int face = GetFace(p); |
247 | 0 | ValidFaceXYZtoUV(face, p, pu, pv); |
248 | 0 | return face; |
249 | 0 | } |
250 | | |
251 | 0 | inline int XYZtoFaceUV(const PJ_XYZ &p, PJ_XY *puv) { |
252 | 0 | return XYZtoFaceUV(p, &(*puv).x, &(*puv).y); |
253 | 0 | } |
254 | | |
255 | 0 | inline bool FaceXYZtoUV(int face, const PJ_XYZ &p, double *pu, double *pv) { |
256 | 0 | double pFace; |
257 | 0 | switch (face) { |
258 | 0 | case 0: |
259 | 0 | pFace = p.x; |
260 | 0 | break; |
261 | 0 | case 1: |
262 | 0 | pFace = p.y; |
263 | 0 | break; |
264 | 0 | case 2: |
265 | 0 | pFace = p.z; |
266 | 0 | break; |
267 | 0 | case 3: |
268 | 0 | pFace = p.x; |
269 | 0 | break; |
270 | 0 | case 4: |
271 | 0 | pFace = p.y; |
272 | 0 | break; |
273 | 0 | default: |
274 | 0 | pFace = p.z; |
275 | 0 | break; |
276 | 0 | } |
277 | 0 | if (face < 3) { |
278 | 0 | if (pFace <= 0) |
279 | 0 | return false; |
280 | 0 | } else { |
281 | 0 | if (pFace >= 0) |
282 | 0 | return false; |
283 | 0 | } |
284 | 0 | ValidFaceXYZtoUV(face, p, pu, pv); |
285 | 0 | return true; |
286 | 0 | } |
287 | | |
288 | 0 | inline bool FaceXYZtoUV(int face, const PJ_XYZ &p, PJ_XY *puv) { |
289 | 0 | return FaceXYZtoUV(face, p, &(*puv).x, &(*puv).y); |
290 | 0 | } |
291 | | |
292 | | // This function inverts ValidFaceXYZtoUV() |
293 | 0 | inline bool UVtoSphereXYZ(int face, double u, double v, PJ_XYZ *xyz) { |
294 | 0 | double major_coord = 1 / sqrt(1 + u * u + v * v); |
295 | 0 | double minor_coord_1 = u * major_coord; |
296 | 0 | double minor_coord_2 = v * major_coord; |
297 | |
|
298 | 0 | switch (face) { |
299 | 0 | case 0: |
300 | 0 | xyz->x = major_coord; |
301 | 0 | xyz->y = minor_coord_1; |
302 | 0 | xyz->z = minor_coord_2; |
303 | 0 | break; |
304 | 0 | case 1: |
305 | 0 | xyz->x = -minor_coord_1; |
306 | 0 | xyz->y = major_coord; |
307 | 0 | xyz->z = minor_coord_2; |
308 | 0 | break; |
309 | 0 | case 2: |
310 | 0 | xyz->x = -minor_coord_1; |
311 | 0 | xyz->y = -minor_coord_2; |
312 | 0 | xyz->z = major_coord; |
313 | 0 | break; |
314 | 0 | case 3: |
315 | 0 | xyz->x = -major_coord; |
316 | 0 | xyz->y = -minor_coord_2; |
317 | 0 | xyz->z = -minor_coord_1; |
318 | 0 | break; |
319 | 0 | case 4: |
320 | 0 | xyz->x = minor_coord_2; |
321 | 0 | xyz->y = -major_coord; |
322 | 0 | xyz->z = -minor_coord_1; |
323 | 0 | break; |
324 | 0 | default: |
325 | 0 | xyz->x = minor_coord_2; |
326 | 0 | xyz->y = minor_coord_1; |
327 | 0 | xyz->z = -major_coord; |
328 | 0 | break; |
329 | 0 | } |
330 | | |
331 | 0 | return true; |
332 | 0 | } |
333 | | |
334 | | // ============================================ |
335 | | // |
336 | | // The Forward and Inverse Functions |
337 | | // |
338 | | // ============================================ |
339 | 14.3k | static PJ_XY s2_forward(PJ_LP lp, PJ *P) { |
340 | 14.3k | struct pj_s2 *Q = static_cast<struct pj_s2 *>(P->opaque); |
341 | 14.3k | double lat; |
342 | | |
343 | | /* Convert the geodetic latitude to a geocentric latitude. |
344 | | * This corresponds to the shift from the ellipsoid to the sphere |
345 | | * described in [LK12]. */ |
346 | 14.3k | if (P->es != 0.0) { |
347 | 14.3k | lat = atan(Q->one_minus_f_squared * tan(lp.phi)); |
348 | 14.3k | } else { |
349 | 0 | lat = lp.phi; |
350 | 0 | } |
351 | | |
352 | | // Convert the lat/long to x,y,z on the unit sphere |
353 | 14.3k | double x, y, z; |
354 | 14.3k | double sinlat, coslat; |
355 | 14.3k | double sinlon, coslon; |
356 | | |
357 | 14.3k | sinlat = sin(lat); |
358 | 14.3k | coslat = cos(lat); |
359 | 14.3k | sinlon = sin(lp.lam); |
360 | 14.3k | coslon = cos(lp.lam); |
361 | 14.3k | x = coslat * coslon; |
362 | 14.3k | y = coslat * sinlon; |
363 | 14.3k | z = sinlat; |
364 | | |
365 | 14.3k | PJ_XYZ spherePoint{x, y, z}; |
366 | 14.3k | PJ_XY uvCoords; |
367 | | |
368 | 14.3k | ValidFaceXYZtoUV(Q->face, spherePoint, &uvCoords.x, &uvCoords.y); |
369 | 14.3k | double s = UVtoST(uvCoords.x, Q->UVtoST); |
370 | 14.3k | double t = UVtoST(uvCoords.y, Q->UVtoST); |
371 | 14.3k | return {s, t}; |
372 | 14.3k | } |
373 | | |
374 | 0 | static PJ_LP s2_inverse(PJ_XY xy, PJ *P) { |
375 | 0 | PJ_LP lp = {0.0, 0.0}; |
376 | 0 | struct pj_s2 *Q = static_cast<struct pj_s2 *>(P->opaque); |
377 | | |
378 | | // Do the S2 projections to get from s,t to u,v to x,y,z |
379 | 0 | double u = STtoUV(xy.x, Q->UVtoST); |
380 | 0 | double v = STtoUV(xy.y, Q->UVtoST); |
381 | |
|
382 | 0 | PJ_XYZ sphereCoords; |
383 | 0 | UVtoSphereXYZ(Q->face, u, v, &sphereCoords); |
384 | 0 | double q = sphereCoords.x; |
385 | 0 | double r = sphereCoords.y; |
386 | 0 | double s = sphereCoords.z; |
387 | | |
388 | | // Get the spherical angles from the x y z |
389 | 0 | lp.phi = acos(-s) - M_HALFPI; |
390 | 0 | lp.lam = atan2(r, q); |
391 | | |
392 | | /* Apply the shift from the sphere to the ellipsoid as described |
393 | | * in [LK12]. */ |
394 | 0 | if (P->es != 0.0) { |
395 | 0 | int invert_sign; |
396 | 0 | volatile double tanphi, xa; |
397 | 0 | invert_sign = (lp.phi < 0.0 ? 1 : 0); |
398 | 0 | tanphi = tan(lp.phi); |
399 | 0 | xa = P->b / sqrt(tanphi * tanphi + Q->one_minus_f_squared); |
400 | 0 | lp.phi = atan(sqrt(Q->a_squared - xa * xa) / (Q->one_minus_f * xa)); |
401 | 0 | if (invert_sign) { |
402 | 0 | lp.phi = -lp.phi; |
403 | 0 | } |
404 | 0 | } |
405 | |
|
406 | 0 | return lp; |
407 | 0 | } |
408 | | |
409 | 445 | PJ *PJ_PROJECTION(s2) { |
410 | 445 | struct pj_s2 *Q = |
411 | 445 | static_cast<struct pj_s2 *>(calloc(1, sizeof(struct pj_s2))); |
412 | 445 | if (nullptr == Q) |
413 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
414 | 445 | P->opaque = Q; |
415 | | |
416 | | /* Determine which UVtoST function is to be used */ |
417 | 445 | PROJVALUE maybeUVtoST = pj_param(P->ctx, P->params, "sUVtoST"); |
418 | 445 | if (nullptr != maybeUVtoST.s) { |
419 | 32 | try { |
420 | 32 | Q->UVtoST = stringToS2ProjectionType.at(maybeUVtoST.s); |
421 | 32 | } catch (const std::out_of_range &) { |
422 | 29 | proj_log_error( |
423 | 29 | P, _("Invalid value for s2 parameter: should be linear, " |
424 | 29 | "quadratic, tangent, or none.")); |
425 | 29 | return pj_default_destructor(P, |
426 | 29 | PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
427 | 29 | } |
428 | 413 | } else { |
429 | 413 | Q->UVtoST = Quadratic; |
430 | 413 | } |
431 | | |
432 | 416 | P->left = PJ_IO_UNITS_RADIANS; |
433 | 416 | P->right = PJ_IO_UNITS_PROJECTED; |
434 | 416 | P->from_greenwich = -P->lam0; |
435 | | |
436 | 416 | P->inv = s2_inverse; |
437 | 416 | P->fwd = s2_forward; |
438 | | |
439 | | /* Determine the cube face from the center of projection. */ |
440 | 416 | if (P->phi0 >= M_HALFPI - M_FORTPI / 2.0) { |
441 | 11 | Q->face = FACE_TOP; |
442 | 405 | } else if (P->phi0 <= -(M_HALFPI - M_FORTPI / 2.0)) { |
443 | 37 | Q->face = FACE_BOTTOM; |
444 | 368 | } else if (fabs(P->lam0) <= M_FORTPI) { |
445 | 315 | Q->face = FACE_FRONT; |
446 | 315 | } else if (fabs(P->lam0) <= M_HALFPI + M_FORTPI) { |
447 | 26 | Q->face = (P->lam0 > 0.0 ? FACE_RIGHT : FACE_LEFT); |
448 | 27 | } else { |
449 | 27 | Q->face = FACE_BACK; |
450 | 27 | } |
451 | | /* Fill in useful values for the ellipsoid <-> sphere shift |
452 | | * described in [LK12]. */ |
453 | 416 | if (P->es != 0.0) { |
454 | 316 | Q->a_squared = P->a * P->a; |
455 | 316 | Q->one_minus_f = 1.0 - (P->a - P->b) / P->a; |
456 | 316 | Q->one_minus_f_squared = Q->one_minus_f * Q->one_minus_f; |
457 | 316 | } |
458 | | |
459 | 416 | return P; |
460 | 445 | } |