/src/PROJ/src/projections/eqc.cpp
Line | Count | Source |
1 | | /****************************************************************************** |
2 | | * Project: PROJ |
3 | | * Purpose: Implementation of the eqc (Equidistant Cylindrical) projection. |
4 | | * Also known as Plate Carree when lat_ts=0. |
5 | | * |
6 | | * This file implements both the spherical (EPSG:1029) and ellipsoidal |
7 | | * (EPSG:1028) forms of the Equidistant Cylindrical projection. |
8 | | * |
9 | | * Spherical formulas (EPSG:1029): |
10 | | * E = FE + R cos(lat_ts) (lon - lon_0) |
11 | | * N = FN + R lat |
12 | | * |
13 | | * Ellipsoidal formulas (EPSG:1028) from IOGP Guidance Note 7-2: |
14 | | * E = FE + nu1 cos(lat_ts) (lon - lon_0) |
15 | | * N = FN + M |
16 | | * |
17 | | * |
18 | | * Reference: IOGP Publication 373-7-2, Section 3.2.5 |
19 | | * |
20 | | |
21 | | *****************************************************************************/ |
22 | | |
23 | | #include <errno.h> |
24 | | #include <math.h> |
25 | | #include <stdlib.h> |
26 | | |
27 | | #include "proj.h" |
28 | | #include "proj_internal.h" |
29 | | |
30 | | namespace { // anonymous namespace |
31 | | struct pj_eqc_data { |
32 | | double rc; // Spherical: cos(lat_ts); Ellipsoidal: nu1 * cos(lat_ts) |
33 | | double M0; // Meridional arc at latitude of origin (lat_0) |
34 | | double *en; // Coefficients for meridional arc computation |
35 | | }; |
36 | | } // anonymous namespace |
37 | | |
38 | | PROJ_HEAD(eqc, "Equidistant Cylindrical (Plate Carree)") |
39 | | "\n\tCyl, Sph&Ell\n\tlat_ts=[, lat_0=0]"; |
40 | | |
41 | 0 | static PJ_XY eqc_s_forward(PJ_LP lp, PJ *P) { /* Spheroidal, forward */ |
42 | 0 | PJ_XY xy = {0.0, 0.0}; |
43 | 0 | struct pj_eqc_data *Q = static_cast<struct pj_eqc_data *>(P->opaque); |
44 | |
|
45 | 0 | xy.x = Q->rc * lp.lam; |
46 | 0 | xy.y = lp.phi - P->phi0; |
47 | |
|
48 | 0 | return xy; |
49 | 0 | } |
50 | | |
51 | 0 | static PJ_LP eqc_s_inverse(PJ_XY xy, PJ *P) { /* Spheroidal, inverse */ |
52 | 0 | PJ_LP lp = {0.0, 0.0}; |
53 | 0 | struct pj_eqc_data *Q = static_cast<struct pj_eqc_data *>(P->opaque); |
54 | |
|
55 | 0 | lp.lam = xy.x / Q->rc; |
56 | 0 | lp.phi = xy.y + P->phi0; |
57 | |
|
58 | 0 | return lp; |
59 | 0 | } |
60 | | |
61 | | // Ellipsoidal forward (EPSG method 1028) |
62 | | // E = FE + nu1 cos(lat_ts) (lon - lon_0) |
63 | | // N = FN + M - M0 |
64 | | // where M is the meridional arc from equator to latitude |
65 | 7.56k | static PJ_XY eqc_e_forward(PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */ |
66 | 7.56k | PJ_XY xy = {0.0, 0.0}; |
67 | 7.56k | struct pj_eqc_data *Q = static_cast<struct pj_eqc_data *>(P->opaque); |
68 | | |
69 | 7.56k | const double sinphi = sin(lp.phi); |
70 | 7.56k | const double cosphi = cos(lp.phi); |
71 | | |
72 | 7.56k | xy.x = Q->rc * lp.lam; |
73 | 7.56k | xy.y = pj_mlfn(lp.phi, sinphi, cosphi, Q->en) - Q->M0; |
74 | | |
75 | 7.56k | return xy; |
76 | 7.56k | } |
77 | | |
78 | | // Ellipsoidal inverse (EPSG method 1028) |
79 | | // lon = lon_0 + (E - FE) / (nu1 cos lat_ts) |
80 | | // lat is found by inverting M = N - FN + M0 |
81 | 0 | static PJ_LP eqc_e_inverse(PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */ |
82 | 0 | PJ_LP lp = {0.0, 0.0}; |
83 | 0 | struct pj_eqc_data *Q = static_cast<struct pj_eqc_data *>(P->opaque); |
84 | |
|
85 | 0 | lp.lam = xy.x / Q->rc; |
86 | 0 | lp.phi = pj_inv_mlfn(xy.y + Q->M0, Q->en); |
87 | |
|
88 | 0 | return lp; |
89 | 0 | } |
90 | | |
91 | 74 | static PJ *pj_eqc_destructor(PJ *P, int errlev) { /* Destructor */ |
92 | 74 | if (nullptr == P) |
93 | 0 | return nullptr; |
94 | | |
95 | 74 | if (nullptr == P->opaque) |
96 | 0 | return pj_default_destructor(P, errlev); |
97 | | |
98 | 74 | free(static_cast<struct pj_eqc_data *>(P->opaque)->en); |
99 | 74 | return pj_default_destructor(P, errlev); |
100 | 74 | } |
101 | | |
102 | 75 | PJ *PJ_PROJECTION(eqc) { |
103 | 75 | struct pj_eqc_data *Q = static_cast<struct pj_eqc_data *>( |
104 | 75 | calloc(1, sizeof(struct pj_eqc_data))); |
105 | 75 | if (nullptr == Q) |
106 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
107 | 75 | P->opaque = Q; |
108 | 75 | P->destructor = pj_eqc_destructor; |
109 | | |
110 | 75 | const double phi1 = pj_param(P->ctx, P->params, "rlat_ts").f; |
111 | 75 | const double cos_phi1 = cos(phi1); |
112 | | |
113 | 75 | if (cos_phi1 <= 0.) { |
114 | 1 | proj_log_error( |
115 | 1 | P, _("Invalid value for lat_ts: |lat_ts| should be <= 90°")); |
116 | 1 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
117 | 1 | } |
118 | | |
119 | 74 | if (P->es != 0.0) { |
120 | | // Ellipsoidal case (EPSG:1028) |
121 | 71 | const double sin_phi1 = sin(phi1); |
122 | | // nu1 = a / sqrt(1 - e^2 sin^2(lat_ts)), normalized by a |
123 | 71 | const double nu1 = 1.0 / sqrt(1.0 - P->es * sin_phi1 * sin_phi1); |
124 | 71 | Q->rc = nu1 * cos_phi1; |
125 | | |
126 | 71 | Q->en = pj_enfn(P->n); |
127 | 71 | if (nullptr == Q->en) |
128 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
129 | | |
130 | 71 | Q->M0 = pj_mlfn(P->phi0, sin(P->phi0), cos(P->phi0), Q->en); |
131 | | |
132 | 71 | P->inv = eqc_e_inverse; |
133 | 71 | P->fwd = eqc_e_forward; |
134 | 71 | } else { |
135 | | // Spheroidal case (EPSG:1029) |
136 | 3 | Q->rc = cos_phi1; |
137 | 3 | Q->en = nullptr; |
138 | 3 | Q->M0 = 0.0; |
139 | | |
140 | 3 | P->inv = eqc_s_inverse; |
141 | 3 | P->fwd = eqc_s_forward; |
142 | 3 | } |
143 | | |
144 | 74 | return P; |
145 | 74 | } |