Coverage Report

Created: 2025-06-16 06:50

/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/jn.rs
Line
Count
Source (jump to first uncovered line)
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
/*
13
 * jn(n, x), yn(n, x)
14
 * floating point Bessel's function of the 1st and 2nd kind
15
 * of order n
16
 *
17
 * Special cases:
18
 *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19
 *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20
 * Note 2. About jn(n,x), yn(n,x)
21
 *      For n=0, j0(x) is called,
22
 *      for n=1, j1(x) is called,
23
 *      for n<=x, forward recursion is used starting
24
 *      from values of j0(x) and j1(x).
25
 *      for n>x, a continued fraction approximation to
26
 *      j(n,x)/j(n-1,x) is evaluated and then backward
27
 *      recursion is used starting from a supposed value
28
 *      for j(n,x). The resulting value of j(0,x) is
29
 *      compared with the actual value to correct the
30
 *      supposed value of j(n,x).
31
 *
32
 *      yn(n,x) is similar in all respects, except
33
 *      that forward recursion is used for all
34
 *      values of n>1.
35
 */
36
37
use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
38
39
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40
41
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
42
0
pub fn jn(n: i32, mut x: f64) -> f64 {
43
0
    let mut ix: u32;
44
0
    let lx: u32;
45
0
    let nm1: i32;
46
0
    let mut i: i32;
47
0
    let mut sign: bool;
48
0
    let mut a: f64;
49
0
    let mut b: f64;
50
0
    let mut temp: f64;
51
0
52
0
    ix = get_high_word(x);
53
0
    lx = get_low_word(x);
54
0
    sign = (ix >> 31) != 0;
55
0
    ix &= 0x7fffffff;
56
0
57
0
    // -lx == !lx + 1
58
0
    if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
59
        /* nan */
60
0
        return x;
61
0
    }
62
0
63
0
    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
64
0
     * Thus, J(-n,x) = J(n,-x)
65
0
     */
66
0
    /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
67
0
    if n == 0 {
68
0
        return j0(x);
69
0
    }
70
0
    if n < 0 {
71
0
        nm1 = -(n + 1);
72
0
        x = -x;
73
0
        sign = !sign;
74
0
    } else {
75
0
        nm1 = n - 1;
76
0
    }
77
0
    if nm1 == 0 {
78
0
        return j1(x);
79
0
    }
80
0
81
0
    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
82
0
    x = fabs(x);
83
0
    if (ix | lx) == 0 || ix == 0x7ff00000 {
84
0
        /* if x is 0 or inf */
85
0
        b = 0.0;
86
0
    } else if (nm1 as f64) < x {
87
        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
88
0
        if ix >= 0x52d00000 {
89
            /* x > 2**302 */
90
            /* (x >> n**2)
91
             *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
92
             *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
93
             *      Let s=sin(x), c=cos(x),
94
             *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
95
             *
96
             *             n    sin(xn)*sqt2    cos(xn)*sqt2
97
             *          ----------------------------------
98
             *             0     s-c             c+s
99
             *             1    -s-c            -c+s
100
             *             2    -s+c            -c-s
101
             *             3     s+c             c-s
102
             */
103
0
            temp = match nm1 & 3 {
104
0
                0 => -cos(x) + sin(x),
105
0
                1 => -cos(x) - sin(x),
106
0
                2 => cos(x) - sin(x),
107
0
                3 | _ => cos(x) + sin(x),
108
            };
109
0
            b = INVSQRTPI * temp / sqrt(x);
110
        } else {
111
0
            a = j0(x);
112
0
            b = j1(x);
113
0
            i = 0;
114
0
            while i < nm1 {
115
0
                i += 1;
116
0
                temp = b;
117
0
                b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
118
0
                a = temp;
119
0
            }
120
        }
121
    } else {
122
0
        if ix < 0x3e100000 {
123
            /* x < 2**-29 */
124
            /* x is tiny, return the first Taylor expansion of J(n,x)
125
             * J(n,x) = 1/n!*(x/2)^n  - ...
126
             */
127
0
            if nm1 > 32 {
128
0
                /* underflow */
129
0
                b = 0.0;
130
0
            } else {
131
0
                temp = x * 0.5;
132
0
                b = temp;
133
0
                a = 1.0;
134
0
                i = 2;
135
0
                while i <= nm1 + 1 {
136
0
                    a *= i as f64; /* a = n! */
137
0
                    b *= temp; /* b = (x/2)^n */
138
0
                    i += 1;
139
0
                }
140
0
                b = b / a;
141
            }
142
        } else {
143
            /* use backward recurrence */
144
            /*                      x      x^2      x^2
145
             *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
146
             *                      2n  - 2(n+1) - 2(n+2)
147
             *
148
             *                      1      1        1
149
             *  (for large x)   =  ----  ------   ------   .....
150
             *                      2n   2(n+1)   2(n+2)
151
             *                      -- - ------ - ------ -
152
             *                       x     x         x
153
             *
154
             * Let w = 2n/x and h=2/x, then the above quotient
155
             * is equal to the continued fraction:
156
             *                  1
157
             *      = -----------------------
158
             *                     1
159
             *         w - -----------------
160
             *                        1
161
             *              w+h - ---------
162
             *                     w+2h - ...
163
             *
164
             * To determine how many terms needed, let
165
             * Q(0) = w, Q(1) = w(w+h) - 1,
166
             * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
167
             * When Q(k) > 1e4      good for single
168
             * When Q(k) > 1e9      good for double
169
             * When Q(k) > 1e17     good for quadruple
170
             */
171
            /* determine k */
172
            let mut t: f64;
173
            let mut q0: f64;
174
            let mut q1: f64;
175
            let mut w: f64;
176
            let h: f64;
177
            let mut z: f64;
178
            let mut tmp: f64;
179
            let nf: f64;
180
181
            let mut k: i32;
182
183
0
            nf = (nm1 as f64) + 1.0;
184
0
            w = 2.0 * nf / x;
185
0
            h = 2.0 / x;
186
0
            z = w + h;
187
0
            q0 = w;
188
0
            q1 = w * z - 1.0;
189
0
            k = 1;
190
0
            while q1 < 1.0e9 {
191
0
                k += 1;
192
0
                z += h;
193
0
                tmp = z * q1 - q0;
194
0
                q0 = q1;
195
0
                q1 = tmp;
196
0
            }
197
0
            t = 0.0;
198
0
            i = k;
199
0
            while i >= 0 {
200
0
                t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
201
0
                i -= 1;
202
0
            }
203
0
            a = t;
204
0
            b = 1.0;
205
0
            /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
206
0
             *  Hence, if n*(log(2n/x)) > ...
207
0
             *  single 8.8722839355e+01
208
0
             *  double 7.09782712893383973096e+02
209
0
             *  long double 1.1356523406294143949491931077970765006170e+04
210
0
             *  then recurrent value may overflow and the result is
211
0
             *  likely underflow to zero
212
0
             */
213
0
            tmp = nf * log(fabs(w));
214
0
            if tmp < 7.09782712893383973096e+02 {
215
0
                i = nm1;
216
0
                while i > 0 {
217
0
                    temp = b;
218
0
                    b = b * (2.0 * (i as f64)) / x - a;
219
0
                    a = temp;
220
0
                    i -= 1;
221
0
                }
222
            } else {
223
0
                i = nm1;
224
0
                while i > 0 {
225
0
                    temp = b;
226
0
                    b = b * (2.0 * (i as f64)) / x - a;
227
0
                    a = temp;
228
0
                    /* scale b to avoid spurious overflow */
229
0
                    let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
230
0
                    if b > x1p500 {
231
0
                        a /= b;
232
0
                        t /= b;
233
0
                        b = 1.0;
234
0
                    }
235
0
                    i -= 1;
236
                }
237
            }
238
0
            z = j0(x);
239
0
            w = j1(x);
240
0
            if fabs(z) >= fabs(w) {
241
0
                b = t * z / b;
242
0
            } else {
243
0
                b = t * w / a;
244
0
            }
245
        }
246
    }
247
248
0
    if sign { -b } else { b }
249
0
}
250
251
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
252
0
pub fn yn(n: i32, x: f64) -> f64 {
253
0
    let mut ix: u32;
254
0
    let lx: u32;
255
0
    let mut ib: u32;
256
0
    let nm1: i32;
257
0
    let mut sign: bool;
258
0
    let mut i: i32;
259
0
    let mut a: f64;
260
0
    let mut b: f64;
261
0
    let mut temp: f64;
262
0
263
0
    ix = get_high_word(x);
264
0
    lx = get_low_word(x);
265
0
    sign = (ix >> 31) != 0;
266
0
    ix &= 0x7fffffff;
267
0
268
0
    // -lx == !lx + 1
269
0
    if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
270
        /* nan */
271
0
        return x;
272
0
    }
273
0
    if sign && (ix | lx) != 0 {
274
        /* x < 0 */
275
0
        return 0.0 / 0.0;
276
0
    }
277
0
    if ix == 0x7ff00000 {
278
0
        return 0.0;
279
0
    }
280
0
281
0
    if n == 0 {
282
0
        return y0(x);
283
0
    }
284
0
    if n < 0 {
285
0
        nm1 = -(n + 1);
286
0
        sign = (n & 1) != 0;
287
0
    } else {
288
0
        nm1 = n - 1;
289
0
        sign = false;
290
0
    }
291
0
    if nm1 == 0 {
292
0
        if sign {
293
0
            return -y1(x);
294
        } else {
295
0
            return y1(x);
296
        }
297
0
    }
298
0
299
0
    if ix >= 0x52d00000 {
300
        /* x > 2**302 */
301
        /* (x >> n**2)
302
         *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
303
         *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
304
         *      Let s=sin(x), c=cos(x),
305
         *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
306
         *
307
         *             n    sin(xn)*sqt2    cos(xn)*sqt2
308
         *          ----------------------------------
309
         *             0     s-c             c+s
310
         *             1    -s-c            -c+s
311
         *             2    -s+c            -c-s
312
         *             3     s+c             c-s
313
         */
314
0
        temp = match nm1 & 3 {
315
0
            0 => -sin(x) - cos(x),
316
0
            1 => -sin(x) + cos(x),
317
0
            2 => sin(x) + cos(x),
318
0
            3 | _ => sin(x) - cos(x),
319
        };
320
0
        b = INVSQRTPI * temp / sqrt(x);
321
    } else {
322
0
        a = y0(x);
323
0
        b = y1(x);
324
0
        /* quit if b is -inf */
325
0
        ib = get_high_word(b);
326
0
        i = 0;
327
0
        while i < nm1 && ib != 0xfff00000 {
328
0
            i += 1;
329
0
            temp = b;
330
0
            b = (2.0 * (i as f64) / x) * b - a;
331
0
            ib = get_high_word(b);
332
0
            a = temp;
333
0
        }
334
    }
335
336
0
    if sign { -b } else { b }
337
0
}