Coverage Report

Created: 2025-06-16 06:50

/rust/registry/src/index.crates.io-6f17d22bba15001f/libz-sys-1.1.21/src/zlib/trees.c
Line
Count
Source (jump to first uncovered line)
1
/* trees.c -- output deflated data using Huffman coding
2
 * Copyright (C) 1995-2024 Jean-loup Gailly
3
 * detect_data_type() function provided freely by Cosmin Truta, 2006
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
33
/* @(#) $Id$ */
34
35
/* #define GEN_TREES_H */
36
37
#include "deflate.h"
38
39
#ifdef ZLIB_DEBUG
40
#  include <ctype.h>
41
#endif
42
43
/* ===========================================================================
44
 * Constants
45
 */
46
47
#define MAX_BL_BITS 7
48
/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50
138
#define END_BLOCK 256
51
/* end of block literal code */
52
53
621
#define REP_3_6      16
54
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56
230
#define REPZ_3_10    17
57
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59
322
#define REPZ_11_138  18
60
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71
local const uch bl_order[BL_CODES]
72
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73
/* The lengths of the bit length codes are sent in order of decreasing
74
 * probability, to avoid transmitting the lengths for unused bit length codes.
75
 */
76
77
/* ===========================================================================
78
 * Local data. These are initialized only once.
79
 */
80
81
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83
#if defined(GEN_TREES_H) || !defined(STDC)
84
/* non ANSI compilers may not accept trees.h */
85
86
local ct_data static_ltree[L_CODES+2];
87
/* The static literal tree. Since the bit lengths are imposed, there is no
88
 * need for the L_CODES extra codes used during heap construction. However
89
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90
 * below).
91
 */
92
93
local ct_data static_dtree[D_CODES];
94
/* The static distance tree. (Actually a trivial tree since all codes use
95
 * 5 bits.)
96
 */
97
98
uch _dist_code[DIST_CODE_LEN];
99
/* Distance codes. The first 256 values correspond to the distances
100
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101
 * the 15 bit distances.
102
 */
103
104
uch _length_code[MAX_MATCH-MIN_MATCH+1];
105
/* length code for each normalized match length (0 == MIN_MATCH) */
106
107
local int base_length[LENGTH_CODES];
108
/* First normalized length for each code (0 = MIN_MATCH) */
109
110
local int base_dist[D_CODES];
111
/* First normalized distance for each code (0 = distance of 1) */
112
113
#else
114
#  include "trees.h"
115
#endif /* GEN_TREES_H */
116
117
struct static_tree_desc_s {
118
    const ct_data *static_tree;  /* static tree or NULL */
119
    const intf *extra_bits;      /* extra bits for each code or NULL */
120
    int     extra_base;          /* base index for extra_bits */
121
    int     elems;               /* max number of elements in the tree */
122
    int     max_length;          /* max bit length for the codes */
123
};
124
125
#ifdef NO_INIT_GLOBAL_POINTERS
126
#  define TCONST
127
#else
128
#  define TCONST const
129
#endif
130
131
local TCONST static_tree_desc static_l_desc =
132
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134
local TCONST static_tree_desc static_d_desc =
135
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136
137
local TCONST static_tree_desc static_bl_desc =
138
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139
140
/* ===========================================================================
141
 * Output a short LSB first on the stream.
142
 * IN assertion: there is enough room in pendingBuf.
143
 */
144
746k
#define put_short(s, w) { \
145
746k
    put_byte(s, (uch)((w) & 0xff)); \
146
746k
    put_byte(s, (uch)((ush)(w) >> 8)); \
147
746k
}
148
149
/* ===========================================================================
150
 * Reverse the first len bits of a code, using straightforward code (a faster
151
 * method would use a table)
152
 * IN assertion: 1 <= len <= 15
153
 */
154
15.9k
local unsigned bi_reverse(unsigned code, int len) {
155
15.9k
    register unsigned res = 0;
156
135k
    do {
157
135k
        res |= code & 1;
158
135k
        code >>= 1, res <<= 1;
159
135k
    } while (--len > 0);
160
15.9k
    return res >> 1;
161
15.9k
}
162
163
/* ===========================================================================
164
 * Flush the bit buffer, keeping at most 7 bits in it.
165
 */
166
161
local void bi_flush(deflate_state *s) {
167
161
    if (s->bi_valid == 16) {
168
0
        put_short(s, s->bi_buf);
169
0
        s->bi_buf = 0;
170
0
        s->bi_valid = 0;
171
161
    } else if (s->bi_valid >= 8) {
172
0
        put_byte(s, (Byte)s->bi_buf);
173
0
        s->bi_buf >>= 8;
174
0
        s->bi_valid -= 8;
175
0
    }
176
161
}
177
178
/* ===========================================================================
179
 * Flush the bit buffer and align the output on a byte boundary
180
 */
181
92
local void bi_windup(deflate_state *s) {
182
92
    if (s->bi_valid > 8) {
183
46
        put_short(s, s->bi_buf);
184
46
    } else if (s->bi_valid > 0) {
185
46
        put_byte(s, (Byte)s->bi_buf);
186
46
    }
187
92
    s->bi_buf = 0;
188
92
    s->bi_valid = 0;
189
#ifdef ZLIB_DEBUG
190
    s->bits_sent = (s->bits_sent + 7) & ~7;
191
#endif
192
92
}
193
194
/* ===========================================================================
195
 * Generate the codes for a given tree and bit counts (which need not be
196
 * optimal).
197
 * IN assertion: the array bl_count contains the bit length statistics for
198
 * the given tree and the field len is set for all tree elements.
199
 * OUT assertion: the field code is set for all tree elements of non
200
 *     zero code length.
201
 */
202
276
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203
276
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204
276
    unsigned code = 0;         /* running code value */
205
276
    int bits;                  /* bit index */
206
276
    int n;                     /* code index */
207
208
    /* The distribution counts are first used to generate the code values
209
     * without bit reversal.
210
     */
211
4.41k
    for (bits = 1; bits <= MAX_BITS; bits++) {
212
4.14k
        code = (code + bl_count[bits - 1]) << 1;
213
4.14k
        next_code[bits] = (ush)code;
214
4.14k
    }
215
    /* Check that the bit counts in bl_count are consistent. The last code
216
     * must be all ones.
217
     */
218
276
    Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219
276
            "inconsistent bit counts");
220
276
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221
222
30.1k
    for (n = 0;  n <= max_code; n++) {
223
29.8k
        int len = tree[n].Len;
224
29.8k
        if (len == 0) continue;
225
        /* Now reverse the bits */
226
15.9k
        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227
228
15.9k
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229
15.9k
            n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230
15.9k
    }
231
276
}
232
233
#ifdef GEN_TREES_H
234
local void gen_trees_header(void);
235
#endif
236
237
#ifndef ZLIB_DEBUG
238
1.53M
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239
   /* Send a code of the given tree. c and tree must not have side effects */
240
241
#else /* !ZLIB_DEBUG */
242
#  define send_code(s, c, tree) \
243
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244
       send_bits(s, tree[c].Code, tree[c].Len); }
245
#endif
246
247
/* ===========================================================================
248
 * Send a value on a given number of bits.
249
 * IN assertion: length <= 16 and value fits in length bits.
250
 */
251
#ifdef ZLIB_DEBUG
252
local void send_bits(deflate_state *s, int value, int length) {
253
    Tracevv((stderr," l %2d v %4x ", length, value));
254
    Assert(length > 0 && length <= 15, "invalid length");
255
    s->bits_sent += (ulg)length;
256
257
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
258
     * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
259
     * unused bits in value.
260
     */
261
    if (s->bi_valid > (int)Buf_size - length) {
262
        s->bi_buf |= (ush)value << s->bi_valid;
263
        put_short(s, s->bi_buf);
264
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265
        s->bi_valid += length - Buf_size;
266
    } else {
267
        s->bi_buf |= (ush)value << s->bi_valid;
268
        s->bi_valid += length;
269
    }
270
}
271
#else /* !ZLIB_DEBUG */
272
273
2.22M
#define send_bits(s, value, length) \
274
2.22M
{ int len = length;\
275
2.22M
  if (s->bi_valid > (int)Buf_size - len) {\
276
746k
    int val = (int)value;\
277
746k
    s->bi_buf |= (ush)val << s->bi_valid;\
278
746k
    put_short(s, s->bi_buf);\
279
746k
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280
746k
    s->bi_valid += len - Buf_size;\
281
1.48M
  } else {\
282
1.48M
    s->bi_buf |= (ush)(value) << s->bi_valid;\
283
1.48M
    s->bi_valid += len;\
284
1.48M
  }\
285
2.22M
}
286
#endif /* ZLIB_DEBUG */
287
288
289
/* the arguments must not have side effects */
290
291
/* ===========================================================================
292
 * Initialize the various 'constant' tables.
293
 */
294
46
local void tr_static_init(void) {
295
#if defined(GEN_TREES_H) || !defined(STDC)
296
    static int static_init_done = 0;
297
    int n;        /* iterates over tree elements */
298
    int bits;     /* bit counter */
299
    int length;   /* length value */
300
    int code;     /* code value */
301
    int dist;     /* distance index */
302
    ush bl_count[MAX_BITS+1];
303
    /* number of codes at each bit length for an optimal tree */
304
305
    if (static_init_done) return;
306
307
    /* For some embedded targets, global variables are not initialized: */
308
#ifdef NO_INIT_GLOBAL_POINTERS
309
    static_l_desc.static_tree = static_ltree;
310
    static_l_desc.extra_bits = extra_lbits;
311
    static_d_desc.static_tree = static_dtree;
312
    static_d_desc.extra_bits = extra_dbits;
313
    static_bl_desc.extra_bits = extra_blbits;
314
#endif
315
316
    /* Initialize the mapping length (0..255) -> length code (0..28) */
317
    length = 0;
318
    for (code = 0; code < LENGTH_CODES-1; code++) {
319
        base_length[code] = length;
320
        for (n = 0; n < (1 << extra_lbits[code]); n++) {
321
            _length_code[length++] = (uch)code;
322
        }
323
    }
324
    Assert (length == 256, "tr_static_init: length != 256");
325
    /* Note that the length 255 (match length 258) can be represented
326
     * in two different ways: code 284 + 5 bits or code 285, so we
327
     * overwrite length_code[255] to use the best encoding:
328
     */
329
    _length_code[length - 1] = (uch)code;
330
331
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332
    dist = 0;
333
    for (code = 0 ; code < 16; code++) {
334
        base_dist[code] = dist;
335
        for (n = 0; n < (1 << extra_dbits[code]); n++) {
336
            _dist_code[dist++] = (uch)code;
337
        }
338
    }
339
    Assert (dist == 256, "tr_static_init: dist != 256");
340
    dist >>= 7; /* from now on, all distances are divided by 128 */
341
    for ( ; code < D_CODES; code++) {
342
        base_dist[code] = dist << 7;
343
        for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
344
            _dist_code[256 + dist++] = (uch)code;
345
        }
346
    }
347
    Assert (dist == 256, "tr_static_init: 256 + dist != 512");
348
349
    /* Construct the codes of the static literal tree */
350
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351
    n = 0;
352
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356
    /* Codes 286 and 287 do not exist, but we must include them in the
357
     * tree construction to get a canonical Huffman tree (longest code
358
     * all ones)
359
     */
360
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361
362
    /* The static distance tree is trivial: */
363
    for (n = 0; n < D_CODES; n++) {
364
        static_dtree[n].Len = 5;
365
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366
    }
367
    static_init_done = 1;
368
369
#  ifdef GEN_TREES_H
370
    gen_trees_header();
371
#  endif
372
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
373
46
}
374
375
/* ===========================================================================
376
 * Generate the file trees.h describing the static trees.
377
 */
378
#ifdef GEN_TREES_H
379
#  ifndef ZLIB_DEBUG
380
#    include <stdio.h>
381
#  endif
382
383
#  define SEPARATOR(i, last, width) \
384
      ((i) == (last)? "\n};\n\n" :    \
385
       ((i) % (width) == (width) - 1 ? ",\n" : ", "))
386
387
void gen_trees_header(void) {
388
    FILE *header = fopen("trees.h", "w");
389
    int i;
390
391
    Assert (header != NULL, "Can't open trees.h");
392
    fprintf(header,
393
            "/* header created automatically with -DGEN_TREES_H */\n\n");
394
395
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396
    for (i = 0; i < L_CODES+2; i++) {
397
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399
    }
400
401
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402
    for (i = 0; i < D_CODES; i++) {
403
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405
    }
406
407
    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408
    for (i = 0; i < DIST_CODE_LEN; i++) {
409
        fprintf(header, "%2u%s", _dist_code[i],
410
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
411
    }
412
413
    fprintf(header,
414
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416
        fprintf(header, "%2u%s", _length_code[i],
417
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418
    }
419
420
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421
    for (i = 0; i < LENGTH_CODES; i++) {
422
        fprintf(header, "%1u%s", base_length[i],
423
                SEPARATOR(i, LENGTH_CODES-1, 20));
424
    }
425
426
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
427
    for (i = 0; i < D_CODES; i++) {
428
        fprintf(header, "%5u%s", base_dist[i],
429
                SEPARATOR(i, D_CODES-1, 10));
430
    }
431
432
    fclose(header);
433
}
434
#endif /* GEN_TREES_H */
435
436
/* ===========================================================================
437
 * Initialize a new block.
438
 */
439
138
local void init_block(deflate_state *s) {
440
138
    int n; /* iterates over tree elements */
441
442
    /* Initialize the trees. */
443
39.6k
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
444
4.27k
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
445
2.76k
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446
447
138
    s->dyn_ltree[END_BLOCK].Freq = 1;
448
138
    s->opt_len = s->static_len = 0L;
449
138
    s->sym_next = s->matches = 0;
450
138
}
451
452
/* ===========================================================================
453
 * Initialize the tree data structures for a new zlib stream.
454
 */
455
46
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
456
46
    tr_static_init();
457
458
46
    s->l_desc.dyn_tree = s->dyn_ltree;
459
46
    s->l_desc.stat_desc = &static_l_desc;
460
461
46
    s->d_desc.dyn_tree = s->dyn_dtree;
462
46
    s->d_desc.stat_desc = &static_d_desc;
463
464
46
    s->bl_desc.dyn_tree = s->bl_tree;
465
46
    s->bl_desc.stat_desc = &static_bl_desc;
466
467
46
    s->bi_buf = 0;
468
46
    s->bi_valid = 0;
469
#ifdef ZLIB_DEBUG
470
    s->compressed_len = 0L;
471
    s->bits_sent = 0L;
472
#endif
473
474
    /* Initialize the first block of the first file: */
475
46
    init_block(s);
476
46
}
477
478
94.3k
#define SMALLEST 1
479
/* Index within the heap array of least frequent node in the Huffman tree */
480
481
482
/* ===========================================================================
483
 * Remove the smallest element from the heap and recreate the heap with
484
 * one less element. Updates heap and heap_len.
485
 */
486
15.6k
#define pqremove(s, tree, top) \
487
15.6k
{\
488
15.6k
    top = s->heap[SMALLEST]; \
489
15.6k
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
490
15.6k
    pqdownheap(s, tree, SMALLEST); \
491
15.6k
}
492
493
/* ===========================================================================
494
 * Compares to subtrees, using the tree depth as tie breaker when
495
 * the subtrees have equal frequency. This minimizes the worst case length.
496
 */
497
#define smaller(tree, n, m, depth) \
498
293k
   (tree[n].Freq < tree[m].Freq || \
499
293k
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
500
501
/* ===========================================================================
502
 * Restore the heap property by moving down the tree starting at node k,
503
 * exchanging a node with the smallest of its two sons if necessary, stopping
504
 * when the heap property is re-established (each father smaller than its
505
 * two sons).
506
 */
507
39.2k
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
508
39.2k
    int v = s->heap[k];
509
39.2k
    int j = k << 1;  /* left son of k */
510
175k
    while (j <= s->heap_len) {
511
        /* Set j to the smallest of the two sons: */
512
148k
        if (j < s->heap_len &&
513
148k
            smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
514
67.4k
            j++;
515
67.4k
        }
516
        /* Exit if v is smaller than both sons */
517
148k
        if (smaller(tree, v, s->heap[j], s->depth)) break;
518
519
        /* Exchange v with the smallest son */
520
136k
        s->heap[k] = s->heap[j];  k = j;
521
522
        /* And continue down the tree, setting j to the left son of k */
523
136k
        j <<= 1;
524
136k
    }
525
39.2k
    s->heap[k] = v;
526
39.2k
}
527
528
/* ===========================================================================
529
 * Compute the optimal bit lengths for a tree and update the total bit length
530
 * for the current block.
531
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
532
 *    above are the tree nodes sorted by increasing frequency.
533
 * OUT assertions: the field len is set to the optimal bit length, the
534
 *     array bl_count contains the frequencies for each bit length.
535
 *     The length opt_len is updated; static_len is also updated if stree is
536
 *     not null.
537
 */
538
276
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
539
276
    ct_data *tree        = desc->dyn_tree;
540
276
    int max_code         = desc->max_code;
541
276
    const ct_data *stree = desc->stat_desc->static_tree;
542
276
    const intf *extra    = desc->stat_desc->extra_bits;
543
276
    int base             = desc->stat_desc->extra_base;
544
276
    int max_length       = desc->stat_desc->max_length;
545
276
    int h;              /* heap index */
546
276
    int n, m;           /* iterate over the tree elements */
547
276
    int bits;           /* bit length */
548
276
    int xbits;          /* extra bits */
549
276
    ush f;              /* frequency */
550
276
    int overflow = 0;   /* number of elements with bit length too large */
551
552
4.69k
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
553
554
    /* In a first pass, compute the optimal bit lengths (which may
555
     * overflow in the case of the bit length tree).
556
     */
557
276
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
558
559
31.6k
    for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
560
31.3k
        n = s->heap[h];
561
31.3k
        bits = tree[tree[n].Dad].Len + 1;
562
31.3k
        if (bits > max_length) bits = max_length, overflow++;
563
31.3k
        tree[n].Len = (ush)bits;
564
        /* We overwrite tree[n].Dad which is no longer needed */
565
566
31.3k
        if (n > max_code) continue; /* not a leaf node */
567
568
15.9k
        s->bl_count[bits]++;
569
15.9k
        xbits = 0;
570
15.9k
        if (n >= base) xbits = extra[n - base];
571
15.9k
        f = tree[n].Freq;
572
15.9k
        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
573
15.9k
        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
574
15.9k
    }
575
276
    if (overflow == 0) return;
576
577
23
    Tracev((stderr,"\nbit length overflow\n"));
578
    /* This happens for example on obj2 and pic of the Calgary corpus */
579
580
    /* Find the first bit length which could increase: */
581
23
    do {
582
23
        bits = max_length - 1;
583
23
        while (s->bl_count[bits] == 0) bits--;
584
23
        s->bl_count[bits]--;        /* move one leaf down the tree */
585
23
        s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
586
23
        s->bl_count[max_length]--;
587
        /* The brother of the overflow item also moves one step up,
588
         * but this does not affect bl_count[max_length]
589
         */
590
23
        overflow -= 2;
591
23
    } while (overflow > 0);
592
593
    /* Now recompute all bit lengths, scanning in increasing frequency.
594
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
595
     * lengths instead of fixing only the wrong ones. This idea is taken
596
     * from 'ar' written by Haruhiko Okumura.)
597
     */
598
184
    for (bits = max_length; bits != 0; bits--) {
599
161
        n = s->bl_count[bits];
600
736
        while (n != 0) {
601
575
            m = s->heap[--h];
602
575
            if (m > max_code) continue;
603
391
            if ((unsigned) tree[m].Len != (unsigned) bits) {
604
23
                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
605
23
                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
606
23
                tree[m].Len = (ush)bits;
607
23
            }
608
391
            n--;
609
391
        }
610
161
    }
611
23
}
612
613
#ifdef DUMP_BL_TREE
614
#  include <stdio.h>
615
#endif
616
617
/* ===========================================================================
618
 * Construct one Huffman tree and assigns the code bit strings and lengths.
619
 * Update the total bit length for the current block.
620
 * IN assertion: the field freq is set for all tree elements.
621
 * OUT assertions: the fields len and code are set to the optimal bit length
622
 *     and corresponding code. The length opt_len is updated; static_len is
623
 *     also updated if stree is not null. The field max_code is set.
624
 */
625
276
local void build_tree(deflate_state *s, tree_desc *desc) {
626
276
    ct_data *tree         = desc->dyn_tree;
627
276
    const ct_data *stree  = desc->stat_desc->static_tree;
628
276
    int elems             = desc->stat_desc->elems;
629
276
    int n, m;          /* iterate over heap elements */
630
276
    int max_code = -1; /* largest code with non zero frequency */
631
276
    int node;          /* new node being created */
632
633
    /* Construct the initial heap, with least frequent element in
634
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635
     * heap[0] is not used.
636
     */
637
276
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
638
639
31.0k
    for (n = 0; n < elems; n++) {
640
30.8k
        if (tree[n].Freq != 0) {
641
15.9k
            s->heap[++(s->heap_len)] = max_code = n;
642
15.9k
            s->depth[n] = 0;
643
15.9k
        } else {
644
14.8k
            tree[n].Len = 0;
645
14.8k
        }
646
30.8k
    }
647
648
    /* The pkzip format requires that at least one distance code exists,
649
     * and that at least one bit should be sent even if there is only one
650
     * possible code. So to avoid special checks later on we force at least
651
     * two codes of non zero frequency.
652
     */
653
276
    while (s->heap_len < 2) {
654
0
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655
0
        tree[node].Freq = 1;
656
0
        s->depth[node] = 0;
657
0
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658
        /* node is 0 or 1 so it does not have extra bits */
659
0
    }
660
276
    desc->max_code = max_code;
661
662
    /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663
     * establish sub-heaps of increasing lengths:
664
     */
665
8.16k
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666
667
    /* Construct the Huffman tree by repeatedly combining the least two
668
     * frequent nodes.
669
     */
670
276
    node = elems;              /* next internal node of the tree */
671
15.6k
    do {
672
15.6k
        pqremove(s, tree, n);  /* n = node of least frequency */
673
15.6k
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
674
675
15.6k
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676
15.6k
        s->heap[--(s->heap_max)] = m;
677
678
        /* Create a new node father of n and m */
679
15.6k
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
680
15.6k
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681
11.2k
                                s->depth[n] : s->depth[m]) + 1);
682
15.6k
        tree[n].Dad = tree[m].Dad = (ush)node;
683
#ifdef DUMP_BL_TREE
684
        if (tree == s->bl_tree) {
685
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687
        }
688
#endif
689
        /* and insert the new node in the heap */
690
15.6k
        s->heap[SMALLEST] = node++;
691
15.6k
        pqdownheap(s, tree, SMALLEST);
692
693
15.6k
    } while (s->heap_len >= 2);
694
695
276
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696
697
    /* At this point, the fields freq and dad are set. We can now
698
     * generate the bit lengths.
699
     */
700
276
    gen_bitlen(s, (tree_desc *)desc);
701
702
    /* The field len is now set, we can generate the bit codes */
703
276
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
704
276
}
705
706
/* ===========================================================================
707
 * Scan a literal or distance tree to determine the frequencies of the codes
708
 * in the bit length tree.
709
 */
710
184
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
711
184
    int n;                     /* iterates over all tree elements */
712
184
    int prevlen = -1;          /* last emitted length */
713
184
    int curlen;                /* length of current code */
714
184
    int nextlen = tree[0].Len; /* length of next code */
715
184
    int count = 0;             /* repeat count of the current code */
716
184
    int max_count = 7;         /* max repeat count */
717
184
    int min_count = 4;         /* min repeat count */
718
719
184
    if (nextlen == 0) max_count = 138, min_count = 3;
720
184
    tree[max_code + 1].Len = (ush)0xffff; /* guard */
721
722
28.2k
    for (n = 0; n <= max_code; n++) {
723
28.0k
        curlen = nextlen; nextlen = tree[n + 1].Len;
724
28.0k
        if (++count < max_count && curlen == nextlen) {
725
17.2k
            continue;
726
17.2k
        } else if (count < min_count) {
727
9.66k
            s->bl_tree[curlen].Freq += count;
728
9.66k
        } else if (curlen != 0) {
729
621
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
730
621
            s->bl_tree[REP_3_6].Freq++;
731
621
        } else if (count <= 10) {
732
230
            s->bl_tree[REPZ_3_10].Freq++;
733
322
        } else {
734
322
            s->bl_tree[REPZ_11_138].Freq++;
735
322
        }
736
10.8k
        count = 0; prevlen = curlen;
737
10.8k
        if (nextlen == 0) {
738
1.21k
            max_count = 138, min_count = 3;
739
9.61k
        } else if (curlen == nextlen) {
740
23
            max_count = 6, min_count = 3;
741
9.59k
        } else {
742
9.59k
            max_count = 7, min_count = 4;
743
9.59k
        }
744
10.8k
    }
745
184
}
746
747
/* ===========================================================================
748
 * Send a literal or distance tree in compressed form, using the codes in
749
 * bl_tree.
750
 */
751
184
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
752
184
    int n;                     /* iterates over all tree elements */
753
184
    int prevlen = -1;          /* last emitted length */
754
184
    int curlen;                /* length of current code */
755
184
    int nextlen = tree[0].Len; /* length of next code */
756
184
    int count = 0;             /* repeat count of the current code */
757
184
    int max_count = 7;         /* max repeat count */
758
184
    int min_count = 4;         /* min repeat count */
759
760
    /* tree[max_code + 1].Len = -1; */  /* guard already set */
761
184
    if (nextlen == 0) max_count = 138, min_count = 3;
762
763
28.2k
    for (n = 0; n <= max_code; n++) {
764
28.0k
        curlen = nextlen; nextlen = tree[n + 1].Len;
765
28.0k
        if (++count < max_count && curlen == nextlen) {
766
17.2k
            continue;
767
17.2k
        } else if (count < min_count) {
768
12.5k
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769
770
9.66k
        } else if (curlen != 0) {
771
621
            if (curlen != prevlen) {
772
598
                send_code(s, curlen, s->bl_tree); count--;
773
598
            }
774
621
            Assert(count >= 3 && count <= 6, " 3_6?");
775
621
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
776
777
621
        } else if (count <= 10) {
778
230
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
779
780
322
        } else {
781
322
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
782
322
        }
783
10.8k
        count = 0; prevlen = curlen;
784
10.8k
        if (nextlen == 0) {
785
1.21k
            max_count = 138, min_count = 3;
786
9.61k
        } else if (curlen == nextlen) {
787
23
            max_count = 6, min_count = 3;
788
9.59k
        } else {
789
9.59k
            max_count = 7, min_count = 4;
790
9.59k
        }
791
10.8k
    }
792
184
}
793
794
/* ===========================================================================
795
 * Construct the Huffman tree for the bit lengths and return the index in
796
 * bl_order of the last bit length code to send.
797
 */
798
92
local int build_bl_tree(deflate_state *s) {
799
92
    int max_blindex;  /* index of last bit length code of non zero freq */
800
801
    /* Determine the bit length frequencies for literal and distance trees */
802
92
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
803
92
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
804
805
    /* Build the bit length tree: */
806
92
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
807
    /* opt_len now includes the length of the tree representations, except the
808
     * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
809
     */
810
811
    /* Determine the number of bit length codes to send. The pkzip format
812
     * requires that at least 4 bit length codes be sent. (appnote.txt says
813
     * 3 but the actual value used is 4.)
814
     */
815
345
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
816
345
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
817
345
    }
818
    /* Update opt_len to include the bit length tree and counts */
819
92
    s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
820
92
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
821
92
            s->opt_len, s->static_len));
822
823
92
    return max_blindex;
824
92
}
825
826
/* ===========================================================================
827
 * Send the header for a block using dynamic Huffman trees: the counts, the
828
 * lengths of the bit length codes, the literal tree and the distance tree.
829
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
830
 */
831
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
832
92
                          int blcodes) {
833
92
    int rank;                    /* index in bl_order */
834
835
92
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
836
92
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
837
92
            "too many codes");
838
92
    Tracev((stderr, "\nbl counts: "));
839
92
    send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
840
92
    send_bits(s, dcodes - 1,   5);
841
92
    send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
842
1.58k
    for (rank = 0; rank < blcodes; rank++) {
843
1.49k
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
844
1.49k
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
845
1.49k
    }
846
92
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
847
848
92
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
849
92
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
850
851
92
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
852
92
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
853
92
}
854
855
/* ===========================================================================
856
 * Send a stored block
857
 */
858
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
859
46
                                    ulg stored_len, int last) {
860
46
    send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
861
46
    bi_windup(s);        /* align on byte boundary */
862
46
    put_short(s, (ush)stored_len);
863
46
    put_short(s, (ush)~stored_len);
864
46
    if (stored_len)
865
0
        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
866
46
    s->pending += stored_len;
867
#ifdef ZLIB_DEBUG
868
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869
    s->compressed_len += (stored_len + 4) << 3;
870
    s->bits_sent += 2*16;
871
    s->bits_sent += stored_len << 3;
872
#endif
873
46
}
874
875
/* ===========================================================================
876
 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
877
 */
878
161
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
879
161
    bi_flush(s);
880
161
}
881
882
/* ===========================================================================
883
 * Send one empty static block to give enough lookahead for inflate.
884
 * This takes 10 bits, of which 7 may remain in the bit buffer.
885
 */
886
0
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
887
0
    send_bits(s, STATIC_TREES<<1, 3);
888
0
    send_code(s, END_BLOCK, static_ltree);
889
#ifdef ZLIB_DEBUG
890
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891
#endif
892
0
    bi_flush(s);
893
0
}
894
895
/* ===========================================================================
896
 * Send the block data compressed using the given Huffman trees
897
 */
898
local void compress_block(deflate_state *s, const ct_data *ltree,
899
92
                          const ct_data *dtree) {
900
92
    unsigned dist;      /* distance of matched string */
901
92
    int lc;             /* match length or unmatched char (if dist == 0) */
902
92
    unsigned sx = 0;    /* running index in symbol buffers */
903
92
    unsigned code;      /* the code to send */
904
92
    int extra;          /* number of extra bits to send */
905
906
888k
    if (s->sym_next != 0) do {
907
#ifdef LIT_MEM
908
        dist = s->d_buf[sx];
909
        lc = s->l_buf[sx++];
910
#else
911
888k
        dist = s->sym_buf[sx++] & 0xff;
912
888k
        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913
888k
        lc = s->sym_buf[sx++];
914
888k
#endif
915
888k
        if (dist == 0) {
916
256k
            send_code(s, lc, ltree); /* send a literal byte */
917
256k
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918
632k
        } else {
919
            /* Here, lc is the match length - MIN_MATCH */
920
632k
            code = _length_code[lc];
921
632k
            send_code(s, code + LITERALS + 1, ltree);   /* send length code */
922
632k
            extra = extra_lbits[code];
923
632k
            if (extra != 0) {
924
61.0k
                lc -= base_length[code];
925
61.0k
                send_bits(s, lc, extra);       /* send the extra length bits */
926
61.0k
            }
927
632k
            dist--; /* dist is now the match distance - 1 */
928
632k
            code = d_code(dist);
929
632k
            Assert (code < D_CODES, "bad d_code");
930
931
632k
            send_code(s, code, dtree);       /* send the distance code */
932
632k
            extra = extra_dbits[code];
933
632k
            if (extra != 0) {
934
630k
                dist -= (unsigned)base_dist[code];
935
630k
                send_bits(s, dist, extra);   /* send the extra distance bits */
936
630k
            }
937
632k
        } /* literal or match pair ? */
938
939
        /* Check for no overlay of pending_buf on needed symbols */
940
#ifdef LIT_MEM
941
        Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942
#else
943
888k
        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944
888k
#endif
945
946
888k
    } while (sx < s->sym_next);
947
948
92
    send_code(s, END_BLOCK, ltree);
949
92
}
950
951
/* ===========================================================================
952
 * Check if the data type is TEXT or BINARY, using the following algorithm:
953
 * - TEXT if the two conditions below are satisfied:
954
 *    a) There are no non-portable control characters belonging to the
955
 *       "block list" (0..6, 14..25, 28..31).
956
 *    b) There is at least one printable character belonging to the
957
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958
 * - BINARY otherwise.
959
 * - The following partially-portable control characters form a
960
 *   "gray list" that is ignored in this detection algorithm:
961
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962
 * IN assertion: the fields Freq of dyn_ltree are set.
963
 */
964
46
local int detect_data_type(deflate_state *s) {
965
    /* block_mask is the bit mask of block-listed bytes
966
     * set bits 0..6, 14..25, and 28..31
967
     * 0xf3ffc07f = binary 11110011111111111100000001111111
968
     */
969
46
    unsigned long block_mask = 0xf3ffc07fUL;
970
46
    int n;
971
972
    /* Check for non-textual ("block-listed") bytes. */
973
1.51k
    for (n = 0; n <= 31; n++, block_mask >>= 1)
974
1.47k
        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975
0
            return Z_BINARY;
976
977
    /* Check for textual ("allow-listed") bytes. */
978
46
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979
46
            || s->dyn_ltree[13].Freq != 0)
980
23
        return Z_TEXT;
981
23
    for (n = 32; n < LITERALS; n++)
982
23
        if (s->dyn_ltree[n].Freq != 0)
983
23
            return Z_TEXT;
984
985
    /* There are no "block-listed" or "allow-listed" bytes:
986
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
987
     */
988
0
    return Z_BINARY;
989
23
}
990
991
/* ===========================================================================
992
 * Determine the best encoding for the current block: dynamic trees, static
993
 * trees or store, and write out the encoded block.
994
 */
995
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
996
92
                                   ulg stored_len, int last) {
997
92
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
998
92
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
999
1000
    /* Build the Huffman trees unless a stored block is forced */
1001
92
    if (s->level > 0) {
1002
1003
        /* Check if the file is binary or text */
1004
92
        if (s->strm->data_type == Z_UNKNOWN)
1005
46
            s->strm->data_type = detect_data_type(s);
1006
1007
        /* Construct the literal and distance trees */
1008
92
        build_tree(s, (tree_desc *)(&(s->l_desc)));
1009
92
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1010
92
                s->static_len));
1011
1012
92
        build_tree(s, (tree_desc *)(&(s->d_desc)));
1013
92
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1014
92
                s->static_len));
1015
        /* At this point, opt_len and static_len are the total bit lengths of
1016
         * the compressed block data, excluding the tree representations.
1017
         */
1018
1019
        /* Build the bit length tree for the above two trees, and get the index
1020
         * in bl_order of the last bit length code to send.
1021
         */
1022
92
        max_blindex = build_bl_tree(s);
1023
1024
        /* Determine the best encoding. Compute the block lengths in bytes. */
1025
92
        opt_lenb = (s->opt_len + 3 + 7) >> 3;
1026
92
        static_lenb = (s->static_len + 3 + 7) >> 3;
1027
1028
92
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1029
92
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1030
92
                s->sym_next / 3));
1031
1032
92
#ifndef FORCE_STATIC
1033
92
        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034
0
#endif
1035
0
            opt_lenb = static_lenb;
1036
1037
92
    } else {
1038
0
        Assert(buf != (char*)0, "lost buf");
1039
0
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1040
0
    }
1041
1042
#ifdef FORCE_STORED
1043
    if (buf != (char*)0) { /* force stored block */
1044
#else
1045
92
    if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1046
                       /* 4: two words for the lengths */
1047
0
#endif
1048
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1049
         * Otherwise we can't have processed more than WSIZE input bytes since
1050
         * the last block flush, because compression would have been
1051
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1052
         * transform a block into a stored block.
1053
         */
1054
0
        _tr_stored_block(s, buf, stored_len, last);
1055
1056
92
    } else if (static_lenb == opt_lenb) {
1057
0
        send_bits(s, (STATIC_TREES<<1) + last, 3);
1058
0
        compress_block(s, (const ct_data *)static_ltree,
1059
0
                       (const ct_data *)static_dtree);
1060
#ifdef ZLIB_DEBUG
1061
        s->compressed_len += 3 + s->static_len;
1062
#endif
1063
92
    } else {
1064
92
        send_bits(s, (DYN_TREES<<1) + last, 3);
1065
92
        send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1066
92
                       max_blindex + 1);
1067
92
        compress_block(s, (const ct_data *)s->dyn_ltree,
1068
92
                       (const ct_data *)s->dyn_dtree);
1069
#ifdef ZLIB_DEBUG
1070
        s->compressed_len += 3 + s->opt_len;
1071
#endif
1072
92
    }
1073
92
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1074
    /* The above check is made mod 2^32, for files larger than 512 MB
1075
     * and uLong implemented on 32 bits.
1076
     */
1077
92
    init_block(s);
1078
1079
92
    if (last) {
1080
46
        bi_windup(s);
1081
#ifdef ZLIB_DEBUG
1082
        s->compressed_len += 7;  /* align on byte boundary */
1083
#endif
1084
46
    }
1085
92
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1086
92
           s->compressed_len - 7*last));
1087
92
}
1088
1089
/* ===========================================================================
1090
 * Save the match info and tally the frequency counts. Return true if
1091
 * the current block must be flushed.
1092
 */
1093
0
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1094
#ifdef LIT_MEM
1095
    s->d_buf[s->sym_next] = (ush)dist;
1096
    s->l_buf[s->sym_next++] = (uch)lc;
1097
#else
1098
0
    s->sym_buf[s->sym_next++] = (uch)dist;
1099
0
    s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100
0
    s->sym_buf[s->sym_next++] = (uch)lc;
1101
0
#endif
1102
0
    if (dist == 0) {
1103
        /* lc is the unmatched char */
1104
0
        s->dyn_ltree[lc].Freq++;
1105
0
    } else {
1106
0
        s->matches++;
1107
        /* Here, lc is the match length - MIN_MATCH */
1108
0
        dist--;             /* dist = match distance - 1 */
1109
0
        Assert((ush)dist < (ush)MAX_DIST(s) &&
1110
0
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1111
0
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1112
1113
0
        s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1114
0
        s->dyn_dtree[d_code(dist)].Freq++;
1115
0
    }
1116
0
    return (s->sym_next == s->sym_end);
1117
0
}