/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/erff.rs
Line | Count | Source (jump to first uncovered line) |
1 | | /* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */ |
2 | | /* |
3 | | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
4 | | */ |
5 | | /* |
6 | | * ==================================================== |
7 | | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | | * |
9 | | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | | * Permission to use, copy, modify, and distribute this |
11 | | * software is freely granted, provided that this notice |
12 | | * is preserved. |
13 | | * ==================================================== |
14 | | */ |
15 | | |
16 | | use super::{expf, fabsf}; |
17 | | |
18 | | const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */ |
19 | | /* |
20 | | * Coefficients for approximation to erf on [0,0.84375] |
21 | | */ |
22 | | const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */ |
23 | | const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */ |
24 | | const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */ |
25 | | const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */ |
26 | | const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */ |
27 | | const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */ |
28 | | const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */ |
29 | | const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */ |
30 | | const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */ |
31 | | const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */ |
32 | | const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */ |
33 | | /* |
34 | | * Coefficients for approximation to erf in [0.84375,1.25] |
35 | | */ |
36 | | const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */ |
37 | | const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */ |
38 | | const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */ |
39 | | const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */ |
40 | | const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */ |
41 | | const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */ |
42 | | const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */ |
43 | | const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */ |
44 | | const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */ |
45 | | const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */ |
46 | | const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */ |
47 | | const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */ |
48 | | const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */ |
49 | | /* |
50 | | * Coefficients for approximation to erfc in [1.25,1/0.35] |
51 | | */ |
52 | | const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */ |
53 | | const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */ |
54 | | const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */ |
55 | | const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */ |
56 | | const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */ |
57 | | const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */ |
58 | | const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */ |
59 | | const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */ |
60 | | const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */ |
61 | | const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */ |
62 | | const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */ |
63 | | const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */ |
64 | | const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */ |
65 | | const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */ |
66 | | const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */ |
67 | | const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */ |
68 | | /* |
69 | | * Coefficients for approximation to erfc in [1/.35,28] |
70 | | */ |
71 | | const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */ |
72 | | const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */ |
73 | | const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */ |
74 | | const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */ |
75 | | const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */ |
76 | | const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */ |
77 | | const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */ |
78 | | const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */ |
79 | | const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */ |
80 | | const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */ |
81 | | const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */ |
82 | | const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */ |
83 | | const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */ |
84 | | const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */ |
85 | | |
86 | 0 | fn erfc1(x: f32) -> f32 { |
87 | 0 | let s: f32; |
88 | 0 | let p: f32; |
89 | 0 | let q: f32; |
90 | 0 |
|
91 | 0 | s = fabsf(x) - 1.0; |
92 | 0 | p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6))))); |
93 | 0 | q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6))))); |
94 | 0 | return 1.0 - ERX - p / q; |
95 | 0 | } |
96 | | |
97 | 0 | fn erfc2(mut ix: u32, mut x: f32) -> f32 { |
98 | 0 | let s: f32; |
99 | 0 | let r: f32; |
100 | 0 | let big_s: f32; |
101 | 0 | let z: f32; |
102 | 0 |
|
103 | 0 | if ix < 0x3fa00000 { |
104 | | /* |x| < 1.25 */ |
105 | 0 | return erfc1(x); |
106 | 0 | } |
107 | 0 |
|
108 | 0 | x = fabsf(x); |
109 | 0 | s = 1.0 / (x * x); |
110 | 0 | if ix < 0x4036db6d { |
111 | 0 | /* |x| < 1/0.35 */ |
112 | 0 | r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7)))))); |
113 | 0 | big_s = 1.0 |
114 | 0 | + s * (SA1 |
115 | 0 | + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8))))))); |
116 | 0 | } else { |
117 | 0 | /* |x| >= 1/0.35 */ |
118 | 0 | r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6))))); |
119 | 0 | big_s = |
120 | 0 | 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7)))))); |
121 | 0 | } |
122 | 0 | ix = x.to_bits(); |
123 | 0 | z = f32::from_bits(ix & 0xffffe000); |
124 | 0 |
|
125 | 0 | expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x |
126 | 0 | } |
127 | | |
128 | | /// Error function (f32) |
129 | | /// |
130 | | /// Calculates an approximation to the “error function”, which estimates |
131 | | /// the probability that an observation will fall within x standard |
132 | | /// deviations of the mean (assuming a normal distribution). |
133 | | #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] |
134 | 0 | pub fn erff(x: f32) -> f32 { |
135 | 0 | let r: f32; |
136 | 0 | let s: f32; |
137 | 0 | let z: f32; |
138 | 0 | let y: f32; |
139 | 0 | let mut ix: u32; |
140 | 0 | let sign: usize; |
141 | 0 |
|
142 | 0 | ix = x.to_bits(); |
143 | 0 | sign = (ix >> 31) as usize; |
144 | 0 | ix &= 0x7fffffff; |
145 | 0 | if ix >= 0x7f800000 { |
146 | | /* erf(nan)=nan, erf(+-inf)=+-1 */ |
147 | 0 | return 1.0 - 2.0 * (sign as f32) + 1.0 / x; |
148 | 0 | } |
149 | 0 | if ix < 0x3f580000 { |
150 | | /* |x| < 0.84375 */ |
151 | 0 | if ix < 0x31800000 { |
152 | | /* |x| < 2**-28 */ |
153 | | /*avoid underflow */ |
154 | 0 | return 0.125 * (8.0 * x + EFX8 * x); |
155 | 0 | } |
156 | 0 | z = x * x; |
157 | 0 | r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); |
158 | 0 | s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); |
159 | 0 | y = r / s; |
160 | 0 | return x + x * y; |
161 | 0 | } |
162 | 0 | if ix < 0x40c00000 { |
163 | 0 | /* |x| < 6 */ |
164 | 0 | y = 1.0 - erfc2(ix, x); |
165 | 0 | } else { |
166 | 0 | let x1p_120 = f32::from_bits(0x03800000); |
167 | 0 | y = 1.0 - x1p_120; |
168 | 0 | } |
169 | | |
170 | 0 | if sign != 0 { -y } else { y } |
171 | 0 | } |
172 | | |
173 | | /// Complementary error function (f32) |
174 | | /// |
175 | | /// Calculates the complementary probability. |
176 | | /// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid |
177 | | /// the loss of precision that would result from subtracting |
178 | | /// large probabilities (on large `x`) from 1. |
179 | 0 | pub fn erfcf(x: f32) -> f32 { |
180 | 0 | let r: f32; |
181 | 0 | let s: f32; |
182 | 0 | let z: f32; |
183 | 0 | let y: f32; |
184 | 0 | let mut ix: u32; |
185 | 0 | let sign: usize; |
186 | 0 |
|
187 | 0 | ix = x.to_bits(); |
188 | 0 | sign = (ix >> 31) as usize; |
189 | 0 | ix &= 0x7fffffff; |
190 | 0 | if ix >= 0x7f800000 { |
191 | | /* erfc(nan)=nan, erfc(+-inf)=0,2 */ |
192 | 0 | return 2.0 * (sign as f32) + 1.0 / x; |
193 | 0 | } |
194 | 0 |
|
195 | 0 | if ix < 0x3f580000 { |
196 | | /* |x| < 0.84375 */ |
197 | 0 | if ix < 0x23800000 { |
198 | | /* |x| < 2**-56 */ |
199 | 0 | return 1.0 - x; |
200 | 0 | } |
201 | 0 | z = x * x; |
202 | 0 | r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); |
203 | 0 | s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); |
204 | 0 | y = r / s; |
205 | 0 | if sign != 0 || ix < 0x3e800000 { |
206 | | /* x < 1/4 */ |
207 | 0 | return 1.0 - (x + x * y); |
208 | 0 | } |
209 | 0 | return 0.5 - (x - 0.5 + x * y); |
210 | 0 | } |
211 | 0 | if ix < 0x41e00000 { |
212 | | /* |x| < 28 */ |
213 | 0 | if sign != 0 { |
214 | 0 | return 2.0 - erfc2(ix, x); |
215 | | } else { |
216 | 0 | return erfc2(ix, x); |
217 | | } |
218 | 0 | } |
219 | 0 |
|
220 | 0 | let x1p_120 = f32::from_bits(0x03800000); |
221 | 0 | if sign != 0 { 2.0 - x1p_120 } else { x1p_120 * x1p_120 } |
222 | 0 | } |