Coverage Report

Created: 2025-07-12 07:16

/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/jnf.rs
Line
Count
Source (jump to first uncovered line)
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2
/*
3
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4
 */
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17
18
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
19
0
pub fn jnf(n: i32, mut x: f32) -> f32 {
20
0
    let mut ix: u32;
21
0
    let mut nm1: i32;
22
0
    let mut sign: bool;
23
0
    let mut i: i32;
24
0
    let mut a: f32;
25
0
    let mut b: f32;
26
0
    let mut temp: f32;
27
0
28
0
    ix = x.to_bits();
29
0
    sign = (ix >> 31) != 0;
30
0
    ix &= 0x7fffffff;
31
0
    if ix > 0x7f800000 {
32
        /* nan */
33
0
        return x;
34
0
    }
35
0
36
0
    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
37
0
    if n == 0 {
38
0
        return j0f(x);
39
0
    }
40
0
    if n < 0 {
41
0
        nm1 = -(n + 1);
42
0
        x = -x;
43
0
        sign = !sign;
44
0
    } else {
45
0
        nm1 = n - 1;
46
0
    }
47
0
    if nm1 == 0 {
48
0
        return j1f(x);
49
0
    }
50
0
51
0
    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
52
0
    x = fabsf(x);
53
0
    if ix == 0 || ix == 0x7f800000 {
54
0
        /* if x is 0 or inf */
55
0
        b = 0.0;
56
0
    } else if (nm1 as f32) < x {
57
        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
58
0
        a = j0f(x);
59
0
        b = j1f(x);
60
0
        i = 0;
61
0
        while i < nm1 {
62
0
            i += 1;
63
0
            temp = b;
64
0
            b = b * (2.0 * (i as f32) / x) - a;
65
0
            a = temp;
66
0
        }
67
    } else {
68
0
        if ix < 0x35800000 {
69
            /* x < 2**-20 */
70
            /* x is tiny, return the first Taylor expansion of J(n,x)
71
             * J(n,x) = 1/n!*(x/2)^n  - ...
72
             */
73
0
            if nm1 > 8 {
74
0
                /* underflow */
75
0
                nm1 = 8;
76
0
            }
77
0
            temp = 0.5 * x;
78
0
            b = temp;
79
0
            a = 1.0;
80
0
            i = 2;
81
0
            while i <= nm1 + 1 {
82
0
                a *= i as f32; /* a = n! */
83
0
                b *= temp; /* b = (x/2)^n */
84
0
                i += 1;
85
0
            }
86
0
            b = b / a;
87
        } else {
88
            /* use backward recurrence */
89
            /*                      x      x^2      x^2
90
             *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
91
             *                      2n  - 2(n+1) - 2(n+2)
92
             *
93
             *                      1      1        1
94
             *  (for large x)   =  ----  ------   ------   .....
95
             *                      2n   2(n+1)   2(n+2)
96
             *                      -- - ------ - ------ -
97
             *                       x     x         x
98
             *
99
             * Let w = 2n/x and h=2/x, then the above quotient
100
             * is equal to the continued fraction:
101
             *                  1
102
             *      = -----------------------
103
             *                     1
104
             *         w - -----------------
105
             *                        1
106
             *              w+h - ---------
107
             *                     w+2h - ...
108
             *
109
             * To determine how many terms needed, let
110
             * Q(0) = w, Q(1) = w(w+h) - 1,
111
             * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
112
             * When Q(k) > 1e4      good for single
113
             * When Q(k) > 1e9      good for double
114
             * When Q(k) > 1e17     good for quadruple
115
             */
116
            /* determine k */
117
            let mut t: f32;
118
            let mut q0: f32;
119
            let mut q1: f32;
120
            let mut w: f32;
121
            let h: f32;
122
            let mut z: f32;
123
            let mut tmp: f32;
124
            let nf: f32;
125
            let mut k: i32;
126
127
0
            nf = (nm1 as f32) + 1.0;
128
0
            w = 2.0 * (nf as f32) / x;
129
0
            h = 2.0 / x;
130
0
            z = w + h;
131
0
            q0 = w;
132
0
            q1 = w * z - 1.0;
133
0
            k = 1;
134
0
            while q1 < 1.0e4 {
135
0
                k += 1;
136
0
                z += h;
137
0
                tmp = z * q1 - q0;
138
0
                q0 = q1;
139
0
                q1 = tmp;
140
0
            }
141
0
            t = 0.0;
142
0
            i = k;
143
0
            while i >= 0 {
144
0
                t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
145
0
                i -= 1;
146
0
            }
147
0
            a = t;
148
0
            b = 1.0;
149
0
            /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
150
0
             *  Hence, if n*(log(2n/x)) > ...
151
0
             *  single 8.8722839355e+01
152
0
             *  double 7.09782712893383973096e+02
153
0
             *  long double 1.1356523406294143949491931077970765006170e+04
154
0
             *  then recurrent value may overflow and the result is
155
0
             *  likely underflow to zero
156
0
             */
157
0
            tmp = nf * logf(fabsf(w));
158
0
            if tmp < 88.721679688 {
159
0
                i = nm1;
160
0
                while i > 0 {
161
0
                    temp = b;
162
0
                    b = 2.0 * (i as f32) * b / x - a;
163
0
                    a = temp;
164
0
                    i -= 1;
165
0
                }
166
            } else {
167
0
                i = nm1;
168
0
                while i > 0 {
169
0
                    temp = b;
170
0
                    b = 2.0 * (i as f32) * b / x - a;
171
0
                    a = temp;
172
0
                    /* scale b to avoid spurious overflow */
173
0
                    let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
174
0
                    if b > x1p60 {
175
0
                        a /= b;
176
0
                        t /= b;
177
0
                        b = 1.0;
178
0
                    }
179
0
                    i -= 1;
180
                }
181
            }
182
0
            z = j0f(x);
183
0
            w = j1f(x);
184
0
            if fabsf(z) >= fabsf(w) {
185
0
                b = t * z / b;
186
0
            } else {
187
0
                b = t * w / a;
188
0
            }
189
        }
190
    }
191
192
0
    if sign { -b } else { b }
193
0
}
194
195
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
196
0
pub fn ynf(n: i32, x: f32) -> f32 {
197
0
    let mut ix: u32;
198
0
    let mut ib: u32;
199
0
    let nm1: i32;
200
0
    let mut sign: bool;
201
0
    let mut i: i32;
202
0
    let mut a: f32;
203
0
    let mut b: f32;
204
0
    let mut temp: f32;
205
0
206
0
    ix = x.to_bits();
207
0
    sign = (ix >> 31) != 0;
208
0
    ix &= 0x7fffffff;
209
0
    if ix > 0x7f800000 {
210
        /* nan */
211
0
        return x;
212
0
    }
213
0
    if sign && ix != 0 {
214
        /* x < 0 */
215
0
        return 0.0 / 0.0;
216
0
    }
217
0
    if ix == 0x7f800000 {
218
0
        return 0.0;
219
0
    }
220
0
221
0
    if n == 0 {
222
0
        return y0f(x);
223
0
    }
224
0
    if n < 0 {
225
0
        nm1 = -(n + 1);
226
0
        sign = (n & 1) != 0;
227
0
    } else {
228
0
        nm1 = n - 1;
229
0
        sign = false;
230
0
    }
231
0
    if nm1 == 0 {
232
0
        if sign {
233
0
            return -y1f(x);
234
        } else {
235
0
            return y1f(x);
236
        }
237
0
    }
238
0
239
0
    a = y0f(x);
240
0
    b = y1f(x);
241
0
    /* quit if b is -inf */
242
0
    ib = b.to_bits();
243
0
    i = 0;
244
0
    while i < nm1 && ib != 0xff800000 {
245
0
        i += 1;
246
0
        temp = b;
247
0
        b = (2.0 * (i as f32) / x) * b - a;
248
0
        ib = b.to_bits();
249
0
        a = temp;
250
0
    }
251
252
0
    if sign { -b } else { b }
253
0
}