Coverage Report

Created: 2025-07-18 06:22

/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/expm1f.rs
Line
Count
Source (jump to first uncovered line)
1
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
2
/*
3
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4
 */
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */
17
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
18
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
19
const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
20
/*
21
 * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
22
 * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
23
 * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
24
 */
25
const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */
26
const Q2: f32 = 1.5807170421e-3; /*  0xcf3010.0p-33 */
27
28
/// Exponential, base *e*, of x-1 (f32)
29
///
30
/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
31
/// to the power `x` minus 1 (where *e* is the base of the natural
32
/// system of logarithms, approximately 2.71828).
33
/// The result is accurate even for small values of `x`,
34
/// where using `exp(x)-1` would lose many significant digits.
35
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
36
0
pub fn expm1f(mut x: f32) -> f32 {
37
0
    let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
38
0
39
0
    let mut hx = x.to_bits();
40
0
    let sign = (hx >> 31) != 0;
41
0
    hx &= 0x7fffffff;
42
0
43
0
    /* filter out huge and non-finite argument */
44
0
    if hx >= 0x4195b844 {
45
        /* if |x|>=27*ln2 */
46
0
        if hx > 0x7f800000 {
47
            /* NaN */
48
0
            return x;
49
0
        }
50
0
        if sign {
51
0
            return -1.;
52
0
        }
53
0
        if x > O_THRESHOLD {
54
0
            x *= x1p127;
55
0
            return x;
56
0
        }
57
0
    }
58
59
    let k: i32;
60
    let hi: f32;
61
    let lo: f32;
62
0
    let mut c = 0f32;
63
0
    /* argument reduction */
64
0
    if hx > 0x3eb17218 {
65
        /* if  |x| > 0.5 ln2 */
66
0
        if hx < 0x3F851592 {
67
            /* and |x| < 1.5 ln2 */
68
0
            if !sign {
69
0
                hi = x - LN2_HI;
70
0
                lo = LN2_LO;
71
0
                k = 1;
72
0
            } else {
73
0
                hi = x + LN2_HI;
74
0
                lo = -LN2_LO;
75
0
                k = -1;
76
0
            }
77
        } else {
78
0
            k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32;
79
0
            let t = k as f32;
80
0
            hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
81
0
            lo = t * LN2_LO;
82
        }
83
0
        x = hi - lo;
84
0
        c = (hi - x) - lo;
85
0
    } else if hx < 0x33000000 {
86
        /* when |x|<2**-25, return x */
87
0
        if hx < 0x00800000 {
88
0
            force_eval!(x * x);
89
0
        }
90
0
        return x;
91
0
    } else {
92
0
        k = 0;
93
0
    }
94
95
    /* x is now in primary range */
96
0
    let hfx = 0.5 * x;
97
0
    let hxs = x * hfx;
98
0
    let r1 = 1. + hxs * (Q1 + hxs * Q2);
99
0
    let t = 3. - r1 * hfx;
100
0
    let mut e = hxs * ((r1 - t) / (6. - x * t));
101
0
    if k == 0 {
102
        /* c is 0 */
103
0
        return x - (x * e - hxs);
104
0
    }
105
0
    e = x * (e - c) - c;
106
0
    e -= hxs;
107
0
    /* exp(x) ~ 2^k (x_reduced - e + 1) */
108
0
    if k == -1 {
109
0
        return 0.5 * (x - e) - 0.5;
110
0
    }
111
0
    if k == 1 {
112
0
        if x < -0.25 {
113
0
            return -2. * (e - (x + 0.5));
114
0
        }
115
0
        return 1. + 2. * (x - e);
116
0
    }
117
0
    let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */
118
0
    if (k < 0) || (k > 56) {
119
        /* suffice to return exp(x)-1 */
120
0
        let mut y = x - e + 1.;
121
0
        if k == 128 {
122
0
            y = y * 2. * x1p127;
123
0
        } else {
124
0
            y = y * twopk;
125
0
        }
126
0
        return y - 1.;
127
0
    }
128
0
    let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */
129
0
    if k < 23 { (x - e + (1. - uf)) * twopk } else { (x - (e + uf) + 1.) * twopk }
130
0
}