/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/j1.rs
Line | Count | Source (jump to first uncovered line) |
1 | | /* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */ |
2 | | /* |
3 | | * ==================================================== |
4 | | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 | | * |
6 | | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 | | * Permission to use, copy, modify, and distribute this |
8 | | * software is freely granted, provided that this notice |
9 | | * is preserved. |
10 | | * ==================================================== |
11 | | */ |
12 | | /* j1(x), y1(x) |
13 | | * Bessel function of the first and second kinds of order zero. |
14 | | * Method -- j1(x): |
15 | | * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... |
16 | | * 2. Reduce x to |x| since j1(x)=-j1(-x), and |
17 | | * for x in (0,2) |
18 | | * j1(x) = x/2 + x*z*R0/S0, where z = x*x; |
19 | | * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) |
20 | | * for x in (2,inf) |
21 | | * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) |
22 | | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
23 | | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
24 | | * as follow: |
25 | | * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
26 | | * = 1/sqrt(2) * (sin(x) - cos(x)) |
27 | | * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
28 | | * = -1/sqrt(2) * (sin(x) + cos(x)) |
29 | | * (To avoid cancellation, use |
30 | | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
31 | | * to compute the worse one.) |
32 | | * |
33 | | * 3 Special cases |
34 | | * j1(nan)= nan |
35 | | * j1(0) = 0 |
36 | | * j1(inf) = 0 |
37 | | * |
38 | | * Method -- y1(x): |
39 | | * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN |
40 | | * 2. For x<2. |
41 | | * Since |
42 | | * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) |
43 | | * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. |
44 | | * We use the following function to approximate y1, |
45 | | * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 |
46 | | * where for x in [0,2] (abs err less than 2**-65.89) |
47 | | * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 |
48 | | * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 |
49 | | * Note: For tiny x, 1/x dominate y1 and hence |
50 | | * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) |
51 | | * 3. For x>=2. |
52 | | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
53 | | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
54 | | * by method mentioned above. |
55 | | */ |
56 | | |
57 | | use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt}; |
58 | | |
59 | | const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ |
60 | | const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ |
61 | | |
62 | 0 | fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 { |
63 | 0 | let z: f64; |
64 | 0 | let mut s: f64; |
65 | 0 | let c: f64; |
66 | 0 | let mut ss: f64; |
67 | 0 | let mut cc: f64; |
68 | 0 |
|
69 | 0 | /* |
70 | 0 | * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4)) |
71 | 0 | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4)) |
72 | 0 | * |
73 | 0 | * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2) |
74 | 0 | * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2) |
75 | 0 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
76 | 0 | */ |
77 | 0 | s = sin(x); |
78 | 0 | if y1 { |
79 | 0 | s = -s; |
80 | 0 | } |
81 | 0 | c = cos(x); |
82 | 0 | cc = s - c; |
83 | 0 | if ix < 0x7fe00000 { |
84 | | /* avoid overflow in 2*x */ |
85 | 0 | ss = -s - c; |
86 | 0 | z = cos(2.0 * x); |
87 | 0 | if s * c > 0.0 { |
88 | 0 | cc = z / ss; |
89 | 0 | } else { |
90 | 0 | ss = z / cc; |
91 | 0 | } |
92 | 0 | if ix < 0x48000000 { |
93 | 0 | if y1 { |
94 | 0 | ss = -ss; |
95 | 0 | } |
96 | 0 | cc = pone(x) * cc - qone(x) * ss; |
97 | 0 | } |
98 | 0 | } |
99 | 0 | if sign { |
100 | 0 | cc = -cc; |
101 | 0 | } |
102 | 0 | return INVSQRTPI * cc / sqrt(x); |
103 | 0 | } |
104 | | |
105 | | /* R0/S0 on [0,2] */ |
106 | | const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */ |
107 | | const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */ |
108 | | const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */ |
109 | | const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */ |
110 | | const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */ |
111 | | const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */ |
112 | | const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */ |
113 | | const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */ |
114 | | const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ |
115 | | |
116 | | /// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64). |
117 | 0 | pub fn j1(x: f64) -> f64 { |
118 | 0 | let mut z: f64; |
119 | 0 | let r: f64; |
120 | 0 | let s: f64; |
121 | 0 | let mut ix: u32; |
122 | 0 | let sign: bool; |
123 | 0 |
|
124 | 0 | ix = get_high_word(x); |
125 | 0 | sign = (ix >> 31) != 0; |
126 | 0 | ix &= 0x7fffffff; |
127 | 0 | if ix >= 0x7ff00000 { |
128 | 0 | return 1.0 / (x * x); |
129 | 0 | } |
130 | 0 | if ix >= 0x40000000 { |
131 | | /* |x| >= 2 */ |
132 | 0 | return common(ix, fabs(x), false, sign); |
133 | 0 | } |
134 | 0 | if ix >= 0x38000000 { |
135 | 0 | /* |x| >= 2**-127 */ |
136 | 0 | z = x * x; |
137 | 0 | r = z * (R00 + z * (R01 + z * (R02 + z * R03))); |
138 | 0 | s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); |
139 | 0 | z = r / s; |
140 | 0 | } else { |
141 | 0 | /* avoid underflow, raise inexact if x!=0 */ |
142 | 0 | z = x; |
143 | 0 | } |
144 | 0 | return (0.5 + z) * x; |
145 | 0 | } |
146 | | |
147 | | const U0: [f64; 5] = [ |
148 | | -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ |
149 | | 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ |
150 | | -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ |
151 | | 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ |
152 | | -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ |
153 | | ]; |
154 | | const V0: [f64; 5] = [ |
155 | | 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ |
156 | | 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ |
157 | | 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ |
158 | | 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ |
159 | | 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ |
160 | | ]; |
161 | | |
162 | | /// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64). |
163 | 0 | pub fn y1(x: f64) -> f64 { |
164 | 0 | let z: f64; |
165 | 0 | let u: f64; |
166 | 0 | let v: f64; |
167 | 0 | let ix: u32; |
168 | 0 | let lx: u32; |
169 | 0 |
|
170 | 0 | ix = get_high_word(x); |
171 | 0 | lx = get_low_word(x); |
172 | 0 |
|
173 | 0 | /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */ |
174 | 0 | if (ix << 1 | lx) == 0 { |
175 | 0 | return -1.0 / 0.0; |
176 | 0 | } |
177 | 0 | if (ix >> 31) != 0 { |
178 | 0 | return 0.0 / 0.0; |
179 | 0 | } |
180 | 0 | if ix >= 0x7ff00000 { |
181 | 0 | return 1.0 / x; |
182 | 0 | } |
183 | 0 |
|
184 | 0 | if ix >= 0x40000000 { |
185 | | /* x >= 2 */ |
186 | 0 | return common(ix, x, true, false); |
187 | 0 | } |
188 | 0 | if ix < 0x3c900000 { |
189 | | /* x < 2**-54 */ |
190 | 0 | return -TPI / x; |
191 | 0 | } |
192 | 0 | z = x * x; |
193 | 0 | u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); |
194 | 0 | v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); |
195 | 0 | return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x); |
196 | 0 | } |
197 | | |
198 | | /* For x >= 8, the asymptotic expansions of pone is |
199 | | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
200 | | * We approximate pone by |
201 | | * pone(x) = 1 + (R/S) |
202 | | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
203 | | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
204 | | * and |
205 | | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
206 | | */ |
207 | | |
208 | | const PR8: [f64; 6] = [ |
209 | | /* for x in [inf, 8]=1/[0,0.125] */ |
210 | | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
211 | | 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ |
212 | | 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ |
213 | | 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ |
214 | | 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ |
215 | | 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ |
216 | | ]; |
217 | | const PS8: [f64; 5] = [ |
218 | | 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ |
219 | | 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ |
220 | | 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ |
221 | | 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ |
222 | | 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ |
223 | | ]; |
224 | | |
225 | | const PR5: [f64; 6] = [ |
226 | | /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
227 | | 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ |
228 | | 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ |
229 | | 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ |
230 | | 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ |
231 | | 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ |
232 | | 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ |
233 | | ]; |
234 | | const PS5: [f64; 5] = [ |
235 | | 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ |
236 | | 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ |
237 | | 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ |
238 | | 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ |
239 | | 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ |
240 | | ]; |
241 | | |
242 | | const PR3: [f64; 6] = [ |
243 | | 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ |
244 | | 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ |
245 | | 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ |
246 | | 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ |
247 | | 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ |
248 | | 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ |
249 | | ]; |
250 | | const PS3: [f64; 5] = [ |
251 | | 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ |
252 | | 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ |
253 | | 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ |
254 | | 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ |
255 | | 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ |
256 | | ]; |
257 | | |
258 | | const PR2: [f64; 6] = [ |
259 | | /* for x in [2.8570,2]=1/[0.3499,0.5] */ |
260 | | 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ |
261 | | 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ |
262 | | 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ |
263 | | 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ |
264 | | 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ |
265 | | 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ |
266 | | ]; |
267 | | const PS2: [f64; 5] = [ |
268 | | 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ |
269 | | 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ |
270 | | 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ |
271 | | 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ |
272 | | 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ |
273 | | ]; |
274 | | |
275 | 0 | fn pone(x: f64) -> f64 { |
276 | 0 | let p: &[f64; 6]; |
277 | 0 | let q: &[f64; 5]; |
278 | 0 | let z: f64; |
279 | 0 | let r: f64; |
280 | 0 | let s: f64; |
281 | 0 | let mut ix: u32; |
282 | 0 |
|
283 | 0 | ix = get_high_word(x); |
284 | 0 | ix &= 0x7fffffff; |
285 | 0 | if ix >= 0x40200000 { |
286 | 0 | p = &PR8; |
287 | 0 | q = &PS8; |
288 | 0 | } else if ix >= 0x40122E8B { |
289 | 0 | p = &PR5; |
290 | 0 | q = &PS5; |
291 | 0 | } else if ix >= 0x4006DB6D { |
292 | 0 | p = &PR3; |
293 | 0 | q = &PS3; |
294 | 0 | } else |
295 | | /*ix >= 0x40000000*/ |
296 | 0 | { |
297 | 0 | p = &PR2; |
298 | 0 | q = &PS2; |
299 | 0 | } |
300 | 0 | z = 1.0 / (x * x); |
301 | 0 | r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); |
302 | 0 | s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); |
303 | 0 | return 1.0 + r / s; |
304 | 0 | } |
305 | | |
306 | | /* For x >= 8, the asymptotic expansions of qone is |
307 | | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
308 | | * We approximate pone by |
309 | | * qone(x) = s*(0.375 + (R/S)) |
310 | | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
311 | | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
312 | | * and |
313 | | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
314 | | */ |
315 | | |
316 | | const QR8: [f64; 6] = [ |
317 | | /* for x in [inf, 8]=1/[0,0.125] */ |
318 | | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
319 | | -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ |
320 | | -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ |
321 | | -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ |
322 | | -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ |
323 | | -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ |
324 | | ]; |
325 | | const QS8: [f64; 6] = [ |
326 | | 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ |
327 | | 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ |
328 | | 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ |
329 | | 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ |
330 | | 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ |
331 | | -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ |
332 | | ]; |
333 | | |
334 | | const QR5: [f64; 6] = [ |
335 | | /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
336 | | -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ |
337 | | -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ |
338 | | -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ |
339 | | -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ |
340 | | -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ |
341 | | -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ |
342 | | ]; |
343 | | const QS5: [f64; 6] = [ |
344 | | 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ |
345 | | 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ |
346 | | 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ |
347 | | 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ |
348 | | 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ |
349 | | -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ |
350 | | ]; |
351 | | |
352 | | const QR3: [f64; 6] = [ |
353 | | -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ |
354 | | -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ |
355 | | -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ |
356 | | -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ |
357 | | -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ |
358 | | -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ |
359 | | ]; |
360 | | const QS3: [f64; 6] = [ |
361 | | 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ |
362 | | 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ |
363 | | 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ |
364 | | 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ |
365 | | 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ |
366 | | -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ |
367 | | ]; |
368 | | |
369 | | const QR2: [f64; 6] = [ |
370 | | /* for x in [2.8570,2]=1/[0.3499,0.5] */ |
371 | | -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ |
372 | | -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ |
373 | | -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ |
374 | | -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ |
375 | | -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ |
376 | | -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ |
377 | | ]; |
378 | | const QS2: [f64; 6] = [ |
379 | | 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ |
380 | | 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ |
381 | | 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ |
382 | | 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ |
383 | | 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ |
384 | | -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ |
385 | | ]; |
386 | | |
387 | 0 | fn qone(x: f64) -> f64 { |
388 | 0 | let p: &[f64; 6]; |
389 | 0 | let q: &[f64; 6]; |
390 | 0 | let s: f64; |
391 | 0 | let r: f64; |
392 | 0 | let z: f64; |
393 | 0 | let mut ix: u32; |
394 | 0 |
|
395 | 0 | ix = get_high_word(x); |
396 | 0 | ix &= 0x7fffffff; |
397 | 0 | if ix >= 0x40200000 { |
398 | 0 | p = &QR8; |
399 | 0 | q = &QS8; |
400 | 0 | } else if ix >= 0x40122E8B { |
401 | 0 | p = &QR5; |
402 | 0 | q = &QS5; |
403 | 0 | } else if ix >= 0x4006DB6D { |
404 | 0 | p = &QR3; |
405 | 0 | q = &QS3; |
406 | 0 | } else |
407 | | /*ix >= 0x40000000*/ |
408 | 0 | { |
409 | 0 | p = &QR2; |
410 | 0 | q = &QS2; |
411 | 0 | } |
412 | 0 | z = 1.0 / (x * x); |
413 | 0 | r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); |
414 | 0 | s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); |
415 | 0 | return (0.375 + r / s) / x; |
416 | 0 | } |