Coverage Report

Created: 2025-08-29 06:18

/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/erf.rs
Line
Count
Source (jump to first uncovered line)
1
use super::{exp, fabs, get_high_word, with_set_low_word};
2
/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
/* double erf(double x)
14
 * double erfc(double x)
15
 *                           x
16
 *                    2      |\
17
 *     erf(x)  =  ---------  | exp(-t*t)dt
18
 *                 sqrt(pi) \|
19
 *                           0
20
 *
21
 *     erfc(x) =  1-erf(x)
22
 *  Note that
23
 *              erf(-x) = -erf(x)
24
 *              erfc(-x) = 2 - erfc(x)
25
 *
26
 * Method:
27
 *      1. For |x| in [0, 0.84375]
28
 *          erf(x)  = x + x*R(x^2)
29
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
30
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
31
 *         where R = P/Q where P is an odd poly of degree 8 and
32
 *         Q is an odd poly of degree 10.
33
 *                                               -57.90
34
 *                      | R - (erf(x)-x)/x | <= 2
35
 *
36
 *
37
 *         Remark. The formula is derived by noting
38
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
39
 *         and that
40
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
41
 *         is close to one. The interval is chosen because the fix
42
 *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
43
 *         near 0.6174), and by some experiment, 0.84375 is chosen to
44
 *         guarantee the error is less than one ulp for erf.
45
 *
46
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
47
 *         c = 0.84506291151 rounded to single (24 bits)
48
 *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
49
 *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
50
 *                        1+(c+P1(s)/Q1(s))    if x < 0
51
 *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
52
 *         Remark: here we use the taylor series expansion at x=1.
53
 *              erf(1+s) = erf(1) + s*Poly(s)
54
 *                       = 0.845.. + P1(s)/Q1(s)
55
 *         That is, we use rational approximation to approximate
56
 *                      erf(1+s) - (c = (single)0.84506291151)
57
 *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
58
 *         where
59
 *              P1(s) = degree 6 poly in s
60
 *              Q1(s) = degree 6 poly in s
61
 *
62
 *      3. For x in [1.25,1/0.35(~2.857143)],
63
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
64
 *              erf(x)  = 1 - erfc(x)
65
 *         where
66
 *              R1(z) = degree 7 poly in z, (z=1/x^2)
67
 *              S1(z) = degree 8 poly in z
68
 *
69
 *      4. For x in [1/0.35,28]
70
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
71
 *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
72
 *                      = 2.0 - tiny            (if x <= -6)
73
 *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
74
 *              erf(x)  = sign(x)*(1.0 - tiny)
75
 *         where
76
 *              R2(z) = degree 6 poly in z, (z=1/x^2)
77
 *              S2(z) = degree 7 poly in z
78
 *
79
 *      Note1:
80
 *         To compute exp(-x*x-0.5625+R/S), let s be a single
81
 *         precision number and s := x; then
82
 *              -x*x = -s*s + (s-x)*(s+x)
83
 *              exp(-x*x-0.5626+R/S) =
84
 *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
85
 *      Note2:
86
 *         Here 4 and 5 make use of the asymptotic series
87
 *                        exp(-x*x)
88
 *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
89
 *                        x*sqrt(pi)
90
 *         We use rational approximation to approximate
91
 *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
92
 *         Here is the error bound for R1/S1 and R2/S2
93
 *              |R1/S1 - f(x)|  < 2**(-62.57)
94
 *              |R2/S2 - f(x)|  < 2**(-61.52)
95
 *
96
 *      5. For inf > x >= 28
97
 *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
98
 *              erfc(x) = tiny*tiny (raise underflow) if x > 0
99
 *                      = 2 - tiny if x<0
100
 *
101
 *      7. Special case:
102
 *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
103
 *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
104
 *              erfc/erf(NaN) is NaN
105
 */
106
107
const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
108
/*
109
 * Coefficients for approximation to  erf on [0,0.84375]
110
 */
111
const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
112
const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
113
const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
114
const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
115
const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
116
const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
117
const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
118
const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
119
const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
120
const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
121
const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
122
/*
123
 * Coefficients for approximation to  erf  in [0.84375,1.25]
124
 */
125
const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
126
const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
127
const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
128
const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
129
const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
130
const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
131
const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
132
const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
133
const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
134
const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
135
const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
136
const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
137
const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
138
/*
139
 * Coefficients for approximation to  erfc in [1.25,1/0.35]
140
 */
141
const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
142
const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
143
const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
144
const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
145
const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
146
const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
147
const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
148
const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
149
const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
150
const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
151
const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
152
const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
153
const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
154
const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
155
const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
156
const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
157
/*
158
 * Coefficients for approximation to  erfc in [1/.35,28]
159
 */
160
const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
161
const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
162
const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
163
const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
164
const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
165
const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
166
const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
167
const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
168
const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
169
const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
170
const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
171
const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
172
const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
173
const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
174
175
0
fn erfc1(x: f64) -> f64 {
176
0
    let s: f64;
177
0
    let p: f64;
178
0
    let q: f64;
179
0
180
0
    s = fabs(x) - 1.0;
181
0
    p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
182
0
    q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
183
0
184
0
    1.0 - ERX - p / q
185
0
}
186
187
0
fn erfc2(ix: u32, mut x: f64) -> f64 {
188
0
    let s: f64;
189
0
    let r: f64;
190
0
    let big_s: f64;
191
0
    let z: f64;
192
0
193
0
    if ix < 0x3ff40000 {
194
        /* |x| < 1.25 */
195
0
        return erfc1(x);
196
0
    }
197
0
198
0
    x = fabs(x);
199
0
    s = 1.0 / (x * x);
200
0
    if ix < 0x4006db6d {
201
0
        /* |x| < 1/.35 ~ 2.85714 */
202
0
        r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
203
0
        big_s = 1.0
204
0
            + s * (SA1
205
0
                + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
206
0
    } else {
207
0
        /* |x| > 1/.35 */
208
0
        r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
209
0
        big_s =
210
0
            1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
211
0
    }
212
0
    z = with_set_low_word(x, 0);
213
0
214
0
    exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x
215
0
}
216
217
/// Error function (f64)
218
///
219
/// Calculates an approximation to the “error function”, which estimates
220
/// the probability that an observation will fall within x standard
221
/// deviations of the mean (assuming a normal distribution).
222
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
223
0
pub fn erf(x: f64) -> f64 {
224
0
    let r: f64;
225
0
    let s: f64;
226
0
    let z: f64;
227
0
    let y: f64;
228
0
    let mut ix: u32;
229
0
    let sign: usize;
230
0
231
0
    ix = get_high_word(x);
232
0
    sign = (ix >> 31) as usize;
233
0
    ix &= 0x7fffffff;
234
0
    if ix >= 0x7ff00000 {
235
        /* erf(nan)=nan, erf(+-inf)=+-1 */
236
0
        return 1.0 - 2.0 * (sign as f64) + 1.0 / x;
237
0
    }
238
0
    if ix < 0x3feb0000 {
239
        /* |x| < 0.84375 */
240
0
        if ix < 0x3e300000 {
241
            /* |x| < 2**-28 */
242
            /* avoid underflow */
243
0
            return 0.125 * (8.0 * x + EFX8 * x);
244
0
        }
245
0
        z = x * x;
246
0
        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
247
0
        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
248
0
        y = r / s;
249
0
        return x + x * y;
250
0
    }
251
0
    if ix < 0x40180000 {
252
0
        /* 0.84375 <= |x| < 6 */
253
0
        y = 1.0 - erfc2(ix, x);
254
0
    } else {
255
0
        let x1p_1022 = f64::from_bits(0x0010000000000000);
256
0
        y = 1.0 - x1p_1022;
257
0
    }
258
259
0
    if sign != 0 { -y } else { y }
260
0
}
261
262
/// Complementary error function (f64)
263
///
264
/// Calculates the complementary probability.
265
/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
266
/// the loss of precision that would result from subtracting
267
/// large probabilities (on large `x`) from 1.
268
0
pub fn erfc(x: f64) -> f64 {
269
0
    let r: f64;
270
0
    let s: f64;
271
0
    let z: f64;
272
0
    let y: f64;
273
0
    let mut ix: u32;
274
0
    let sign: usize;
275
0
276
0
    ix = get_high_word(x);
277
0
    sign = (ix >> 31) as usize;
278
0
    ix &= 0x7fffffff;
279
0
    if ix >= 0x7ff00000 {
280
        /* erfc(nan)=nan, erfc(+-inf)=0,2 */
281
0
        return 2.0 * (sign as f64) + 1.0 / x;
282
0
    }
283
0
    if ix < 0x3feb0000 {
284
        /* |x| < 0.84375 */
285
0
        if ix < 0x3c700000 {
286
            /* |x| < 2**-56 */
287
0
            return 1.0 - x;
288
0
        }
289
0
        z = x * x;
290
0
        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
291
0
        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
292
0
        y = r / s;
293
0
        if sign != 0 || ix < 0x3fd00000 {
294
            /* x < 1/4 */
295
0
            return 1.0 - (x + x * y);
296
0
        }
297
0
        return 0.5 - (x - 0.5 + x * y);
298
0
    }
299
0
    if ix < 0x403c0000 {
300
        /* 0.84375 <= |x| < 28 */
301
0
        if sign != 0 {
302
0
            return 2.0 - erfc2(ix, x);
303
        } else {
304
0
            return erfc2(ix, x);
305
        }
306
0
    }
307
0
308
0
    let x1p_1022 = f64::from_bits(0x0010000000000000);
309
0
    if sign != 0 { 2.0 - x1p_1022 } else { x1p_1022 * x1p_1022 }
310
0
}