Coverage Report

Created: 2025-09-27 06:45

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.11/src/math/sqrt.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
/* sqrt(x)
13
 * Return correctly rounded sqrt.
14
 *           ------------------------------------------
15
 *           |  Use the hardware sqrt if you have one |
16
 *           ------------------------------------------
17
 * Method:
18
 *   Bit by bit method using integer arithmetic. (Slow, but portable)
19
 *   1. Normalization
20
 *      Scale x to y in [1,4) with even powers of 2:
21
 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
22
 *              sqrt(x) = 2^k * sqrt(y)
23
 *   2. Bit by bit computation
24
 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
25
 *           i                                                   0
26
 *                                     i+1         2
27
 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
28
 *           i      i            i                 i
29
 *
30
 *      To compute q    from q , one checks whether
31
 *                  i+1       i
32
 *
33
 *                            -(i+1) 2
34
 *                      (q + 2      ) <= y.                     (2)
35
 *                        i
36
 *                                                            -(i+1)
37
 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
38
 *                             i+1   i             i+1   i
39
 *
40
 *      With some algebraic manipulation, it is not difficult to see
41
 *      that (2) is equivalent to
42
 *                             -(i+1)
43
 *                      s  +  2       <= y                      (3)
44
 *                       i                i
45
 *
46
 *      The advantage of (3) is that s  and y  can be computed by
47
 *                                    i      i
48
 *      the following recurrence formula:
49
 *          if (3) is false
50
 *
51
 *          s     =  s  ,       y    = y   ;                    (4)
52
 *           i+1      i          i+1    i
53
 *
54
 *          otherwise,
55
 *                         -i                     -(i+1)
56
 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
57
 *           i+1      i          i+1    i     i
58
 *
59
 *      One may easily use induction to prove (4) and (5).
60
 *      Note. Since the left hand side of (3) contain only i+2 bits,
61
 *            it does not necessary to do a full (53-bit) comparison
62
 *            in (3).
63
 *   3. Final rounding
64
 *      After generating the 53 bits result, we compute one more bit.
65
 *      Together with the remainder, we can decide whether the
66
 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
67
 *      (it will never equal to 1/2ulp).
68
 *      The rounding mode can be detected by checking whether
69
 *      huge + tiny is equal to huge, and whether huge - tiny is
70
 *      equal to huge for some floating point number "huge" and "tiny".
71
 *
72
 * Special cases:
73
 *      sqrt(+-0) = +-0         ... exact
74
 *      sqrt(inf) = inf
75
 *      sqrt(-ve) = NaN         ... with invalid signal
76
 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
77
 */
78
79
use core::f64;
80
81
/// The square root of `x` (f64).
82
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
83
0
pub fn sqrt(x: f64) -> f64 {
84
    // On wasm32 we know that LLVM's intrinsic will compile to an optimized
85
    // `f64.sqrt` native instruction, so we can leverage this for both code size
86
    // and speed.
87
    llvm_intrinsically_optimized! {
88
        #[cfg(target_arch = "wasm32")] {
89
            return if x < 0.0 {
90
                f64::NAN
91
            } else {
92
                unsafe { ::core::intrinsics::sqrtf64(x) }
93
            }
94
        }
95
    }
96
    #[cfg(all(target_feature = "sse2", not(feature = "force-soft-floats")))]
97
    {
98
        // Note: This path is unlikely since LLVM will usually have already
99
        // optimized sqrt calls into hardware instructions if sse2 is available,
100
        // but if someone does end up here they'll appreciate the speed increase.
101
        #[cfg(target_arch = "x86")]
102
        use core::arch::x86::*;
103
        #[cfg(target_arch = "x86_64")]
104
        use core::arch::x86_64::*;
105
        unsafe {
106
0
            let m = _mm_set_sd(x);
107
0
            let m_sqrt = _mm_sqrt_pd(m);
108
0
            _mm_cvtsd_f64(m_sqrt)
109
        }
110
    }
111
    #[cfg(any(not(target_feature = "sse2"), feature = "force-soft-floats"))]
112
    {
113
        use core::num::Wrapping;
114
115
        const TINY: f64 = 1.0e-300;
116
117
        let mut z: f64;
118
        let sign: Wrapping<u32> = Wrapping(0x80000000);
119
        let mut ix0: i32;
120
        let mut s0: i32;
121
        let mut q: i32;
122
        let mut m: i32;
123
        let mut t: i32;
124
        let mut i: i32;
125
        let mut r: Wrapping<u32>;
126
        let mut t1: Wrapping<u32>;
127
        let mut s1: Wrapping<u32>;
128
        let mut ix1: Wrapping<u32>;
129
        let mut q1: Wrapping<u32>;
130
131
        ix0 = (x.to_bits() >> 32) as i32;
132
        ix1 = Wrapping(x.to_bits() as u32);
133
134
        /* take care of Inf and NaN */
135
        if (ix0 & 0x7ff00000) == 0x7ff00000 {
136
            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
137
        }
138
        /* take care of zero */
139
        if ix0 <= 0 {
140
            if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
141
                return x; /* sqrt(+-0) = +-0 */
142
            }
143
            if ix0 < 0 {
144
                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
145
            }
146
        }
147
        /* normalize x */
148
        m = ix0 >> 20;
149
        if m == 0 {
150
            /* subnormal x */
151
            while ix0 == 0 {
152
                m -= 21;
153
                ix0 |= (ix1 >> 11).0 as i32;
154
                ix1 <<= 21;
155
            }
156
            i = 0;
157
            while (ix0 & 0x00100000) == 0 {
158
                i += 1;
159
                ix0 <<= 1;
160
            }
161
            m -= i - 1;
162
            ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
163
            ix1 = ix1 << i as usize;
164
        }
165
        m -= 1023; /* unbias exponent */
166
        ix0 = (ix0 & 0x000fffff) | 0x00100000;
167
        if (m & 1) == 1 {
168
            /* odd m, double x to make it even */
169
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
170
            ix1 += ix1;
171
        }
172
        m >>= 1; /* m = [m/2] */
173
174
        /* generate sqrt(x) bit by bit */
175
        ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
176
        ix1 += ix1;
177
        q = 0; /* [q,q1] = sqrt(x) */
178
        q1 = Wrapping(0);
179
        s0 = 0;
180
        s1 = Wrapping(0);
181
        r = Wrapping(0x00200000); /* r = moving bit from right to left */
182
183
        while r != Wrapping(0) {
184
            t = s0 + r.0 as i32;
185
            if t <= ix0 {
186
                s0 = t + r.0 as i32;
187
                ix0 -= t;
188
                q += r.0 as i32;
189
            }
190
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
191
            ix1 += ix1;
192
            r >>= 1;
193
        }
194
195
        r = sign;
196
        while r != Wrapping(0) {
197
            t1 = s1 + r;
198
            t = s0;
199
            if t < ix0 || (t == ix0 && t1 <= ix1) {
200
                s1 = t1 + r;
201
                if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
202
                    s0 += 1;
203
                }
204
                ix0 -= t;
205
                if ix1 < t1 {
206
                    ix0 -= 1;
207
                }
208
                ix1 -= t1;
209
                q1 += r;
210
            }
211
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
212
            ix1 += ix1;
213
            r >>= 1;
214
        }
215
216
        /* use floating add to find out rounding direction */
217
        if (ix0 as u32 | ix1.0) != 0 {
218
            z = 1.0 - TINY; /* raise inexact flag */
219
            if z >= 1.0 {
220
                z = 1.0 + TINY;
221
                if q1.0 == 0xffffffff {
222
                    q1 = Wrapping(0);
223
                    q += 1;
224
                } else if z > 1.0 {
225
                    if q1.0 == 0xfffffffe {
226
                        q += 1;
227
                    }
228
                    q1 += Wrapping(2);
229
                } else {
230
                    q1 += q1 & Wrapping(1);
231
                }
232
            }
233
        }
234
        ix0 = (q >> 1) + 0x3fe00000;
235
        ix1 = q1 >> 1;
236
        if (q & 1) == 1 {
237
            ix1 |= sign;
238
        }
239
        ix0 += m << 20;
240
        f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
241
    }
242
0
}
243
244
#[cfg(test)]
245
mod tests {
246
    use core::f64::*;
247
248
    use super::*;
249
250
    #[test]
251
    fn sanity_check() {
252
        assert_eq!(sqrt(100.0), 10.0);
253
        assert_eq!(sqrt(4.0), 2.0);
254
    }
255
256
    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
257
    #[test]
258
    fn spec_tests() {
259
        // Not Asserted: FE_INVALID exception is raised if argument is negative.
260
        assert!(sqrt(-1.0).is_nan());
261
        assert!(sqrt(NAN).is_nan());
262
        for f in [0.0, -0.0, INFINITY].iter().copied() {
263
            assert_eq!(sqrt(f), f);
264
        }
265
    }
266
267
    #[test]
268
    fn conformance_tests() {
269
        let values = [3.14159265359, 10000.0, f64::from_bits(0x0000000f), INFINITY];
270
        let results = [
271
            4610661241675116657u64,
272
            4636737291354636288u64,
273
            2197470602079456986u64,
274
            9218868437227405312u64,
275
        ];
276
277
        for i in 0..values.len() {
278
            let bits = f64::to_bits(sqrt(values[i]));
279
            assert_eq!(results[i], bits);
280
        }
281
    }
282
}