/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.11/src/math/asin.rs
Line  | Count  | Source  | 
1  |  | /* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */  | 
2  |  | /*  | 
3  |  |  * ====================================================  | 
4  |  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
5  |  |  *  | 
6  |  |  * Developed at SunSoft, a Sun Microsystems, Inc. business.  | 
7  |  |  * Permission to use, copy, modify, and distribute this  | 
8  |  |  * software is freely granted, provided that this notice  | 
9  |  |  * is preserved.  | 
10  |  |  * ====================================================  | 
11  |  |  */  | 
12  |  | /* asin(x)  | 
13  |  |  * Method :  | 
14  |  |  *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...  | 
15  |  |  *      we approximate asin(x) on [0,0.5] by  | 
16  |  |  *              asin(x) = x + x*x^2*R(x^2)  | 
17  |  |  *      where  | 
18  |  |  *              R(x^2) is a rational approximation of (asin(x)-x)/x^3  | 
19  |  |  *      and its remez error is bounded by  | 
20  |  |  *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)  | 
21  |  |  *  | 
22  |  |  *      For x in [0.5,1]  | 
23  |  |  *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))  | 
24  |  |  *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;  | 
25  |  |  *      then for x>0.98  | 
26  |  |  *              asin(x) = pi/2 - 2*(s+s*z*R(z))  | 
27  |  |  *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)  | 
28  |  |  *      For x<=0.98, let pio4_hi = pio2_hi/2, then  | 
29  |  |  *              f = hi part of s;  | 
30  |  |  *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)  | 
31  |  |  *      and  | 
32  |  |  *              asin(x) = pi/2 - 2*(s+s*z*R(z))  | 
33  |  |  *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)  | 
34  |  |  *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))  | 
35  |  |  *  | 
36  |  |  * Special cases:  | 
37  |  |  *      if x is NaN, return x itself;  | 
38  |  |  *      if |x|>1, return NaN with invalid signal.  | 
39  |  |  *  | 
40  |  |  */  | 
41  |  |  | 
42  |  | use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word}; | 
43  |  |  | 
44  |  | const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */  | 
45  |  | const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */  | 
46  |  | /* coefficients for R(x^2) */  | 
47  |  | const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */  | 
48  |  | const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */  | 
49  |  | const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */  | 
50  |  | const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */  | 
51  |  | const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */  | 
52  |  | const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */  | 
53  |  | const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */  | 
54  |  | const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */  | 
55  |  | const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */  | 
56  |  | const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */  | 
57  |  |  | 
58  | 0  | fn comp_r(z: f64) -> f64 { | 
59  | 0  |     let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5)))));  | 
60  | 0  |     let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4)));  | 
61  | 0  |     p / q  | 
62  | 0  | }  | 
63  |  |  | 
64  |  | /// Arcsine (f64)  | 
65  |  | ///  | 
66  |  | /// Computes the inverse sine (arc sine) of the argument `x`.  | 
67  |  | /// Arguments to asin must be in the range -1 to 1.  | 
68  |  | /// Returns values in radians, in the range of -pi/2 to pi/2.  | 
69  |  | #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]  | 
70  | 0  | pub fn asin(mut x: f64) -> f64 { | 
71  |  |     let z: f64;  | 
72  |  |     let r: f64;  | 
73  |  |     let s: f64;  | 
74  |  |     let hx: u32;  | 
75  |  |     let ix: u32;  | 
76  |  |  | 
77  | 0  |     hx = get_high_word(x);  | 
78  | 0  |     ix = hx & 0x7fffffff;  | 
79  |  |     /* |x| >= 1 or nan */  | 
80  | 0  |     if ix >= 0x3ff00000 { | 
81  |  |         let lx: u32;  | 
82  | 0  |         lx = get_low_word(x);  | 
83  | 0  |         if ((ix - 0x3ff00000) | lx) == 0 { | 
84  |  |             /* asin(1) = +-pi/2 with inexact */  | 
85  | 0  |             return x * PIO2_HI + f64::from_bits(0x3870000000000000);  | 
86  |  |         } else { | 
87  | 0  |             return 0.0 / (x - x);  | 
88  |  |         }  | 
89  | 0  |     }  | 
90  |  |     /* |x| < 0.5 */  | 
91  | 0  |     if ix < 0x3fe00000 { | 
92  |  |         /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */  | 
93  | 0  |         if ix < 0x3e500000 && ix >= 0x00100000 { | 
94  | 0  |             return x;  | 
95  |  |         } else { | 
96  | 0  |             return x + x * comp_r(x * x);  | 
97  |  |         }  | 
98  | 0  |     }  | 
99  |  |     /* 1 > |x| >= 0.5 */  | 
100  | 0  |     z = (1.0 - fabs(x)) * 0.5;  | 
101  | 0  |     s = sqrt(z);  | 
102  | 0  |     r = comp_r(z);  | 
103  | 0  |     if ix >= 0x3fef3333 { | 
104  | 0  |         /* if |x| > 0.975 */  | 
105  | 0  |         x = PIO2_HI - (2. * (s + s * r) - PIO2_LO);  | 
106  | 0  |     } else { | 
107  | 0  |         let f: f64;  | 
108  | 0  |         let c: f64;  | 
109  | 0  |         /* f+c = sqrt(z) */  | 
110  | 0  |         f = with_set_low_word(s, 0);  | 
111  | 0  |         c = (z - f * f) / (s + f);  | 
112  | 0  |         x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f));  | 
113  | 0  |     }  | 
114  | 0  |     if hx >> 31 != 0 { -x } else { x } | 
115  | 0  | }  |