Coverage Report

Created: 2025-10-28 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.11/src/math/j0.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
/* j0(x), y0(x)
13
 * Bessel function of the first and second kinds of order zero.
14
 * Method -- j0(x):
15
 *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
16
 *      2. Reduce x to |x| since j0(x)=j0(-x),  and
17
 *         for x in (0,2)
18
 *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
19
 *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
20
 *         for x in (2,inf)
21
 *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
22
 *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
23
 *         as follow:
24
 *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
25
 *                      = 1/sqrt(2) * (cos(x) + sin(x))
26
 *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
27
 *                      = 1/sqrt(2) * (sin(x) - cos(x))
28
 *         (To avoid cancellation, use
29
 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
30
 *          to compute the worse one.)
31
 *
32
 *      3 Special cases
33
 *              j0(nan)= nan
34
 *              j0(0) = 1
35
 *              j0(inf) = 0
36
 *
37
 * Method -- y0(x):
38
 *      1. For x<2.
39
 *         Since
40
 *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
41
 *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
42
 *         We use the following function to approximate y0,
43
 *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
44
 *         where
45
 *              U(z) = u00 + u01*z + ... + u06*z^6
46
 *              V(z) = 1  + v01*z + ... + v04*z^4
47
 *         with absolute approximation error bounded by 2**-72.
48
 *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
49
 *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
50
 *      2. For x>=2.
51
 *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
52
 *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
53
 *         by the method mentioned above.
54
 *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
55
 */
56
57
use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
58
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
59
const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
60
61
/* common method when |x|>=2 */
62
0
fn common(ix: u32, x: f64, y0: bool) -> f64 {
63
    let s: f64;
64
    let mut c: f64;
65
    let mut ss: f64;
66
    let mut cc: f64;
67
    let z: f64;
68
69
    /*
70
     * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
71
     * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
72
     *
73
     * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
74
     * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
75
     * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
76
     */
77
0
    s = sin(x);
78
0
    c = cos(x);
79
0
    if y0 {
80
0
        c = -c;
81
0
    }
82
0
    cc = s + c;
83
    /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
84
0
    if ix < 0x7fe00000 {
85
0
        ss = s - c;
86
0
        z = -cos(2.0 * x);
87
0
        if s * c < 0.0 {
88
0
            cc = z / ss;
89
0
        } else {
90
0
            ss = z / cc;
91
0
        }
92
0
        if ix < 0x48000000 {
93
0
            if y0 {
94
0
                ss = -ss;
95
0
            }
96
0
            cc = pzero(x) * cc - qzero(x) * ss;
97
0
        }
98
0
    }
99
0
    return INVSQRTPI * cc / sqrt(x);
100
0
}
101
102
/* R0/S0 on [0, 2.00] */
103
const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */
104
const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */
105
const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */
106
const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */
107
const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */
108
const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */
109
const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */
110
const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
111
112
/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
113
0
pub fn j0(mut x: f64) -> f64 {
114
    let z: f64;
115
    let r: f64;
116
    let s: f64;
117
    let mut ix: u32;
118
119
0
    ix = get_high_word(x);
120
0
    ix &= 0x7fffffff;
121
122
    /* j0(+-inf)=0, j0(nan)=nan */
123
0
    if ix >= 0x7ff00000 {
124
0
        return 1.0 / (x * x);
125
0
    }
126
0
    x = fabs(x);
127
128
0
    if ix >= 0x40000000 {
129
        /* |x| >= 2 */
130
        /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
131
0
        return common(ix, x, false);
132
0
    }
133
134
    /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
135
0
    if ix >= 0x3f200000 {
136
        /* |x| >= 2**-13 */
137
        /* up to 4ulp error close to 2 */
138
0
        z = x * x;
139
0
        r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
140
0
        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
141
0
        return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
142
0
    }
143
144
    /* 1 - x*x/4 */
145
    /* prevent underflow */
146
    /* inexact should be raised when x!=0, this is not done correctly */
147
0
    if ix >= 0x38000000 {
148
0
        /* |x| >= 2**-127 */
149
0
        x = 0.25 * x * x;
150
0
    }
151
0
    return 1.0 - x;
152
0
}
153
154
const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */
155
const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */
156
const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */
157
const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */
158
const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */
159
const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */
160
const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */
161
const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */
162
const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */
163
const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */
164
const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
165
166
/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
167
0
pub fn y0(x: f64) -> f64 {
168
    let z: f64;
169
    let u: f64;
170
    let v: f64;
171
    let ix: u32;
172
    let lx: u32;
173
174
0
    ix = get_high_word(x);
175
0
    lx = get_low_word(x);
176
177
    /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
178
0
    if ((ix << 1) | lx) == 0 {
179
0
        return -1.0 / 0.0;
180
0
    }
181
0
    if (ix >> 31) != 0 {
182
0
        return 0.0 / 0.0;
183
0
    }
184
0
    if ix >= 0x7ff00000 {
185
0
        return 1.0 / x;
186
0
    }
187
188
0
    if ix >= 0x40000000 {
189
        /* x >= 2 */
190
        /* large ulp errors near zeros: 3.958, 7.086,.. */
191
0
        return common(ix, x, true);
192
0
    }
193
194
    /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
195
0
    if ix >= 0x3e400000 {
196
        /* x >= 2**-27 */
197
        /* large ulp error near the first zero, x ~= 0.89 */
198
0
        z = x * x;
199
0
        u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
200
0
        v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
201
0
        return u / v + TPI * (j0(x) * log(x));
202
0
    }
203
0
    return U00 + TPI * log(x);
204
0
}
205
206
/* The asymptotic expansions of pzero is
207
 *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
208
 * For x >= 2, We approximate pzero by
209
 *      pzero(x) = 1 + (R/S)
210
 * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
211
 *        S = 1 + pS0*s^2 + ... + pS4*s^10
212
 * and
213
 *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
214
 */
215
const PR8: [f64; 6] = [
216
    /* for x in [inf, 8]=1/[0,0.125] */
217
    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
218
    -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
219
    -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
220
    -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
221
    -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
222
    -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
223
];
224
const PS8: [f64; 5] = [
225
    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
226
    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
227
    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
228
    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
229
    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
230
];
231
232
const PR5: [f64; 6] = [
233
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
234
    -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
235
    -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
236
    -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
237
    -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
238
    -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
239
    -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
240
];
241
const PS5: [f64; 5] = [
242
    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
243
    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
244
    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
245
    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
246
    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
247
];
248
249
const PR3: [f64; 6] = [
250
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
251
    -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
252
    -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
253
    -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
254
    -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
255
    -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
256
    -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
257
];
258
const PS3: [f64; 5] = [
259
    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
260
    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
261
    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
262
    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
263
    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
264
];
265
266
const PR2: [f64; 6] = [
267
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
268
    -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
269
    -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
270
    -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
271
    -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
272
    -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
273
    -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
274
];
275
const PS2: [f64; 5] = [
276
    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
277
    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
278
    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
279
    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
280
    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
281
];
282
283
0
fn pzero(x: f64) -> f64 {
284
    let p: &[f64; 6];
285
    let q: &[f64; 5];
286
    let z: f64;
287
    let r: f64;
288
    let s: f64;
289
    let mut ix: u32;
290
291
0
    ix = get_high_word(x);
292
0
    ix &= 0x7fffffff;
293
0
    if ix >= 0x40200000 {
294
0
        p = &PR8;
295
0
        q = &PS8;
296
0
    } else if ix >= 0x40122E8B {
297
0
        p = &PR5;
298
0
        q = &PS5;
299
0
    } else if ix >= 0x4006DB6D {
300
0
        p = &PR3;
301
0
        q = &PS3;
302
0
    } else
303
    /*ix >= 0x40000000*/
304
0
    {
305
0
        p = &PR2;
306
0
        q = &PS2;
307
0
    }
308
0
    z = 1.0 / (x * x);
309
0
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
310
0
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
311
0
    return 1.0 + r / s;
312
0
}
313
314
/* For x >= 8, the asymptotic expansions of qzero is
315
 *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
316
 * We approximate pzero by
317
 *      qzero(x) = s*(-1.25 + (R/S))
318
 * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
319
 *        S = 1 + qS0*s^2 + ... + qS5*s^12
320
 * and
321
 *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
322
 */
323
const QR8: [f64; 6] = [
324
    /* for x in [inf, 8]=1/[0,0.125] */
325
    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
326
    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
327
    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
328
    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
329
    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
330
    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
331
];
332
const QS8: [f64; 6] = [
333
    1.63776026895689824414e+02,  /* 0x406478D5, 0x365B39BC */
334
    8.09834494656449805916e+03,  /* 0x40BFA258, 0x4E6B0563 */
335
    1.42538291419120476348e+05,  /* 0x41016652, 0x54D38C3F */
336
    8.03309257119514397345e+05,  /* 0x412883DA, 0x83A52B43 */
337
    8.40501579819060512818e+05,  /* 0x4129A66B, 0x28DE0B3D */
338
    -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
339
];
340
341
const QR5: [f64; 6] = [
342
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
343
    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
344
    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
345
    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
346
    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
347
    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
348
    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
349
];
350
const QS5: [f64; 6] = [
351
    8.27766102236537761883e+01,  /* 0x4054B1B3, 0xFB5E1543 */
352
    2.07781416421392987104e+03,  /* 0x40A03BA0, 0xDA21C0CE */
353
    1.88472887785718085070e+04,  /* 0x40D267D2, 0x7B591E6D */
354
    5.67511122894947329769e+04,  /* 0x40EBB5E3, 0x97E02372 */
355
    3.59767538425114471465e+04,  /* 0x40E19118, 0x1F7A54A0 */
356
    -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
357
];
358
359
const QR3: [f64; 6] = [
360
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
361
    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
362
    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
363
    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
364
    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
365
    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
366
    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
367
];
368
const QS3: [f64; 6] = [
369
    4.87588729724587182091e+01,  /* 0x40486122, 0xBFE343A6 */
370
    7.09689221056606015736e+02,  /* 0x40862D83, 0x86544EB3 */
371
    3.70414822620111362994e+03,  /* 0x40ACF04B, 0xE44DFC63 */
372
    6.46042516752568917582e+03,  /* 0x40B93C6C, 0xD7C76A28 */
373
    2.51633368920368957333e+03,  /* 0x40A3A8AA, 0xD94FB1C0 */
374
    -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
375
];
376
377
const QR2: [f64; 6] = [
378
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
379
    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
380
    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
381
    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
382
    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
383
    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
384
    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
385
];
386
const QS2: [f64; 6] = [
387
    3.03655848355219184498e+01,  /* 0x403E5D96, 0xF7C07AED */
388
    2.69348118608049844624e+02,  /* 0x4070D591, 0xE4D14B40 */
389
    8.44783757595320139444e+02,  /* 0x408A6645, 0x22B3BF22 */
390
    8.82935845112488550512e+02,  /* 0x408B977C, 0x9C5CC214 */
391
    2.12666388511798828631e+02,  /* 0x406A9553, 0x0E001365 */
392
    -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
393
];
394
395
0
fn qzero(x: f64) -> f64 {
396
    let p: &[f64; 6];
397
    let q: &[f64; 6];
398
    let s: f64;
399
    let r: f64;
400
    let z: f64;
401
    let mut ix: u32;
402
403
0
    ix = get_high_word(x);
404
0
    ix &= 0x7fffffff;
405
0
    if ix >= 0x40200000 {
406
0
        p = &QR8;
407
0
        q = &QS8;
408
0
    } else if ix >= 0x40122E8B {
409
0
        p = &QR5;
410
0
        q = &QS5;
411
0
    } else if ix >= 0x4006DB6D {
412
0
        p = &QR3;
413
0
        q = &QS3;
414
0
    } else
415
    /*ix >= 0x40000000*/
416
0
    {
417
0
        p = &QR2;
418
0
        q = &QS2;
419
0
    }
420
0
    z = 1.0 / (x * x);
421
0
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
422
0
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
423
0
    return (-0.125 + r / s) / x;
424
0
}