Coverage Report

Created: 2025-11-16 07:04

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.11/src/math/cbrtf.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
2
/*
3
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4
 * Debugged and optimized by Bruce D. Evans.
5
 */
6
/*
7
 * ====================================================
8
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9
 *
10
 * Developed at SunPro, a Sun Microsystems, Inc. business.
11
 * Permission to use, copy, modify, and distribute this
12
 * software is freely granted, provided that this notice
13
 * is preserved.
14
 * ====================================================
15
 */
16
/* cbrtf(x)
17
 * Return cube root of x
18
 */
19
20
use core::f32;
21
22
const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
23
const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
24
25
/// Cube root (f32)
26
///
27
/// Computes the cube root of the argument.
28
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
29
0
pub fn cbrtf(x: f32) -> f32 {
30
0
    let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
31
32
    let mut r: f64;
33
    let mut t: f64;
34
0
    let mut ui: u32 = x.to_bits();
35
0
    let mut hx: u32 = ui & 0x7fffffff;
36
37
0
    if hx >= 0x7f800000 {
38
        /* cbrt(NaN,INF) is itself */
39
0
        return x + x;
40
0
    }
41
42
    /* rough cbrt to 5 bits */
43
0
    if hx < 0x00800000 {
44
        /* zero or subnormal? */
45
0
        if hx == 0 {
46
0
            return x; /* cbrt(+-0) is itself */
47
0
        }
48
0
        ui = (x * x1p24).to_bits();
49
0
        hx = ui & 0x7fffffff;
50
0
        hx = hx / 3 + B2;
51
0
    } else {
52
0
        hx = hx / 3 + B1;
53
0
    }
54
0
    ui &= 0x80000000;
55
0
    ui |= hx;
56
57
    /*
58
     * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
59
     * double precision so that its terms can be arranged for efficiency
60
     * without causing overflow or underflow.
61
     */
62
0
    t = f32::from_bits(ui) as f64;
63
0
    r = t * t * t;
64
0
    t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
65
66
    /*
67
     * Second step Newton iteration to 47 bits.  In double precision for
68
     * efficiency and accuracy.
69
     */
70
0
    r = t * t * t;
71
0
    t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
72
73
    /* rounding to 24 bits is perfect in round-to-nearest mode */
74
0
    t as f32
75
0
}