Coverage Report

Created: 2025-11-24 06:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.11/src/math/exp.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
/* exp(x)
12
 * Returns the exponential of x.
13
 *
14
 * Method
15
 *   1. Argument reduction:
16
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
17
 *      Given x, find r and integer k such that
18
 *
19
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
20
 *
21
 *      Here r will be represented as r = hi-lo for better
22
 *      accuracy.
23
 *
24
 *   2. Approximation of exp(r) by a special rational function on
25
 *      the interval [0,0.34658]:
26
 *      Write
27
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
28
 *      We use a special Remez algorithm on [0,0.34658] to generate
29
 *      a polynomial of degree 5 to approximate R. The maximum error
30
 *      of this polynomial approximation is bounded by 2**-59. In
31
 *      other words,
32
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
33
 *      (where z=r*r, and the values of P1 to P5 are listed below)
34
 *      and
35
 *          |                  5          |     -59
36
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
37
 *          |                             |
38
 *      The computation of exp(r) thus becomes
39
 *                              2*r
40
 *              exp(r) = 1 + ----------
41
 *                            R(r) - r
42
 *                                 r*c(r)
43
 *                     = 1 + r + ----------- (for better accuracy)
44
 *                                2 - c(r)
45
 *      where
46
 *                              2       4             10
47
 *              c(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
48
 *
49
 *   3. Scale back to obtain exp(x):
50
 *      From step 1, we have
51
 *         exp(x) = 2^k * exp(r)
52
 *
53
 * Special cases:
54
 *      exp(INF) is INF, exp(NaN) is NaN;
55
 *      exp(-INF) is 0, and
56
 *      for finite argument, only exp(0)=1 is exact.
57
 *
58
 * Accuracy:
59
 *      according to an error analysis, the error is always less than
60
 *      1 ulp (unit in the last place).
61
 *
62
 * Misc. info.
63
 *      For IEEE double
64
 *          if x >  709.782712893383973096 then exp(x) overflows
65
 *          if x < -745.133219101941108420 then exp(x) underflows
66
 */
67
68
use super::scalbn;
69
70
const HALF: [f64; 2] = [0.5, -0.5];
71
const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
72
const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
73
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
74
const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
75
const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
76
const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
77
const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
78
const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
79
80
/// Exponential, base *e* (f64)
81
///
82
/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
83
/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
84
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
85
0
pub fn exp(mut x: f64) -> f64 {
86
0
    let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
87
0
    let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
88
89
    let hi: f64;
90
    let lo: f64;
91
    let c: f64;
92
    let xx: f64;
93
    let y: f64;
94
    let k: i32;
95
    let sign: i32;
96
    let mut hx: u32;
97
98
0
    hx = (x.to_bits() >> 32) as u32;
99
0
    sign = (hx >> 31) as i32;
100
0
    hx &= 0x7fffffff; /* high word of |x| */
101
102
    /* special cases */
103
0
    if hx >= 0x4086232b {
104
        /* if |x| >= 708.39... */
105
0
        if x.is_nan() {
106
0
            return x;
107
0
        }
108
0
        if x > 709.782712893383973096 {
109
            /* overflow if x!=inf */
110
0
            x *= x1p1023;
111
0
            return x;
112
0
        }
113
0
        if x < -708.39641853226410622 {
114
            /* underflow if x!=-inf */
115
0
            force_eval!((-x1p_149 / x) as f32);
116
0
            if x < -745.13321910194110842 {
117
0
                return 0.;
118
0
            }
119
0
        }
120
0
    }
121
122
    /* argument reduction */
123
0
    if hx > 0x3fd62e42 {
124
        /* if |x| > 0.5 ln2 */
125
0
        if hx >= 0x3ff0a2b2 {
126
0
            /* if |x| >= 1.5 ln2 */
127
0
            k = (INVLN2 * x + i!(HALF, sign as usize)) as i32;
128
0
        } else {
129
0
            k = 1 - sign - sign;
130
0
        }
131
0
        hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
132
0
        lo = k as f64 * LN2LO;
133
0
        x = hi - lo;
134
0
    } else if hx > 0x3e300000 {
135
0
        /* if |x| > 2**-28 */
136
0
        k = 0;
137
0
        hi = x;
138
0
        lo = 0.;
139
0
    } else {
140
        /* inexact if x!=0 */
141
0
        force_eval!(x1p1023 + x);
142
0
        return 1. + x;
143
    }
144
145
    /* x is now in primary range */
146
0
    xx = x * x;
147
0
    c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
148
0
    y = 1. + (x * c / (2. - c) - lo + hi);
149
0
    if k == 0 { y } else { scalbn(y, k) }
150
0
}