Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/Crypto/Random/Fortuna/FortunaGenerator.py: 92%
60 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-06-07 07:03 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-06-07 07:03 +0000
1# -*- coding: ascii -*-
2#
3# FortunaGenerator.py : Fortuna's internal PRNG
4#
5# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
6#
7# ===================================================================
8# The contents of this file are dedicated to the public domain. To
9# the extent that dedication to the public domain is not available,
10# everyone is granted a worldwide, perpetual, royalty-free,
11# non-exclusive license to exercise all rights associated with the
12# contents of this file for any purpose whatsoever.
13# No rights are reserved.
14#
15# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22# SOFTWARE.
23# ===================================================================
25__revision__ = "$Id$"
27import sys
28if sys.version_info[0] == 2 and sys.version_info[1] == 1:
29 from Crypto.Util.py21compat import *
30from Crypto.Util.py3compat import *
32import struct
34from Crypto.Util.number import ceil_shift, exact_log2, exact_div
35from Crypto.Util import Counter
36from Crypto.Cipher import AES
38from . import SHAd256
40class AESGenerator(object):
41 """The Fortuna "generator"
43 This is used internally by the Fortuna PRNG to generate arbitrary amounts
44 of pseudorandom data from a smaller amount of seed data.
46 The output is generated by running AES-256 in counter mode and re-keying
47 after every mebibyte (2**16 blocks) of output.
48 """
50 block_size = AES.block_size # output block size in octets (128 bits)
51 key_size = 32 # key size in octets (256 bits)
53 # Because of the birthday paradox, we expect to find approximately one
54 # collision for every 2**64 blocks of output from a real random source.
55 # However, this code generates pseudorandom data by running AES in
56 # counter mode, so there will be no collisions until the counter
57 # (theoretically) wraps around at 2**128 blocks. Thus, in order to prevent
58 # Fortuna's pseudorandom output from deviating perceptibly from a true
59 # random source, Ferguson and Schneier specify a limit of 2**16 blocks
60 # without rekeying.
61 max_blocks_per_request = 2**16 # Allow no more than this number of blocks per _pseudo_random_data request
63 _four_kiblocks_of_zeros = b("\0") * block_size * 4096
65 def __init__(self):
66 self.counter = Counter.new(nbits=self.block_size*8, initial_value=0, little_endian=True)
67 self.key = None
69 # Set some helper constants
70 self.block_size_shift = exact_log2(self.block_size)
71 assert (1 << self.block_size_shift) == self.block_size
73 self.blocks_per_key = exact_div(self.key_size, self.block_size)
74 assert self.key_size == self.blocks_per_key * self.block_size
76 self.max_bytes_per_request = self.max_blocks_per_request * self.block_size
78 def reseed(self, seed):
79 if self.key is None:
80 self.key = b("\0") * self.key_size
82 self._set_key(SHAd256.new(self.key + seed).digest())
83 self.counter() # increment counter
84 assert len(self.key) == self.key_size
86 def pseudo_random_data(self, bytes):
87 assert bytes >= 0
89 num_full_blocks = bytes >> 20
90 remainder = bytes & ((1<<20)-1)
92 retval = []
93 for i in range(num_full_blocks):
94 retval.append(self._pseudo_random_data(1<<20))
95 retval.append(self._pseudo_random_data(remainder))
97 return b("").join(retval)
99 def _set_key(self, key):
100 self.key = key
101 self._cipher = AES.new(key, AES.MODE_CTR, counter=self.counter)
103 def _pseudo_random_data(self, bytes):
104 if not (0 <= bytes <= self.max_bytes_per_request):
105 raise AssertionError("You cannot ask for more than 1 MiB of data per request")
107 num_blocks = ceil_shift(bytes, self.block_size_shift) # num_blocks = ceil(bytes / self.block_size)
109 # Compute the output
110 retval = self._generate_blocks(num_blocks)[:bytes]
112 # Switch to a new key to avoid later compromises of this output (i.e.
113 # state compromise extension attacks)
114 self._set_key(self._generate_blocks(self.blocks_per_key))
116 assert len(retval) == bytes
117 assert len(self.key) == self.key_size
119 return retval
121 def _generate_blocks(self, num_blocks):
122 if self.key is None:
123 raise AssertionError("generator must be seeded before use")
124 assert 0 <= num_blocks <= self.max_blocks_per_request
125 retval = []
126 for i in range(num_blocks >> 12): # xrange(num_blocks / 4096)
127 retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros))
128 remaining_bytes = (num_blocks & 4095) << self.block_size_shift # (num_blocks % 4095) * self.block_size
129 retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros[:remaining_bytes]))
130 return b("").join(retval)
132# vim:set ts=4 sw=4 sts=4 expandtab: