Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/hypothesis/internal/conjecture/pareto.py: 19%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

152 statements  

1# This file is part of Hypothesis, which may be found at 

2# https://github.com/HypothesisWorks/hypothesis/ 

3# 

4# Copyright the Hypothesis Authors. 

5# Individual contributors are listed in AUTHORS.rst and the git log. 

6# 

7# This Source Code Form is subject to the terms of the Mozilla Public License, 

8# v. 2.0. If a copy of the MPL was not distributed with this file, You can 

9# obtain one at https://mozilla.org/MPL/2.0/. 

10 

11from collections.abc import Iterator 

12from enum import Enum 

13from random import Random 

14from typing import TYPE_CHECKING, Callable, Optional, Union 

15 

16from sortedcontainers import SortedList 

17 

18from hypothesis.internal.conjecture.choice import choices_key 

19from hypothesis.internal.conjecture.data import ( 

20 ConjectureData, 

21 ConjectureResult, 

22 Status, 

23 _Overrun, 

24) 

25from hypothesis.internal.conjecture.junkdrawer import LazySequenceCopy 

26from hypothesis.internal.conjecture.shrinker import sort_key 

27 

28NO_SCORE = float("-inf") 

29 

30if TYPE_CHECKING: 

31 from hypothesis.internal.conjecture.engine import ConjectureRunner 

32 

33 

34class DominanceRelation(Enum): 

35 NO_DOMINANCE = 0 

36 EQUAL = 1 

37 LEFT_DOMINATES = 2 

38 RIGHT_DOMINATES = 3 

39 

40 

41def dominance(left: ConjectureResult, right: ConjectureResult) -> DominanceRelation: 

42 """Returns the dominance relation between ``left`` and ``right``, according 

43 to the rules that one ConjectureResult dominates another if and only if it 

44 is better in every way. 

45 

46 The things we currently consider to be "better" are: 

47 

48 * Something that is smaller in shrinking order is better. 

49 * Something that has higher status is better. 

50 * Each ``interesting_origin`` is treated as its own score, so if two 

51 interesting examples have different origins then neither dominates 

52 the other. 

53 * For each target observation, a higher score is better. 

54 

55 In "normal" operation where there are no bugs or target observations, the 

56 pareto front only has one element (the smallest valid test case), but for 

57 more structured or failing tests it can be useful to track, and future work 

58 will depend on it more.""" 

59 

60 left_key = sort_key(left.nodes) 

61 right_key = sort_key(right.nodes) 

62 if left_key == right_key: 

63 return DominanceRelation.EQUAL 

64 

65 if right_key < left_key: 

66 result = dominance(left=right, right=left) 

67 if result == DominanceRelation.LEFT_DOMINATES: 

68 return DominanceRelation.RIGHT_DOMINATES 

69 else: 

70 # Because we have sort_key(left) < sort_key(right) the only options 

71 # are that right is better than left or that the two are 

72 # incomparable. 

73 assert result == DominanceRelation.NO_DOMINANCE 

74 return result 

75 

76 # Either left is better or there is no dominance relationship. 

77 assert left_key < right_key 

78 

79 # The right is more interesting 

80 if left.status < right.status: 

81 return DominanceRelation.NO_DOMINANCE 

82 

83 if not right.tags.issubset(left.tags): 

84 return DominanceRelation.NO_DOMINANCE 

85 

86 # Things that are interesting for different reasons are incomparable in 

87 # the dominance relationship. 

88 if ( 

89 left.status == Status.INTERESTING 

90 and right.interesting_origin is not None 

91 and left.interesting_origin != right.interesting_origin 

92 ): 

93 return DominanceRelation.NO_DOMINANCE 

94 

95 for target in set(left.target_observations) | set(right.target_observations): 

96 left_score = left.target_observations.get(target, NO_SCORE) 

97 right_score = right.target_observations.get(target, NO_SCORE) 

98 if right_score > left_score: 

99 return DominanceRelation.NO_DOMINANCE 

100 

101 return DominanceRelation.LEFT_DOMINATES 

102 

103 

104class ParetoFront: 

105 """Maintains an approximate pareto front of ConjectureData objects. That 

106 is, we try to maintain a collection of objects such that no element of the 

107 collection is pareto dominated by any other. In practice we don't quite 

108 manage that, because doing so is computationally very expensive. Instead 

109 we maintain a random sample of data objects that are "rarely" dominated by 

110 any other element of the collection (roughly, no more than about 10%). 

111 

112 Only valid test cases are considered to belong to the pareto front - any 

113 test case with a status less than valid is discarded. 

114 

115 Note that the pareto front is potentially quite large, and currently this 

116 will store the entire front in memory. This is bounded by the number of 

117 valid examples we run, which is max_examples in normal execution, and 

118 currently we do not support workflows with large max_examples which have 

119 large values of max_examples very well anyway, so this isn't a major issue. 

120 In future we may weish to implement some sort of paging out to disk so that 

121 we can work with larger fronts. 

122 

123 Additionally, because this is only an approximate pareto front, there are 

124 scenarios where it can be much larger than the actual pareto front. There 

125 isn't a huge amount we can do about this - checking an exact pareto front 

126 is intrinsically quadratic. 

127 

128 "Most" of the time we should be relatively close to the true pareto front, 

129 say within an order of magnitude, but it's not hard to construct scenarios 

130 where this is not the case. e.g. suppose we enumerate all valid test cases 

131 in increasing shortlex order as s_1, ..., s_n, ... and have scores f and 

132 g such that f(s_i) = min(i, N) and g(s_i) = 1 if i >= N, then the pareto 

133 front is the set {s_1, ..., S_N}, but the only element of the front that 

134 will dominate s_i when i > N is S_N, which we select with probability 

135 1 / N. A better data structure could solve this, but at the cost of more 

136 expensive operations and higher per element memory use, so we'll wait to 

137 see how much of a problem this is in practice before we try that. 

138 """ 

139 

140 def __init__(self, random: Random) -> None: 

141 self.__random = random 

142 self.__eviction_listeners: list[Callable[[ConjectureResult], None]] = [] 

143 

144 self.front: SortedList[ConjectureResult] = SortedList( 

145 key=lambda d: sort_key(d.nodes) 

146 ) 

147 self.__pending: Optional[ConjectureResult] = None 

148 

149 def add(self, data: Union[ConjectureData, ConjectureResult, _Overrun]) -> bool: 

150 """Attempts to add ``data`` to the pareto front. Returns True if 

151 ``data`` is now in the front, including if data is already in the 

152 collection, and False otherwise""" 

153 if data.status < Status.VALID: 

154 return False 

155 

156 assert not isinstance(data, _Overrun) 

157 data = data.as_result() 

158 assert not isinstance(data, _Overrun) 

159 

160 if not self.front: 

161 self.front.add(data) 

162 return True 

163 

164 if data in self.front: 

165 return True 

166 

167 # We add data to the pareto front by adding it unconditionally and then 

168 # doing a certain amount of randomized "clear down" - testing a random 

169 # set of elements (currently 10) to see if they are dominated by 

170 # something else in the collection. If they are, we remove them. 

171 self.front.add(data) 

172 assert self.__pending is None 

173 try: 

174 self.__pending = data 

175 

176 # We maintain a set of the current exact pareto front of the 

177 # values we've sampled so far. When we sample a new element we 

178 # either add it to this exact pareto front or remove it from the 

179 # collection entirely. 

180 front = LazySequenceCopy(self.front) 

181 

182 # We track which values we are going to remove and remove them all 

183 # at the end so the shape of the front doesn't change while we're 

184 # using it. 

185 to_remove: list[ConjectureResult] = [] 

186 

187 # We now iteratively sample elements from the approximate pareto 

188 # front to check whether they should be retained. When the set of 

189 # dominators gets too large we have sampled at least 10 elements 

190 # and it gets too expensive to continue, so we consider that enough 

191 # due diligence. 

192 i = self.front.index(data) 

193 

194 # First we attempt to look for values that must be removed by the 

195 # addition of the data. These are necessarily to the right of it 

196 # in the list. 

197 

198 failures = 0 

199 while i + 1 < len(front) and failures < 10: 

200 j = self.__random.randrange(i + 1, len(front)) 

201 candidate = front.pop(j) 

202 dom = dominance(data, candidate) 

203 assert dom != DominanceRelation.RIGHT_DOMINATES 

204 if dom == DominanceRelation.LEFT_DOMINATES: 

205 to_remove.append(candidate) 

206 failures = 0 

207 else: 

208 failures += 1 

209 

210 # Now we look at the points up to where we put data in to see if 

211 # it is dominated. While we're here we spend some time looking for 

212 # anything else that might be dominated too, compacting down parts 

213 # of the list. 

214 

215 dominators = [data] 

216 

217 while i >= 0 and len(dominators) < 10: 

218 front.swap(i, self.__random.randint(0, i)) 

219 

220 candidate = front[i] 

221 

222 already_replaced = False 

223 j = 0 

224 while j < len(dominators): 

225 v = dominators[j] 

226 

227 dom = dominance(candidate, v) 

228 if dom == DominanceRelation.LEFT_DOMINATES: 

229 if not already_replaced: 

230 already_replaced = True 

231 dominators[j] = candidate 

232 j += 1 

233 else: # pragma: no cover # flaky, by test_database_contains_only_pareto_front 

234 dominators[j], dominators[-1] = ( 

235 dominators[-1], 

236 dominators[j], 

237 ) 

238 dominators.pop() 

239 to_remove.append(v) 

240 elif dom == DominanceRelation.RIGHT_DOMINATES: 

241 to_remove.append(candidate) 

242 break 

243 elif dom == DominanceRelation.EQUAL: 

244 break 

245 else: 

246 j += 1 

247 else: 

248 dominators.append(candidate) 

249 i -= 1 

250 

251 for v in to_remove: 

252 self._remove(v) 

253 return data in self.front 

254 finally: 

255 self.__pending = None 

256 

257 def on_evict(self, f: Callable[[ConjectureResult], None]) -> None: 

258 """Register a listener function that will be called with data when it 

259 gets removed from the front because something else dominates it.""" 

260 self.__eviction_listeners.append(f) 

261 

262 def __contains__(self, data: object) -> bool: 

263 if not isinstance(data, (ConjectureData, ConjectureResult)): 

264 return False 

265 

266 result = data.as_result() 

267 if isinstance(result, _Overrun): 

268 return False 

269 

270 return result in self.front 

271 

272 def __iter__(self) -> Iterator[ConjectureResult]: 

273 return iter(self.front) 

274 

275 def __getitem__(self, i: int) -> ConjectureResult: 

276 return self.front[i] 

277 

278 def __len__(self) -> int: 

279 return len(self.front) 

280 

281 def _remove(self, data: ConjectureResult) -> None: 

282 try: 

283 self.front.remove(data) 

284 except ValueError: 

285 return 

286 if data is not self.__pending: 

287 for f in self.__eviction_listeners: 

288 f(data) 

289 

290 

291class ParetoOptimiser: 

292 """Class for managing optimisation of the pareto front. That is, given the 

293 current best known pareto front, this class runs an optimisation process 

294 that attempts to bring it closer to the actual pareto front. 

295 

296 Currently this is fairly basic and only handles pareto optimisation that 

297 works by reducing the test case in the shortlex order. We expect it will 

298 grow more powerful over time. 

299 """ 

300 

301 def __init__(self, engine: "ConjectureRunner") -> None: 

302 self.__engine = engine 

303 assert self.__engine.pareto_front is not None 

304 self.front: ParetoFront = self.__engine.pareto_front 

305 

306 def run(self) -> None: 

307 seen = set() 

308 

309 # We iterate backwards through the pareto front, using the shrinker to 

310 # (hopefully) replace each example with a smaller one. Note that it's 

311 # important that we start from the end for two reasons: Firstly, by 

312 # doing it this way we ensure that any new front members we discover 

313 # during optimisation will also get optimised (because they will be 

314 # inserted into the part of the front that we haven't visited yet), 

315 # and secondly we generally expect that we will not finish this process 

316 # in a single run, because it's relatively expensive in terms of our 

317 # example budget, and by starting from the end we ensure that each time 

318 # we run the tests we improve the pareto front because we work on the 

319 # bits that we haven't covered yet. 

320 i = len(self.front) - 1 

321 prev = None 

322 while i >= 0 and not self.__engine.interesting_examples: 

323 assert self.front 

324 i = min(i, len(self.front) - 1) 

325 target = self.front[i] 

326 if choices_key(target.choices) in seen: 

327 i -= 1 

328 continue 

329 assert target is not prev 

330 prev = target 

331 

332 def allow_transition(source, destination): 

333 """Shrink to data that strictly pareto dominates the current 

334 best value we've seen, which is the current target of the 

335 shrinker. 

336 

337 Note that during shrinking we may discover other smaller 

338 examples that this function will reject and will get added to 

339 the front. This is fine, because they will be processed on 

340 later iterations of this loop.""" 

341 if dominance(destination, source) == DominanceRelation.LEFT_DOMINATES: 

342 # If ``destination`` dominates ``source`` then ``source`` 

343 # must be dominated in the front - either ``destination`` is in 

344 # the front, or it was not added to it because it was 

345 # dominated by something in it. 

346 self.front._remove(source) 

347 return True 

348 return False 

349 

350 shrunk = self.__engine.shrink(target, allow_transition=allow_transition) 

351 seen.add(choices_key(shrunk.choices)) 

352 

353 # Note that the front may have changed shape arbitrarily when 

354 # we ran the shrinker. If it didn't change shape then this is 

355 # i - 1. If it did change shape then this is the largest value 

356 # in the front which is smaller than the previous target, so 

357 # is the correct place to resume from. In particular note that the 

358 # size of the front might have grown because of slippage during the 

359 # shrink, but all of the newly introduced elements will be smaller 

360 # than `target`, so will be covered by this iteration. 

361 i = self.front.front.bisect_left(target)