Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/hypothesis/internal/conjecture/engine.py: 17%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

706 statements  

1# This file is part of Hypothesis, which may be found at 

2# https://github.com/HypothesisWorks/hypothesis/ 

3# 

4# Copyright the Hypothesis Authors. 

5# Individual contributors are listed in AUTHORS.rst and the git log. 

6# 

7# This Source Code Form is subject to the terms of the Mozilla Public License, 

8# v. 2.0. If a copy of the MPL was not distributed with this file, You can 

9# obtain one at https://mozilla.org/MPL/2.0/. 

10 

11import importlib 

12import inspect 

13import math 

14import threading 

15import time 

16from collections import defaultdict 

17from collections.abc import Callable, Generator, Sequence 

18from contextlib import AbstractContextManager, contextmanager, nullcontext, suppress 

19from dataclasses import dataclass, field 

20from datetime import timedelta 

21from enum import Enum 

22from random import Random 

23from typing import Literal, NoReturn, cast 

24 

25from hypothesis import HealthCheck, Phase, Verbosity, settings as Settings 

26from hypothesis._settings import local_settings, note_deprecation 

27from hypothesis.database import ExampleDatabase, choices_from_bytes, choices_to_bytes 

28from hypothesis.errors import ( 

29 BackendCannotProceed, 

30 FlakyBackendFailure, 

31 HypothesisException, 

32 InvalidArgument, 

33 StopTest, 

34) 

35from hypothesis.internal.cache import LRUReusedCache 

36from hypothesis.internal.compat import NotRequired, TypedDict, ceil, override 

37from hypothesis.internal.conjecture.choice import ( 

38 ChoiceConstraintsT, 

39 ChoiceKeyT, 

40 ChoiceNode, 

41 ChoiceT, 

42 ChoiceTemplate, 

43 choices_key, 

44) 

45from hypothesis.internal.conjecture.data import ( 

46 ConjectureData, 

47 ConjectureResult, 

48 DataObserver, 

49 Overrun, 

50 Status, 

51 _Overrun, 

52) 

53from hypothesis.internal.conjecture.datatree import ( 

54 DataTree, 

55 PreviouslyUnseenBehaviour, 

56 TreeRecordingObserver, 

57) 

58from hypothesis.internal.conjecture.junkdrawer import ( 

59 ensure_free_stackframes, 

60 startswith, 

61) 

62from hypothesis.internal.conjecture.pareto import NO_SCORE, ParetoFront, ParetoOptimiser 

63from hypothesis.internal.conjecture.providers import ( 

64 AVAILABLE_PROVIDERS, 

65 HypothesisProvider, 

66 PrimitiveProvider, 

67) 

68from hypothesis.internal.conjecture.shrinker import Shrinker, ShrinkPredicateT, sort_key 

69from hypothesis.internal.escalation import InterestingOrigin 

70from hypothesis.internal.healthcheck import fail_health_check 

71from hypothesis.internal.observability import Observation, with_observability_callback 

72from hypothesis.reporting import base_report, report 

73 

74# In most cases, the following constants are all Final. However, we do allow users 

75# to monkeypatch all of these variables, which means we cannot annotate them as 

76# Final or mypyc will inline them and render monkeypatching useless. 

77 

78#: The maximum number of times the shrinker will reduce the complexity of a failing 

79#: input before giving up. This avoids falling down a trap of exponential (or worse) 

80#: complexity, where the shrinker appears to be making progress but will take a 

81#: substantially long time to finish completely. 

82MAX_SHRINKS: int = 500 

83 

84# If the shrinking phase takes more than five minutes, abort it early and print 

85# a warning. Many CI systems will kill a build after around ten minutes with 

86# no output, and appearing to hang isn't great for interactive use either - 

87# showing partially-shrunk examples is better than quitting with no examples! 

88# (but make it monkeypatchable, for the rare users who need to keep on shrinking) 

89 

90#: The maximum total time in seconds that the shrinker will try to shrink a failure 

91#: for before giving up. This is across all shrinks for the same failure, so even 

92#: if the shrinker successfully reduces the complexity of a single failure several 

93#: times, it will stop when it hits |MAX_SHRINKING_SECONDS| of total time taken. 

94MAX_SHRINKING_SECONDS: int = 300 

95 

96#: The maximum amount of entropy a single test case can use before giving up 

97#: while making random choices during input generation. 

98#: 

99#: The "unit" of one |BUFFER_SIZE| does not have any defined semantics, and you 

100#: should not rely on it, except that a linear increase |BUFFER_SIZE| will linearly 

101#: increase the amount of entropy a test case can use during generation. 

102BUFFER_SIZE: int = 8 * 1024 

103CACHE_SIZE: int = 10000 

104MIN_TEST_CALLS: int = 10 

105 

106# we use this to isolate Hypothesis from interacting with the global random, 

107# to make it easier to reason about our global random warning logic easier (see 

108# deprecate_random_in_strategy). 

109_random = Random() 

110 

111 

112def shortlex(s): 

113 return (len(s), s) 

114 

115 

116@dataclass(slots=True, frozen=False) 

117class HealthCheckState: 

118 valid_examples: int = field(default=0) 

119 invalid_examples: int = field(default=0) 

120 overrun_examples: int = field(default=0) 

121 draw_times: defaultdict[str, list[float]] = field( 

122 default_factory=lambda: defaultdict(list) 

123 ) 

124 

125 @property 

126 def total_draw_time(self) -> float: 

127 return math.fsum(sum(self.draw_times.values(), start=[])) 

128 

129 def timing_report(self) -> str: 

130 """Return a terminal report describing what was slow.""" 

131 if not self.draw_times: 

132 return "" 

133 width = max( 

134 len(k.removeprefix("generate:").removesuffix(": ")) for k in self.draw_times 

135 ) 

136 out = [f"\n {'':^{width}} count | fraction | slowest draws (seconds)"] 

137 args_in_order = sorted(self.draw_times.items(), key=lambda kv: -sum(kv[1])) 

138 for i, (argname, times) in enumerate(args_in_order): # pragma: no branch 

139 # If we have very many unique keys, which can happen due to interactive 

140 # draws with computed labels, we'll skip uninformative rows. 

141 if ( 

142 5 <= i < (len(self.draw_times) - 2) 

143 and math.fsum(times) * 20 < self.total_draw_time 

144 ): 

145 out.append(f" (skipped {len(self.draw_times) - i} rows of fast draws)") 

146 break 

147 # Compute the row to report, omitting times <1ms to focus on slow draws 

148 reprs = [f"{t:>6.3f}," for t in sorted(times)[-5:] if t > 5e-4] 

149 desc = " ".join(([" -- "] * 5 + reprs)[-5:]).rstrip(",") 

150 arg = argname.removeprefix("generate:").removesuffix(": ") 

151 out.append( 

152 f" {arg:^{width}} | {len(times):>4} | " 

153 f"{math.fsum(times)/self.total_draw_time:>7.0%} | {desc}" 

154 ) 

155 return "\n".join(out) 

156 

157 

158class ExitReason(Enum): 

159 max_examples = "settings.max_examples={s.max_examples}" 

160 max_iterations = ( 

161 "settings.max_examples={s.max_examples}, " 

162 "but < 10% of examples satisfied assumptions" 

163 ) 

164 max_shrinks = f"shrunk example {MAX_SHRINKS} times" 

165 finished = "nothing left to do" 

166 flaky = "test was flaky" 

167 very_slow_shrinking = "shrinking was very slow" 

168 

169 def describe(self, settings: Settings) -> str: 

170 return self.value.format(s=settings) 

171 

172 

173class RunIsComplete(Exception): 

174 pass 

175 

176 

177def _get_provider(backend: str) -> PrimitiveProvider | type[PrimitiveProvider]: 

178 provider_cls = AVAILABLE_PROVIDERS[backend] 

179 if isinstance(provider_cls, str): 

180 module_name, class_name = provider_cls.rsplit(".", 1) 

181 provider_cls = getattr(importlib.import_module(module_name), class_name) 

182 

183 if provider_cls.lifetime == "test_function": 

184 return provider_cls(None) 

185 elif provider_cls.lifetime == "test_case": 

186 return provider_cls 

187 else: 

188 raise InvalidArgument( 

189 f"invalid lifetime {provider_cls.lifetime} for provider {provider_cls.__name__}. " 

190 "Expected one of 'test_function', 'test_case'." 

191 ) 

192 

193 

194class CallStats(TypedDict): 

195 status: str 

196 runtime: float 

197 drawtime: float 

198 gctime: float 

199 events: list[str] 

200 

201 

202PhaseStatistics = TypedDict( 

203 "PhaseStatistics", 

204 { 

205 "duration-seconds": float, 

206 "test-cases": list[CallStats], 

207 "distinct-failures": int, 

208 "shrinks-successful": int, 

209 }, 

210) 

211StatisticsDict = TypedDict( 

212 "StatisticsDict", 

213 { 

214 "generate-phase": NotRequired[PhaseStatistics], 

215 "reuse-phase": NotRequired[PhaseStatistics], 

216 "shrink-phase": NotRequired[PhaseStatistics], 

217 "stopped-because": NotRequired[str], 

218 "targets": NotRequired[dict[str, float]], 

219 "nodeid": NotRequired[str], 

220 }, 

221) 

222 

223 

224def choice_count(choices: Sequence[ChoiceT | ChoiceTemplate]) -> int | None: 

225 count = 0 

226 for choice in choices: 

227 if isinstance(choice, ChoiceTemplate): 

228 if choice.count is None: 

229 return None 

230 count += choice.count 

231 else: 

232 count += 1 

233 return count 

234 

235 

236class DiscardObserver(DataObserver): 

237 @override 

238 def kill_branch(self) -> NoReturn: 

239 raise ContainsDiscard 

240 

241 

242def realize_choices(data: ConjectureData, *, for_failure: bool) -> None: 

243 # backwards-compatibility with backends without for_failure, can remove 

244 # in a few months 

245 kwargs = {} 

246 if for_failure: 

247 if "for_failure" in inspect.signature(data.provider.realize).parameters: 

248 kwargs["for_failure"] = True 

249 else: 

250 note_deprecation( 

251 f"{type(data.provider).__qualname__}.realize does not have the " 

252 "for_failure parameter. This will be an error in future versions " 

253 "of Hypothesis. (If you installed this backend from a separate " 

254 "package, upgrading that package may help).", 

255 has_codemod=False, 

256 since="2025-05-07", 

257 ) 

258 

259 for node in data.nodes: 

260 value = data.provider.realize(node.value, **kwargs) 

261 expected_type = { 

262 "string": str, 

263 "float": float, 

264 "integer": int, 

265 "boolean": bool, 

266 "bytes": bytes, 

267 }[node.type] 

268 if type(value) is not expected_type: 

269 raise HypothesisException( 

270 f"expected {expected_type} from " 

271 f"{data.provider.realize.__qualname__}, got {type(value)}" 

272 ) 

273 

274 constraints = cast( 

275 ChoiceConstraintsT, 

276 { 

277 k: data.provider.realize(v, **kwargs) 

278 for k, v in node.constraints.items() 

279 }, 

280 ) 

281 node.value = value 

282 node.constraints = constraints 

283 

284 

285class ConjectureRunner: 

286 def __init__( 

287 self, 

288 test_function: Callable[[ConjectureData], None], 

289 *, 

290 settings: Settings | None = None, 

291 random: Random | None = None, 

292 database_key: bytes | None = None, 

293 ignore_limits: bool = False, 

294 thread_overlap: dict[int, bool] | None = None, 

295 ) -> None: 

296 self._test_function: Callable[[ConjectureData], None] = test_function 

297 self.settings: Settings = settings or Settings() 

298 self.shrinks: int = 0 

299 self.finish_shrinking_deadline: float | None = None 

300 self.call_count: int = 0 

301 self.misaligned_count: int = 0 

302 self.valid_examples: int = 0 

303 self.invalid_examples: int = 0 

304 self.overrun_examples: int = 0 

305 self.random: Random = random or Random(_random.getrandbits(128)) 

306 self.database_key: bytes | None = database_key 

307 self.ignore_limits: bool = ignore_limits 

308 self.thread_overlap = {} if thread_overlap is None else thread_overlap 

309 

310 # Global dict of per-phase statistics, and a list of per-call stats 

311 # which transfer to the global dict at the end of each phase. 

312 self._current_phase: str = "(not a phase)" 

313 self.statistics: StatisticsDict = {} 

314 self.stats_per_test_case: list[CallStats] = [] 

315 

316 self.interesting_examples: dict[InterestingOrigin, ConjectureResult] = {} 

317 # We use call_count because there may be few possible valid_examples. 

318 self.first_bug_found_at: int | None = None 

319 self.last_bug_found_at: int | None = None 

320 self.first_bug_found_time: float = math.inf 

321 

322 self.shrunk_examples: set[InterestingOrigin] = set() 

323 self.health_check_state: HealthCheckState | None = None 

324 self.tree: DataTree = DataTree() 

325 self.provider: PrimitiveProvider | type[PrimitiveProvider] = _get_provider( 

326 self.settings.backend 

327 ) 

328 

329 self.best_observed_targets: defaultdict[str, float] = defaultdict( 

330 lambda: NO_SCORE 

331 ) 

332 self.best_examples_of_observed_targets: dict[str, ConjectureResult] = {} 

333 

334 # We keep the pareto front in the example database if we have one. This 

335 # is only marginally useful at present, but speeds up local development 

336 # because it means that large targets will be quickly surfaced in your 

337 # testing. 

338 self.pareto_front: ParetoFront | None = None 

339 if self.database_key is not None and self.settings.database is not None: 

340 self.pareto_front = ParetoFront(self.random) 

341 self.pareto_front.on_evict(self.on_pareto_evict) 

342 

343 # We want to be able to get the ConjectureData object that results 

344 # from running a choice sequence without recalculating, especially during 

345 # shrinking where we need to know about the structure of the 

346 # executed test case. 

347 self.__data_cache = LRUReusedCache[ 

348 tuple[ChoiceKeyT, ...], ConjectureResult | _Overrun 

349 ](CACHE_SIZE) 

350 

351 self.reused_previously_shrunk_test_case: bool = False 

352 

353 self.__pending_call_explanation: str | None = None 

354 self._backend_found_failure: bool = False 

355 self._backend_exceeded_deadline: bool = False 

356 self._switch_to_hypothesis_provider: bool = False 

357 

358 self.__failed_realize_count: int = 0 

359 # note unsound verification by alt backends 

360 self._verified_by: str | None = None 

361 

362 @contextmanager 

363 def _with_switch_to_hypothesis_provider( 

364 self, value: bool 

365 ) -> Generator[None, None, None]: 

366 previous = self._switch_to_hypothesis_provider 

367 try: 

368 self._switch_to_hypothesis_provider = value 

369 yield 

370 finally: 

371 self._switch_to_hypothesis_provider = previous 

372 

373 @property 

374 def using_hypothesis_backend(self) -> bool: 

375 return ( 

376 self.settings.backend == "hypothesis" or self._switch_to_hypothesis_provider 

377 ) 

378 

379 def explain_next_call_as(self, explanation: str) -> None: 

380 self.__pending_call_explanation = explanation 

381 

382 def clear_call_explanation(self) -> None: 

383 self.__pending_call_explanation = None 

384 

385 @contextmanager 

386 def _log_phase_statistics( 

387 self, phase: Literal["reuse", "generate", "shrink"] 

388 ) -> Generator[None, None, None]: 

389 self.stats_per_test_case.clear() 

390 start_time = time.perf_counter() 

391 try: 

392 self._current_phase = phase 

393 yield 

394 finally: 

395 self.statistics[phase + "-phase"] = { # type: ignore 

396 "duration-seconds": time.perf_counter() - start_time, 

397 "test-cases": list(self.stats_per_test_case), 

398 "distinct-failures": len(self.interesting_examples), 

399 "shrinks-successful": self.shrinks, 

400 } 

401 

402 @property 

403 def should_optimise(self) -> bool: 

404 return Phase.target in self.settings.phases 

405 

406 def __tree_is_exhausted(self) -> bool: 

407 return self.tree.is_exhausted and self.using_hypothesis_backend 

408 

409 def __stoppable_test_function(self, data: ConjectureData) -> None: 

410 """Run ``self._test_function``, but convert a ``StopTest`` exception 

411 into a normal return and avoid raising anything flaky for RecursionErrors. 

412 """ 

413 # We ensure that the test has this much stack space remaining, no 

414 # matter the size of the stack when called, to de-flake RecursionErrors 

415 # (#2494, #3671). Note, this covers the data generation part of the test; 

416 # the actual test execution is additionally protected at the call site 

417 # in hypothesis.core.execute_once. 

418 with ensure_free_stackframes(): 

419 try: 

420 self._test_function(data) 

421 except StopTest as e: 

422 if e.testcounter == data.testcounter: 

423 # This StopTest has successfully stopped its test, and can now 

424 # be discarded. 

425 pass 

426 else: 

427 # This StopTest was raised by a different ConjectureData. We 

428 # need to re-raise it so that it will eventually reach the 

429 # correct engine. 

430 raise 

431 

432 def _cache_key(self, choices: Sequence[ChoiceT]) -> tuple[ChoiceKeyT, ...]: 

433 return choices_key(choices) 

434 

435 def _cache(self, data: ConjectureData) -> None: 

436 result = data.as_result() 

437 key = self._cache_key(data.choices) 

438 self.__data_cache[key] = result 

439 

440 def cached_test_function( 

441 self, 

442 choices: Sequence[ChoiceT | ChoiceTemplate], 

443 *, 

444 error_on_discard: bool = False, 

445 extend: int | Literal["full"] = 0, 

446 ) -> ConjectureResult | _Overrun: 

447 """ 

448 If ``error_on_discard`` is set to True this will raise ``ContainsDiscard`` 

449 in preference to running the actual test function. This is to allow us 

450 to skip test cases we expect to be redundant in some cases. Note that 

451 it may be the case that we don't raise ``ContainsDiscard`` even if the 

452 result has discards if we cannot determine from previous runs whether 

453 it will have a discard. 

454 """ 

455 # node templates represent a not-yet-filled hole and therefore cannot 

456 # be cached or retrieved from the cache. 

457 if not any(isinstance(choice, ChoiceTemplate) for choice in choices): 

458 # this type cast is validated by the isinstance check above (ie, there 

459 # are no ChoiceTemplate elements). 

460 choices = cast(Sequence[ChoiceT], choices) 

461 key = self._cache_key(choices) 

462 try: 

463 cached = self.__data_cache[key] 

464 # if we have a cached overrun for this key, but we're allowing extensions 

465 # of the nodes, it could in fact run to a valid data if we try. 

466 if extend == 0 or cached.status is not Status.OVERRUN: 

467 return cached 

468 except KeyError: 

469 pass 

470 

471 if extend == "full": 

472 max_length = None 

473 elif (count := choice_count(choices)) is None: 

474 max_length = None 

475 else: 

476 max_length = count + extend 

477 

478 # explicitly use a no-op DataObserver here instead of a TreeRecordingObserver. 

479 # The reason is we don't expect simulate_test_function to explore new choices 

480 # and write back to the tree, so we don't want the overhead of the 

481 # TreeRecordingObserver tracking those calls. 

482 trial_observer: DataObserver | None = DataObserver() 

483 if error_on_discard: 

484 trial_observer = DiscardObserver() 

485 

486 try: 

487 trial_data = self.new_conjecture_data( 

488 choices, observer=trial_observer, max_choices=max_length 

489 ) 

490 self.tree.simulate_test_function(trial_data) 

491 except PreviouslyUnseenBehaviour: 

492 pass 

493 else: 

494 trial_data.freeze() 

495 key = self._cache_key(trial_data.choices) 

496 if trial_data.status > Status.OVERRUN: 

497 try: 

498 return self.__data_cache[key] 

499 except KeyError: 

500 pass 

501 else: 

502 # if we simulated to an overrun, then we our result is certainly 

503 # an overrun; no need to consult the cache. (and we store this result 

504 # for simulation-less lookup later). 

505 self.__data_cache[key] = Overrun 

506 return Overrun 

507 try: 

508 return self.__data_cache[key] 

509 except KeyError: 

510 pass 

511 

512 data = self.new_conjecture_data(choices, max_choices=max_length) 

513 # note that calling test_function caches `data` for us. 

514 self.test_function(data) 

515 return data.as_result() 

516 

517 def test_function(self, data: ConjectureData) -> None: 

518 if self.__pending_call_explanation is not None: 

519 self.debug(self.__pending_call_explanation) 

520 self.__pending_call_explanation = None 

521 

522 self.call_count += 1 

523 interrupted = False 

524 

525 try: 

526 self.__stoppable_test_function(data) 

527 except KeyboardInterrupt: 

528 interrupted = True 

529 raise 

530 except BackendCannotProceed as exc: 

531 if exc.scope in ("verified", "exhausted"): 

532 self._switch_to_hypothesis_provider = True 

533 if exc.scope == "verified": 

534 self._verified_by = self.settings.backend 

535 elif exc.scope == "discard_test_case": 

536 self.__failed_realize_count += 1 

537 if ( 

538 self.__failed_realize_count > 10 

539 and (self.__failed_realize_count / self.call_count) > 0.2 

540 ): 

541 self._switch_to_hypothesis_provider = True 

542 

543 # treat all BackendCannotProceed exceptions as invalid. This isn't 

544 # great; "verified" should really be counted as self.valid_examples += 1. 

545 # But we check self.valid_examples == 0 to determine whether to raise 

546 # Unsatisfiable, and that would throw this check off. 

547 self.invalid_examples += 1 

548 

549 # skip the post-test-case tracking; we're pretending this never happened 

550 interrupted = True 

551 data.cannot_proceed_scope = exc.scope 

552 data.freeze() 

553 return 

554 except BaseException: 

555 data.freeze() 

556 if self.settings.backend != "hypothesis": 

557 realize_choices(data, for_failure=True) 

558 self.save_choices(data.choices) 

559 raise 

560 finally: 

561 # No branch, because if we're interrupted we always raise 

562 # the KeyboardInterrupt, never continue to the code below. 

563 if not interrupted: # pragma: no branch 

564 assert data.cannot_proceed_scope is None 

565 data.freeze() 

566 call_stats: CallStats = { 

567 "status": data.status.name.lower(), 

568 "runtime": data.finish_time - data.start_time, 

569 "drawtime": math.fsum(data.draw_times.values()), 

570 "gctime": data.gc_finish_time - data.gc_start_time, 

571 "events": sorted( 

572 k if v == "" else f"{k}: {v}" for k, v in data.events.items() 

573 ), 

574 } 

575 self.stats_per_test_case.append(call_stats) 

576 if self.settings.backend != "hypothesis": 

577 realize_choices(data, for_failure=data.status is Status.INTERESTING) 

578 

579 self._cache(data) 

580 if data.misaligned_at is not None: # pragma: no branch # coverage bug? 

581 self.misaligned_count += 1 

582 

583 self.debug_data(data) 

584 

585 if ( 

586 data.target_observations 

587 and self.pareto_front is not None 

588 and self.pareto_front.add(data.as_result()) 

589 ): 

590 self.save_choices(data.choices, sub_key=b"pareto") 

591 

592 if data.status >= Status.VALID: 

593 for k, v in data.target_observations.items(): 

594 self.best_observed_targets[k] = max(self.best_observed_targets[k], v) 

595 

596 if k not in self.best_examples_of_observed_targets: 

597 data_as_result = data.as_result() 

598 assert not isinstance(data_as_result, _Overrun) 

599 self.best_examples_of_observed_targets[k] = data_as_result 

600 continue 

601 

602 existing_example = self.best_examples_of_observed_targets[k] 

603 existing_score = existing_example.target_observations[k] 

604 

605 if v < existing_score: 

606 continue 

607 

608 if v > existing_score or sort_key(data.nodes) < sort_key( 

609 existing_example.nodes 

610 ): 

611 data_as_result = data.as_result() 

612 assert not isinstance(data_as_result, _Overrun) 

613 self.best_examples_of_observed_targets[k] = data_as_result 

614 

615 if data.status is Status.VALID: 

616 self.valid_examples += 1 

617 if data.status is Status.INVALID: 

618 self.invalid_examples += 1 

619 if data.status is Status.OVERRUN: 

620 self.overrun_examples += 1 

621 

622 if data.status == Status.INTERESTING: 

623 if not self.using_hypothesis_backend: 

624 # replay this failure on the hypothesis backend to ensure it still 

625 # finds a failure. otherwise, it is flaky. 

626 initial_exception = data.expected_exception 

627 data = ConjectureData.for_choices(data.choices) 

628 # we've already going to use the hypothesis provider for this 

629 # data, so the verb "switch" is a bit misleading here. We're really 

630 # setting this to inform our on_observation logic that the observation 

631 # generated here was from a hypothesis backend, and shouldn't be 

632 # sent to the on_observation of any alternative backend. 

633 with self._with_switch_to_hypothesis_provider(True): 

634 self.__stoppable_test_function(data) 

635 data.freeze() 

636 # TODO: Should same-origin also be checked? (discussion in 

637 # https://github.com/HypothesisWorks/hypothesis/pull/4470#discussion_r2217055487) 

638 if data.status != Status.INTERESTING: 

639 desc_new_status = { 

640 data.status.VALID: "passed", 

641 data.status.INVALID: "failed filters", 

642 data.status.OVERRUN: "overran", 

643 }[data.status] 

644 raise FlakyBackendFailure( 

645 f"Inconsistent results from replaying a failing test case! " 

646 f"Raised {type(initial_exception).__name__} on " 

647 f"backend={self.settings.backend!r}, but " 

648 f"{desc_new_status} under backend='hypothesis'.", 

649 [initial_exception], 

650 ) 

651 

652 self._cache(data) 

653 

654 assert data.interesting_origin is not None 

655 key = data.interesting_origin 

656 changed = False 

657 try: 

658 existing = self.interesting_examples[key] 

659 except KeyError: 

660 changed = True 

661 self.last_bug_found_at = self.call_count 

662 if self.first_bug_found_at is None: 

663 self.first_bug_found_at = self.call_count 

664 self.first_bug_found_time = time.monotonic() 

665 else: 

666 if sort_key(data.nodes) < sort_key(existing.nodes): 

667 self.shrinks += 1 

668 self.downgrade_choices(existing.choices) 

669 self.__data_cache.unpin(self._cache_key(existing.choices)) 

670 changed = True 

671 

672 if changed: 

673 self.save_choices(data.choices) 

674 self.interesting_examples[key] = data.as_result() # type: ignore 

675 if not self.using_hypothesis_backend: 

676 self._backend_found_failure = True 

677 self.__data_cache.pin(self._cache_key(data.choices), data.as_result()) 

678 self.shrunk_examples.discard(key) 

679 

680 if self.shrinks >= MAX_SHRINKS: 

681 self.exit_with(ExitReason.max_shrinks) 

682 

683 if ( 

684 not self.ignore_limits 

685 and self.finish_shrinking_deadline is not None 

686 and self.finish_shrinking_deadline < time.perf_counter() 

687 ): 

688 # See https://github.com/HypothesisWorks/hypothesis/issues/2340 

689 report( 

690 "WARNING: Hypothesis has spent more than five minutes working to shrink" 

691 " a failing example, and stopped because it is making very slow" 

692 " progress. When you re-run your tests, shrinking will resume and may" 

693 " take this long before aborting again.\nPLEASE REPORT THIS if you can" 

694 " provide a reproducing example, so that we can improve shrinking" 

695 " performance for everyone." 

696 ) 

697 self.exit_with(ExitReason.very_slow_shrinking) 

698 

699 if not self.interesting_examples: 

700 # Note that this logic is reproduced to end the generation phase when 

701 # we have interesting examples. Update that too if you change this! 

702 # (The doubled implementation is because here we exit the engine entirely, 

703 # while in the other case below we just want to move on to shrinking.) 

704 if self.valid_examples >= self.settings.max_examples: 

705 self.exit_with(ExitReason.max_examples) 

706 if self.call_count >= max( 

707 self.settings.max_examples * 10, 

708 # We have a high-ish default max iterations, so that tests 

709 # don't become flaky when max_examples is too low. 

710 1000, 

711 ): 

712 self.exit_with(ExitReason.max_iterations) 

713 

714 if self.__tree_is_exhausted(): 

715 self.exit_with(ExitReason.finished) 

716 

717 self.record_for_health_check(data) 

718 

719 def on_pareto_evict(self, data: ConjectureResult) -> None: 

720 self.settings.database.delete(self.pareto_key, choices_to_bytes(data.choices)) 

721 

722 def generate_novel_prefix(self) -> tuple[ChoiceT, ...]: 

723 """Uses the tree to proactively generate a starting choice sequence 

724 that we haven't explored yet for this test. 

725 

726 When this method is called, we assume that there must be at 

727 least one novel prefix left to find. If there were not, then the 

728 test run should have already stopped due to tree exhaustion. 

729 """ 

730 return self.tree.generate_novel_prefix(self.random) 

731 

732 def record_for_health_check(self, data: ConjectureData) -> None: 

733 # Once we've actually found a bug, there's no point in trying to run 

734 # health checks - they'll just mask the actually important information. 

735 if data.status == Status.INTERESTING: 

736 self.health_check_state = None 

737 

738 state = self.health_check_state 

739 

740 if state is None: 

741 return 

742 

743 for k, v in data.draw_times.items(): 

744 state.draw_times[k].append(v) 

745 

746 if data.status == Status.VALID: 

747 state.valid_examples += 1 

748 elif data.status == Status.INVALID: 

749 state.invalid_examples += 1 

750 else: 

751 assert data.status == Status.OVERRUN 

752 state.overrun_examples += 1 

753 

754 max_valid_draws = 10 

755 max_invalid_draws = 50 

756 max_overrun_draws = 20 

757 

758 assert state.valid_examples <= max_valid_draws 

759 

760 if state.valid_examples == max_valid_draws: 

761 self.health_check_state = None 

762 return 

763 

764 if state.overrun_examples == max_overrun_draws: 

765 fail_health_check( 

766 self.settings, 

767 "Generated inputs routinely consumed more than the maximum " 

768 f"allowed entropy: {state.valid_examples} inputs were generated " 

769 f"successfully, while {state.overrun_examples} inputs exceeded the " 

770 f"maximum allowed entropy during generation." 

771 "\n\n" 

772 f"Testing with inputs this large tends to be slow, and to produce " 

773 "failures that are both difficult to shrink and difficult to understand. " 

774 "Try decreasing the amount of data generated, for example by " 

775 "decreasing the minimum size of collection strategies like " 

776 "st.lists()." 

777 "\n\n" 

778 "If you expect the average size of your input to be this large, " 

779 "you can disable this health check with " 

780 "@settings(suppress_health_check=[HealthCheck.data_too_large]). " 

781 "See " 

782 "https://hypothesis.readthedocs.io/en/latest/reference/api.html#hypothesis.HealthCheck " 

783 "for details.", 

784 HealthCheck.data_too_large, 

785 ) 

786 if state.invalid_examples == max_invalid_draws: 

787 fail_health_check( 

788 self.settings, 

789 "It looks like this test is filtering out a lot of inputs. " 

790 f"{state.valid_examples} inputs were generated successfully, " 

791 f"while {state.invalid_examples} inputs were filtered out. " 

792 "\n\n" 

793 "An input might be filtered out by calls to assume(), " 

794 "strategy.filter(...), or occasionally by Hypothesis internals." 

795 "\n\n" 

796 "Applying this much filtering makes input generation slow, since " 

797 "Hypothesis must discard inputs which are filtered out and try " 

798 "generating it again. It is also possible that applying this much " 

799 "filtering will distort the domain and/or distribution of the test, " 

800 "leaving your testing less rigorous than expected." 

801 "\n\n" 

802 "If you expect this many inputs to be filtered out during generation, " 

803 "you can disable this health check with " 

804 "@settings(suppress_health_check=[HealthCheck.filter_too_much]). See " 

805 "https://hypothesis.readthedocs.io/en/latest/reference/api.html#hypothesis.HealthCheck " 

806 "for details.", 

807 HealthCheck.filter_too_much, 

808 ) 

809 

810 # Allow at least the greater of one second or 5x the deadline. If deadline 

811 # is None, allow 30s - the user can disable the healthcheck too if desired. 

812 draw_time = state.total_draw_time 

813 draw_time_limit = 5 * (self.settings.deadline or timedelta(seconds=6)) 

814 if ( 

815 draw_time > max(1.0, draw_time_limit.total_seconds()) 

816 # we disable HealthCheck.too_slow under concurrent threads, since 

817 # cpython may switch away from a thread for arbitrarily long. 

818 and not self.thread_overlap.get(threading.get_ident(), False) 

819 ): 

820 extra_str = [] 

821 if state.invalid_examples: 

822 extra_str.append(f"{state.invalid_examples} invalid inputs") 

823 if state.overrun_examples: 

824 extra_str.append( 

825 f"{state.overrun_examples} inputs which exceeded the " 

826 "maximum allowed entropy" 

827 ) 

828 extra_str = ", and ".join(extra_str) 

829 extra_str = f" ({extra_str})" if extra_str else "" 

830 

831 fail_health_check( 

832 self.settings, 

833 "Input generation is slow: Hypothesis only generated " 

834 f"{state.valid_examples} valid inputs after {draw_time:.2f} " 

835 f"seconds{extra_str}." 

836 "\n" + state.timing_report() + "\n\n" 

837 "This could be for a few reasons:" 

838 "\n" 

839 "1. This strategy could be generating too much data per input. " 

840 "Try decreasing the amount of data generated, for example by " 

841 "decreasing the minimum size of collection strategies like " 

842 "st.lists()." 

843 "\n" 

844 "2. Some other expensive computation could be running during input " 

845 "generation. For example, " 

846 "if @st.composite or st.data() is interspersed with an expensive " 

847 "computation, HealthCheck.too_slow is likely to trigger. If this " 

848 "computation is unrelated to input generation, move it elsewhere. " 

849 "Otherwise, try making it more efficient, or disable this health " 

850 "check if that is not possible." 

851 "\n\n" 

852 "If you expect input generation to take this long, you can disable " 

853 "this health check with " 

854 "@settings(suppress_health_check=[HealthCheck.too_slow]). See " 

855 "https://hypothesis.readthedocs.io/en/latest/reference/api.html#hypothesis.HealthCheck " 

856 "for details.", 

857 HealthCheck.too_slow, 

858 ) 

859 

860 def save_choices( 

861 self, choices: Sequence[ChoiceT], sub_key: bytes | None = None 

862 ) -> None: 

863 if self.settings.database is not None: 

864 key = self.sub_key(sub_key) 

865 if key is None: 

866 return 

867 self.settings.database.save(key, choices_to_bytes(choices)) 

868 

869 def downgrade_choices(self, choices: Sequence[ChoiceT]) -> None: 

870 buffer = choices_to_bytes(choices) 

871 if self.settings.database is not None and self.database_key is not None: 

872 self.settings.database.move(self.database_key, self.secondary_key, buffer) 

873 

874 def sub_key(self, sub_key: bytes | None) -> bytes | None: 

875 if self.database_key is None: 

876 return None 

877 if sub_key is None: 

878 return self.database_key 

879 return b".".join((self.database_key, sub_key)) 

880 

881 @property 

882 def secondary_key(self) -> bytes | None: 

883 return self.sub_key(b"secondary") 

884 

885 @property 

886 def pareto_key(self) -> bytes | None: 

887 return self.sub_key(b"pareto") 

888 

889 def debug(self, message: str) -> None: 

890 if self.settings.verbosity >= Verbosity.debug: 

891 base_report(message) 

892 

893 @property 

894 def report_debug_info(self) -> bool: 

895 return self.settings.verbosity >= Verbosity.debug 

896 

897 def debug_data(self, data: ConjectureData | ConjectureResult) -> None: 

898 if not self.report_debug_info: 

899 return 

900 

901 status = repr(data.status) 

902 if data.status == Status.INTERESTING: 

903 status = f"{status} ({data.interesting_origin!r})" 

904 

905 self.debug( 

906 f"{len(data.choices)} choices {data.choices} -> {status}" 

907 f"{', ' + data.output if data.output else ''}" 

908 ) 

909 

910 def observe_for_provider(self) -> AbstractContextManager: 

911 def on_observation(observation: Observation) -> None: 

912 assert observation.type == "test_case" 

913 # because lifetime == "test_function" 

914 assert isinstance(self.provider, PrimitiveProvider) 

915 # only fire if we actually used that provider to generate this observation 

916 if not self._switch_to_hypothesis_provider: 

917 self.provider.on_observation(observation) 

918 

919 if ( 

920 self.settings.backend != "hypothesis" 

921 # only for lifetime = "test_function" providers (guaranteed 

922 # by this isinstance check) 

923 and isinstance(self.provider, PrimitiveProvider) 

924 # and the provider opted-in to observations 

925 and self.provider.add_observability_callback 

926 ): 

927 return with_observability_callback(on_observation) 

928 return nullcontext() 

929 

930 def run(self) -> None: 

931 with local_settings(self.settings), self.observe_for_provider(): 

932 try: 

933 self._run() 

934 except RunIsComplete: 

935 pass 

936 for v in self.interesting_examples.values(): 

937 self.debug_data(v) 

938 self.debug( 

939 f"Run complete after {self.call_count} examples " 

940 f"({self.valid_examples} valid) and {self.shrinks} shrinks" 

941 ) 

942 

943 @property 

944 def database(self) -> ExampleDatabase | None: 

945 if self.database_key is None: 

946 return None 

947 return self.settings.database 

948 

949 def has_existing_examples(self) -> bool: 

950 return self.database is not None and Phase.reuse in self.settings.phases 

951 

952 def reuse_existing_examples(self) -> None: 

953 """If appropriate (we have a database and have been told to use it), 

954 try to reload existing examples from the database. 

955 

956 If there are a lot we don't try all of them. We always try the 

957 smallest example in the database (which is guaranteed to be the 

958 last failure) and the largest (which is usually the seed example 

959 which the last failure came from but we don't enforce that). We 

960 then take a random sampling of the remainder and try those. Any 

961 examples that are no longer interesting are cleared out. 

962 """ 

963 if self.has_existing_examples(): 

964 self.debug("Reusing examples from database") 

965 # We have to do some careful juggling here. We have two database 

966 # corpora: The primary and secondary. The primary corpus is a 

967 # small set of minimized examples each of which has at one point 

968 # demonstrated a distinct bug. We want to retry all of these. 

969 

970 # We also have a secondary corpus of examples that have at some 

971 # point demonstrated interestingness (currently only ones that 

972 # were previously non-minimal examples of a bug, but this will 

973 # likely expand in future). These are a good source of potentially 

974 # interesting examples, but there are a lot of them, so we down 

975 # sample the secondary corpus to a more manageable size. 

976 

977 corpus = sorted( 

978 self.settings.database.fetch(self.database_key), key=shortlex 

979 ) 

980 factor = 0.1 if (Phase.generate in self.settings.phases) else 1 

981 desired_size = max(2, ceil(factor * self.settings.max_examples)) 

982 primary_corpus_size = len(corpus) 

983 

984 if len(corpus) < desired_size: 

985 extra_corpus = list(self.settings.database.fetch(self.secondary_key)) 

986 

987 shortfall = desired_size - len(corpus) 

988 

989 if len(extra_corpus) <= shortfall: 

990 extra = extra_corpus 

991 else: 

992 extra = self.random.sample(extra_corpus, shortfall) 

993 extra.sort(key=shortlex) 

994 corpus.extend(extra) 

995 

996 # We want a fast path where every primary entry in the database was 

997 # interesting. 

998 found_interesting_in_primary = False 

999 all_interesting_in_primary_were_exact = True 

1000 

1001 for i, existing in enumerate(corpus): 

1002 if i >= primary_corpus_size and found_interesting_in_primary: 

1003 break 

1004 choices = choices_from_bytes(existing) 

1005 if choices is None: 

1006 # clear out any keys which fail deserialization 

1007 self.settings.database.delete(self.database_key, existing) 

1008 continue 

1009 data = self.cached_test_function(choices, extend="full") 

1010 if data.status != Status.INTERESTING: 

1011 self.settings.database.delete(self.database_key, existing) 

1012 self.settings.database.delete(self.secondary_key, existing) 

1013 else: 

1014 if i < primary_corpus_size: 

1015 found_interesting_in_primary = True 

1016 assert not isinstance(data, _Overrun) 

1017 if choices_key(choices) != choices_key(data.choices): 

1018 all_interesting_in_primary_were_exact = False 

1019 if not self.settings.report_multiple_bugs: 

1020 break 

1021 if found_interesting_in_primary: 

1022 if all_interesting_in_primary_were_exact: 

1023 self.reused_previously_shrunk_test_case = True 

1024 

1025 # Because self.database is not None (because self.has_existing_examples()) 

1026 # and self.database_key is not None (because we fetched using it above), 

1027 # we can guarantee self.pareto_front is not None 

1028 assert self.pareto_front is not None 

1029 

1030 # If we've not found any interesting examples so far we try some of 

1031 # the pareto front from the last run. 

1032 if len(corpus) < desired_size and not self.interesting_examples: 

1033 desired_extra = desired_size - len(corpus) 

1034 pareto_corpus = list(self.settings.database.fetch(self.pareto_key)) 

1035 if len(pareto_corpus) > desired_extra: 

1036 pareto_corpus = self.random.sample(pareto_corpus, desired_extra) 

1037 pareto_corpus.sort(key=shortlex) 

1038 

1039 for existing in pareto_corpus: 

1040 choices = choices_from_bytes(existing) 

1041 if choices is None: 

1042 self.settings.database.delete(self.pareto_key, existing) 

1043 continue 

1044 data = self.cached_test_function(choices, extend="full") 

1045 if data not in self.pareto_front: 

1046 self.settings.database.delete(self.pareto_key, existing) 

1047 if data.status == Status.INTERESTING: 

1048 break 

1049 

1050 def exit_with(self, reason: ExitReason) -> None: 

1051 if self.ignore_limits: 

1052 return 

1053 self.statistics["stopped-because"] = reason.describe(self.settings) 

1054 if self.best_observed_targets: 

1055 self.statistics["targets"] = dict(self.best_observed_targets) 

1056 self.debug(f"exit_with({reason.name})") 

1057 self.exit_reason = reason 

1058 raise RunIsComplete 

1059 

1060 def should_generate_more(self) -> bool: 

1061 # End the generation phase where we would have ended it if no bugs had 

1062 # been found. This reproduces the exit logic in `self.test_function`, 

1063 # but with the important distinction that this clause will move on to 

1064 # the shrinking phase having found one or more bugs, while the other 

1065 # will exit having found zero bugs. 

1066 if self.valid_examples >= self.settings.max_examples or self.call_count >= max( 

1067 self.settings.max_examples * 10, 1000 

1068 ): # pragma: no cover 

1069 return False 

1070 

1071 # If we haven't found a bug, keep looking - if we hit any limits on 

1072 # the number of tests to run that will raise an exception and stop 

1073 # the run. 

1074 if not self.interesting_examples: 

1075 return True 

1076 # Users who disable shrinking probably want to exit as fast as possible. 

1077 # If we've found a bug and won't report more than one, stop looking. 

1078 # If we first saw a bug more than 10 seconds ago, stop looking. 

1079 elif ( 

1080 Phase.shrink not in self.settings.phases 

1081 or not self.settings.report_multiple_bugs 

1082 or time.monotonic() - self.first_bug_found_time > 10 

1083 ): 

1084 return False 

1085 assert isinstance(self.first_bug_found_at, int) 

1086 assert isinstance(self.last_bug_found_at, int) 

1087 assert self.first_bug_found_at <= self.last_bug_found_at <= self.call_count 

1088 # Otherwise, keep searching for between ten and 'a heuristic' calls. 

1089 # We cap 'calls after first bug' so errors are reported reasonably 

1090 # soon even for tests that are allowed to run for a very long time, 

1091 # or sooner if the latest half of our test effort has been fruitless. 

1092 return self.call_count < MIN_TEST_CALLS or self.call_count < min( 

1093 self.first_bug_found_at + 1000, self.last_bug_found_at * 2 

1094 ) 

1095 

1096 def generate_new_examples(self) -> None: 

1097 if Phase.generate not in self.settings.phases: 

1098 return 

1099 if self.interesting_examples: 

1100 # The example database has failing examples from a previous run, 

1101 # so we'd rather report that they're still failing ASAP than take 

1102 # the time to look for additional failures. 

1103 return 

1104 

1105 self.debug("Generating new examples") 

1106 

1107 assert self.should_generate_more() 

1108 self._switch_to_hypothesis_provider = True 

1109 zero_data = self.cached_test_function((ChoiceTemplate("simplest", count=None),)) 

1110 if zero_data.status > Status.OVERRUN: 

1111 assert isinstance(zero_data, ConjectureResult) 

1112 # if the crosshair backend cannot proceed, it does not (and cannot) 

1113 # realize the symbolic values, with the intent that Hypothesis will 

1114 # throw away this test case. We usually do, but if it's the zero data 

1115 # then we try to pin it here, which requires realizing the symbolics. 

1116 # 

1117 # We don't (yet) rely on the zero data being pinned, and so 

1118 # it's simply a very slight performance loss to simply not pin it 

1119 # if doing so would error. 

1120 if zero_data.cannot_proceed_scope is None: # pragma: no branch 

1121 self.__data_cache.pin( 

1122 self._cache_key(zero_data.choices), zero_data.as_result() 

1123 ) # Pin forever 

1124 

1125 if zero_data.status == Status.OVERRUN or ( 

1126 zero_data.status == Status.VALID 

1127 and isinstance(zero_data, ConjectureResult) 

1128 and zero_data.length * 2 > BUFFER_SIZE 

1129 ): 

1130 fail_health_check( 

1131 self.settings, 

1132 "The smallest natural input for this test is very " 

1133 "large. This makes it difficult for Hypothesis to generate " 

1134 "good inputs, especially when trying to shrink failing inputs." 

1135 "\n\n" 

1136 "Consider reducing the amount of data generated by the strategy. " 

1137 "Also consider introducing small alternative values for some " 

1138 "strategies. For example, could you " 

1139 "mark some arguments as optional by replacing `some_complex_strategy`" 

1140 "with `st.none() | some_complex_strategy`?" 

1141 "\n\n" 

1142 "If you are confident that the size of the smallest natural input " 

1143 "to your test cannot be reduced, you can suppress this health check " 

1144 "with @settings(suppress_health_check=[HealthCheck.large_base_example]). " 

1145 "See " 

1146 "https://hypothesis.readthedocs.io/en/latest/reference/api.html#hypothesis.HealthCheck " 

1147 "for details.", 

1148 HealthCheck.large_base_example, 

1149 ) 

1150 

1151 self.health_check_state = HealthCheckState() 

1152 

1153 # We attempt to use the size of the minimal generated test case starting 

1154 # from a given novel prefix as a guideline to generate smaller test 

1155 # cases for an initial period, by restriscting ourselves to test cases 

1156 # that are not much larger than it. 

1157 # 

1158 # Calculating the actual minimal generated test case is hard, so we 

1159 # take a best guess that zero extending a prefix produces the minimal 

1160 # test case starting with that prefix (this is true for our built in 

1161 # strategies). This is only a reasonable thing to do if the resulting 

1162 # test case is valid. If we regularly run into situations where it is 

1163 # not valid then this strategy is a waste of time, so we want to 

1164 # abandon it early. In order to do this we track how many times in a 

1165 # row it has failed to work, and abort small test case generation when 

1166 # it has failed too many times in a row. 

1167 consecutive_zero_extend_is_invalid = 0 

1168 

1169 # We control growth during initial example generation, for two 

1170 # reasons: 

1171 # 

1172 # * It gives us an opportunity to find small examples early, which 

1173 # gives us a fast path for easy to find bugs. 

1174 # * It avoids low probability events where we might end up 

1175 # generating very large examples during health checks, which 

1176 # on slower machines can trigger HealthCheck.too_slow. 

1177 # 

1178 # The heuristic we use is that we attempt to estimate the smallest 

1179 # extension of this prefix, and limit the size to no more than 

1180 # an order of magnitude larger than that. If we fail to estimate 

1181 # the size accurately, we skip over this prefix and try again. 

1182 # 

1183 # We need to tune the example size based on the initial prefix, 

1184 # because any fixed size might be too small, and any size based 

1185 # on the strategy in general can fall afoul of strategies that 

1186 # have very different sizes for different prefixes. 

1187 # 

1188 # We previously set a minimum value of 10 on small_example_cap, with the 

1189 # reasoning of avoiding flaky health checks. However, some users set a 

1190 # low max_examples for performance. A hard lower bound in this case biases 

1191 # the distribution towards small (and less powerful) examples. Flaky 

1192 # and loud health checks are better than silent performance degradation. 

1193 small_example_cap = min(self.settings.max_examples // 10, 50) 

1194 optimise_at = max(self.settings.max_examples // 2, small_example_cap + 1, 10) 

1195 ran_optimisations = False 

1196 self._switch_to_hypothesis_provider = False 

1197 

1198 while self.should_generate_more(): 

1199 # we don't yet integrate DataTree with backends. Instead of generating 

1200 # a novel prefix, ask the backend for an input. 

1201 if not self.using_hypothesis_backend: 

1202 data = self.new_conjecture_data([]) 

1203 with suppress(BackendCannotProceed): 

1204 self.test_function(data) 

1205 continue 

1206 

1207 self._current_phase = "generate" 

1208 prefix = self.generate_novel_prefix() 

1209 if ( 

1210 self.valid_examples <= small_example_cap 

1211 and self.call_count <= 5 * small_example_cap 

1212 and not self.interesting_examples 

1213 and consecutive_zero_extend_is_invalid < 5 

1214 ): 

1215 minimal_example = self.cached_test_function( 

1216 prefix + (ChoiceTemplate("simplest", count=None),) 

1217 ) 

1218 

1219 if minimal_example.status < Status.VALID: 

1220 consecutive_zero_extend_is_invalid += 1 

1221 continue 

1222 # Because the Status code is greater than Status.VALID, it cannot be 

1223 # Status.OVERRUN, which guarantees that the minimal_example is a 

1224 # ConjectureResult object. 

1225 assert isinstance(minimal_example, ConjectureResult) 

1226 consecutive_zero_extend_is_invalid = 0 

1227 minimal_extension = len(minimal_example.choices) - len(prefix) 

1228 max_length = len(prefix) + minimal_extension * 5 

1229 

1230 # We could end up in a situation where even though the prefix was 

1231 # novel when we generated it, because we've now tried zero extending 

1232 # it not all possible continuations of it will be novel. In order to 

1233 # avoid making redundant test calls, we rerun it in simulation mode 

1234 # first. If this has a predictable result, then we don't bother 

1235 # running the test function for real here. If however we encounter 

1236 # some novel behaviour, we try again with the real test function, 

1237 # starting from the new novel prefix that has discovered. 

1238 trial_data = self.new_conjecture_data(prefix, max_choices=max_length) 

1239 try: 

1240 self.tree.simulate_test_function(trial_data) 

1241 continue 

1242 except PreviouslyUnseenBehaviour: 

1243 pass 

1244 

1245 # If the simulation entered part of the tree that has been killed, 

1246 # we don't want to run this. 

1247 assert isinstance(trial_data.observer, TreeRecordingObserver) 

1248 if trial_data.observer.killed: 

1249 continue 

1250 

1251 # We might have hit the cap on number of examples we should 

1252 # run when calculating the minimal example. 

1253 if not self.should_generate_more(): 

1254 break 

1255 

1256 prefix = trial_data.choices 

1257 else: 

1258 max_length = None 

1259 

1260 data = self.new_conjecture_data(prefix, max_choices=max_length) 

1261 self.test_function(data) 

1262 

1263 if ( 

1264 data.status is Status.OVERRUN 

1265 and max_length is not None 

1266 and "invalid because" not in data.events 

1267 ): 

1268 data.events["invalid because"] = ( 

1269 "reduced max size for early examples (avoids flaky health checks)" 

1270 ) 

1271 

1272 self.generate_mutations_from(data) 

1273 

1274 # Although the optimisations are logically a distinct phase, we 

1275 # actually normally run them as part of example generation. The 

1276 # reason for this is that we cannot guarantee that optimisation 

1277 # actually exhausts our budget: It might finish running and we 

1278 # discover that actually we still could run a bunch more test cases 

1279 # if we want. 

1280 if ( 

1281 self.valid_examples >= max(small_example_cap, optimise_at) 

1282 and not ran_optimisations 

1283 ): 

1284 ran_optimisations = True 

1285 self._current_phase = "target" 

1286 self.optimise_targets() 

1287 

1288 def generate_mutations_from(self, data: ConjectureData | ConjectureResult) -> None: 

1289 # A thing that is often useful but rarely happens by accident is 

1290 # to generate the same value at multiple different points in the 

1291 # test case. 

1292 # 

1293 # Rather than make this the responsibility of individual strategies 

1294 # we implement a small mutator that just takes parts of the test 

1295 # case with the same label and tries replacing one of them with a 

1296 # copy of the other and tries running it. If we've made a good 

1297 # guess about what to put where, this will run a similar generated 

1298 # test case with more duplication. 

1299 if ( 

1300 # An OVERRUN doesn't have enough information about the test 

1301 # case to mutate, so we just skip those. 

1302 data.status >= Status.INVALID 

1303 # This has a tendency to trigger some weird edge cases during 

1304 # generation so we don't let it run until we're done with the 

1305 # health checks. 

1306 and self.health_check_state is None 

1307 ): 

1308 initial_calls = self.call_count 

1309 failed_mutations = 0 

1310 

1311 while ( 

1312 self.should_generate_more() 

1313 # We implement fairly conservative checks for how long we 

1314 # we should run mutation for, as it's generally not obvious 

1315 # how helpful it is for any given test case. 

1316 and self.call_count <= initial_calls + 5 

1317 and failed_mutations <= 5 

1318 ): 

1319 groups = data.spans.mutator_groups 

1320 if not groups: 

1321 break 

1322 

1323 group = self.random.choice(groups) 

1324 (start1, end1), (start2, end2) = self.random.sample(sorted(group), 2) 

1325 if start1 > start2: 

1326 (start1, end1), (start2, end2) = (start2, end2), (start1, end1) 

1327 

1328 if ( 

1329 start1 <= start2 <= end2 <= end1 

1330 ): # pragma: no cover # flaky on conjecture-cover tests 

1331 # One span entirely contains the other. The strategy is very 

1332 # likely some kind of tree. e.g. we might have 

1333 # 

1334 # ┌─────┐ 

1335 # ┌─────┤ a ├──────┐ 

1336 # │ └─────┘ │ 

1337 # ┌──┴──┐ ┌──┴──┐ 

1338 # ┌──┤ b ├──┐ ┌──┤ c ├──┐ 

1339 # │ └──┬──┘ │ │ └──┬──┘ │ 

1340 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ 

1341 # │ d │ │ e │ │ f │ │ g │ │ h │ │ i │ 

1342 # └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ 

1343 # 

1344 # where each node is drawn from the same strategy and so 

1345 # has the same span label. We might have selected the spans 

1346 # corresponding to the a and c nodes, which is the entire 

1347 # tree and the subtree of (and including) c respectively. 

1348 # 

1349 # There are two possible mutations we could apply in this case: 

1350 # 1. replace a with c (replace child with parent) 

1351 # 2. replace c with a (replace parent with child) 

1352 # 

1353 # (1) results in multiple partial copies of the 

1354 # parent: 

1355 # ┌─────┐ 

1356 # ┌─────┤ a ├────────────┐ 

1357 # │ └─────┘ │ 

1358 # ┌──┴──┐ ┌─┴───┐ 

1359 # ┌──┤ b ├──┐ ┌─────┤ a ├──────┐ 

1360 # │ └──┬──┘ │ │ └─────┘ │ 

1361 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌──┴──┐ ┌──┴──┐ 

1362 # │ d │ │ e │ │ f │ ┌──┤ b ├──┐ ┌──┤ c ├──┐ 

1363 # └───┘ └───┘ └───┘ │ └──┬──┘ │ │ └──┬──┘ │ 

1364 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ 

1365 # │ d │ │ e │ │ f │ │ g │ │ h │ │ i │ 

1366 # └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ 

1367 # 

1368 # While (2) results in truncating part of the parent: 

1369 # 

1370 # ┌─────┐ 

1371 # ┌──┤ c ├──┐ 

1372 # │ └──┬──┘ │ 

1373 # ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ 

1374 # │ g │ │ h │ │ i │ 

1375 # └───┘ └───┘ └───┘ 

1376 # 

1377 # (1) is the same as Example IV.4. in Nautilus (NDSS '19) 

1378 # (https://wcventure.github.io/FuzzingPaper/Paper/NDSS19_Nautilus.pdf), 

1379 # except we do not repeat the replacement additional times 

1380 # (the paper repeats it once for a total of two copies). 

1381 # 

1382 # We currently only apply mutation (1), and ignore mutation 

1383 # (2). The reason is that the attempt generated from (2) is 

1384 # always something that Hypothesis could easily have generated 

1385 # itself, by simply not making various choices. Whereas 

1386 # duplicating the exact value + structure of particular choices 

1387 # in (1) would have been hard for Hypothesis to generate by 

1388 # chance. 

1389 # 

1390 # TODO: an extension of this mutation might repeat (1) on 

1391 # a geometric distribution between 0 and ~10 times. We would 

1392 # need to find the corresponding span to recurse on in the new 

1393 # choices, probably just by using the choices index. 

1394 

1395 # case (1): duplicate the choices in start1:start2. 

1396 attempt = data.choices[:start2] + data.choices[start1:] 

1397 else: 

1398 (start, end) = self.random.choice([(start1, end1), (start2, end2)]) 

1399 replacement = data.choices[start:end] 

1400 # We attempt to replace both the examples with 

1401 # whichever choice we made. Note that this might end 

1402 # up messing up and getting the example boundaries 

1403 # wrong - labels matching are only a best guess as to 

1404 # whether the two are equivalent - but it doesn't 

1405 # really matter. It may not achieve the desired result, 

1406 # but it's still a perfectly acceptable choice sequence 

1407 # to try. 

1408 attempt = ( 

1409 data.choices[:start1] 

1410 + replacement 

1411 + data.choices[end1:start2] 

1412 + replacement 

1413 + data.choices[end2:] 

1414 ) 

1415 

1416 try: 

1417 new_data = self.cached_test_function( 

1418 attempt, 

1419 # We set error_on_discard so that we don't end up 

1420 # entering parts of the tree we consider redundant 

1421 # and not worth exploring. 

1422 error_on_discard=True, 

1423 ) 

1424 except ContainsDiscard: 

1425 failed_mutations += 1 

1426 continue 

1427 

1428 if new_data is Overrun: 

1429 failed_mutations += 1 # pragma: no cover # annoying case 

1430 else: 

1431 assert isinstance(new_data, ConjectureResult) 

1432 if ( 

1433 new_data.status >= data.status 

1434 and choices_key(data.choices) != choices_key(new_data.choices) 

1435 and all( 

1436 k in new_data.target_observations 

1437 and new_data.target_observations[k] >= v 

1438 for k, v in data.target_observations.items() 

1439 ) 

1440 ): 

1441 data = new_data 

1442 failed_mutations = 0 

1443 else: 

1444 failed_mutations += 1 

1445 

1446 def optimise_targets(self) -> None: 

1447 """If any target observations have been made, attempt to optimise them 

1448 all.""" 

1449 if not self.should_optimise: 

1450 return 

1451 from hypothesis.internal.conjecture.optimiser import Optimiser 

1452 

1453 # We want to avoid running the optimiser for too long in case we hit 

1454 # an unbounded target score. We start this off fairly conservatively 

1455 # in case interesting examples are easy to find and then ramp it up 

1456 # on an exponential schedule so we don't hamper the optimiser too much 

1457 # if it needs a long time to find good enough improvements. 

1458 max_improvements = 10 

1459 while True: 

1460 prev_calls = self.call_count 

1461 

1462 any_improvements = False 

1463 

1464 for target, data in list(self.best_examples_of_observed_targets.items()): 

1465 optimiser = Optimiser( 

1466 self, data, target, max_improvements=max_improvements 

1467 ) 

1468 optimiser.run() 

1469 if optimiser.improvements > 0: 

1470 any_improvements = True 

1471 

1472 if self.interesting_examples: 

1473 break 

1474 

1475 max_improvements *= 2 

1476 

1477 if any_improvements: 

1478 continue 

1479 

1480 if self.best_observed_targets: 

1481 self.pareto_optimise() 

1482 

1483 if prev_calls == self.call_count: 

1484 break 

1485 

1486 def pareto_optimise(self) -> None: 

1487 if self.pareto_front is not None: 

1488 ParetoOptimiser(self).run() 

1489 

1490 def _run(self) -> None: 

1491 # have to use the primitive provider to interpret database bits... 

1492 self._switch_to_hypothesis_provider = True 

1493 with self._log_phase_statistics("reuse"): 

1494 self.reuse_existing_examples() 

1495 # Fast path for development: If the database gave us interesting 

1496 # examples from the previously stored primary key, don't try 

1497 # shrinking it again as it's unlikely to work. 

1498 if self.reused_previously_shrunk_test_case: 

1499 self.exit_with(ExitReason.finished) 

1500 # ...but we should use the supplied provider when generating... 

1501 self._switch_to_hypothesis_provider = False 

1502 with self._log_phase_statistics("generate"): 

1503 self.generate_new_examples() 

1504 # We normally run the targeting phase mixed in with the generate phase, 

1505 # but if we've been asked to run it but not generation then we have to 

1506 # run it explicitly on its own here. 

1507 if Phase.generate not in self.settings.phases: 

1508 self._current_phase = "target" 

1509 self.optimise_targets() 

1510 # ...and back to the primitive provider when shrinking. 

1511 self._switch_to_hypothesis_provider = True 

1512 with self._log_phase_statistics("shrink"): 

1513 self.shrink_interesting_examples() 

1514 self.exit_with(ExitReason.finished) 

1515 

1516 def new_conjecture_data( 

1517 self, 

1518 prefix: Sequence[ChoiceT | ChoiceTemplate], 

1519 *, 

1520 observer: DataObserver | None = None, 

1521 max_choices: int | None = None, 

1522 ) -> ConjectureData: 

1523 provider = ( 

1524 HypothesisProvider if self._switch_to_hypothesis_provider else self.provider 

1525 ) 

1526 observer = observer or self.tree.new_observer() 

1527 if not self.using_hypothesis_backend: 

1528 observer = DataObserver() 

1529 

1530 return ConjectureData( 

1531 prefix=prefix, 

1532 observer=observer, 

1533 provider=provider, 

1534 max_choices=max_choices, 

1535 random=self.random, 

1536 ) 

1537 

1538 def shrink_interesting_examples(self) -> None: 

1539 """If we've found interesting examples, try to replace each of them 

1540 with a minimal interesting example with the same interesting_origin. 

1541 

1542 We may find one or more examples with a new interesting_origin 

1543 during the shrink process. If so we shrink these too. 

1544 """ 

1545 if Phase.shrink not in self.settings.phases or not self.interesting_examples: 

1546 return 

1547 

1548 self.debug("Shrinking interesting examples") 

1549 self.finish_shrinking_deadline = time.perf_counter() + MAX_SHRINKING_SECONDS 

1550 

1551 for prev_data in sorted( 

1552 self.interesting_examples.values(), key=lambda d: sort_key(d.nodes) 

1553 ): 

1554 assert prev_data.status == Status.INTERESTING 

1555 data = self.new_conjecture_data(prev_data.choices) 

1556 self.test_function(data) 

1557 if data.status != Status.INTERESTING: 

1558 self.exit_with(ExitReason.flaky) 

1559 

1560 self.clear_secondary_key() 

1561 

1562 while len(self.shrunk_examples) < len(self.interesting_examples): 

1563 target, example = min( 

1564 ( 

1565 (k, v) 

1566 for k, v in self.interesting_examples.items() 

1567 if k not in self.shrunk_examples 

1568 ), 

1569 key=lambda kv: (sort_key(kv[1].nodes), shortlex(repr(kv[0]))), 

1570 ) 

1571 self.debug(f"Shrinking {target!r}: {example.choices}") 

1572 

1573 if not self.settings.report_multiple_bugs: 

1574 # If multi-bug reporting is disabled, we shrink our currently-minimal 

1575 # failure, allowing 'slips' to any bug with a smaller minimal example. 

1576 self.shrink(example, lambda d: d.status == Status.INTERESTING) 

1577 return 

1578 

1579 def predicate(d: ConjectureResult | _Overrun) -> bool: 

1580 if d.status < Status.INTERESTING: 

1581 return False 

1582 d = cast(ConjectureResult, d) 

1583 return d.interesting_origin == target 

1584 

1585 self.shrink(example, predicate) 

1586 

1587 self.shrunk_examples.add(target) 

1588 

1589 def clear_secondary_key(self) -> None: 

1590 if self.has_existing_examples(): 

1591 # If we have any smaller examples in the secondary corpus, now is 

1592 # a good time to try them to see if they work as shrinks. They 

1593 # probably won't, but it's worth a shot and gives us a good 

1594 # opportunity to clear out the database. 

1595 

1596 # It's not worth trying the primary corpus because we already 

1597 # tried all of those in the initial phase. 

1598 corpus = sorted( 

1599 self.settings.database.fetch(self.secondary_key), key=shortlex 

1600 ) 

1601 for c in corpus: 

1602 choices = choices_from_bytes(c) 

1603 if choices is None: 

1604 self.settings.database.delete(self.secondary_key, c) 

1605 continue 

1606 primary = { 

1607 choices_to_bytes(v.choices) 

1608 for v in self.interesting_examples.values() 

1609 } 

1610 if shortlex(c) > max(map(shortlex, primary)): 

1611 break 

1612 

1613 self.cached_test_function(choices) 

1614 # We unconditionally remove c from the secondary key as it 

1615 # is either now primary or worse than our primary example 

1616 # of this reason for interestingness. 

1617 self.settings.database.delete(self.secondary_key, c) 

1618 

1619 def shrink( 

1620 self, 

1621 example: ConjectureData | ConjectureResult, 

1622 predicate: ShrinkPredicateT | None = None, 

1623 allow_transition: ( 

1624 Callable[[ConjectureData | ConjectureResult, ConjectureData], bool] | None 

1625 ) = None, 

1626 ) -> ConjectureData | ConjectureResult: 

1627 s = self.new_shrinker(example, predicate, allow_transition) 

1628 s.shrink() 

1629 return s.shrink_target 

1630 

1631 def new_shrinker( 

1632 self, 

1633 example: ConjectureData | ConjectureResult, 

1634 predicate: ShrinkPredicateT | None = None, 

1635 allow_transition: ( 

1636 Callable[[ConjectureData | ConjectureResult, ConjectureData], bool] | None 

1637 ) = None, 

1638 ) -> Shrinker: 

1639 return Shrinker( 

1640 self, 

1641 example, 

1642 predicate, 

1643 allow_transition=allow_transition, 

1644 explain=Phase.explain in self.settings.phases, 

1645 in_target_phase=self._current_phase == "target", 

1646 ) 

1647 

1648 def passing_choice_sequences( 

1649 self, prefix: Sequence[ChoiceNode] = () 

1650 ) -> frozenset[tuple[ChoiceNode, ...]]: 

1651 """Return a collection of choice sequence nodes which cause the test to pass. 

1652 Optionally restrict this by a certain prefix, which is useful for explain mode. 

1653 """ 

1654 return frozenset( 

1655 cast(ConjectureResult, result).nodes 

1656 for key in self.__data_cache 

1657 if (result := self.__data_cache[key]).status is Status.VALID 

1658 and startswith(cast(ConjectureResult, result).nodes, prefix) 

1659 ) 

1660 

1661 

1662class ContainsDiscard(Exception): 

1663 pass