Coverage Report

Created: 2025-07-04 06:49

/src/cpython/Objects/mimalloc/alloc-aligned.c
Line
Count
Source (jump to first uncovered line)
1
/* ----------------------------------------------------------------------------
2
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
3
This is free software; you can redistribute it and/or modify it under the
4
terms of the MIT license. A copy of the license can be found in the file
5
"LICENSE" at the root of this distribution.
6
-----------------------------------------------------------------------------*/
7
8
#include "mimalloc.h"
9
#include "mimalloc/internal.h"
10
#include "mimalloc/prim.h"  // mi_prim_get_default_heap
11
12
#include <string.h>     // memset
13
14
// ------------------------------------------------------
15
// Aligned Allocation
16
// ------------------------------------------------------
17
18
// Fallback primitive aligned allocation -- split out for better codegen
19
static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
20
0
{
21
0
  mi_assert_internal(size <= PTRDIFF_MAX);
22
0
  mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment));
23
24
0
  const uintptr_t align_mask = alignment - 1;  // for any x, `(x & align_mask) == (x % alignment)`
25
0
  const size_t padsize = size + MI_PADDING_SIZE;
26
27
  // use regular allocation if it is guaranteed to fit the alignment constraints
28
0
  if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) {
29
0
    void* p = _mi_heap_malloc_zero(heap, size, zero);
30
0
    mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
31
0
    return p;
32
0
  }
33
34
0
  void* p;
35
0
  size_t oversize;
36
0
  if mi_unlikely(alignment > MI_ALIGNMENT_MAX) {
37
    // use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page)
38
    // This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the
39
    // first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down)
40
0
    if mi_unlikely(offset != 0) {
41
      // todo: cannot support offset alignment for very large alignments yet
42
      #if MI_DEBUG > 0
43
      _mi_error_message(EOVERFLOW, "aligned allocation with a very large alignment cannot be used with an alignment offset (size %zu, alignment %zu, offset %zu)\n", size, alignment, offset);
44
      #endif
45
0
      return NULL;
46
0
    }
47
0
    oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size);
48
0
    p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block
49
    // zero afterwards as only the area from the aligned_p may be committed!
50
0
    if (p == NULL) return NULL;
51
0
  }
52
0
  else {
53
    // otherwise over-allocate
54
0
    oversize = size + alignment - 1;
55
0
    p = _mi_heap_malloc_zero(heap, oversize, zero);
56
0
    if (p == NULL) return NULL;
57
0
  }
58
59
  // .. and align within the allocation
60
0
  const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask;
61
0
  const uintptr_t adjust  = (poffset == 0 ? 0 : alignment - poffset);
62
0
  mi_assert_internal(adjust < alignment);
63
0
  void* aligned_p = (void*)((uintptr_t)p + adjust);
64
0
  if (aligned_p != p) {
65
0
    mi_page_t* page = _mi_ptr_page(p);
66
0
    mi_page_set_has_aligned(page, true);
67
0
    _mi_padding_shrink(page, (mi_block_t*)p, adjust + size);
68
0
  }
69
  // todo: expand padding if overallocated ?
70
71
0
  mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size);
72
0
  mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p));
73
0
  mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
74
0
  mi_assert_internal(mi_usable_size(aligned_p)>=size);
75
0
  mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust);
76
77
  // now zero the block if needed
78
0
  if (alignment > MI_ALIGNMENT_MAX) {
79
    // for the tracker, on huge aligned allocations only from the start of the large block is defined
80
0
    mi_track_mem_undefined(aligned_p, size);
81
0
    if (zero) {
82
0
      _mi_memzero_aligned(aligned_p, mi_usable_size(aligned_p));
83
0
    }
84
0
  }
85
86
0
  if (p != aligned_p) {
87
0
    mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p));
88
0
  }
89
0
  return aligned_p;
90
0
}
91
92
// Primitive aligned allocation
93
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
94
0
{
95
  // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size.
96
0
  if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
97
    #if MI_DEBUG > 0
98
    _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment);
99
    #endif
100
0
    return NULL;
101
0
  }
102
103
0
  if mi_unlikely(size > PTRDIFF_MAX) {          // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
104
    #if MI_DEBUG > 0
105
    _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
106
    #endif
107
0
    return NULL;
108
0
  }
109
0
  const uintptr_t align_mask = alignment-1;       // for any x, `(x & align_mask) == (x % alignment)`
110
0
  const size_t padsize = size + MI_PADDING_SIZE;  // note: cannot overflow due to earlier size > PTRDIFF_MAX check
111
112
  // try first if there happens to be a small block available with just the right alignment
113
0
  if mi_likely(padsize <= MI_SMALL_SIZE_MAX && alignment <= padsize) {
114
0
    mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
115
0
    const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
116
0
    if mi_likely(page->free != NULL && is_aligned)
117
0
    {
118
      #if MI_STAT>1
119
      mi_heap_stat_increase(heap, malloc, size);
120
      #endif
121
0
      void* p = _mi_page_malloc(heap, page, padsize, zero); // TODO: inline _mi_page_malloc
122
0
      mi_assert_internal(p != NULL);
123
0
      mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
124
0
      mi_track_malloc(p,size,zero);
125
0
      return p;
126
0
    }
127
0
  }
128
  // fallback
129
0
  return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero);
130
0
}
131
132
133
// ------------------------------------------------------
134
// Optimized mi_heap_malloc_aligned / mi_malloc_aligned
135
// ------------------------------------------------------
136
137
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
138
0
  return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
139
0
}
140
141
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
142
0
  if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) return NULL;
143
0
  #if !MI_PADDING
144
  // without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`)
145
0
  if mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)
146
  #else
147
  // with padding, we can only guarantee this for fixed alignments
148
  if mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)))
149
                && size <= MI_SMALL_SIZE_MAX)
150
  #endif
151
0
  {
152
    // fast path for common alignment and size
153
0
    return mi_heap_malloc_small(heap, size);
154
0
  }
155
0
  else {
156
0
    return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
157
0
  }
158
0
}
159
160
// ensure a definition is emitted
161
#if defined(__cplusplus)
162
static void* _mi_heap_malloc_aligned = (void*)&mi_heap_malloc_aligned;
163
#endif
164
165
// ------------------------------------------------------
166
// Aligned Allocation
167
// ------------------------------------------------------
168
169
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
170
0
  return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
171
0
}
172
173
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
174
0
  return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
175
0
}
176
177
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
178
0
  size_t total;
179
0
  if (mi_count_size_overflow(count, size, &total)) return NULL;
180
0
  return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
181
0
}
182
183
0
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
184
0
  return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
185
0
}
186
187
0
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
188
0
  return mi_heap_malloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
189
0
}
190
191
0
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
192
0
  return mi_heap_malloc_aligned(mi_prim_get_default_heap(), size, alignment);
193
0
}
194
195
0
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
196
0
  return mi_heap_zalloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
197
0
}
198
199
0
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
200
0
  return mi_heap_zalloc_aligned(mi_prim_get_default_heap(), size, alignment);
201
0
}
202
203
0
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
204
0
  return mi_heap_calloc_aligned_at(mi_prim_get_default_heap(), count, size, alignment, offset);
205
0
}
206
207
0
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
208
0
  return mi_heap_calloc_aligned(mi_prim_get_default_heap(), count, size, alignment);
209
0
}
210
211
212
// ------------------------------------------------------
213
// Aligned re-allocation
214
// ------------------------------------------------------
215
216
0
static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
217
0
  mi_assert(alignment > 0);
218
0
  if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
219
0
  if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero);
220
0
  size_t size = mi_usable_size(p);
221
0
  if (newsize <= size && newsize >= (size - (size / 2))
222
0
      && (((uintptr_t)p + offset) % alignment) == 0) {
223
0
    return p;  // reallocation still fits, is aligned and not more than 50% waste
224
0
  }
225
0
  else {
226
    // note: we don't zero allocate upfront so we only zero initialize the expanded part
227
0
    void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset);
228
0
    if (newp != NULL) {
229
0
      if (zero && newsize > size) {
230
        // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
231
0
        size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
232
0
        _mi_memzero((uint8_t*)newp + start, newsize - start);
233
0
      }
234
0
      _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
235
0
      mi_free(p); // only free if successful
236
0
    }
237
0
    return newp;
238
0
  }
239
0
}
240
241
0
static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
242
0
  mi_assert(alignment > 0);
243
0
  if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
244
0
  size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
245
0
  return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
246
0
}
247
248
0
mi_decl_nodiscard void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
249
0
  return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
250
0
}
251
252
0
mi_decl_nodiscard void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
253
0
  return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
254
0
}
255
256
0
mi_decl_nodiscard void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
257
0
  return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
258
0
}
259
260
0
mi_decl_nodiscard void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
261
0
  return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
262
0
}
263
264
0
mi_decl_nodiscard void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
265
0
  size_t total;
266
0
  if (mi_count_size_overflow(newcount, size, &total)) return NULL;
267
0
  return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
268
0
}
269
270
0
mi_decl_nodiscard void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
271
0
  size_t total;
272
0
  if (mi_count_size_overflow(newcount, size, &total)) return NULL;
273
0
  return mi_heap_rezalloc_aligned(heap, p, total, alignment);
274
0
}
275
276
0
mi_decl_nodiscard void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
277
0
  return mi_heap_realloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
278
0
}
279
280
0
mi_decl_nodiscard void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
281
0
  return mi_heap_realloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
282
0
}
283
284
0
mi_decl_nodiscard void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
285
0
  return mi_heap_rezalloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
286
0
}
287
288
0
mi_decl_nodiscard void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
289
0
  return mi_heap_rezalloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
290
0
}
291
292
0
mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
293
0
  return mi_heap_recalloc_aligned_at(mi_prim_get_default_heap(), p, newcount, size, alignment, offset);
294
0
}
295
296
0
mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
297
0
  return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment);
298
0
}