Coverage Report

Created: 2025-07-04 06:49

/src/cpython/Python/ceval_gil.c
Line
Count
Source (jump to first uncovered line)
1
#include "Python.h"
2
#include "pycore_ceval.h"         // _PyEval_SignalReceived()
3
#include "pycore_gc.h"            // _Py_RunGC()
4
#include "pycore_initconfig.h"    // _PyStatus_OK()
5
#include "pycore_optimizer.h"     // _Py_Executors_InvalidateCold()
6
#include "pycore_pyerrors.h"      // _PyErr_GetRaisedException()
7
#include "pycore_pylifecycle.h"   // _PyErr_Print()
8
#include "pycore_pystats.h"       // _Py_PrintSpecializationStats()
9
#include "pycore_runtime.h"       // _PyRuntime
10
11
12
/*
13
   Notes about the implementation:
14
15
   - The GIL is just a boolean variable (locked) whose access is protected
16
     by a mutex (gil_mutex), and whose changes are signalled by a condition
17
     variable (gil_cond). gil_mutex is taken for short periods of time,
18
     and therefore mostly uncontended.
19
20
   - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
21
     able to release the GIL on demand by another thread. A volatile boolean
22
     variable (gil_drop_request) is used for that purpose, which is checked
23
     at every turn of the eval loop. That variable is set after a wait of
24
     `interval` microseconds on `gil_cond` has timed out.
25
26
      [Actually, another volatile boolean variable (eval_breaker) is used
27
       which ORs several conditions into one. Volatile booleans are
28
       sufficient as inter-thread signalling means since Python is run
29
       on cache-coherent architectures only.]
30
31
   - A thread wanting to take the GIL will first let pass a given amount of
32
     time (`interval` microseconds) before setting gil_drop_request. This
33
     encourages a defined switching period, but doesn't enforce it since
34
     opcodes can take an arbitrary time to execute.
35
36
     The `interval` value is available for the user to read and modify
37
     using the Python API `sys.{get,set}switchinterval()`.
38
39
   - When a thread releases the GIL and gil_drop_request is set, that thread
40
     ensures that another GIL-awaiting thread gets scheduled.
41
     It does so by waiting on a condition variable (switch_cond) until
42
     the value of last_holder is changed to something else than its
43
     own thread state pointer, indicating that another thread was able to
44
     take the GIL.
45
46
     This is meant to prohibit the latency-adverse behaviour on multi-core
47
     machines where one thread would speculatively release the GIL, but still
48
     run and end up being the first to re-acquire it, making the "timeslices"
49
     much longer than expected.
50
     (Note: this mechanism is enabled with FORCE_SWITCHING above)
51
*/
52
53
// Atomically copy the bits indicated by mask between two values.
54
static inline void
55
copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask)
56
31.1k
{
57
31.1k
    uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask;
58
31.1k
    uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to);
59
31.1k
    uintptr_t to_bits = old_value & mask;
60
31.1k
    if (from_bits == to_bits) {
61
31.1k
        return;
62
31.1k
    }
63
64
0
    uintptr_t new_value;
65
0
    do {
66
0
        new_value = (old_value & ~mask) | from_bits;
67
0
    } while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value));
68
0
}
69
70
// When attaching a thread, set the global instrumentation version and
71
// _PY_CALLS_TO_DO_BIT from the current state of the interpreter.
72
static inline void
73
update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate)
74
31.1k
{
75
#ifdef Py_GIL_DISABLED
76
    // Free-threaded builds eagerly update the eval_breaker on *all* threads as
77
    // needed, so this function doesn't apply.
78
    return;
79
#endif
80
81
31.1k
    int32_t npending = _Py_atomic_load_int32_relaxed(
82
31.1k
        &interp->ceval.pending.npending);
83
31.1k
    if (npending) {
84
0
        _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
85
0
    }
86
31.1k
    else if (_Py_IsMainThread()) {
87
31.1k
        npending = _Py_atomic_load_int32_relaxed(
88
31.1k
            &_PyRuntime.ceval.pending_mainthread.npending);
89
31.1k
        if (npending) {
90
0
            _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
91
0
        }
92
31.1k
    }
93
94
    // _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits
95
    // we copy from our interpreter's state are the instrumentation version.
96
31.1k
    copy_eval_breaker_bits(&interp->ceval.instrumentation_version,
97
31.1k
                           &tstate->eval_breaker,
98
31.1k
                           ~_PY_EVAL_EVENTS_MASK);
99
31.1k
}
100
101
/*
102
 * Implementation of the Global Interpreter Lock (GIL).
103
 */
104
105
#include <stdlib.h>
106
#include <errno.h>
107
108
#include "condvar.h"
109
110
#define MUTEX_INIT(mut) \
111
32
    if (PyMUTEX_INIT(&(mut))) { \
112
32
        Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
113
#define MUTEX_FINI(mut) \
114
0
    if (PyMUTEX_FINI(&(mut))) { \
115
0
        Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
116
#define MUTEX_LOCK(mut) \
117
93.3k
    if (PyMUTEX_LOCK(&(mut))) { \
118
93.3k
        Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
119
#define MUTEX_UNLOCK(mut) \
120
93.3k
    if (PyMUTEX_UNLOCK(&(mut))) { \
121
93.3k
        Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
122
123
#define COND_INIT(cond) \
124
32
    if (PyCOND_INIT(&(cond))) { \
125
32
        Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
126
#define COND_FINI(cond) \
127
0
    if (PyCOND_FINI(&(cond))) { \
128
0
        Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
129
#define COND_SIGNAL(cond) \
130
62.2k
    if (PyCOND_SIGNAL(&(cond))) { \
131
62.2k
        Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
132
#define COND_WAIT(cond, mut) \
133
0
    if (PyCOND_WAIT(&(cond), &(mut))) { \
134
0
        Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
135
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
136
0
    { \
137
0
        int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
138
0
        if (r < 0) \
139
0
            Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
140
0
        if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
141
0
            timeout_result = 1; \
142
0
        else \
143
0
            timeout_result = 0; \
144
0
    } \
145
146
147
16
#define DEFAULT_INTERVAL 5000
148
149
static void _gil_initialize(struct _gil_runtime_state *gil)
150
16
{
151
16
    gil->locked = -1;
152
16
    gil->interval = DEFAULT_INTERVAL;
153
16
}
154
155
static int gil_created(struct _gil_runtime_state *gil)
156
0
{
157
0
    if (gil == NULL) {
158
0
        return 0;
159
0
    }
160
0
    return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
161
0
}
162
163
static void create_gil(struct _gil_runtime_state *gil)
164
16
{
165
16
    MUTEX_INIT(gil->mutex);
166
16
#ifdef FORCE_SWITCHING
167
16
    MUTEX_INIT(gil->switch_mutex);
168
16
#endif
169
16
    COND_INIT(gil->cond);
170
16
#ifdef FORCE_SWITCHING
171
16
    COND_INIT(gil->switch_cond);
172
16
#endif
173
16
    _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
174
16
    _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
175
16
    _Py_atomic_store_int_release(&gil->locked, 0);
176
16
}
177
178
static void destroy_gil(struct _gil_runtime_state *gil)
179
0
{
180
    /* some pthread-like implementations tie the mutex to the cond
181
     * and must have the cond destroyed first.
182
     */
183
0
    COND_FINI(gil->cond);
184
0
    MUTEX_FINI(gil->mutex);
185
0
#ifdef FORCE_SWITCHING
186
0
    COND_FINI(gil->switch_cond);
187
0
    MUTEX_FINI(gil->switch_mutex);
188
0
#endif
189
0
    _Py_atomic_store_int_release(&gil->locked, -1);
190
0
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
191
0
}
192
193
#ifdef HAVE_FORK
194
static void recreate_gil(struct _gil_runtime_state *gil)
195
0
{
196
0
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
197
    /* XXX should we destroy the old OS resources here? */
198
0
    create_gil(gil);
199
0
}
200
#endif
201
202
static inline void
203
drop_gil_impl(PyThreadState *tstate, struct _gil_runtime_state *gil)
204
31.1k
{
205
31.1k
    MUTEX_LOCK(gil->mutex);
206
31.1k
    _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
207
31.1k
    _Py_atomic_store_int_relaxed(&gil->locked, 0);
208
31.1k
    if (tstate != NULL) {
209
31.1k
        tstate->holds_gil = 0;
210
31.1k
    }
211
31.1k
    COND_SIGNAL(gil->cond);
212
31.1k
    MUTEX_UNLOCK(gil->mutex);
213
31.1k
}
214
215
static void
216
drop_gil(PyInterpreterState *interp, PyThreadState *tstate, int final_release)
217
31.1k
{
218
31.1k
    struct _ceval_state *ceval = &interp->ceval;
219
    /* If final_release is true, the caller is indicating that we're releasing
220
       the GIL for the last time in this thread.  This is particularly
221
       relevant when the current thread state is finalizing or its
222
       interpreter is finalizing (either may be in an inconsistent
223
       state).  In that case the current thread will definitely
224
       never try to acquire the GIL again. */
225
    // XXX It may be more correct to check tstate->_status.finalizing.
226
    // XXX assert(final_release || !tstate->_status.cleared);
227
228
31.1k
    assert(final_release || tstate != NULL);
229
31.1k
    struct _gil_runtime_state *gil = ceval->gil;
230
#ifdef Py_GIL_DISABLED
231
    // Check if we have the GIL before dropping it. tstate will be NULL if
232
    // take_gil() detected that this thread has been destroyed, in which case
233
    // we know we have the GIL.
234
    if (tstate != NULL && !tstate->holds_gil) {
235
        return;
236
    }
237
#endif
238
31.1k
    if (!_Py_atomic_load_int_relaxed(&gil->locked)) {
239
0
        Py_FatalError("drop_gil: GIL is not locked");
240
0
    }
241
242
31.1k
    if (!final_release) {
243
        /* Sub-interpreter support: threads might have been switched
244
           under our feet using PyThreadState_Swap(). Fix the GIL last
245
           holder variable so that our heuristics work. */
246
31.1k
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
247
31.1k
    }
248
249
31.1k
    drop_gil_impl(tstate, gil);
250
251
31.1k
#ifdef FORCE_SWITCHING
252
    /* We might be releasing the GIL for the last time in this thread.  In that
253
       case there's a possible race with tstate->interp getting deleted after
254
       gil->mutex is unlocked and before the following code runs, leading to a
255
       crash.  We can use final_release to indicate the thread is done with the
256
       GIL, and that's the only time we might delete the interpreter.  See
257
       https://github.com/python/cpython/issues/104341. */
258
31.1k
    if (!final_release &&
259
31.1k
        _Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) {
260
0
        MUTEX_LOCK(gil->switch_mutex);
261
        /* Not switched yet => wait */
262
0
        if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
263
0
        {
264
0
            assert(_PyThreadState_CheckConsistency(tstate));
265
0
            _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
266
            /* NOTE: if COND_WAIT does not atomically start waiting when
267
               releasing the mutex, another thread can run through, take
268
               the GIL and drop it again, and reset the condition
269
               before we even had a chance to wait for it. */
270
0
            COND_WAIT(gil->switch_cond, gil->switch_mutex);
271
0
        }
272
0
        MUTEX_UNLOCK(gil->switch_mutex);
273
0
    }
274
31.1k
#endif
275
31.1k
}
276
277
278
/* Take the GIL.
279
280
   The function saves errno at entry and restores its value at exit.
281
   It may hang rather than return if the interpreter has been finalized.
282
283
   tstate must be non-NULL. */
284
static void
285
take_gil(PyThreadState *tstate)
286
31.1k
{
287
31.1k
    int err = errno;
288
289
31.1k
    assert(tstate != NULL);
290
    /* We shouldn't be using a thread state that isn't viable any more. */
291
    // XXX It may be more correct to check tstate->_status.finalizing.
292
    // XXX assert(!tstate->_status.cleared);
293
294
31.1k
    if (_PyThreadState_MustExit(tstate)) {
295
        /* bpo-39877: If Py_Finalize() has been called and tstate is not the
296
           thread which called Py_Finalize(), this thread cannot continue.
297
298
           This code path can be reached by a daemon thread after Py_Finalize()
299
           completes.
300
301
           This used to call a *thread_exit API, but that was not safe as it
302
           lacks stack unwinding and local variable destruction important to
303
           C++. gh-87135: The best that can be done is to hang the thread as
304
           the public APIs calling this have no error reporting mechanism (!).
305
         */
306
0
        _PyThreadState_HangThread(tstate);
307
0
    }
308
309
31.1k
    assert(_PyThreadState_CheckConsistency(tstate));
310
31.1k
    PyInterpreterState *interp = tstate->interp;
311
31.1k
    struct _gil_runtime_state *gil = interp->ceval.gil;
312
#ifdef Py_GIL_DISABLED
313
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
314
        return;
315
    }
316
#endif
317
318
    /* Check that _PyEval_InitThreads() was called to create the lock */
319
31.1k
    assert(gil_created(gil));
320
321
31.1k
    MUTEX_LOCK(gil->mutex);
322
323
31.1k
    int drop_requested = 0;
324
31.1k
    while (_Py_atomic_load_int_relaxed(&gil->locked)) {
325
0
        unsigned long saved_switchnum = gil->switch_number;
326
327
0
        unsigned long interval = _Py_atomic_load_ulong_relaxed(&gil->interval);
328
0
        if (interval < 1) {
329
0
            interval = 1;
330
0
        }
331
0
        int timed_out = 0;
332
0
        COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
333
334
        /* If we timed out and no switch occurred in the meantime, it is time
335
           to ask the GIL-holding thread to drop it. */
336
0
        if (timed_out &&
337
0
            _Py_atomic_load_int_relaxed(&gil->locked) &&
338
0
            gil->switch_number == saved_switchnum)
339
0
        {
340
0
            PyThreadState *holder_tstate =
341
0
                (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
342
0
            if (_PyThreadState_MustExit(tstate)) {
343
0
                MUTEX_UNLOCK(gil->mutex);
344
                // gh-96387: If the loop requested a drop request in a previous
345
                // iteration, reset the request. Otherwise, drop_gil() can
346
                // block forever waiting for the thread which exited. Drop
347
                // requests made by other threads are also reset: these threads
348
                // may have to request again a drop request (iterate one more
349
                // time).
350
0
                if (drop_requested) {
351
0
                    _Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
352
0
                }
353
                // gh-87135: hang the thread as *thread_exit() is not a safe
354
                // API. It lacks stack unwind and local variable destruction.
355
0
                _PyThreadState_HangThread(tstate);
356
0
            }
357
0
            assert(_PyThreadState_CheckConsistency(tstate));
358
359
0
            _Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
360
0
            drop_requested = 1;
361
0
        }
362
0
    }
363
364
#ifdef Py_GIL_DISABLED
365
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
366
        // Another thread disabled the GIL between our check above and
367
        // now. Don't take the GIL, signal any other waiting threads, and
368
        // return.
369
        COND_SIGNAL(gil->cond);
370
        MUTEX_UNLOCK(gil->mutex);
371
        return;
372
    }
373
#endif
374
375
31.1k
#ifdef FORCE_SWITCHING
376
    /* This mutex must be taken before modifying gil->last_holder:
377
       see drop_gil(). */
378
62.2k
    MUTEX_LOCK(gil->switch_mutex);
379
62.2k
#endif
380
    /* We now hold the GIL */
381
62.2k
    _Py_atomic_store_int_relaxed(&gil->locked, 1);
382
62.2k
    _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
383
384
62.2k
    if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
385
16
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
386
16
        ++gil->switch_number;
387
16
    }
388
389
62.2k
#ifdef FORCE_SWITCHING
390
62.2k
    COND_SIGNAL(gil->switch_cond);
391
31.1k
    MUTEX_UNLOCK(gil->switch_mutex);
392
31.1k
#endif
393
394
31.1k
    if (_PyThreadState_MustExit(tstate)) {
395
        /* bpo-36475: If Py_Finalize() has been called and tstate is not
396
           the thread which called Py_Finalize(), gh-87135: hang the
397
           thread.
398
399
           This code path can be reached by a daemon thread which was waiting
400
           in take_gil() while the main thread called
401
           wait_for_thread_shutdown() from Py_Finalize(). */
402
0
        MUTEX_UNLOCK(gil->mutex);
403
        /* tstate could be a dangling pointer, so don't pass it to
404
           drop_gil(). */
405
0
        drop_gil(interp, NULL, 1);
406
0
        _PyThreadState_HangThread(tstate);
407
0
    }
408
31.1k
    assert(_PyThreadState_CheckConsistency(tstate));
409
410
31.1k
    tstate->holds_gil = 1;
411
31.1k
    _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
412
31.1k
    update_eval_breaker_for_thread(interp, tstate);
413
414
31.1k
    MUTEX_UNLOCK(gil->mutex);
415
416
31.1k
    errno = err;
417
31.1k
    return;
418
31.1k
}
419
420
void _PyEval_SetSwitchInterval(unsigned long microseconds)
421
0
{
422
0
    PyInterpreterState *interp = _PyInterpreterState_GET();
423
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
424
0
    assert(gil != NULL);
425
0
    _Py_atomic_store_ulong_relaxed(&gil->interval, microseconds);
426
0
}
427
428
unsigned long _PyEval_GetSwitchInterval(void)
429
0
{
430
0
    PyInterpreterState *interp = _PyInterpreterState_GET();
431
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
432
0
    assert(gil != NULL);
433
0
    return _Py_atomic_load_ulong_relaxed(&gil->interval);
434
0
}
435
436
437
int
438
_PyEval_ThreadsInitialized(void)
439
0
{
440
    /* XXX This is only needed for an assert in PyGILState_Ensure(),
441
     * which currently does not work with subinterpreters.
442
     * Thus we only use the main interpreter. */
443
0
    PyInterpreterState *interp = _PyInterpreterState_Main();
444
0
    if (interp == NULL) {
445
0
        return 0;
446
0
    }
447
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
448
0
    return gil_created(gil);
449
0
}
450
451
// Function removed in the Python 3.13 API but kept in the stable ABI.
452
PyAPI_FUNC(int)
453
PyEval_ThreadsInitialized(void)
454
0
{
455
0
    return _PyEval_ThreadsInitialized();
456
0
}
457
458
#ifndef NDEBUG
459
static inline int
460
current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
461
{
462
    int holds_gil = tstate->holds_gil;
463
464
    // holds_gil is the source of truth; check that last_holder and gil->locked
465
    // are consistent with it.
466
    int locked = _Py_atomic_load_int_relaxed(&gil->locked);
467
    int is_last_holder =
468
        ((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate;
469
    assert(!holds_gil || locked);
470
    assert(!holds_gil || is_last_holder);
471
472
    return holds_gil;
473
}
474
#endif
475
476
static void
477
init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
478
0
{
479
0
    assert(gil_created(gil));
480
0
    interp->ceval.gil = gil;
481
0
    interp->ceval.own_gil = 0;
482
0
}
483
484
static void
485
init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
486
16
{
487
16
    assert(!gil_created(gil));
488
#ifdef Py_GIL_DISABLED
489
    const PyConfig *config = _PyInterpreterState_GetConfig(interp);
490
    gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0;
491
#endif
492
16
    create_gil(gil);
493
16
    assert(gil_created(gil));
494
16
    interp->ceval.gil = gil;
495
16
    interp->ceval.own_gil = 1;
496
16
}
497
498
void
499
_PyEval_InitGIL(PyThreadState *tstate, int own_gil)
500
16
{
501
16
    assert(tstate->interp->ceval.gil == NULL);
502
16
    if (!own_gil) {
503
        /* The interpreter will share the main interpreter's instead. */
504
0
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
505
0
        assert(tstate->interp != main_interp);
506
0
        struct _gil_runtime_state *gil = main_interp->ceval.gil;
507
0
        init_shared_gil(tstate->interp, gil);
508
0
        assert(!current_thread_holds_gil(gil, tstate));
509
0
    }
510
16
    else {
511
16
        PyThread_init_thread();
512
16
        init_own_gil(tstate->interp, &tstate->interp->_gil);
513
16
    }
514
515
    // Lock the GIL and mark the current thread as attached.
516
16
    _PyThreadState_Attach(tstate);
517
16
}
518
519
void
520
_PyEval_FiniGIL(PyInterpreterState *interp)
521
16
{
522
16
    struct _gil_runtime_state *gil = interp->ceval.gil;
523
16
    if (gil == NULL) {
524
        /* It was already finalized (or hasn't been initialized yet). */
525
16
        assert(!interp->ceval.own_gil);
526
16
        return;
527
16
    }
528
0
    else if (!interp->ceval.own_gil) {
529
#ifdef Py_DEBUG
530
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
531
        assert(main_interp != NULL && interp != main_interp);
532
        assert(interp->ceval.gil == main_interp->ceval.gil);
533
#endif
534
0
        interp->ceval.gil = NULL;
535
0
        return;
536
0
    }
537
538
0
    if (!gil_created(gil)) {
539
        /* First Py_InitializeFromConfig() call: the GIL doesn't exist
540
           yet: do nothing. */
541
0
        return;
542
0
    }
543
544
0
    destroy_gil(gil);
545
0
    assert(!gil_created(gil));
546
0
    interp->ceval.gil = NULL;
547
0
}
548
549
void
550
PyEval_InitThreads(void)
551
0
{
552
    /* Do nothing: kept for backward compatibility */
553
0
}
554
555
void
556
_PyEval_Fini(void)
557
0
{
558
#ifdef Py_STATS
559
    _Py_PrintSpecializationStats(1);
560
#endif
561
0
}
562
563
// Function removed in the Python 3.13 API but kept in the stable ABI.
564
PyAPI_FUNC(void)
565
PyEval_AcquireLock(void)
566
0
{
567
0
    PyThreadState *tstate = _PyThreadState_GET();
568
0
    _Py_EnsureTstateNotNULL(tstate);
569
570
0
    take_gil(tstate);
571
0
}
572
573
// Function removed in the Python 3.13 API but kept in the stable ABI.
574
PyAPI_FUNC(void)
575
PyEval_ReleaseLock(void)
576
0
{
577
0
    PyThreadState *tstate = _PyThreadState_GET();
578
    /* This function must succeed when the current thread state is NULL.
579
       We therefore avoid PyThreadState_Get() which dumps a fatal error
580
       in debug mode. */
581
0
    drop_gil(tstate->interp, tstate, 0);
582
0
}
583
584
void
585
_PyEval_AcquireLock(PyThreadState *tstate)
586
31.1k
{
587
31.1k
    _Py_EnsureTstateNotNULL(tstate);
588
31.1k
    take_gil(tstate);
589
31.1k
}
590
591
void
592
_PyEval_ReleaseLock(PyInterpreterState *interp,
593
                    PyThreadState *tstate,
594
                    int final_release)
595
31.1k
{
596
31.1k
    assert(tstate != NULL);
597
31.1k
    assert(tstate->interp == interp);
598
31.1k
    drop_gil(interp, tstate, final_release);
599
31.1k
}
600
601
void
602
PyEval_AcquireThread(PyThreadState *tstate)
603
0
{
604
0
    _Py_EnsureTstateNotNULL(tstate);
605
0
    _PyThreadState_Attach(tstate);
606
0
}
607
608
void
609
PyEval_ReleaseThread(PyThreadState *tstate)
610
0
{
611
0
    assert(_PyThreadState_CheckConsistency(tstate));
612
0
    _PyThreadState_Detach(tstate);
613
0
}
614
615
#ifdef HAVE_FORK
616
/* This function is called from PyOS_AfterFork_Child to re-initialize the
617
   GIL and pending calls lock. */
618
PyStatus
619
_PyEval_ReInitThreads(PyThreadState *tstate)
620
0
{
621
0
    assert(tstate->interp == _PyInterpreterState_Main());
622
623
0
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
624
0
    if (!gil_created(gil)) {
625
0
        return _PyStatus_OK();
626
0
    }
627
0
    recreate_gil(gil);
628
629
0
    take_gil(tstate);
630
631
0
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
632
0
    _PyMutex_at_fork_reinit(&pending->mutex);
633
634
0
    return _PyStatus_OK();
635
0
}
636
#endif
637
638
PyThreadState *
639
PyEval_SaveThread(void)
640
31.1k
{
641
31.1k
    PyThreadState *tstate = _PyThreadState_GET();
642
31.1k
    _PyThreadState_Detach(tstate);
643
31.1k
    return tstate;
644
31.1k
}
645
646
void
647
PyEval_RestoreThread(PyThreadState *tstate)
648
31.1k
{
649
#ifdef MS_WINDOWS
650
    int err = GetLastError();
651
#endif
652
653
31.1k
    _Py_EnsureTstateNotNULL(tstate);
654
31.1k
    _PyThreadState_Attach(tstate);
655
656
#ifdef MS_WINDOWS
657
    SetLastError(err);
658
#endif
659
31.1k
}
660
661
662
void
663
_PyEval_SignalReceived(void)
664
0
{
665
0
    _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT);
666
0
}
667
668
669
#ifndef Py_GIL_DISABLED
670
static void
671
signal_active_thread(PyInterpreterState *interp, uintptr_t bit)
672
0
{
673
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
674
675
    // If a thread from the targeted interpreter is holding the GIL, signal
676
    // that thread. Otherwise, the next thread to run from the targeted
677
    // interpreter will have its bit set as part of taking the GIL.
678
0
    MUTEX_LOCK(gil->mutex);
679
0
    if (_Py_atomic_load_int_relaxed(&gil->locked)) {
680
0
        PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
681
0
        if (holder->interp == interp) {
682
0
            _Py_set_eval_breaker_bit(holder, bit);
683
0
        }
684
0
    }
685
0
    MUTEX_UNLOCK(gil->mutex);
686
0
}
687
#endif
688
689
690
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
691
   signal handlers or Mac I/O completion routines) can schedule calls
692
   to a function to be called synchronously.
693
   The synchronous function is called with one void* argument.
694
   It should return 0 for success or -1 for failure -- failure should
695
   be accompanied by an exception.
696
697
   If registry succeeds, the registry function returns 0; if it fails
698
   (e.g. due to too many pending calls) it returns -1 (without setting
699
   an exception condition).
700
701
   Note that because registry may occur from within signal handlers,
702
   or other asynchronous events, calling malloc() is unsafe!
703
704
   Any thread can schedule pending calls, but only the main thread
705
   will execute them.
706
   There is no facility to schedule calls to a particular thread, but
707
   that should be easy to change, should that ever be required.  In
708
   that case, the static variables here should go into the python
709
   threadstate.
710
*/
711
712
/* Push one item onto the queue while holding the lock. */
713
static int
714
_push_pending_call(struct _pending_calls *pending,
715
                   _Py_pending_call_func func, void *arg, int flags)
716
0
{
717
0
    if (pending->npending == pending->max) {
718
0
        return _Py_ADD_PENDING_FULL;
719
0
    }
720
0
    assert(pending->npending < pending->max);
721
722
0
    int i = pending->next;
723
0
    assert(pending->calls[i].func == NULL);
724
725
0
    pending->calls[i].func = func;
726
0
    pending->calls[i].arg = arg;
727
0
    pending->calls[i].flags = flags;
728
729
0
    assert(pending->npending < PENDINGCALLSARRAYSIZE);
730
0
    _Py_atomic_add_int32(&pending->npending, 1);
731
732
0
    pending->next = (i + 1) % PENDINGCALLSARRAYSIZE;
733
0
    assert(pending->next != pending->first
734
0
            || pending->npending == pending->max);
735
736
0
    return _Py_ADD_PENDING_SUCCESS;
737
0
}
738
739
static int
740
_next_pending_call(struct _pending_calls *pending,
741
                   int (**func)(void *), void **arg, int *flags)
742
0
{
743
0
    int i = pending->first;
744
0
    if (pending->npending == 0) {
745
        /* Queue empty */
746
0
        assert(i == pending->next);
747
0
        assert(pending->calls[i].func == NULL);
748
0
        return -1;
749
0
    }
750
0
    *func = pending->calls[i].func;
751
0
    *arg = pending->calls[i].arg;
752
0
    *flags = pending->calls[i].flags;
753
0
    return i;
754
0
}
755
756
/* Pop one item off the queue while holding the lock. */
757
static void
758
_pop_pending_call(struct _pending_calls *pending,
759
                  int (**func)(void *), void **arg, int *flags)
760
0
{
761
0
    int i = _next_pending_call(pending, func, arg, flags);
762
0
    if (i >= 0) {
763
0
        pending->calls[i] = (struct _pending_call){0};
764
0
        pending->first = (i + 1) % PENDINGCALLSARRAYSIZE;
765
0
        assert(pending->npending > 0);
766
0
        _Py_atomic_add_int32(&pending->npending, -1);
767
0
    }
768
0
}
769
770
/* This implementation is thread-safe.  It allows
771
   scheduling to be made from any thread, and even from an executing
772
   callback.
773
 */
774
775
_Py_add_pending_call_result
776
_PyEval_AddPendingCall(PyInterpreterState *interp,
777
                       _Py_pending_call_func func, void *arg, int flags)
778
0
{
779
0
    struct _pending_calls *pending = &interp->ceval.pending;
780
0
    int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0;
781
0
    if (main_only) {
782
        /* The main thread only exists in the main interpreter. */
783
0
        assert(_Py_IsMainInterpreter(interp));
784
0
        pending = &_PyRuntime.ceval.pending_mainthread;
785
0
    }
786
787
0
    PyMutex_Lock(&pending->mutex);
788
0
    _Py_add_pending_call_result result =
789
0
        _push_pending_call(pending, func, arg, flags);
790
0
    PyMutex_Unlock(&pending->mutex);
791
792
0
    if (main_only) {
793
0
        _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT);
794
0
    }
795
0
    else {
796
#ifdef Py_GIL_DISABLED
797
        _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
798
#else
799
0
        signal_active_thread(interp, _PY_CALLS_TO_DO_BIT);
800
0
#endif
801
0
    }
802
803
0
    return result;
804
0
}
805
806
int
807
Py_AddPendingCall(_Py_pending_call_func func, void *arg)
808
0
{
809
    /* Legacy users of this API will continue to target the main thread
810
       (of the main interpreter). */
811
0
    PyInterpreterState *interp = _PyInterpreterState_Main();
812
0
    _Py_add_pending_call_result r =
813
0
        _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
814
0
    if (r == _Py_ADD_PENDING_FULL) {
815
0
        return -1;
816
0
    }
817
0
    else {
818
0
        assert(r == _Py_ADD_PENDING_SUCCESS);
819
0
        return 0;
820
0
    }
821
0
}
822
823
static int
824
handle_signals(PyThreadState *tstate)
825
0
{
826
0
    assert(_PyThreadState_CheckConsistency(tstate));
827
0
    _Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
828
0
    if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
829
0
        return 0;
830
0
    }
831
0
    if (_PyErr_CheckSignalsTstate(tstate) < 0) {
832
        /* On failure, re-schedule a call to handle_signals(). */
833
0
        _Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
834
0
        return -1;
835
0
    }
836
0
    return 0;
837
0
}
838
839
static int
840
_make_pending_calls(struct _pending_calls *pending, int32_t *p_npending)
841
0
{
842
0
    int res = 0;
843
0
    int32_t npending = -1;
844
845
0
    assert(sizeof(pending->max) <= sizeof(size_t)
846
0
            && ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls));
847
0
    int32_t maxloop = pending->maxloop;
848
0
    if (maxloop == 0) {
849
0
        maxloop = pending->max;
850
0
    }
851
0
    assert(maxloop > 0 && maxloop <= pending->max);
852
853
    /* perform a bounded number of calls, in case of recursion */
854
0
    for (int i=0; i<maxloop; i++) {
855
0
        _Py_pending_call_func func = NULL;
856
0
        void *arg = NULL;
857
0
        int flags = 0;
858
859
        /* pop one item off the queue while holding the lock */
860
0
        PyMutex_Lock(&pending->mutex);
861
0
        _pop_pending_call(pending, &func, &arg, &flags);
862
0
        npending = pending->npending;
863
0
        PyMutex_Unlock(&pending->mutex);
864
865
        /* Check if there are any more pending calls. */
866
0
        if (func == NULL) {
867
0
            assert(npending == 0);
868
0
            break;
869
0
        }
870
871
        /* having released the lock, perform the callback */
872
0
        res = func(arg);
873
0
        if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
874
0
            PyMem_RawFree(arg);
875
0
        }
876
0
        if (res != 0) {
877
0
            res = -1;
878
0
            goto finally;
879
0
        }
880
0
    }
881
882
0
finally:
883
0
    *p_npending = npending;
884
0
    return res;
885
0
}
886
887
static void
888
signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
889
0
{
890
#ifdef Py_GIL_DISABLED
891
    _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
892
#else
893
0
    _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
894
0
#endif
895
0
}
896
897
static void
898
unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
899
0
{
900
#ifdef Py_GIL_DISABLED
901
    _Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
902
#else
903
0
    _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
904
0
#endif
905
0
}
906
907
static void
908
clear_pending_handling_thread(struct _pending_calls *pending)
909
0
{
910
#ifdef Py_GIL_DISABLED
911
    PyMutex_Lock(&pending->mutex);
912
    pending->handling_thread = NULL;
913
    PyMutex_Unlock(&pending->mutex);
914
#else
915
0
    pending->handling_thread = NULL;
916
0
#endif
917
0
}
918
919
static int
920
make_pending_calls(PyThreadState *tstate)
921
0
{
922
0
    PyInterpreterState *interp = tstate->interp;
923
0
    struct _pending_calls *pending = &interp->ceval.pending;
924
0
    struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
925
926
    /* Only one thread (per interpreter) may run the pending calls
927
       at once.  In the same way, we don't do recursive pending calls. */
928
0
    PyMutex_Lock(&pending->mutex);
929
0
    if (pending->handling_thread != NULL) {
930
        /* A pending call was added after another thread was already
931
           handling the pending calls (and had already "unsignaled").
932
           Once that thread is done, it may have taken care of all the
933
           pending calls, or there might be some still waiting.
934
           To avoid all threads constantly stopping on the eval breaker,
935
           we clear the bit for this thread and make sure it is set
936
           for the thread currently handling the pending call. */
937
0
        _Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT);
938
0
        _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
939
0
        PyMutex_Unlock(&pending->mutex);
940
0
        return 0;
941
0
    }
942
0
    pending->handling_thread = tstate;
943
0
    PyMutex_Unlock(&pending->mutex);
944
945
    /* unsignal before starting to call callbacks, so that any callback
946
       added in-between re-signals */
947
0
    unsignal_pending_calls(tstate, interp);
948
949
0
    int32_t npending;
950
0
    if (_make_pending_calls(pending, &npending) != 0) {
951
0
        clear_pending_handling_thread(pending);
952
        /* There might not be more calls to make, but we play it safe. */
953
0
        signal_pending_calls(tstate, interp);
954
0
        return -1;
955
0
    }
956
0
    if (npending > 0) {
957
        /* We hit pending->maxloop. */
958
0
        signal_pending_calls(tstate, interp);
959
0
    }
960
961
0
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
962
0
        if (_make_pending_calls(pending_main, &npending) != 0) {
963
0
            clear_pending_handling_thread(pending);
964
            /* There might not be more calls to make, but we play it safe. */
965
0
            signal_pending_calls(tstate, interp);
966
0
            return -1;
967
0
        }
968
0
        if (npending > 0) {
969
            /* We hit pending_main->maxloop. */
970
0
            signal_pending_calls(tstate, interp);
971
0
        }
972
0
    }
973
974
0
    clear_pending_handling_thread(pending);
975
0
    return 0;
976
0
}
977
978
979
void
980
_Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
981
0
{
982
0
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
983
0
        _Py_set_eval_breaker_bit(tstate, bit);
984
0
    }
985
0
    _Py_FOR_EACH_TSTATE_END(interp);
986
0
}
987
988
void
989
_Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
990
0
{
991
0
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
992
0
        _Py_unset_eval_breaker_bit(tstate, bit);
993
0
    }
994
0
    _Py_FOR_EACH_TSTATE_END(interp);
995
0
}
996
997
void
998
_Py_FinishPendingCalls(PyThreadState *tstate)
999
0
{
1000
0
    _Py_AssertHoldsTstate();
1001
0
    assert(_PyThreadState_CheckConsistency(tstate));
1002
1003
0
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
1004
0
    struct _pending_calls *pending_main =
1005
0
            _Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)
1006
0
            ? &_PyRuntime.ceval.pending_mainthread
1007
0
            : NULL;
1008
    /* make_pending_calls() may return early without making all pending
1009
       calls, so we keep trying until we're actually done. */
1010
0
    int32_t npending;
1011
#ifndef NDEBUG
1012
    int32_t npending_prev = INT32_MAX;
1013
#endif
1014
0
    do {
1015
0
        if (make_pending_calls(tstate) < 0) {
1016
0
            PyObject *exc = _PyErr_GetRaisedException(tstate);
1017
0
            PyErr_BadInternalCall();
1018
0
            _PyErr_ChainExceptions1(exc);
1019
0
            _PyErr_Print(tstate);
1020
0
        }
1021
1022
0
        npending = _Py_atomic_load_int32_relaxed(&pending->npending);
1023
0
        if (pending_main != NULL) {
1024
0
            npending += _Py_atomic_load_int32_relaxed(&pending_main->npending);
1025
0
        }
1026
#ifndef NDEBUG
1027
        assert(npending_prev > npending);
1028
        npending_prev = npending;
1029
#endif
1030
0
    } while (npending > 0);
1031
0
}
1032
1033
int
1034
_PyEval_MakePendingCalls(PyThreadState *tstate)
1035
0
{
1036
0
    int res;
1037
1038
0
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
1039
        /* Python signal handler doesn't really queue a callback:
1040
           it only signals that a signal was received,
1041
           see _PyEval_SignalReceived(). */
1042
0
        res = handle_signals(tstate);
1043
0
        if (res != 0) {
1044
0
            return res;
1045
0
        }
1046
0
    }
1047
1048
0
    res = make_pending_calls(tstate);
1049
0
    if (res != 0) {
1050
0
        return res;
1051
0
    }
1052
1053
0
    return 0;
1054
0
}
1055
1056
/* Py_MakePendingCalls() is a simple wrapper for the sake
1057
   of backward-compatibility. */
1058
int
1059
Py_MakePendingCalls(void)
1060
0
{
1061
0
    _Py_AssertHoldsTstate();
1062
1063
0
    PyThreadState *tstate = _PyThreadState_GET();
1064
0
    assert(_PyThreadState_CheckConsistency(tstate));
1065
1066
    /* Only execute pending calls on the main thread. */
1067
0
    if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) {
1068
0
        return 0;
1069
0
    }
1070
0
    return _PyEval_MakePendingCalls(tstate);
1071
0
}
1072
1073
void
1074
_PyEval_InitState(PyInterpreterState *interp)
1075
16
{
1076
16
    _gil_initialize(&interp->_gil);
1077
16
}
1078
1079
#ifdef Py_GIL_DISABLED
1080
int
1081
_PyEval_EnableGILTransient(PyThreadState *tstate)
1082
{
1083
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1084
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1085
        return 0;
1086
    }
1087
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1088
1089
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1090
    if (enabled == INT_MAX) {
1091
        // The GIL is already enabled permanently.
1092
        return 0;
1093
    }
1094
    if (enabled == INT_MAX - 1) {
1095
        Py_FatalError("Too many transient requests to enable the GIL");
1096
    }
1097
    if (enabled > 0) {
1098
        // If enabled is nonzero, we know we hold the GIL. This means that no
1099
        // other threads are attached, and nobody else can be concurrently
1100
        // mutating it.
1101
        _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
1102
        return 0;
1103
    }
1104
1105
    // Enabling the GIL changes what it means to be an "attached" thread. To
1106
    // safely make this transition, we:
1107
    // 1. Detach the current thread.
1108
    // 2. Stop the world to detach (and suspend) all other threads.
1109
    // 3. Enable the GIL, if nobody else did between our check above and when
1110
    //    our stop-the-world begins.
1111
    // 4. Start the world.
1112
    // 5. Attach the current thread. Other threads may attach and hold the GIL
1113
    //    before this thread, which is harmless.
1114
    _PyThreadState_Detach(tstate);
1115
1116
    // This could be an interpreter-local stop-the-world in situations where we
1117
    // know that this interpreter's GIL is not shared, and that it won't become
1118
    // shared before the stop-the-world begins. For now, we always stop all
1119
    // interpreters for simplicity.
1120
    _PyEval_StopTheWorldAll(&_PyRuntime);
1121
1122
    enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1123
    int this_thread_enabled = enabled == 0;
1124
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
1125
1126
    _PyEval_StartTheWorldAll(&_PyRuntime);
1127
    _PyThreadState_Attach(tstate);
1128
1129
    return this_thread_enabled;
1130
}
1131
1132
int
1133
_PyEval_EnableGILPermanent(PyThreadState *tstate)
1134
{
1135
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1136
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1137
        return 0;
1138
    }
1139
1140
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1141
    assert(current_thread_holds_gil(gil, tstate));
1142
1143
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1144
    if (enabled == INT_MAX) {
1145
        return 0;
1146
    }
1147
1148
    _Py_atomic_store_int_relaxed(&gil->enabled, INT_MAX);
1149
    return 1;
1150
}
1151
1152
int
1153
_PyEval_DisableGIL(PyThreadState *tstate)
1154
{
1155
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1156
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1157
        return 0;
1158
    }
1159
1160
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1161
    assert(current_thread_holds_gil(gil, tstate));
1162
1163
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1164
    if (enabled == INT_MAX) {
1165
        return 0;
1166
    }
1167
1168
    assert(enabled >= 1);
1169
    enabled--;
1170
1171
    // Disabling the GIL is much simpler than enabling it, since we know we are
1172
    // the only attached thread. Other threads may start free-threading as soon
1173
    // as this store is complete, if it sets gil->enabled to 0.
1174
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled);
1175
1176
    if (enabled == 0) {
1177
        // We're attached, so we know the GIL will remain disabled until at
1178
        // least the next time we detach, which must be after this function
1179
        // returns.
1180
        //
1181
        // Drop the GIL, which will wake up any threads waiting in take_gil()
1182
        // and let them resume execution without the GIL.
1183
        drop_gil_impl(tstate, gil);
1184
1185
        // If another thread asked us to drop the GIL, they should be
1186
        // free-threading by now. Remove any such request so we have a clean
1187
        // slate if/when the GIL is enabled again.
1188
        _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
1189
        return 1;
1190
    }
1191
    return 0;
1192
}
1193
#endif
1194
1195
#if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
1196
// Note that this function is inline to avoid creating a PLT entry
1197
// that would be an easy target for a ROP gadget.
1198
static inline int run_remote_debugger_source(PyObject *source)
1199
0
{
1200
0
    const char *str = PyBytes_AsString(source);
1201
0
    if (!str) {
1202
0
        return -1;
1203
0
    }
1204
1205
0
    PyObject *ns = PyDict_New();
1206
0
    if (!ns) {
1207
0
        return -1;
1208
0
    }
1209
1210
0
    PyObject *res = PyRun_String(str, Py_file_input, ns, ns);
1211
0
    Py_DECREF(ns);
1212
0
    if (!res) {
1213
0
        return -1;
1214
0
    }
1215
0
    Py_DECREF(res);
1216
0
    return 0;
1217
0
}
1218
1219
// Note that this function is inline to avoid creating a PLT entry
1220
// that would be an easy target for a ROP gadget.
1221
static inline void run_remote_debugger_script(PyObject *path)
1222
0
{
1223
0
    if (0 != PySys_Audit("cpython.remote_debugger_script", "O", path)) {
1224
0
        PyErr_FormatUnraisable(
1225
0
            "Audit hook failed for remote debugger script %U", path);
1226
0
        return;
1227
0
    }
1228
1229
    // Open the debugger script with the open code hook, and reopen the
1230
    // resulting file object to get a C FILE* object.
1231
0
    PyObject* fileobj = PyFile_OpenCodeObject(path);
1232
0
    if (!fileobj) {
1233
0
        PyErr_FormatUnraisable("Can't open debugger script %U", path);
1234
0
        return;
1235
0
    }
1236
1237
0
    PyObject* source = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(read));
1238
0
    if (!source) {
1239
0
        PyErr_FormatUnraisable("Error reading debugger script %U", path);
1240
0
    }
1241
1242
0
    PyObject* res = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(close));
1243
0
    if (!res) {
1244
0
        PyErr_FormatUnraisable("Error closing debugger script %U", path);
1245
0
    } else {
1246
0
        Py_DECREF(res);
1247
0
    }
1248
0
    Py_DECREF(fileobj);
1249
1250
0
    if (source) {
1251
0
        if (0 != run_remote_debugger_source(source)) {
1252
0
            PyErr_FormatUnraisable("Error executing debugger script %U", path);
1253
0
        }
1254
0
        Py_DECREF(source);
1255
0
    }
1256
0
}
1257
1258
int _PyRunRemoteDebugger(PyThreadState *tstate)
1259
114M
{
1260
114M
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1261
114M
    if (config->remote_debug == 1
1262
114M
         && tstate->remote_debugger_support.debugger_pending_call == 1)
1263
0
    {
1264
0
        tstate->remote_debugger_support.debugger_pending_call = 0;
1265
1266
        // Immediately make a copy in case of a race with another debugger
1267
        // process that's trying to write to the buffer. At least this way
1268
        // we'll be internally consistent: what we audit is what we run.
1269
0
        const size_t pathsz
1270
0
            = sizeof(tstate->remote_debugger_support.debugger_script_path);
1271
1272
0
        char *path = PyMem_Malloc(pathsz);
1273
0
        if (path) {
1274
            // And don't assume the debugger correctly null terminated it.
1275
0
            memcpy(
1276
0
                path,
1277
0
                tstate->remote_debugger_support.debugger_script_path,
1278
0
                pathsz);
1279
0
            path[pathsz - 1] = '\0';
1280
0
            if (*path) {
1281
0
                PyObject *path_obj = PyUnicode_DecodeFSDefault(path);
1282
0
                if (path_obj == NULL) {
1283
0
                    PyErr_FormatUnraisable("Can't decode debugger script");
1284
0
                }
1285
0
                else {
1286
0
                    run_remote_debugger_script(path_obj);
1287
0
                    Py_DECREF(path_obj);
1288
0
                }
1289
0
            }
1290
0
            PyMem_Free(path);
1291
0
        }
1292
0
    }
1293
114M
    return 0;
1294
114M
}
1295
1296
#endif
1297
1298
/* Do periodic things, like check for signals and async I/0.
1299
* We need to do reasonably frequently, but not too frequently.
1300
* All loops should include a check of the eval breaker.
1301
* We also check on return from any builtin function.
1302
*
1303
* ## More Details ###
1304
*
1305
* The eval loop (this function) normally executes the instructions
1306
* of a code object sequentially.  However, the runtime supports a
1307
* number of out-of-band execution scenarios that may pause that
1308
* sequential execution long enough to do that out-of-band work
1309
* in the current thread using the current PyThreadState.
1310
*
1311
* The scenarios include:
1312
*
1313
*  - cyclic garbage collection
1314
*  - GIL drop requests
1315
*  - "async" exceptions
1316
*  - "pending calls"  (some only in the main thread)
1317
*  - signal handling (only in the main thread)
1318
*
1319
* When the need for one of the above is detected, the eval loop
1320
* pauses long enough to handle the detected case.  Then, if doing
1321
* so didn't trigger an exception, the eval loop resumes executing
1322
* the sequential instructions.
1323
*
1324
* To make this work, the eval loop periodically checks if any
1325
* of the above needs to happen.  The individual checks can be
1326
* expensive if computed each time, so a while back we switched
1327
* to using pre-computed, per-interpreter variables for the checks,
1328
* and later consolidated that to a single "eval breaker" variable
1329
* (now a PyInterpreterState field).
1330
*
1331
* For the longest time, the eval breaker check would happen
1332
* frequently, every 5 or so times through the loop, regardless
1333
* of what instruction ran last or what would run next.  Then, in
1334
* early 2021 (gh-18334, commit 4958f5d), we switched to checking
1335
* the eval breaker less frequently, by hard-coding the check to
1336
* specific places in the eval loop (e.g. certain instructions).
1337
* The intent then was to check after returning from calls
1338
* and on the back edges of loops.
1339
*
1340
* In addition to being more efficient, that approach keeps
1341
* the eval loop from running arbitrary code between instructions
1342
* that don't handle that well.  (See gh-74174.)
1343
*
1344
* Currently, the eval breaker check happens on back edges in
1345
* the control flow graph, which pretty much applies to all loops,
1346
* and most calls.
1347
* (See bytecodes.c for exact information.)
1348
*
1349
* One consequence of this approach is that it might not be obvious
1350
* how to force any specific thread to pick up the eval breaker,
1351
* or for any specific thread to not pick it up.  Mostly this
1352
* involves judicious uses of locks and careful ordering of code,
1353
* while avoiding code that might trigger the eval breaker
1354
* until so desired.
1355
*/
1356
int
1357
_Py_HandlePending(PyThreadState *tstate)
1358
64.1k
{
1359
64.1k
    uintptr_t breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker);
1360
1361
    /* Stop-the-world */
1362
64.1k
    if ((breaker & _PY_EVAL_PLEASE_STOP_BIT) != 0) {
1363
0
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_PLEASE_STOP_BIT);
1364
0
        _PyThreadState_Suspend(tstate);
1365
1366
        /* The attach blocks until the stop-the-world event is complete. */
1367
0
        _PyThreadState_Attach(tstate);
1368
0
    }
1369
1370
    /* Pending signals */
1371
64.1k
    if ((breaker & _PY_SIGNALS_PENDING_BIT) != 0) {
1372
0
        if (handle_signals(tstate) != 0) {
1373
0
            return -1;
1374
0
        }
1375
0
    }
1376
1377
    /* Pending calls */
1378
64.1k
    if ((breaker & _PY_CALLS_TO_DO_BIT) != 0) {
1379
0
        if (make_pending_calls(tstate) != 0) {
1380
0
            return -1;
1381
0
        }
1382
0
    }
1383
1384
#ifdef Py_GIL_DISABLED
1385
    /* Objects with refcounts to merge */
1386
    if ((breaker & _PY_EVAL_EXPLICIT_MERGE_BIT) != 0) {
1387
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_EXPLICIT_MERGE_BIT);
1388
        _Py_brc_merge_refcounts(tstate);
1389
    }
1390
    /* Process deferred memory frees held by QSBR */
1391
    if (_Py_qsbr_should_process(((_PyThreadStateImpl *)tstate)->qsbr)) {
1392
        _PyMem_ProcessDelayed(tstate);
1393
    }
1394
#endif
1395
1396
    /* GC scheduled to run */
1397
64.1k
    if ((breaker & _PY_GC_SCHEDULED_BIT) != 0) {
1398
64.1k
        _Py_unset_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
1399
64.1k
        _Py_RunGC(tstate);
1400
64.1k
    }
1401
1402
64.1k
    if ((breaker & _PY_EVAL_JIT_INVALIDATE_COLD_BIT) != 0) {
1403
0
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_JIT_INVALIDATE_COLD_BIT);
1404
0
        _Py_Executors_InvalidateCold(tstate->interp);
1405
0
        tstate->interp->trace_run_counter = JIT_CLEANUP_THRESHOLD;
1406
0
    }
1407
1408
    /* GIL drop request */
1409
64.1k
    if ((breaker & _PY_GIL_DROP_REQUEST_BIT) != 0) {
1410
        /* Give another thread a chance */
1411
0
        _PyThreadState_Detach(tstate);
1412
1413
        /* Other threads may run now */
1414
1415
0
        _PyThreadState_Attach(tstate);
1416
0
    }
1417
1418
    /* Check for asynchronous exception. */
1419
64.1k
    if ((breaker & _PY_ASYNC_EXCEPTION_BIT) != 0) {
1420
0
        _Py_unset_eval_breaker_bit(tstate, _PY_ASYNC_EXCEPTION_BIT);
1421
0
        PyObject *exc = _Py_atomic_exchange_ptr(&tstate->async_exc, NULL);
1422
0
        if (exc != NULL) {
1423
0
            _PyErr_SetNone(tstate, exc);
1424
0
            Py_DECREF(exc);
1425
0
            return -1;
1426
0
        }
1427
0
    }
1428
1429
64.1k
#if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
1430
64.1k
    _PyRunRemoteDebugger(tstate);
1431
64.1k
#endif
1432
1433
64.1k
    return 0;
1434
64.1k
}