/src/cpython/Python/dtoa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /**************************************************************** |
2 | | * |
3 | | * The author of this software is David M. Gay. |
4 | | * |
5 | | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
6 | | * |
7 | | * Permission to use, copy, modify, and distribute this software for any |
8 | | * purpose without fee is hereby granted, provided that this entire notice |
9 | | * is included in all copies of any software which is or includes a copy |
10 | | * or modification of this software and in all copies of the supporting |
11 | | * documentation for such software. |
12 | | * |
13 | | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
14 | | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
15 | | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
16 | | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
17 | | * |
18 | | ***************************************************************/ |
19 | | |
20 | | /**************************************************************** |
21 | | * This is dtoa.c by David M. Gay, downloaded from |
22 | | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
23 | | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
24 | | * |
25 | | * Please remember to check http://www.netlib.org/fp regularly (and especially |
26 | | * before any Python release) for bugfixes and updates. |
27 | | * |
28 | | * The major modifications from Gay's original code are as follows: |
29 | | * |
30 | | * 0. The original code has been specialized to Python's needs by removing |
31 | | * many of the #ifdef'd sections. In particular, code to support VAX and |
32 | | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
33 | | * treatment of the decimal point, and setting of the inexact flag have |
34 | | * been removed. |
35 | | * |
36 | | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
37 | | * |
38 | | * 2. The public functions strtod, dtoa and freedtoa all now have |
39 | | * a _Py_dg_ prefix. |
40 | | * |
41 | | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
42 | | * PyMem_Malloc failures through the code. The functions |
43 | | * |
44 | | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
45 | | * |
46 | | * of return type *Bigint all return NULL to indicate a malloc failure. |
47 | | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
48 | | * failure. bigcomp now has return type int (it used to be void) and |
49 | | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
50 | | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
51 | | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
52 | | * |
53 | | * 4. The static variable dtoa_result has been removed. Callers of |
54 | | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
55 | | * the memory allocated by _Py_dg_dtoa. |
56 | | * |
57 | | * 5. The code has been reformatted to better fit with Python's |
58 | | * C style guide (PEP 7). |
59 | | * |
60 | | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
61 | | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
62 | | * Kmax. |
63 | | * |
64 | | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
65 | | * leading whitespace. |
66 | | * |
67 | | * 8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been |
68 | | * fixed. (bugs.python.org/issue40780) |
69 | | * |
70 | | ***************************************************************/ |
71 | | |
72 | | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
73 | | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
74 | | * Please report bugs for this modified version using the Python issue tracker |
75 | | * as detailed at (https://devguide.python.org/triage/issue-tracker/). */ |
76 | | |
77 | | /* On a machine with IEEE extended-precision registers, it is |
78 | | * necessary to specify double-precision (53-bit) rounding precision |
79 | | * before invoking strtod or dtoa. If the machine uses (the equivalent |
80 | | * of) Intel 80x87 arithmetic, the call |
81 | | * _control87(PC_53, MCW_PC); |
82 | | * does this with many compilers. Whether this or another call is |
83 | | * appropriate depends on the compiler; for this to work, it may be |
84 | | * necessary to #include "float.h" or another system-dependent header |
85 | | * file. |
86 | | */ |
87 | | |
88 | | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
89 | | * |
90 | | * This strtod returns a nearest machine number to the input decimal |
91 | | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
92 | | * broken by the IEEE round-even rule. Otherwise ties are broken by |
93 | | * biased rounding (add half and chop). |
94 | | * |
95 | | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
96 | | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
97 | | * |
98 | | * Modifications: |
99 | | * |
100 | | * 1. We only require IEEE, IBM, or VAX double-precision |
101 | | * arithmetic (not IEEE double-extended). |
102 | | * 2. We get by with floating-point arithmetic in a case that |
103 | | * Clinger missed -- when we're computing d * 10^n |
104 | | * for a small integer d and the integer n is not too |
105 | | * much larger than 22 (the maximum integer k for which |
106 | | * we can represent 10^k exactly), we may be able to |
107 | | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
108 | | * 3. Rather than a bit-at-a-time adjustment of the binary |
109 | | * result in the hard case, we use floating-point |
110 | | * arithmetic to determine the adjustment to within |
111 | | * one bit; only in really hard cases do we need to |
112 | | * compute a second residual. |
113 | | * 4. Because of 3., we don't need a large table of powers of 10 |
114 | | * for ten-to-e (just some small tables, e.g. of 10^k |
115 | | * for 0 <= k <= 22). |
116 | | */ |
117 | | |
118 | | /* Linking of Python's #defines to Gay's #defines starts here. */ |
119 | | |
120 | | #include "Python.h" |
121 | | #include "pycore_dtoa.h" // _PY_SHORT_FLOAT_REPR |
122 | | #include "pycore_interp_structs.h"// struct Bigint |
123 | | #include "pycore_pystate.h" // _PyInterpreterState_GET() |
124 | | #include <stdlib.h> // exit() |
125 | | |
126 | | |
127 | | /* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile |
128 | | the following code */ |
129 | | #if _PY_SHORT_FLOAT_REPR == 1 |
130 | | |
131 | | #include "float.h" |
132 | | |
133 | 34 | #define MALLOC PyMem_Malloc |
134 | 0 | #define FREE PyMem_Free |
135 | | |
136 | | /* This code should also work for ARM mixed-endian format on little-endian |
137 | | machines, where doubles have byte order 45670123 (in increasing address |
138 | | order, 0 being the least significant byte). */ |
139 | | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
140 | | # define IEEE_8087 |
141 | | #endif |
142 | | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
143 | | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
144 | | # define IEEE_MC68k |
145 | | #endif |
146 | | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
147 | | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
148 | | #endif |
149 | | |
150 | | /* The code below assumes that the endianness of integers matches the |
151 | | endianness of the two 32-bit words of a double. Check this. */ |
152 | | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
153 | | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
154 | | #error "doubles and ints have incompatible endianness" |
155 | | #endif |
156 | | |
157 | | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
158 | | #error "doubles and ints have incompatible endianness" |
159 | | #endif |
160 | | |
161 | | |
162 | | typedef uint32_t ULong; |
163 | | typedef int32_t Long; |
164 | | typedef uint64_t ULLong; |
165 | | |
166 | | #undef DEBUG |
167 | | #ifdef Py_DEBUG |
168 | | #define DEBUG |
169 | | #endif |
170 | | |
171 | | /* End Python #define linking */ |
172 | | |
173 | | #ifdef DEBUG |
174 | | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
175 | | #endif |
176 | | |
177 | | typedef union { double d; ULong L[2]; } U; |
178 | | |
179 | | #ifdef IEEE_8087 |
180 | 1.59M | #define word0(x) (x)->L[1] |
181 | 1.04M | #define word1(x) (x)->L[0] |
182 | | #else |
183 | | #define word0(x) (x)->L[0] |
184 | | #define word1(x) (x)->L[1] |
185 | | #endif |
186 | 4.05M | #define dval(x) (x)->d |
187 | | |
188 | | #ifndef STRTOD_DIGLIM |
189 | 75.3k | #define STRTOD_DIGLIM 40 |
190 | | #endif |
191 | | |
192 | | /* maximum permitted exponent value for strtod; exponents larger than |
193 | | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP |
194 | | should fit into an int. */ |
195 | | #ifndef MAX_ABS_EXP |
196 | 568k | #define MAX_ABS_EXP 1100000000U |
197 | | #endif |
198 | | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, |
199 | | this is used to bound the total number of digits ignoring leading zeros and |
200 | | the number of digits that follow the decimal point. Ideally, MAX_DIGITS |
201 | | should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the |
202 | | exponent clipping in _Py_dg_strtod can't affect the value of the output. */ |
203 | | #ifndef MAX_DIGITS |
204 | 1.90M | #define MAX_DIGITS 1000000000U |
205 | | #endif |
206 | | |
207 | | /* Guard against trying to use the above values on unusual platforms with ints |
208 | | * of width less than 32 bits. */ |
209 | | #if MAX_ABS_EXP > INT_MAX |
210 | | #error "MAX_ABS_EXP should fit in an int" |
211 | | #endif |
212 | | #if MAX_DIGITS > INT_MAX |
213 | | #error "MAX_DIGITS should fit in an int" |
214 | | #endif |
215 | | |
216 | | /* The following definition of Storeinc is appropriate for MIPS processors. |
217 | | * An alternative that might be better on some machines is |
218 | | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
219 | | */ |
220 | | #if defined(IEEE_8087) |
221 | | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
222 | | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
223 | | #else |
224 | | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
225 | | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
226 | | #endif |
227 | | |
228 | | /* #define P DBL_MANT_DIG */ |
229 | | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
230 | | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
231 | | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
232 | | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
233 | | |
234 | 172k | #define Exp_shift 20 |
235 | 99.7k | #define Exp_shift1 20 |
236 | 477k | #define Exp_msk1 0x100000 |
237 | | #define Exp_msk11 0x100000 |
238 | 928k | #define Exp_mask 0x7ff00000 |
239 | 421k | #define P 53 |
240 | | #define Nbits 53 |
241 | 223k | #define Bias 1023 |
242 | | #define Emax 1023 |
243 | | #define Emin (-1022) |
244 | 289k | #define Etiny (-1074) /* smallest denormal is 2**Etiny */ |
245 | 98.4k | #define Exp_1 0x3ff00000 |
246 | 45.7k | #define Exp_11 0x3ff00000 |
247 | 200k | #define Ebits 11 |
248 | 152k | #define Frac_mask 0xfffff |
249 | 48.4k | #define Frac_mask1 0xfffff |
250 | 1.12M | #define Ten_pmax 22 |
251 | 0 | #define Bletch 0x10 |
252 | 63.0k | #define Bndry_mask 0xfffff |
253 | 6.66k | #define Bndry_mask1 0xfffff |
254 | 69.3k | #define Sign_bit 0x80000000 |
255 | 5.77k | #define Log2P 1 |
256 | | #define Tiny0 0 |
257 | 25.7k | #define Tiny1 1 |
258 | 49.8k | #define Quick_max 14 |
259 | 31.9k | #define Int_max 14 |
260 | | |
261 | | #ifndef Flt_Rounds |
262 | | #ifdef FLT_ROUNDS |
263 | 605k | #define Flt_Rounds FLT_ROUNDS |
264 | | #else |
265 | | #define Flt_Rounds 1 |
266 | | #endif |
267 | | #endif /*Flt_Rounds*/ |
268 | | |
269 | | #define Rounding Flt_Rounds |
270 | | |
271 | 4.26k | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
272 | 2.67k | #define Big1 0xffffffff |
273 | | |
274 | | /* Bits of the representation of positive infinity. */ |
275 | | |
276 | | #define POSINF_WORD0 0x7ff00000 |
277 | | #define POSINF_WORD1 0 |
278 | | |
279 | | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
280 | | |
281 | | typedef struct BCinfo BCinfo; |
282 | | struct |
283 | | BCinfo { |
284 | | int e0, nd, nd0, scale; |
285 | | }; |
286 | | |
287 | 16.2M | #define FFFFFFFF 0xffffffffUL |
288 | | |
289 | | /* struct Bigint is used to represent arbitrary-precision integers. These |
290 | | integers are stored in sign-magnitude format, with the magnitude stored as |
291 | | an array of base 2**32 digits. Bigints are always normalized: if x is a |
292 | | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
293 | | |
294 | | The Bigint fields are as follows: |
295 | | |
296 | | - next is a header used by Balloc and Bfree to keep track of lists |
297 | | of freed Bigints; it's also used for the linked list of |
298 | | powers of 5 of the form 5**2**i used by pow5mult. |
299 | | - k indicates which pool this Bigint was allocated from |
300 | | - maxwds is the maximum number of words space was allocated for |
301 | | (usually maxwds == 2**k) |
302 | | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
303 | | (ignored on inputs, set to 0 on outputs) in almost all operations |
304 | | involving Bigints: a notable exception is the diff function, which |
305 | | ignores signs on inputs but sets the sign of the output correctly. |
306 | | - wds is the actual number of significant words |
307 | | - x contains the vector of words (digits) for this Bigint, from least |
308 | | significant (x[0]) to most significant (x[wds-1]). |
309 | | */ |
310 | | |
311 | | // struct Bigint is defined in pycore_dtoa.h. |
312 | | typedef struct Bigint Bigint; |
313 | | |
314 | | #if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) |
315 | | |
316 | | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
317 | | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
318 | | 1 << k. These pools are maintained as linked lists, with freelist[k] |
319 | | pointing to the head of the list for pool k. |
320 | | |
321 | | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
322 | | called to get more memory. This memory is not returned to the system until |
323 | | Python quits. There's also a private memory pool that's allocated from |
324 | | in preference to using MALLOC. |
325 | | |
326 | | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
327 | | decimal digits), memory is directly allocated using MALLOC, and freed using |
328 | | FREE. |
329 | | |
330 | | XXX: it would be easy to bypass this memory-management system and |
331 | | translate each call to Balloc into a call to PyMem_Malloc, and each |
332 | | Bfree to PyMem_Free. Investigate whether this has any significant |
333 | | performance on impact. */ |
334 | | |
335 | 6.17M | #define freelist interp->dtoa.freelist |
336 | 207 | #define private_mem interp->dtoa.preallocated |
337 | 553 | #define pmem_next interp->dtoa.preallocated_next |
338 | | |
339 | | /* Allocate space for a Bigint with up to 1<<k digits */ |
340 | | |
341 | | static Bigint * |
342 | | Balloc(int k) |
343 | 1.54M | { |
344 | 1.54M | int x; |
345 | 1.54M | Bigint *rv; |
346 | 1.54M | unsigned int len; |
347 | 1.54M | PyInterpreterState *interp = _PyInterpreterState_GET(); |
348 | | |
349 | 1.54M | if (k <= Bigint_Kmax && (rv = freelist[k])) |
350 | 1.54M | freelist[k] = rv->next; |
351 | 207 | else { |
352 | 207 | x = 1 << k; |
353 | 207 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
354 | 207 | /sizeof(double); |
355 | 207 | if (k <= Bigint_Kmax && |
356 | 207 | pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE |
357 | 207 | ) { |
358 | 173 | rv = (Bigint*)pmem_next; |
359 | 173 | pmem_next += len; |
360 | 173 | } |
361 | 34 | else { |
362 | 34 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
363 | 34 | if (rv == NULL) |
364 | 0 | return NULL; |
365 | 34 | } |
366 | 207 | rv->k = k; |
367 | 207 | rv->maxwds = x; |
368 | 207 | } |
369 | 1.54M | rv->sign = rv->wds = 0; |
370 | 1.54M | return rv; |
371 | 1.54M | } |
372 | | |
373 | | /* Free a Bigint allocated with Balloc */ |
374 | | |
375 | | static void |
376 | | Bfree(Bigint *v) |
377 | 4.34M | { |
378 | 4.34M | if (v) { |
379 | 1.54M | if (v->k > Bigint_Kmax) |
380 | 0 | FREE((void*)v); |
381 | 1.54M | else { |
382 | 1.54M | PyInterpreterState *interp = _PyInterpreterState_GET(); |
383 | 1.54M | v->next = freelist[v->k]; |
384 | 1.54M | freelist[v->k] = v; |
385 | 1.54M | } |
386 | 1.54M | } |
387 | 4.34M | } |
388 | | |
389 | | #undef pmem_next |
390 | | #undef private_mem |
391 | | #undef freelist |
392 | | |
393 | | #else |
394 | | |
395 | | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and |
396 | | PyMem_Free directly in place of the custom memory allocation scheme above. |
397 | | These are provided for the benefit of memory debugging tools like |
398 | | Valgrind. */ |
399 | | |
400 | | /* Allocate space for a Bigint with up to 1<<k digits */ |
401 | | |
402 | | static Bigint * |
403 | | Balloc(int k) |
404 | | { |
405 | | int x; |
406 | | Bigint *rv; |
407 | | unsigned int len; |
408 | | |
409 | | x = 1 << k; |
410 | | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
411 | | /sizeof(double); |
412 | | |
413 | | rv = (Bigint*)MALLOC(len*sizeof(double)); |
414 | | if (rv == NULL) |
415 | | return NULL; |
416 | | |
417 | | rv->k = k; |
418 | | rv->maxwds = x; |
419 | | rv->sign = rv->wds = 0; |
420 | | return rv; |
421 | | } |
422 | | |
423 | | /* Free a Bigint allocated with Balloc */ |
424 | | |
425 | | static void |
426 | | Bfree(Bigint *v) |
427 | | { |
428 | | if (v) { |
429 | | FREE((void*)v); |
430 | | } |
431 | | } |
432 | | |
433 | | #endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */ |
434 | | |
435 | 98.2k | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
436 | 98.2k | y->wds*sizeof(Long) + 2*sizeof(int)) |
437 | | |
438 | | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
439 | | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
440 | | On failure, return NULL. In this case, b will have been already freed. */ |
441 | | |
442 | | static Bigint * |
443 | | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
444 | 736k | { |
445 | 736k | int i, wds; |
446 | 736k | ULong *x; |
447 | 736k | ULLong carry, y; |
448 | 736k | Bigint *b1; |
449 | | |
450 | 736k | wds = b->wds; |
451 | 736k | x = b->x; |
452 | 736k | i = 0; |
453 | 736k | carry = a; |
454 | 2.55M | do { |
455 | 2.55M | y = *x * (ULLong)m + carry; |
456 | 2.55M | carry = y >> 32; |
457 | 2.55M | *x++ = (ULong)(y & FFFFFFFF); |
458 | 2.55M | } |
459 | 2.55M | while(++i < wds); |
460 | 736k | if (carry) { |
461 | 47.4k | if (wds >= b->maxwds) { |
462 | 1.77k | b1 = Balloc(b->k+1); |
463 | 1.77k | if (b1 == NULL){ |
464 | 0 | Bfree(b); |
465 | 0 | return NULL; |
466 | 0 | } |
467 | 1.77k | Bcopy(b1, b); |
468 | 1.77k | Bfree(b); |
469 | 1.77k | b = b1; |
470 | 1.77k | } |
471 | 47.4k | b->x[wds++] = (ULong)carry; |
472 | 47.4k | b->wds = wds; |
473 | 47.4k | } |
474 | 736k | return b; |
475 | 736k | } |
476 | | |
477 | | /* convert a string s containing nd decimal digits (possibly containing a |
478 | | decimal separator at position nd0, which is ignored) to a Bigint. This |
479 | | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
480 | | entry, y9 contains the result of converting the first 9 digits. Returns |
481 | | NULL on failure. */ |
482 | | |
483 | | static Bigint * |
484 | | s2b(const char *s, int nd0, int nd, ULong y9) |
485 | 75.3k | { |
486 | 75.3k | Bigint *b; |
487 | 75.3k | int i, k; |
488 | 75.3k | Long x, y; |
489 | | |
490 | 75.3k | x = (nd + 8) / 9; |
491 | 111k | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
492 | 75.3k | b = Balloc(k); |
493 | 75.3k | if (b == NULL) |
494 | 0 | return NULL; |
495 | 75.3k | b->x[0] = y9; |
496 | 75.3k | b->wds = 1; |
497 | | |
498 | 75.3k | if (nd <= 9) |
499 | 47.0k | return b; |
500 | | |
501 | 28.3k | s += 9; |
502 | 211k | for (i = 9; i < nd0; i++) { |
503 | 183k | b = multadd(b, 10, *s++ - '0'); |
504 | 183k | if (b == NULL) |
505 | 0 | return NULL; |
506 | 183k | } |
507 | 28.3k | s++; |
508 | 106k | for(; i < nd; i++) { |
509 | 77.9k | b = multadd(b, 10, *s++ - '0'); |
510 | 77.9k | if (b == NULL) |
511 | 0 | return NULL; |
512 | 77.9k | } |
513 | 28.3k | return b; |
514 | 28.3k | } |
515 | | |
516 | | /* count leading 0 bits in the 32-bit integer x. */ |
517 | | |
518 | | static int |
519 | | hi0bits(ULong x) |
520 | 127k | { |
521 | 127k | int k = 0; |
522 | | |
523 | 127k | if (!(x & 0xffff0000)) { |
524 | 77.1k | k = 16; |
525 | 77.1k | x <<= 16; |
526 | 77.1k | } |
527 | 127k | if (!(x & 0xff000000)) { |
528 | 80.5k | k += 8; |
529 | 80.5k | x <<= 8; |
530 | 80.5k | } |
531 | 127k | if (!(x & 0xf0000000)) { |
532 | 74.2k | k += 4; |
533 | 74.2k | x <<= 4; |
534 | 74.2k | } |
535 | 127k | if (!(x & 0xc0000000)) { |
536 | 72.4k | k += 2; |
537 | 72.4k | x <<= 2; |
538 | 72.4k | } |
539 | 127k | if (!(x & 0x80000000)) { |
540 | 75.5k | k++; |
541 | 75.5k | if (!(x & 0x40000000)) |
542 | 0 | return 32; |
543 | 75.5k | } |
544 | 127k | return k; |
545 | 127k | } |
546 | | |
547 | | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
548 | | number of bits. */ |
549 | | |
550 | | static int |
551 | | lo0bits(ULong *y) |
552 | 49.8k | { |
553 | 49.8k | int k; |
554 | 49.8k | ULong x = *y; |
555 | | |
556 | 49.8k | if (x & 7) { |
557 | 29.9k | if (x & 1) |
558 | 15.3k | return 0; |
559 | 14.5k | if (x & 2) { |
560 | 8.89k | *y = x >> 1; |
561 | 8.89k | return 1; |
562 | 8.89k | } |
563 | 5.67k | *y = x >> 2; |
564 | 5.67k | return 2; |
565 | 14.5k | } |
566 | 19.9k | k = 0; |
567 | 19.9k | if (!(x & 0xffff)) { |
568 | 8.72k | k = 16; |
569 | 8.72k | x >>= 16; |
570 | 8.72k | } |
571 | 19.9k | if (!(x & 0xff)) { |
572 | 4.88k | k += 8; |
573 | 4.88k | x >>= 8; |
574 | 4.88k | } |
575 | 19.9k | if (!(x & 0xf)) { |
576 | 11.2k | k += 4; |
577 | 11.2k | x >>= 4; |
578 | 11.2k | } |
579 | 19.9k | if (!(x & 0x3)) { |
580 | 10.9k | k += 2; |
581 | 10.9k | x >>= 2; |
582 | 10.9k | } |
583 | 19.9k | if (!(x & 1)) { |
584 | 12.5k | k++; |
585 | 12.5k | x >>= 1; |
586 | 12.5k | if (!x) |
587 | 0 | return 32; |
588 | 12.5k | } |
589 | 19.9k | *y = x; |
590 | 19.9k | return k; |
591 | 19.9k | } |
592 | | |
593 | | /* convert a small nonnegative integer to a Bigint */ |
594 | | |
595 | | static Bigint * |
596 | | i2b(int i) |
597 | 175k | { |
598 | 175k | Bigint *b; |
599 | | |
600 | 175k | b = Balloc(1); |
601 | 175k | if (b == NULL) |
602 | 0 | return NULL; |
603 | 175k | b->x[0] = i; |
604 | 175k | b->wds = 1; |
605 | 175k | return b; |
606 | 175k | } |
607 | | |
608 | | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
609 | | the signs of a and b. */ |
610 | | |
611 | | static Bigint * |
612 | | mult(Bigint *a, Bigint *b) |
613 | 410k | { |
614 | 410k | Bigint *c; |
615 | 410k | int k, wa, wb, wc; |
616 | 410k | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
617 | 410k | ULong y; |
618 | 410k | ULLong carry, z; |
619 | | |
620 | 410k | if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { |
621 | 4.45k | c = Balloc(0); |
622 | 4.45k | if (c == NULL) |
623 | 0 | return NULL; |
624 | 4.45k | c->wds = 1; |
625 | 4.45k | c->x[0] = 0; |
626 | 4.45k | return c; |
627 | 4.45k | } |
628 | | |
629 | 406k | if (a->wds < b->wds) { |
630 | 201k | c = a; |
631 | 201k | a = b; |
632 | 201k | b = c; |
633 | 201k | } |
634 | 406k | k = a->k; |
635 | 406k | wa = a->wds; |
636 | 406k | wb = b->wds; |
637 | 406k | wc = wa + wb; |
638 | 406k | if (wc > a->maxwds) |
639 | 179k | k++; |
640 | 406k | c = Balloc(k); |
641 | 406k | if (c == NULL) |
642 | 0 | return NULL; |
643 | 3.79M | for(x = c->x, xa = x + wc; x < xa; x++) |
644 | 3.38M | *x = 0; |
645 | 406k | xa = a->x; |
646 | 406k | xae = xa + wa; |
647 | 406k | xb = b->x; |
648 | 406k | xbe = xb + wb; |
649 | 406k | xc0 = c->x; |
650 | 1.29M | for(; xb < xbe; xc0++) { |
651 | 883k | if ((y = *xb++)) { |
652 | 879k | x = xa; |
653 | 879k | xc = xc0; |
654 | 879k | carry = 0; |
655 | 8.72M | do { |
656 | 8.72M | z = *x++ * (ULLong)y + *xc + carry; |
657 | 8.72M | carry = z >> 32; |
658 | 8.72M | *xc++ = (ULong)(z & FFFFFFFF); |
659 | 8.72M | } |
660 | 8.72M | while(x < xae); |
661 | 879k | *xc = (ULong)carry; |
662 | 879k | } |
663 | 883k | } |
664 | 696k | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
665 | 406k | c->wds = wc; |
666 | 406k | return c; |
667 | 406k | } |
668 | | |
669 | | #ifndef Py_USING_MEMORY_DEBUGGER |
670 | | |
671 | | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
672 | | failure; if the returned pointer is distinct from b then the original |
673 | | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
674 | | |
675 | | static Bigint * |
676 | | pow5mult(Bigint *b, int k) |
677 | 129k | { |
678 | 129k | Bigint *b1, *p5, **p5s; |
679 | 129k | int i; |
680 | 129k | static const int p05[3] = { 5, 25, 125 }; |
681 | | |
682 | | // For double-to-string conversion, the maximum value of k is limited by |
683 | | // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64. |
684 | | // For string-to-double conversion, the extreme case is constrained by our |
685 | | // hardcoded exponent limit before we underflow of -512, adjusted by |
686 | | // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535. |
687 | 129k | assert(0 <= k && k < 1024); |
688 | | |
689 | 129k | if ((i = k & 3)) { |
690 | 90.7k | b = multadd(b, p05[i-1], 0); |
691 | 90.7k | if (b == NULL) |
692 | 0 | return NULL; |
693 | 90.7k | } |
694 | | |
695 | 129k | if (!(k >>= 2)) |
696 | 10.1k | return b; |
697 | 119k | PyInterpreterState *interp = _PyInterpreterState_GET(); |
698 | 119k | p5s = interp->dtoa.p5s; |
699 | 595k | for(;;) { |
700 | 595k | assert(p5s != interp->dtoa.p5s + Bigint_Pow5size); |
701 | 595k | p5 = *p5s; |
702 | 595k | p5s++; |
703 | 595k | if (k & 1) { |
704 | 349k | b1 = mult(b, p5); |
705 | 349k | Bfree(b); |
706 | 349k | b = b1; |
707 | 349k | if (b == NULL) |
708 | 0 | return NULL; |
709 | 349k | } |
710 | 595k | if (!(k >>= 1)) |
711 | 119k | break; |
712 | 595k | } |
713 | 119k | return b; |
714 | 119k | } |
715 | | |
716 | | #else |
717 | | |
718 | | /* Version of pow5mult that doesn't cache powers of 5. Provided for |
719 | | the benefit of memory debugging tools like Valgrind. */ |
720 | | |
721 | | static Bigint * |
722 | | pow5mult(Bigint *b, int k) |
723 | | { |
724 | | Bigint *b1, *p5, *p51; |
725 | | int i; |
726 | | static const int p05[3] = { 5, 25, 125 }; |
727 | | |
728 | | if ((i = k & 3)) { |
729 | | b = multadd(b, p05[i-1], 0); |
730 | | if (b == NULL) |
731 | | return NULL; |
732 | | } |
733 | | |
734 | | if (!(k >>= 2)) |
735 | | return b; |
736 | | p5 = i2b(625); |
737 | | if (p5 == NULL) { |
738 | | Bfree(b); |
739 | | return NULL; |
740 | | } |
741 | | |
742 | | for(;;) { |
743 | | if (k & 1) { |
744 | | b1 = mult(b, p5); |
745 | | Bfree(b); |
746 | | b = b1; |
747 | | if (b == NULL) { |
748 | | Bfree(p5); |
749 | | return NULL; |
750 | | } |
751 | | } |
752 | | if (!(k >>= 1)) |
753 | | break; |
754 | | p51 = mult(p5, p5); |
755 | | Bfree(p5); |
756 | | p5 = p51; |
757 | | if (p5 == NULL) { |
758 | | Bfree(b); |
759 | | return NULL; |
760 | | } |
761 | | } |
762 | | Bfree(p5); |
763 | | return b; |
764 | | } |
765 | | |
766 | | #endif /* Py_USING_MEMORY_DEBUGGER */ |
767 | | |
768 | | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
769 | | or NULL on failure. If the returned pointer is distinct from b then the |
770 | | original b will have been Bfree'd. Ignores the sign of b. */ |
771 | | |
772 | | static Bigint * |
773 | | lshift(Bigint *b, int k) |
774 | 322k | { |
775 | 322k | int i, k1, n, n1; |
776 | 322k | Bigint *b1; |
777 | 322k | ULong *x, *x1, *xe, z; |
778 | | |
779 | 322k | if (!k || (!b->x[0] && b->wds == 1)) |
780 | 4.98k | return b; |
781 | | |
782 | 317k | n = k >> 5; |
783 | 317k | k1 = b->k; |
784 | 317k | n1 = n + b->wds + 1; |
785 | 793k | for(i = b->maxwds; n1 > i; i <<= 1) |
786 | 475k | k1++; |
787 | 317k | b1 = Balloc(k1); |
788 | 317k | if (b1 == NULL) { |
789 | 0 | Bfree(b); |
790 | 0 | return NULL; |
791 | 0 | } |
792 | 317k | x1 = b1->x; |
793 | 1.89M | for(i = 0; i < n; i++) |
794 | 1.57M | *x1++ = 0; |
795 | 317k | x = b->x; |
796 | 317k | xe = x + b->wds; |
797 | 317k | if (k &= 0x1f) { |
798 | 314k | k1 = 32 - k; |
799 | 314k | z = 0; |
800 | 1.52M | do { |
801 | 1.52M | *x1++ = *x << k | z; |
802 | 1.52M | z = *x++ >> k1; |
803 | 1.52M | } |
804 | 1.52M | while(x < xe); |
805 | 314k | if ((*x1 = z)) |
806 | 49.4k | ++n1; |
807 | 314k | } |
808 | 3.13k | else do |
809 | 6.25k | *x1++ = *x++; |
810 | 6.25k | while(x < xe); |
811 | 317k | b1->wds = n1 - 1; |
812 | 317k | Bfree(b); |
813 | 317k | return b1; |
814 | 317k | } |
815 | | |
816 | | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
817 | | 1 if a > b. Ignores signs of a and b. */ |
818 | | |
819 | | static int |
820 | | cmp(Bigint *a, Bigint *b) |
821 | 996k | { |
822 | 996k | ULong *xa, *xa0, *xb, *xb0; |
823 | 996k | int i, j; |
824 | | |
825 | 996k | i = a->wds; |
826 | 996k | j = b->wds; |
827 | | #ifdef DEBUG |
828 | | if (i > 1 && !a->x[i-1]) |
829 | | Bug("cmp called with a->x[a->wds-1] == 0"); |
830 | | if (j > 1 && !b->x[j-1]) |
831 | | Bug("cmp called with b->x[b->wds-1] == 0"); |
832 | | #endif |
833 | 996k | if (i -= j) |
834 | 227k | return i; |
835 | 768k | xa0 = a->x; |
836 | 768k | xa = xa0 + j; |
837 | 768k | xb0 = b->x; |
838 | 768k | xb = xb0 + j; |
839 | 926k | for(;;) { |
840 | 926k | if (*--xa != *--xb) |
841 | 751k | return *xa < *xb ? -1 : 1; |
842 | 175k | if (xa <= xa0) |
843 | 16.8k | break; |
844 | 175k | } |
845 | 16.8k | return 0; |
846 | 768k | } |
847 | | |
848 | | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
849 | | NULL on failure. The signs of a and b are ignored, but the sign of the |
850 | | result is set appropriately. */ |
851 | | |
852 | | static Bigint * |
853 | | diff(Bigint *a, Bigint *b) |
854 | 257k | { |
855 | 257k | Bigint *c; |
856 | 257k | int i, wa, wb; |
857 | 257k | ULong *xa, *xae, *xb, *xbe, *xc; |
858 | 257k | ULLong borrow, y; |
859 | | |
860 | 257k | i = cmp(a,b); |
861 | 257k | if (!i) { |
862 | 2.56k | c = Balloc(0); |
863 | 2.56k | if (c == NULL) |
864 | 0 | return NULL; |
865 | 2.56k | c->wds = 1; |
866 | 2.56k | c->x[0] = 0; |
867 | 2.56k | return c; |
868 | 2.56k | } |
869 | 255k | if (i < 0) { |
870 | 44.5k | c = a; |
871 | 44.5k | a = b; |
872 | 44.5k | b = c; |
873 | 44.5k | i = 1; |
874 | 44.5k | } |
875 | 210k | else |
876 | 210k | i = 0; |
877 | 255k | c = Balloc(a->k); |
878 | 255k | if (c == NULL) |
879 | 0 | return NULL; |
880 | 255k | c->sign = i; |
881 | 255k | wa = a->wds; |
882 | 255k | xa = a->x; |
883 | 255k | xae = xa + wa; |
884 | 255k | wb = b->wds; |
885 | 255k | xb = b->x; |
886 | 255k | xbe = xb + wb; |
887 | 255k | xc = c->x; |
888 | 255k | borrow = 0; |
889 | 1.86M | do { |
890 | 1.86M | y = (ULLong)*xa++ - *xb++ - borrow; |
891 | 1.86M | borrow = y >> 32 & (ULong)1; |
892 | 1.86M | *xc++ = (ULong)(y & FFFFFFFF); |
893 | 1.86M | } |
894 | 1.86M | while(xb < xbe); |
895 | 494k | while(xa < xae) { |
896 | 239k | y = *xa++ - borrow; |
897 | 239k | borrow = y >> 32 & (ULong)1; |
898 | 239k | *xc++ = (ULong)(y & FFFFFFFF); |
899 | 239k | } |
900 | 375k | while(!*--xc) |
901 | 120k | wa--; |
902 | 255k | c->wds = wa; |
903 | 255k | return c; |
904 | 255k | } |
905 | | |
906 | | /* Given a positive normal double x, return the difference between x and the |
907 | | next double up. Doesn't give correct results for subnormals. */ |
908 | | |
909 | | static double |
910 | | ulp(U *x) |
911 | 42.8k | { |
912 | 42.8k | Long L; |
913 | 42.8k | U u; |
914 | | |
915 | 42.8k | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
916 | 42.8k | word0(&u) = L; |
917 | 42.8k | word1(&u) = 0; |
918 | 42.8k | return dval(&u); |
919 | 42.8k | } |
920 | | |
921 | | /* Convert a Bigint to a double plus an exponent */ |
922 | | |
923 | | static double |
924 | | b2d(Bigint *a, int *e) |
925 | 80.4k | { |
926 | 80.4k | ULong *xa, *xa0, w, y, z; |
927 | 80.4k | int k; |
928 | 80.4k | U d; |
929 | | |
930 | 80.4k | xa0 = a->x; |
931 | 80.4k | xa = xa0 + a->wds; |
932 | 80.4k | y = *--xa; |
933 | | #ifdef DEBUG |
934 | | if (!y) Bug("zero y in b2d"); |
935 | | #endif |
936 | 80.4k | k = hi0bits(y); |
937 | 80.4k | *e = 32 - k; |
938 | 80.4k | if (k < Ebits) { |
939 | 19.8k | word0(&d) = Exp_1 | y >> (Ebits - k); |
940 | 19.8k | w = xa > xa0 ? *--xa : 0; |
941 | 19.8k | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
942 | 19.8k | goto ret_d; |
943 | 19.8k | } |
944 | 60.5k | z = xa > xa0 ? *--xa : 0; |
945 | 60.5k | if (k -= Ebits) { |
946 | 56.1k | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
947 | 56.1k | y = xa > xa0 ? *--xa : 0; |
948 | 56.1k | word1(&d) = z << k | y >> (32 - k); |
949 | 56.1k | } |
950 | 4.43k | else { |
951 | 4.43k | word0(&d) = Exp_1 | y; |
952 | 4.43k | word1(&d) = z; |
953 | 4.43k | } |
954 | 80.4k | ret_d: |
955 | 80.4k | return dval(&d); |
956 | 60.5k | } |
957 | | |
958 | | /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b, |
959 | | except that it accepts the scale parameter used in _Py_dg_strtod (which |
960 | | should be either 0 or 2*P), and the normalization for the return value is |
961 | | different (see below). On input, d should be finite and nonnegative, and d |
962 | | / 2**scale should be exactly representable as an IEEE 754 double. |
963 | | |
964 | | Returns a Bigint b and an integer e such that |
965 | | |
966 | | dval(d) / 2**scale = b * 2**e. |
967 | | |
968 | | Unlike d2b, b is not necessarily odd: b and e are normalized so |
969 | | that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P |
970 | | and e == Etiny. This applies equally to an input of 0.0: in that |
971 | | case the return values are b = 0 and e = Etiny. |
972 | | |
973 | | The above normalization ensures that for all possible inputs d, |
974 | | 2**e gives ulp(d/2**scale). |
975 | | |
976 | | Returns NULL on failure. |
977 | | */ |
978 | | |
979 | | static Bigint * |
980 | | sd2b(U *d, int scale, int *e) |
981 | 102k | { |
982 | 102k | Bigint *b; |
983 | | |
984 | 102k | b = Balloc(1); |
985 | 102k | if (b == NULL) |
986 | 0 | return NULL; |
987 | | |
988 | | /* First construct b and e assuming that scale == 0. */ |
989 | 102k | b->wds = 2; |
990 | 102k | b->x[0] = word1(d); |
991 | 102k | b->x[1] = word0(d) & Frac_mask; |
992 | 102k | *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); |
993 | 102k | if (*e < Etiny) |
994 | 4.98k | *e = Etiny; |
995 | 97.4k | else |
996 | 97.4k | b->x[1] |= Exp_msk1; |
997 | | |
998 | | /* Now adjust for scale, provided that b != 0. */ |
999 | 102k | if (scale && (b->x[0] || b->x[1])) { |
1000 | 28.8k | *e -= scale; |
1001 | 28.8k | if (*e < Etiny) { |
1002 | 25.4k | scale = Etiny - *e; |
1003 | 25.4k | *e = Etiny; |
1004 | | /* We can't shift more than P-1 bits without shifting out a 1. */ |
1005 | 25.4k | assert(0 < scale && scale <= P - 1); |
1006 | 25.4k | if (scale >= 32) { |
1007 | | /* The bits shifted out should all be zero. */ |
1008 | 12.1k | assert(b->x[0] == 0); |
1009 | 12.1k | b->x[0] = b->x[1]; |
1010 | 12.1k | b->x[1] = 0; |
1011 | 12.1k | scale -= 32; |
1012 | 12.1k | } |
1013 | 25.4k | if (scale) { |
1014 | | /* The bits shifted out should all be zero. */ |
1015 | 23.9k | assert(b->x[0] << (32 - scale) == 0); |
1016 | 23.9k | b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); |
1017 | 23.9k | b->x[1] >>= scale; |
1018 | 23.9k | } |
1019 | 25.4k | } |
1020 | 28.8k | } |
1021 | | /* Ensure b is normalized. */ |
1022 | 102k | if (!b->x[1]) |
1023 | 20.9k | b->wds = 1; |
1024 | | |
1025 | 102k | return b; |
1026 | 102k | } |
1027 | | |
1028 | | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
1029 | | |
1030 | | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
1031 | | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
1032 | | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
1033 | | |
1034 | | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
1035 | | */ |
1036 | | |
1037 | | static Bigint * |
1038 | | d2b(U *d, int *e, int *bits) |
1039 | 49.8k | { |
1040 | 49.8k | Bigint *b; |
1041 | 49.8k | int de, k; |
1042 | 49.8k | ULong *x, y, z; |
1043 | 49.8k | int i; |
1044 | | |
1045 | 49.8k | b = Balloc(1); |
1046 | 49.8k | if (b == NULL) |
1047 | 0 | return NULL; |
1048 | 49.8k | x = b->x; |
1049 | | |
1050 | 49.8k | z = word0(d) & Frac_mask; |
1051 | 49.8k | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
1052 | 49.8k | if ((de = (int)(word0(d) >> Exp_shift))) |
1053 | 45.7k | z |= Exp_msk1; |
1054 | 49.8k | if ((y = word1(d))) { |
1055 | 37.6k | if ((k = lo0bits(&y))) { |
1056 | 23.2k | x[0] = y | z << (32 - k); |
1057 | 23.2k | z >>= k; |
1058 | 23.2k | } |
1059 | 14.3k | else |
1060 | 14.3k | x[0] = y; |
1061 | 37.6k | i = |
1062 | 37.6k | b->wds = (x[1] = z) ? 2 : 1; |
1063 | 37.6k | } |
1064 | 12.2k | else { |
1065 | 12.2k | k = lo0bits(&z); |
1066 | 12.2k | x[0] = z; |
1067 | 12.2k | i = |
1068 | 12.2k | b->wds = 1; |
1069 | 12.2k | k += 32; |
1070 | 12.2k | } |
1071 | 49.8k | if (de) { |
1072 | 45.7k | *e = de - Bias - (P-1) + k; |
1073 | 45.7k | *bits = P - k; |
1074 | 45.7k | } |
1075 | 4.12k | else { |
1076 | 4.12k | *e = de - Bias - (P-1) + 1 + k; |
1077 | 4.12k | *bits = 32*i - hi0bits(x[i-1]); |
1078 | 4.12k | } |
1079 | 49.8k | return b; |
1080 | 49.8k | } |
1081 | | |
1082 | | /* Compute the ratio of two Bigints, as a double. The result may have an |
1083 | | error of up to 2.5 ulps. */ |
1084 | | |
1085 | | static double |
1086 | | ratio(Bigint *a, Bigint *b) |
1087 | 40.2k | { |
1088 | 40.2k | U da, db; |
1089 | 40.2k | int k, ka, kb; |
1090 | | |
1091 | 40.2k | dval(&da) = b2d(a, &ka); |
1092 | 40.2k | dval(&db) = b2d(b, &kb); |
1093 | 40.2k | k = ka - kb + 32*(a->wds - b->wds); |
1094 | 40.2k | if (k > 0) |
1095 | 23.1k | word0(&da) += k*Exp_msk1; |
1096 | 17.0k | else { |
1097 | 17.0k | k = -k; |
1098 | 17.0k | word0(&db) += k*Exp_msk1; |
1099 | 17.0k | } |
1100 | 40.2k | return dval(&da) / dval(&db); |
1101 | 40.2k | } |
1102 | | |
1103 | | static const double |
1104 | | tens[] = { |
1105 | | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
1106 | | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
1107 | | 1e20, 1e21, 1e22 |
1108 | | }; |
1109 | | |
1110 | | static const double |
1111 | | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
1112 | | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
1113 | | 9007199254740992.*9007199254740992.e-256 |
1114 | | /* = 2^106 * 1e-256 */ |
1115 | | }; |
1116 | | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1117 | | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1118 | 22.4k | #define Scale_Bit 0x10 |
1119 | 23.7k | #define n_bigtens 5 |
1120 | | |
1121 | | #define ULbits 32 |
1122 | | #define kshift 5 |
1123 | 43.4k | #define kmask 31 |
1124 | | |
1125 | | |
1126 | | static int |
1127 | | dshift(Bigint *b, int p2) |
1128 | 43.4k | { |
1129 | 43.4k | int rv = hi0bits(b->x[b->wds-1]) - 4; |
1130 | 43.4k | if (p2 > 0) |
1131 | 24.4k | rv -= p2; |
1132 | 43.4k | return rv & kmask; |
1133 | 43.4k | } |
1134 | | |
1135 | | /* special case of Bigint division. The quotient is always in the range 0 <= |
1136 | | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
1137 | | bits (28--31) are zero and bit 27 is set. */ |
1138 | | |
1139 | | static int |
1140 | | quorem(Bigint *b, Bigint *S) |
1141 | 286k | { |
1142 | 286k | int n; |
1143 | 286k | ULong *bx, *bxe, q, *sx, *sxe; |
1144 | 286k | ULLong borrow, carry, y, ys; |
1145 | | |
1146 | 286k | n = S->wds; |
1147 | | #ifdef DEBUG |
1148 | | /*debug*/ if (b->wds > n) |
1149 | | /*debug*/ Bug("oversize b in quorem"); |
1150 | | #endif |
1151 | 286k | if (b->wds < n) |
1152 | 6.23k | return 0; |
1153 | 280k | sx = S->x; |
1154 | 280k | sxe = sx + --n; |
1155 | 280k | bx = b->x; |
1156 | 280k | bxe = bx + n; |
1157 | 280k | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
1158 | | #ifdef DEBUG |
1159 | | /*debug*/ if (q > 9) |
1160 | | /*debug*/ Bug("oversized quotient in quorem"); |
1161 | | #endif |
1162 | 280k | if (q) { |
1163 | 232k | borrow = 0; |
1164 | 232k | carry = 0; |
1165 | 1.34M | do { |
1166 | 1.34M | ys = *sx++ * (ULLong)q + carry; |
1167 | 1.34M | carry = ys >> 32; |
1168 | 1.34M | y = *bx - (ys & FFFFFFFF) - borrow; |
1169 | 1.34M | borrow = y >> 32 & (ULong)1; |
1170 | 1.34M | *bx++ = (ULong)(y & FFFFFFFF); |
1171 | 1.34M | } |
1172 | 1.34M | while(sx <= sxe); |
1173 | 232k | if (!*bxe) { |
1174 | 790 | bx = b->x; |
1175 | 790 | while(--bxe > bx && !*bxe) |
1176 | 0 | --n; |
1177 | 790 | b->wds = n; |
1178 | 790 | } |
1179 | 232k | } |
1180 | 280k | if (cmp(b, S) >= 0) { |
1181 | 18.8k | q++; |
1182 | 18.8k | borrow = 0; |
1183 | 18.8k | carry = 0; |
1184 | 18.8k | bx = b->x; |
1185 | 18.8k | sx = S->x; |
1186 | 115k | do { |
1187 | 115k | ys = *sx++ + carry; |
1188 | 115k | carry = ys >> 32; |
1189 | 115k | y = *bx - (ys & FFFFFFFF) - borrow; |
1190 | 115k | borrow = y >> 32 & (ULong)1; |
1191 | 115k | *bx++ = (ULong)(y & FFFFFFFF); |
1192 | 115k | } |
1193 | 115k | while(sx <= sxe); |
1194 | 18.8k | bx = b->x; |
1195 | 18.8k | bxe = bx + n; |
1196 | 18.8k | if (!*bxe) { |
1197 | 19.5k | while(--bxe > bx && !*bxe) |
1198 | 1.46k | --n; |
1199 | 18.1k | b->wds = n; |
1200 | 18.1k | } |
1201 | 18.8k | } |
1202 | 280k | return q; |
1203 | 286k | } |
1204 | | |
1205 | | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. |
1206 | | |
1207 | | Assuming that x is finite and nonnegative (positive zero is fine |
1208 | | here) and x / 2^bc.scale is exactly representable as a double, |
1209 | | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ |
1210 | | |
1211 | | static double |
1212 | | sulp(U *x, BCinfo *bc) |
1213 | 2.98k | { |
1214 | 2.98k | U u; |
1215 | | |
1216 | 2.98k | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { |
1217 | | /* rv/2^bc->scale is subnormal */ |
1218 | 399 | word0(&u) = (P+2)*Exp_msk1; |
1219 | 399 | word1(&u) = 0; |
1220 | 399 | return u.d; |
1221 | 399 | } |
1222 | 2.58k | else { |
1223 | 2.58k | assert(word0(x) || word1(x)); /* x != 0.0 */ |
1224 | 2.58k | return ulp(x); |
1225 | 2.58k | } |
1226 | 2.98k | } |
1227 | | |
1228 | | /* The bigcomp function handles some hard cases for strtod, for inputs |
1229 | | with more than STRTOD_DIGLIM digits. It's called once an initial |
1230 | | estimate for the double corresponding to the input string has |
1231 | | already been obtained by the code in _Py_dg_strtod. |
1232 | | |
1233 | | The bigcomp function is only called after _Py_dg_strtod has found a |
1234 | | double value rv such that either rv or rv + 1ulp represents the |
1235 | | correctly rounded value corresponding to the original string. It |
1236 | | determines which of these two values is the correct one by |
1237 | | computing the decimal digits of rv + 0.5ulp and comparing them with |
1238 | | the corresponding digits of s0. |
1239 | | |
1240 | | In the following, write dv for the absolute value of the number represented |
1241 | | by the input string. |
1242 | | |
1243 | | Inputs: |
1244 | | |
1245 | | s0 points to the first significant digit of the input string. |
1246 | | |
1247 | | rv is a (possibly scaled) estimate for the closest double value to the |
1248 | | value represented by the original input to _Py_dg_strtod. If |
1249 | | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to |
1250 | | the input value. |
1251 | | |
1252 | | bc is a struct containing information gathered during the parsing and |
1253 | | estimation steps of _Py_dg_strtod. Description of fields follows: |
1254 | | |
1255 | | bc->e0 gives the exponent of the input value, such that dv = (integer |
1256 | | given by the bd->nd digits of s0) * 10**e0 |
1257 | | |
1258 | | bc->nd gives the total number of significant digits of s0. It will |
1259 | | be at least 1. |
1260 | | |
1261 | | bc->nd0 gives the number of significant digits of s0 before the |
1262 | | decimal separator. If there's no decimal separator, bc->nd0 == |
1263 | | bc->nd. |
1264 | | |
1265 | | bc->scale is the value used to scale rv to avoid doing arithmetic with |
1266 | | subnormal values. It's either 0 or 2*P (=106). |
1267 | | |
1268 | | Outputs: |
1269 | | |
1270 | | On successful exit, rv/2^(bc->scale) is the closest double to dv. |
1271 | | |
1272 | | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ |
1273 | | |
1274 | | static int |
1275 | | bigcomp(U *rv, const char *s0, BCinfo *bc) |
1276 | 7.03k | { |
1277 | 7.03k | Bigint *b, *d; |
1278 | 7.03k | int b2, d2, dd, i, nd, nd0, odd, p2, p5; |
1279 | | |
1280 | 7.03k | nd = bc->nd; |
1281 | 7.03k | nd0 = bc->nd0; |
1282 | 7.03k | p5 = nd + bc->e0; |
1283 | 7.03k | b = sd2b(rv, bc->scale, &p2); |
1284 | 7.03k | if (b == NULL) |
1285 | 0 | return -1; |
1286 | | |
1287 | | /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway |
1288 | | case, this is used for round to even. */ |
1289 | 7.03k | odd = b->x[0] & 1; |
1290 | | |
1291 | | /* left shift b by 1 bit and or a 1 into the least significant bit; |
1292 | | this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ |
1293 | 7.03k | b = lshift(b, 1); |
1294 | 7.03k | if (b == NULL) |
1295 | 0 | return -1; |
1296 | 7.03k | b->x[0] |= 1; |
1297 | 7.03k | p2--; |
1298 | | |
1299 | 7.03k | p2 -= p5; |
1300 | 7.03k | d = i2b(1); |
1301 | 7.03k | if (d == NULL) { |
1302 | 0 | Bfree(b); |
1303 | 0 | return -1; |
1304 | 0 | } |
1305 | | /* Arrange for convenient computation of quotients: |
1306 | | * shift left if necessary so divisor has 4 leading 0 bits. |
1307 | | */ |
1308 | 7.03k | if (p5 > 0) { |
1309 | 5.02k | d = pow5mult(d, p5); |
1310 | 5.02k | if (d == NULL) { |
1311 | 0 | Bfree(b); |
1312 | 0 | return -1; |
1313 | 0 | } |
1314 | 5.02k | } |
1315 | 2.01k | else if (p5 < 0) { |
1316 | 1.43k | b = pow5mult(b, -p5); |
1317 | 1.43k | if (b == NULL) { |
1318 | 0 | Bfree(d); |
1319 | 0 | return -1; |
1320 | 0 | } |
1321 | 1.43k | } |
1322 | 7.03k | if (p2 > 0) { |
1323 | 3.75k | b2 = p2; |
1324 | 3.75k | d2 = 0; |
1325 | 3.75k | } |
1326 | 3.27k | else { |
1327 | 3.27k | b2 = 0; |
1328 | 3.27k | d2 = -p2; |
1329 | 3.27k | } |
1330 | 7.03k | i = dshift(d, d2); |
1331 | 7.03k | if ((b2 += i) > 0) { |
1332 | 6.88k | b = lshift(b, b2); |
1333 | 6.88k | if (b == NULL) { |
1334 | 0 | Bfree(d); |
1335 | 0 | return -1; |
1336 | 0 | } |
1337 | 6.88k | } |
1338 | 7.03k | if ((d2 += i) > 0) { |
1339 | 6.41k | d = lshift(d, d2); |
1340 | 6.41k | if (d == NULL) { |
1341 | 0 | Bfree(b); |
1342 | 0 | return -1; |
1343 | 0 | } |
1344 | 6.41k | } |
1345 | | |
1346 | | /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == |
1347 | | * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing |
1348 | | * a number in the range [0.1, 1). */ |
1349 | 7.03k | if (cmp(b, d) >= 0) |
1350 | | /* b/d >= 1 */ |
1351 | 900 | dd = -1; |
1352 | 6.13k | else { |
1353 | 6.13k | i = 0; |
1354 | 123k | for(;;) { |
1355 | 123k | b = multadd(b, 10, 0); |
1356 | 123k | if (b == NULL) { |
1357 | 0 | Bfree(d); |
1358 | 0 | return -1; |
1359 | 0 | } |
1360 | 123k | dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); |
1361 | 123k | i++; |
1362 | | |
1363 | 123k | if (dd) |
1364 | 4.82k | break; |
1365 | 119k | if (!b->x[0] && b->wds == 1) { |
1366 | | /* b/d == 0 */ |
1367 | 839 | dd = i < nd; |
1368 | 839 | break; |
1369 | 839 | } |
1370 | 118k | if (!(i < nd)) { |
1371 | | /* b/d != 0, but digits of s0 exhausted */ |
1372 | 474 | dd = -1; |
1373 | 474 | break; |
1374 | 474 | } |
1375 | 118k | } |
1376 | 6.13k | } |
1377 | 7.03k | Bfree(b); |
1378 | 7.03k | Bfree(d); |
1379 | 7.03k | if (dd > 0 || (dd == 0 && odd)) |
1380 | 1.55k | dval(rv) += sulp(rv, bc); |
1381 | 7.03k | return 0; |
1382 | 7.03k | } |
1383 | | |
1384 | | |
1385 | | double |
1386 | | _Py_dg_strtod(const char *s00, char **se) |
1387 | 636k | { |
1388 | 636k | int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; |
1389 | 636k | int esign, i, j, k, lz, nd, nd0, odd, sign; |
1390 | 636k | const char *s, *s0, *s1; |
1391 | 636k | double aadj, aadj1; |
1392 | 636k | U aadj2, adj, rv, rv0; |
1393 | 636k | ULong y, z, abs_exp; |
1394 | 636k | Long L; |
1395 | 636k | BCinfo bc; |
1396 | 636k | Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL; |
1397 | 636k | size_t ndigits, fraclen; |
1398 | 636k | double result; |
1399 | | |
1400 | 636k | dval(&rv) = 0.; |
1401 | | |
1402 | | /* Start parsing. */ |
1403 | 636k | c = *(s = s00); |
1404 | | |
1405 | | /* Parse optional sign, if present. */ |
1406 | 636k | sign = 0; |
1407 | 636k | switch (c) { |
1408 | 496k | case '-': |
1409 | 496k | sign = 1; |
1410 | 496k | _Py_FALLTHROUGH; |
1411 | 496k | case '+': |
1412 | 496k | c = *++s; |
1413 | 636k | } |
1414 | | |
1415 | | /* Skip leading zeros: lz is true iff there were leading zeros. */ |
1416 | 636k | s1 = s; |
1417 | 655k | while (c == '0') |
1418 | 19.1k | c = *++s; |
1419 | 636k | lz = s != s1; |
1420 | | |
1421 | | /* Point s0 at the first nonzero digit (if any). fraclen will be the |
1422 | | number of digits between the decimal point and the end of the |
1423 | | digit string. ndigits will be the total number of digits ignoring |
1424 | | leading zeros. */ |
1425 | 636k | s0 = s1 = s; |
1426 | 4.31M | while ('0' <= c && c <= '9') |
1427 | 3.67M | c = *++s; |
1428 | 636k | ndigits = s - s1; |
1429 | 636k | fraclen = 0; |
1430 | | |
1431 | | /* Parse decimal point and following digits. */ |
1432 | 636k | if (c == '.') { |
1433 | 69.1k | c = *++s; |
1434 | 69.1k | if (!ndigits) { |
1435 | 20.1k | s1 = s; |
1436 | 677k | while (c == '0') |
1437 | 657k | c = *++s; |
1438 | 20.1k | lz = lz || s != s1; |
1439 | 20.1k | fraclen += (s - s1); |
1440 | 20.1k | s0 = s; |
1441 | 20.1k | } |
1442 | 69.1k | s1 = s; |
1443 | 11.1M | while ('0' <= c && c <= '9') |
1444 | 11.1M | c = *++s; |
1445 | 69.1k | ndigits += s - s1; |
1446 | 69.1k | fraclen += s - s1; |
1447 | 69.1k | } |
1448 | | |
1449 | | /* Now lz is true if and only if there were leading zero digits, and |
1450 | | ndigits gives the total number of digits ignoring leading zeros. A |
1451 | | valid input must have at least one digit. */ |
1452 | 636k | if (!ndigits && !lz) { |
1453 | 23 | if (se) |
1454 | 23 | *se = (char *)s00; |
1455 | 23 | goto parse_error; |
1456 | 23 | } |
1457 | | |
1458 | | /* Range check ndigits and fraclen to make sure that they, and values |
1459 | | computed with them, can safely fit in an int. */ |
1460 | 636k | if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { |
1461 | 0 | if (se) |
1462 | 0 | *se = (char *)s00; |
1463 | 0 | goto parse_error; |
1464 | 0 | } |
1465 | 636k | nd = (int)ndigits; |
1466 | 636k | nd0 = (int)ndigits - (int)fraclen; |
1467 | | |
1468 | | /* Parse exponent. */ |
1469 | 636k | e = 0; |
1470 | 636k | if (c == 'e' || c == 'E') { |
1471 | 568k | s00 = s; |
1472 | 568k | c = *++s; |
1473 | | |
1474 | | /* Exponent sign. */ |
1475 | 568k | esign = 0; |
1476 | 568k | switch (c) { |
1477 | 27.2k | case '-': |
1478 | 27.2k | esign = 1; |
1479 | 27.2k | _Py_FALLTHROUGH; |
1480 | 44.3k | case '+': |
1481 | 44.3k | c = *++s; |
1482 | 568k | } |
1483 | | |
1484 | | /* Skip zeros. lz is true iff there are leading zeros. */ |
1485 | 568k | s1 = s; |
1486 | 573k | while (c == '0') |
1487 | 4.97k | c = *++s; |
1488 | 568k | lz = s != s1; |
1489 | | |
1490 | | /* Get absolute value of the exponent. */ |
1491 | 568k | s1 = s; |
1492 | 568k | abs_exp = 0; |
1493 | 2.37M | while ('0' <= c && c <= '9') { |
1494 | 1.80M | abs_exp = 10*abs_exp + (c - '0'); |
1495 | 1.80M | c = *++s; |
1496 | 1.80M | } |
1497 | | |
1498 | | /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if |
1499 | | there are at most 9 significant exponent digits then overflow is |
1500 | | impossible. */ |
1501 | 568k | if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) |
1502 | 4.92k | e = (int)MAX_ABS_EXP; |
1503 | 563k | else |
1504 | 563k | e = (int)abs_exp; |
1505 | 568k | if (esign) |
1506 | 27.2k | e = -e; |
1507 | | |
1508 | | /* A valid exponent must have at least one digit. */ |
1509 | 568k | if (s == s1 && !lz) |
1510 | 0 | s = s00; |
1511 | 568k | } |
1512 | | |
1513 | | /* Adjust exponent to take into account position of the point. */ |
1514 | 636k | e -= nd - nd0; |
1515 | 636k | if (nd0 <= 0) |
1516 | 24.0k | nd0 = nd; |
1517 | | |
1518 | | /* Finished parsing. Set se to indicate how far we parsed */ |
1519 | 636k | if (se) |
1520 | 636k | *se = (char *)s; |
1521 | | |
1522 | | /* If all digits were zero, exit with return value +-0.0. Otherwise, |
1523 | | strip trailing zeros: scan back until we hit a nonzero digit. */ |
1524 | 636k | if (!nd) |
1525 | 10.1k | goto ret; |
1526 | 2.61M | for (i = nd; i > 0; ) { |
1527 | 2.61M | --i; |
1528 | 2.61M | if (s0[i < nd0 ? i : i+1] != '0') { |
1529 | 626k | ++i; |
1530 | 626k | break; |
1531 | 626k | } |
1532 | 2.61M | } |
1533 | 626k | e += nd - i; |
1534 | 626k | nd = i; |
1535 | 626k | if (nd0 > nd) |
1536 | 11.0k | nd0 = nd; |
1537 | | |
1538 | | /* Summary of parsing results. After parsing, and dealing with zero |
1539 | | * inputs, we have values s0, nd0, nd, e, sign, where: |
1540 | | * |
1541 | | * - s0 points to the first significant digit of the input string |
1542 | | * |
1543 | | * - nd is the total number of significant digits (here, and |
1544 | | * below, 'significant digits' means the set of digits of the |
1545 | | * significand of the input that remain after ignoring leading |
1546 | | * and trailing zeros). |
1547 | | * |
1548 | | * - nd0 indicates the position of the decimal point, if present; it |
1549 | | * satisfies 1 <= nd0 <= nd. The nd significant digits are in |
1550 | | * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice |
1551 | | * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if |
1552 | | * nd0 == nd, then s0[nd0] could be any non-digit character.) |
1553 | | * |
1554 | | * - e is the adjusted exponent: the absolute value of the number |
1555 | | * represented by the original input string is n * 10**e, where |
1556 | | * n is the integer represented by the concatenation of |
1557 | | * s0[0:nd0] and s0[nd0+1:nd+1] |
1558 | | * |
1559 | | * - sign gives the sign of the input: 1 for negative, 0 for positive |
1560 | | * |
1561 | | * - the first and last significant digits are nonzero |
1562 | | */ |
1563 | | |
1564 | | /* put first DBL_DIG+1 digits into integer y and z. |
1565 | | * |
1566 | | * - y contains the value represented by the first min(9, nd) |
1567 | | * significant digits |
1568 | | * |
1569 | | * - if nd > 9, z contains the value represented by significant digits |
1570 | | * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z |
1571 | | * gives the value represented by the first min(16, nd) sig. digits. |
1572 | | */ |
1573 | | |
1574 | 626k | bc.e0 = e1 = e; |
1575 | 626k | y = z = 0; |
1576 | 1.90M | for (i = 0; i < nd; i++) { |
1577 | 1.30M | if (i < 9) |
1578 | 1.04M | y = 10*y + s0[i < nd0 ? i : i+1] - '0'; |
1579 | 257k | else if (i < DBL_DIG+1) |
1580 | 234k | z = 10*z + s0[i < nd0 ? i : i+1] - '0'; |
1581 | 23.3k | else |
1582 | 23.3k | break; |
1583 | 1.30M | } |
1584 | | |
1585 | 626k | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
1586 | 626k | dval(&rv) = y; |
1587 | 626k | if (k > 9) { |
1588 | 40.1k | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
1589 | 40.1k | } |
1590 | 626k | if (nd <= DBL_DIG |
1591 | 626k | && Flt_Rounds == 1 |
1592 | 626k | ) { |
1593 | 595k | if (!e) |
1594 | 12.6k | goto ret; |
1595 | 582k | if (e > 0) { |
1596 | 537k | if (e <= Ten_pmax) { |
1597 | 27.5k | dval(&rv) *= tens[e]; |
1598 | 27.5k | goto ret; |
1599 | 27.5k | } |
1600 | 509k | i = DBL_DIG - nd; |
1601 | 509k | if (e <= Ten_pmax + i) { |
1602 | | /* A fancier test would sometimes let us do |
1603 | | * this for larger i values. |
1604 | | */ |
1605 | 5.28k | e -= i; |
1606 | 5.28k | dval(&rv) *= tens[i]; |
1607 | 5.28k | dval(&rv) *= tens[e]; |
1608 | 5.28k | goto ret; |
1609 | 5.28k | } |
1610 | 509k | } |
1611 | 45.0k | else if (e >= -Ten_pmax) { |
1612 | 26.1k | dval(&rv) /= tens[-e]; |
1613 | 26.1k | goto ret; |
1614 | 26.1k | } |
1615 | 582k | } |
1616 | 554k | e1 += nd - k; |
1617 | | |
1618 | 554k | bc.scale = 0; |
1619 | | |
1620 | | /* Get starting approximation = rv * 10**e1 */ |
1621 | | |
1622 | 554k | if (e1 > 0) { |
1623 | 520k | if ((i = e1 & 15)) |
1624 | 508k | dval(&rv) *= tens[i]; |
1625 | 520k | if (e1 &= ~15) { |
1626 | 512k | if (e1 > DBL_MAX_10_EXP) |
1627 | 476k | goto ovfl; |
1628 | 35.5k | e1 >>= 4; |
1629 | 104k | for(j = 0; e1 > 1; j++, e1 >>= 1) |
1630 | 69.4k | if (e1 & 1) |
1631 | 32.7k | dval(&rv) *= bigtens[j]; |
1632 | | /* The last multiplication could overflow. */ |
1633 | 35.5k | word0(&rv) -= P*Exp_msk1; |
1634 | 35.5k | dval(&rv) *= bigtens[j]; |
1635 | 35.5k | if ((z = word0(&rv) & Exp_mask) |
1636 | 35.5k | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
1637 | 937 | goto ovfl; |
1638 | 34.5k | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
1639 | | /* set to largest number */ |
1640 | | /* (Can't trust DBL_MAX) */ |
1641 | 577 | word0(&rv) = Big0; |
1642 | 577 | word1(&rv) = Big1; |
1643 | 577 | } |
1644 | 34.0k | else |
1645 | 34.0k | word0(&rv) += P*Exp_msk1; |
1646 | 34.5k | } |
1647 | 520k | } |
1648 | 34.4k | else if (e1 < 0) { |
1649 | | /* The input decimal value lies in [10**e1, 10**(e1+16)). |
1650 | | |
1651 | | If e1 <= -512, underflow immediately. |
1652 | | If e1 <= -256, set bc.scale to 2*P. |
1653 | | |
1654 | | So for input value < 1e-256, bc.scale is always set; |
1655 | | for input value >= 1e-240, bc.scale is never set. |
1656 | | For input values in [1e-256, 1e-240), bc.scale may or may |
1657 | | not be set. */ |
1658 | | |
1659 | 31.3k | e1 = -e1; |
1660 | 31.3k | if ((i = e1 & 15)) |
1661 | 27.5k | dval(&rv) /= tens[i]; |
1662 | 31.3k | if (e1 >>= 4) { |
1663 | 23.7k | if (e1 >= 1 << n_bigtens) |
1664 | 1.30k | goto undfl; |
1665 | 22.4k | if (e1 & Scale_Bit) |
1666 | 18.0k | bc.scale = 2*P; |
1667 | 119k | for(j = 0; e1 > 0; j++, e1 >>= 1) |
1668 | 97.2k | if (e1 & 1) |
1669 | 56.7k | dval(&rv) *= tinytens[j]; |
1670 | 22.4k | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
1671 | 18.0k | >> Exp_shift)) > 0) { |
1672 | | /* scaled rv is denormal; clear j low bits */ |
1673 | 16.5k | if (j >= 32) { |
1674 | 9.43k | word1(&rv) = 0; |
1675 | 9.43k | if (j >= 53) |
1676 | 5.24k | word0(&rv) = (P+2)*Exp_msk1; |
1677 | 4.19k | else |
1678 | 4.19k | word0(&rv) &= 0xffffffff << (j-32); |
1679 | 9.43k | } |
1680 | 7.16k | else |
1681 | 7.16k | word1(&rv) &= 0xffffffff << j; |
1682 | 16.5k | } |
1683 | 22.4k | if (!dval(&rv)) |
1684 | 0 | goto undfl; |
1685 | 22.4k | } |
1686 | 31.3k | } |
1687 | | |
1688 | | /* Now the hard part -- adjusting rv to the correct value.*/ |
1689 | | |
1690 | | /* Put digits into bd: true value = bd * 10^e */ |
1691 | | |
1692 | 75.3k | bc.nd = nd; |
1693 | 75.3k | bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ |
1694 | | /* to silence an erroneous warning about bc.nd0 */ |
1695 | | /* possibly not being initialized. */ |
1696 | 75.3k | if (nd > STRTOD_DIGLIM) { |
1697 | | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ |
1698 | | /* minimum number of decimal digits to distinguish double values */ |
1699 | | /* in IEEE arithmetic. */ |
1700 | | |
1701 | | /* Truncate input to 18 significant digits, then discard any trailing |
1702 | | zeros on the result by updating nd, nd0, e and y suitably. (There's |
1703 | | no need to update z; it's not reused beyond this point.) */ |
1704 | 60.6k | for (i = 18; i > 0; ) { |
1705 | | /* scan back until we hit a nonzero digit. significant digit 'i' |
1706 | | is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ |
1707 | 60.6k | --i; |
1708 | 60.6k | if (s0[i < nd0 ? i : i+1] != '0') { |
1709 | 9.97k | ++i; |
1710 | 9.97k | break; |
1711 | 9.97k | } |
1712 | 60.6k | } |
1713 | 9.97k | e += nd - i; |
1714 | 9.97k | nd = i; |
1715 | 9.97k | if (nd0 > nd) |
1716 | 7.06k | nd0 = nd; |
1717 | 9.97k | if (nd < 9) { /* must recompute y */ |
1718 | 3.84k | y = 0; |
1719 | 20.5k | for(i = 0; i < nd0; ++i) |
1720 | 16.7k | y = 10*y + s0[i] - '0'; |
1721 | 10.2k | for(; i < nd; ++i) |
1722 | 6.43k | y = 10*y + s0[i+1] - '0'; |
1723 | 3.84k | } |
1724 | 9.97k | } |
1725 | 75.3k | bd0 = s2b(s0, nd0, nd, y); |
1726 | 75.3k | if (bd0 == NULL) |
1727 | 0 | goto failed_malloc; |
1728 | | |
1729 | | /* Notation for the comments below. Write: |
1730 | | |
1731 | | - dv for the absolute value of the number represented by the original |
1732 | | decimal input string. |
1733 | | |
1734 | | - if we've truncated dv, write tdv for the truncated value. |
1735 | | Otherwise, set tdv == dv. |
1736 | | |
1737 | | - srv for the quantity rv/2^bc.scale; so srv is the current binary |
1738 | | approximation to tdv (and dv). It should be exactly representable |
1739 | | in an IEEE 754 double. |
1740 | | */ |
1741 | | |
1742 | 95.3k | for(;;) { |
1743 | | |
1744 | | /* This is the main correction loop for _Py_dg_strtod. |
1745 | | |
1746 | | We've got a decimal value tdv, and a floating-point approximation |
1747 | | srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is |
1748 | | close enough (i.e., within 0.5 ulps) to tdv, and to compute a new |
1749 | | approximation if not. |
1750 | | |
1751 | | To determine whether srv is close enough to tdv, compute integers |
1752 | | bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) |
1753 | | respectively, and then use integer arithmetic to determine whether |
1754 | | |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). |
1755 | | */ |
1756 | | |
1757 | 95.3k | bd = Balloc(bd0->k); |
1758 | 95.3k | if (bd == NULL) { |
1759 | 0 | goto failed_malloc; |
1760 | 0 | } |
1761 | 95.3k | Bcopy(bd, bd0); |
1762 | 95.3k | bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */ |
1763 | 95.3k | if (bb == NULL) { |
1764 | 0 | goto failed_malloc; |
1765 | 0 | } |
1766 | | /* Record whether lsb of bb is odd, in case we need this |
1767 | | for the round-to-even step later. */ |
1768 | 95.3k | odd = bb->x[0] & 1; |
1769 | | |
1770 | | /* tdv = bd * 10**e; srv = bb * 2**bbe */ |
1771 | 95.3k | bs = i2b(1); |
1772 | 95.3k | if (bs == NULL) { |
1773 | 0 | goto failed_malloc; |
1774 | 0 | } |
1775 | | |
1776 | 95.3k | if (e >= 0) { |
1777 | 46.9k | bb2 = bb5 = 0; |
1778 | 46.9k | bd2 = bd5 = e; |
1779 | 46.9k | } |
1780 | 48.4k | else { |
1781 | 48.4k | bb2 = bb5 = -e; |
1782 | 48.4k | bd2 = bd5 = 0; |
1783 | 48.4k | } |
1784 | 95.3k | if (bbe >= 0) |
1785 | 48.8k | bb2 += bbe; |
1786 | 46.5k | else |
1787 | 46.5k | bd2 -= bbe; |
1788 | 95.3k | bs2 = bb2; |
1789 | 95.3k | bb2++; |
1790 | 95.3k | bd2++; |
1791 | | |
1792 | | /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, |
1793 | | and bs == 1, so: |
1794 | | |
1795 | | tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) |
1796 | | srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) |
1797 | | 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) |
1798 | | |
1799 | | It follows that: |
1800 | | |
1801 | | M * tdv = bd * 2**bd2 * 5**bd5 |
1802 | | M * srv = bb * 2**bb2 * 5**bb5 |
1803 | | M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 |
1804 | | |
1805 | | for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but |
1806 | | this fact is not needed below.) |
1807 | | */ |
1808 | | |
1809 | | /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ |
1810 | 95.3k | i = bb2 < bd2 ? bb2 : bd2; |
1811 | 95.3k | if (i > bs2) |
1812 | 46.2k | i = bs2; |
1813 | 95.3k | if (i > 0) { |
1814 | 94.6k | bb2 -= i; |
1815 | 94.6k | bd2 -= i; |
1816 | 94.6k | bs2 -= i; |
1817 | 94.6k | } |
1818 | | |
1819 | | /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ |
1820 | 95.3k | if (bb5 > 0) { |
1821 | 48.4k | bs = pow5mult(bs, bb5); |
1822 | 48.4k | if (bs == NULL) { |
1823 | 0 | goto failed_malloc; |
1824 | 0 | } |
1825 | 48.4k | Bigint *bb1 = mult(bs, bb); |
1826 | 48.4k | Bfree(bb); |
1827 | 48.4k | bb = bb1; |
1828 | 48.4k | if (bb == NULL) { |
1829 | 0 | goto failed_malloc; |
1830 | 0 | } |
1831 | 48.4k | } |
1832 | 95.3k | if (bb2 > 0) { |
1833 | 95.3k | bb = lshift(bb, bb2); |
1834 | 95.3k | if (bb == NULL) { |
1835 | 0 | goto failed_malloc; |
1836 | 0 | } |
1837 | 95.3k | } |
1838 | 95.3k | if (bd5 > 0) { |
1839 | 41.0k | bd = pow5mult(bd, bd5); |
1840 | 41.0k | if (bd == NULL) { |
1841 | 0 | goto failed_malloc; |
1842 | 0 | } |
1843 | 41.0k | } |
1844 | 95.3k | if (bd2 > 0) { |
1845 | 46.2k | bd = lshift(bd, bd2); |
1846 | 46.2k | if (bd == NULL) { |
1847 | 0 | goto failed_malloc; |
1848 | 0 | } |
1849 | 46.2k | } |
1850 | 95.3k | if (bs2 > 0) { |
1851 | 46.0k | bs = lshift(bs, bs2); |
1852 | 46.0k | if (bs == NULL) { |
1853 | 0 | goto failed_malloc; |
1854 | 0 | } |
1855 | 46.0k | } |
1856 | | |
1857 | | /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), |
1858 | | respectively. Compute the difference |tdv - srv|, and compare |
1859 | | with 0.5 ulp(srv). */ |
1860 | | |
1861 | 95.3k | delta = diff(bb, bd); |
1862 | 95.3k | if (delta == NULL) { |
1863 | 0 | goto failed_malloc; |
1864 | 0 | } |
1865 | 95.3k | dsign = delta->sign; |
1866 | 95.3k | delta->sign = 0; |
1867 | 95.3k | i = cmp(delta, bs); |
1868 | 95.3k | if (bc.nd > nd && i <= 0) { |
1869 | 9.97k | if (dsign) |
1870 | 6.26k | break; /* Must use bigcomp(). */ |
1871 | | |
1872 | | /* Here rv overestimates the truncated decimal value by at most |
1873 | | 0.5 ulp(rv). Hence rv either overestimates the true decimal |
1874 | | value by <= 0.5 ulp(rv), or underestimates it by some small |
1875 | | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of |
1876 | | the true decimal value, so it's possible to exit. |
1877 | | |
1878 | | Exception: if scaled rv is a normal exact power of 2, but not |
1879 | | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the |
1880 | | next double, so the correctly rounded result is either rv - 0.5 |
1881 | | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ |
1882 | | |
1883 | 3.70k | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { |
1884 | | /* rv can't be 0, since it's an overestimate for some |
1885 | | nonzero value. So rv is a normal power of 2. */ |
1886 | 1.16k | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; |
1887 | | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if |
1888 | | rv / 2^bc.scale >= 2^-1021. */ |
1889 | 1.16k | if (j - bc.scale >= 2) { |
1890 | 768 | dval(&rv) -= 0.5 * sulp(&rv, &bc); |
1891 | 768 | break; /* Use bigcomp. */ |
1892 | 768 | } |
1893 | 1.16k | } |
1894 | | |
1895 | 2.93k | { |
1896 | 2.93k | bc.nd = nd; |
1897 | 2.93k | i = -1; /* Discarded digits make delta smaller. */ |
1898 | 2.93k | } |
1899 | 2.93k | } |
1900 | | |
1901 | 88.3k | if (i < 0) { |
1902 | | /* Error is less than half an ulp -- check for |
1903 | | * special case of mantissa a power of two. |
1904 | | */ |
1905 | 44.5k | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
1906 | 44.5k | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
1907 | 44.5k | ) { |
1908 | 41.4k | break; |
1909 | 41.4k | } |
1910 | 3.08k | if (!delta->x[0] && delta->wds <= 1) { |
1911 | | /* exact result */ |
1912 | 417 | break; |
1913 | 417 | } |
1914 | 2.66k | delta = lshift(delta,Log2P); |
1915 | 2.66k | if (delta == NULL) { |
1916 | 0 | goto failed_malloc; |
1917 | 0 | } |
1918 | 2.66k | if (cmp(delta, bs) > 0) |
1919 | 882 | goto drop_down; |
1920 | 1.78k | break; |
1921 | 2.66k | } |
1922 | 43.7k | if (i == 0) { |
1923 | | /* exactly half-way between */ |
1924 | 3.57k | if (dsign) { |
1925 | 1.92k | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
1926 | 1.92k | && word1(&rv) == ( |
1927 | 1.05k | (bc.scale && |
1928 | 1.05k | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
1929 | 0 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
1930 | 1.05k | 0xffffffff)) { |
1931 | | /*boundary case -- increment exponent*/ |
1932 | 643 | word0(&rv) = (word0(&rv) & Exp_mask) |
1933 | 643 | + Exp_msk1 |
1934 | 643 | ; |
1935 | 643 | word1(&rv) = 0; |
1936 | | /* dsign = 0; */ |
1937 | 643 | break; |
1938 | 643 | } |
1939 | 1.92k | } |
1940 | 1.64k | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
1941 | 882 | drop_down: |
1942 | | /* boundary case -- decrement exponent */ |
1943 | 882 | if (bc.scale) { |
1944 | 0 | L = word0(&rv) & Exp_mask; |
1945 | 0 | if (L <= (2*P+1)*Exp_msk1) { |
1946 | 0 | if (L > (P+2)*Exp_msk1) |
1947 | | /* round even ==> */ |
1948 | | /* accept rv */ |
1949 | 0 | break; |
1950 | | /* rv = smallest denormal */ |
1951 | 0 | if (bc.nd > nd) |
1952 | 0 | break; |
1953 | 0 | goto undfl; |
1954 | 0 | } |
1955 | 0 | } |
1956 | 882 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
1957 | 882 | word0(&rv) = L | Bndry_mask1; |
1958 | 882 | word1(&rv) = 0xffffffff; |
1959 | 882 | break; |
1960 | 882 | } |
1961 | 2.93k | if (!odd) |
1962 | 2.26k | break; |
1963 | 664 | if (dsign) |
1964 | 307 | dval(&rv) += sulp(&rv, &bc); |
1965 | 357 | else { |
1966 | 357 | dval(&rv) -= sulp(&rv, &bc); |
1967 | 357 | if (!dval(&rv)) { |
1968 | 0 | if (bc.nd >nd) |
1969 | 0 | break; |
1970 | 0 | goto undfl; |
1971 | 0 | } |
1972 | 357 | } |
1973 | | /* dsign = 1 - dsign; */ |
1974 | 664 | break; |
1975 | 664 | } |
1976 | 40.2k | if ((aadj = ratio(delta, bs)) <= 2.) { |
1977 | 29.4k | if (dsign) |
1978 | 12.1k | aadj = aadj1 = 1.; |
1979 | 17.3k | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
1980 | 12.8k | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
1981 | 0 | if (bc.nd >nd) |
1982 | 0 | break; |
1983 | 0 | goto undfl; |
1984 | 0 | } |
1985 | 12.8k | aadj = 1.; |
1986 | 12.8k | aadj1 = -1.; |
1987 | 12.8k | } |
1988 | 4.45k | else { |
1989 | | /* special case -- power of FLT_RADIX to be */ |
1990 | | /* rounded down... */ |
1991 | | |
1992 | 4.45k | if (aadj < 2./FLT_RADIX) |
1993 | 0 | aadj = 1./FLT_RADIX; |
1994 | 4.45k | else |
1995 | 4.45k | aadj *= 0.5; |
1996 | 4.45k | aadj1 = -aadj; |
1997 | 4.45k | } |
1998 | 29.4k | } |
1999 | 10.8k | else { |
2000 | 10.8k | aadj *= 0.5; |
2001 | 10.8k | aadj1 = dsign ? aadj : -aadj; |
2002 | 10.8k | if (Flt_Rounds == 0) |
2003 | 0 | aadj1 += 0.5; |
2004 | 10.8k | } |
2005 | 40.2k | y = word0(&rv) & Exp_mask; |
2006 | | |
2007 | | /* Check for overflow */ |
2008 | | |
2009 | 40.2k | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
2010 | 2.23k | dval(&rv0) = dval(&rv); |
2011 | 2.23k | word0(&rv) -= P*Exp_msk1; |
2012 | 2.23k | adj.d = aadj1 * ulp(&rv); |
2013 | 2.23k | dval(&rv) += adj.d; |
2014 | 2.23k | if ((word0(&rv) & Exp_mask) >= |
2015 | 2.23k | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
2016 | 1.58k | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { |
2017 | 1.08k | goto ovfl; |
2018 | 1.08k | } |
2019 | 506 | word0(&rv) = Big0; |
2020 | 506 | word1(&rv) = Big1; |
2021 | 506 | goto cont; |
2022 | 1.58k | } |
2023 | 642 | else |
2024 | 642 | word0(&rv) += P*Exp_msk1; |
2025 | 2.23k | } |
2026 | 37.9k | else { |
2027 | 37.9k | if (bc.scale && y <= 2*P*Exp_msk1) { |
2028 | 13.3k | if (aadj <= 0x7fffffff) { |
2029 | 13.3k | if ((z = (ULong)aadj) <= 0) |
2030 | 679 | z = 1; |
2031 | 13.3k | aadj = z; |
2032 | 13.3k | aadj1 = dsign ? aadj : -aadj; |
2033 | 13.3k | } |
2034 | 13.3k | dval(&aadj2) = aadj1; |
2035 | 13.3k | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
2036 | 13.3k | aadj1 = dval(&aadj2); |
2037 | 13.3k | } |
2038 | 37.9k | adj.d = aadj1 * ulp(&rv); |
2039 | 37.9k | dval(&rv) += adj.d; |
2040 | 37.9k | } |
2041 | 38.6k | z = word0(&rv) & Exp_mask; |
2042 | 38.6k | if (bc.nd == nd) { |
2043 | 34.4k | if (!bc.scale) |
2044 | 21.1k | if (y == z) { |
2045 | | /* Can we stop now? */ |
2046 | 19.7k | L = (Long)aadj; |
2047 | 19.7k | aadj -= L; |
2048 | | /* The tolerances below are conservative. */ |
2049 | 19.7k | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
2050 | 19.7k | if (aadj < .4999999 || aadj > .5000001) |
2051 | 19.1k | break; |
2052 | 19.7k | } |
2053 | 3 | else if (aadj < .4999999/FLT_RADIX) |
2054 | 3 | break; |
2055 | 19.7k | } |
2056 | 34.4k | } |
2057 | 20.0k | cont: |
2058 | 20.0k | Bfree(bb); bb = NULL; |
2059 | 20.0k | Bfree(bd); bd = NULL; |
2060 | 20.0k | Bfree(bs); bs = NULL; |
2061 | 20.0k | Bfree(delta); delta = NULL; |
2062 | 20.0k | } |
2063 | 74.3k | if (bc.nd > nd) { |
2064 | 7.03k | error = bigcomp(&rv, s0, &bc); |
2065 | 7.03k | if (error) |
2066 | 0 | goto failed_malloc; |
2067 | 7.03k | } |
2068 | | |
2069 | 74.3k | if (bc.scale) { |
2070 | 18.0k | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
2071 | 18.0k | word1(&rv0) = 0; |
2072 | 18.0k | dval(&rv) *= dval(&rv0); |
2073 | 18.0k | } |
2074 | | |
2075 | 156k | ret: |
2076 | 156k | result = sign ? -dval(&rv) : dval(&rv); |
2077 | 156k | goto done; |
2078 | | |
2079 | 23 | parse_error: |
2080 | 23 | result = 0.0; |
2081 | 23 | goto done; |
2082 | | |
2083 | 0 | failed_malloc: |
2084 | 0 | errno = ENOMEM; |
2085 | 0 | result = -1.0; |
2086 | 0 | goto done; |
2087 | | |
2088 | 1.30k | undfl: |
2089 | 1.30k | result = sign ? -0.0 : 0.0; |
2090 | 1.30k | goto done; |
2091 | | |
2092 | 478k | ovfl: |
2093 | 478k | errno = ERANGE; |
2094 | | /* Can't trust HUGE_VAL */ |
2095 | 478k | word0(&rv) = Exp_mask; |
2096 | 478k | word1(&rv) = 0; |
2097 | 478k | result = sign ? -dval(&rv) : dval(&rv); |
2098 | 478k | goto done; |
2099 | | |
2100 | 636k | done: |
2101 | 636k | Bfree(bb); |
2102 | 636k | Bfree(bd); |
2103 | 636k | Bfree(bs); |
2104 | 636k | Bfree(bd0); |
2105 | 636k | Bfree(delta); |
2106 | 636k | return result; |
2107 | | |
2108 | 74.3k | } |
2109 | | |
2110 | | static char * |
2111 | | rv_alloc(int i) |
2112 | 55.1k | { |
2113 | 55.1k | int j, k, *r; |
2114 | | |
2115 | 55.1k | j = sizeof(ULong); |
2116 | 55.1k | for(k = 0; |
2117 | 55.1k | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
2118 | 55.1k | j <<= 1) |
2119 | 0 | k++; |
2120 | 55.1k | r = (int*)Balloc(k); |
2121 | 55.1k | if (r == NULL) |
2122 | 0 | return NULL; |
2123 | 55.1k | *r = k; |
2124 | 55.1k | return (char *)(r+1); |
2125 | 55.1k | } |
2126 | | |
2127 | | static char * |
2128 | | nrv_alloc(const char *s, char **rve, int n) |
2129 | 5.32k | { |
2130 | 5.32k | char *rv, *t; |
2131 | | |
2132 | 5.32k | rv = rv_alloc(n); |
2133 | 5.32k | if (rv == NULL) |
2134 | 0 | return NULL; |
2135 | 5.32k | t = rv; |
2136 | 15.4k | while((*t = *s++)) t++; |
2137 | 5.32k | if (rve) |
2138 | 5.32k | *rve = t; |
2139 | 5.32k | return rv; |
2140 | 5.32k | } |
2141 | | |
2142 | | /* freedtoa(s) must be used to free values s returned by dtoa |
2143 | | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
2144 | | * but for consistency with earlier versions of dtoa, it is optional |
2145 | | * when MULTIPLE_THREADS is not defined. |
2146 | | */ |
2147 | | |
2148 | | void |
2149 | | _Py_dg_freedtoa(char *s) |
2150 | 55.1k | { |
2151 | 55.1k | Bigint *b = (Bigint *)((int *)s - 1); |
2152 | 55.1k | b->maxwds = 1 << (b->k = *(int*)b); |
2153 | 55.1k | Bfree(b); |
2154 | 55.1k | } |
2155 | | |
2156 | | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
2157 | | * |
2158 | | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
2159 | | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
2160 | | * |
2161 | | * Modifications: |
2162 | | * 1. Rather than iterating, we use a simple numeric overestimate |
2163 | | * to determine k = floor(log10(d)). We scale relevant |
2164 | | * quantities using O(log2(k)) rather than O(k) multiplications. |
2165 | | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
2166 | | * try to generate digits strictly left to right. Instead, we |
2167 | | * compute with fewer bits and propagate the carry if necessary |
2168 | | * when rounding the final digit up. This is often faster. |
2169 | | * 3. Under the assumption that input will be rounded nearest, |
2170 | | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
2171 | | * That is, we allow equality in stopping tests when the |
2172 | | * round-nearest rule will give the same floating-point value |
2173 | | * as would satisfaction of the stopping test with strict |
2174 | | * inequality. |
2175 | | * 4. We remove common factors of powers of 2 from relevant |
2176 | | * quantities. |
2177 | | * 5. When converting floating-point integers less than 1e16, |
2178 | | * we use floating-point arithmetic rather than resorting |
2179 | | * to multiple-precision integers. |
2180 | | * 6. When asked to produce fewer than 15 digits, we first try |
2181 | | * to get by with floating-point arithmetic; we resort to |
2182 | | * multiple-precision integer arithmetic only if we cannot |
2183 | | * guarantee that the floating-point calculation has given |
2184 | | * the correctly rounded result. For k requested digits and |
2185 | | * "uniformly" distributed input, the probability is |
2186 | | * something like 10^(k-15) that we must resort to the Long |
2187 | | * calculation. |
2188 | | */ |
2189 | | |
2190 | | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
2191 | | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
2192 | | call to _Py_dg_freedtoa. */ |
2193 | | |
2194 | | char * |
2195 | | _Py_dg_dtoa(double dd, int mode, int ndigits, |
2196 | | int *decpt, int *sign, char **rve) |
2197 | 55.1k | { |
2198 | | /* Arguments ndigits, decpt, sign are similar to those |
2199 | | of ecvt and fcvt; trailing zeros are suppressed from |
2200 | | the returned string. If not null, *rve is set to point |
2201 | | to the end of the return value. If d is +-Infinity or NaN, |
2202 | | then *decpt is set to 9999. |
2203 | | |
2204 | | mode: |
2205 | | 0 ==> shortest string that yields d when read in |
2206 | | and rounded to nearest. |
2207 | | 1 ==> like 0, but with Steele & White stopping rule; |
2208 | | e.g. with IEEE P754 arithmetic , mode 0 gives |
2209 | | 1e23 whereas mode 1 gives 9.999999999999999e22. |
2210 | | 2 ==> max(1,ndigits) significant digits. This gives a |
2211 | | return value similar to that of ecvt, except |
2212 | | that trailing zeros are suppressed. |
2213 | | 3 ==> through ndigits past the decimal point. This |
2214 | | gives a return value similar to that from fcvt, |
2215 | | except that trailing zeros are suppressed, and |
2216 | | ndigits can be negative. |
2217 | | 4,5 ==> similar to 2 and 3, respectively, but (in |
2218 | | round-nearest mode) with the tests of mode 0 to |
2219 | | possibly return a shorter string that rounds to d. |
2220 | | With IEEE arithmetic and compilation with |
2221 | | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
2222 | | as modes 2 and 3 when FLT_ROUNDS != 1. |
2223 | | 6-9 ==> Debugging modes similar to mode - 4: don't try |
2224 | | fast floating-point estimate (if applicable). |
2225 | | |
2226 | | Values of mode other than 0-9 are treated as mode 0. |
2227 | | |
2228 | | Sufficient space is allocated to the return value |
2229 | | to hold the suppressed trailing zeros. |
2230 | | */ |
2231 | | |
2232 | 55.1k | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
2233 | 55.1k | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
2234 | 55.1k | spec_case, try_quick; |
2235 | 55.1k | Long L; |
2236 | 55.1k | int denorm; |
2237 | 55.1k | ULong x; |
2238 | 55.1k | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
2239 | 55.1k | U d2, eps, u; |
2240 | 55.1k | double ds; |
2241 | 55.1k | char *s, *s0; |
2242 | | |
2243 | | /* set pointers to NULL, to silence gcc compiler warnings and make |
2244 | | cleanup easier on error */ |
2245 | 55.1k | mlo = mhi = S = 0; |
2246 | 55.1k | s0 = 0; |
2247 | | |
2248 | 55.1k | u.d = dd; |
2249 | 55.1k | if (word0(&u) & Sign_bit) { |
2250 | | /* set sign for everything, including 0's and NaNs */ |
2251 | 14.1k | *sign = 1; |
2252 | 14.1k | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
2253 | 14.1k | } |
2254 | 41.0k | else |
2255 | 41.0k | *sign = 0; |
2256 | | |
2257 | | /* quick return for Infinities, NaNs and zeros */ |
2258 | 55.1k | if ((word0(&u) & Exp_mask) == Exp_mask) |
2259 | 692 | { |
2260 | | /* Infinity or NaN */ |
2261 | 692 | *decpt = 9999; |
2262 | 692 | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
2263 | 692 | return nrv_alloc("Infinity", rve, 8); |
2264 | 0 | return nrv_alloc("NaN", rve, 3); |
2265 | 692 | } |
2266 | 54.4k | if (!dval(&u)) { |
2267 | 4.63k | *decpt = 1; |
2268 | 4.63k | return nrv_alloc("0", rve, 1); |
2269 | 4.63k | } |
2270 | | |
2271 | | /* compute k = floor(log10(d)). The computation may leave k |
2272 | | one too large, but should never leave k too small. */ |
2273 | 49.8k | b = d2b(&u, &be, &bbits); |
2274 | 49.8k | if (b == NULL) |
2275 | 0 | goto failed_malloc; |
2276 | 49.8k | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
2277 | 45.7k | dval(&d2) = dval(&u); |
2278 | 45.7k | word0(&d2) &= Frac_mask1; |
2279 | 45.7k | word0(&d2) |= Exp_11; |
2280 | | |
2281 | | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
2282 | | * log10(x) = log(x) / log(10) |
2283 | | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
2284 | | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
2285 | | * |
2286 | | * This suggests computing an approximation k to log10(d) by |
2287 | | * |
2288 | | * k = (i - Bias)*0.301029995663981 |
2289 | | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
2290 | | * |
2291 | | * We want k to be too large rather than too small. |
2292 | | * The error in the first-order Taylor series approximation |
2293 | | * is in our favor, so we just round up the constant enough |
2294 | | * to compensate for any error in the multiplication of |
2295 | | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
2296 | | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
2297 | | * adding 1e-13 to the constant term more than suffices. |
2298 | | * Hence we adjust the constant term to 0.1760912590558. |
2299 | | * (We could get a more accurate k by invoking log10, |
2300 | | * but this is probably not worthwhile.) |
2301 | | */ |
2302 | | |
2303 | 45.7k | i -= Bias; |
2304 | 45.7k | denorm = 0; |
2305 | 45.7k | } |
2306 | 4.12k | else { |
2307 | | /* d is denormalized */ |
2308 | | |
2309 | 4.12k | i = bbits + be + (Bias + (P-1) - 1); |
2310 | 4.12k | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
2311 | 4.12k | : word1(&u) << (32 - i); |
2312 | 4.12k | dval(&d2) = x; |
2313 | 4.12k | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
2314 | 4.12k | i -= (Bias + (P-1) - 1) + 1; |
2315 | 4.12k | denorm = 1; |
2316 | 4.12k | } |
2317 | 49.8k | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
2318 | 49.8k | i*0.301029995663981; |
2319 | 49.8k | k = (int)ds; |
2320 | 49.8k | if (ds < 0. && ds != k) |
2321 | 12.1k | k--; /* want k = floor(ds) */ |
2322 | 49.8k | k_check = 1; |
2323 | 49.8k | if (k >= 0 && k <= Ten_pmax) { |
2324 | 23.0k | if (dval(&u) < tens[k]) |
2325 | 2.18k | k--; |
2326 | 23.0k | k_check = 0; |
2327 | 23.0k | } |
2328 | 49.8k | j = bbits - i - 1; |
2329 | 49.8k | if (j >= 0) { |
2330 | 19.7k | b2 = 0; |
2331 | 19.7k | s2 = j; |
2332 | 19.7k | } |
2333 | 30.1k | else { |
2334 | 30.1k | b2 = -j; |
2335 | 30.1k | s2 = 0; |
2336 | 30.1k | } |
2337 | 49.8k | if (k >= 0) { |
2338 | 37.1k | b5 = 0; |
2339 | 37.1k | s5 = k; |
2340 | 37.1k | s2 += k; |
2341 | 37.1k | } |
2342 | 12.6k | else { |
2343 | 12.6k | b2 -= k; |
2344 | 12.6k | b5 = -k; |
2345 | 12.6k | s5 = 0; |
2346 | 12.6k | } |
2347 | 49.8k | if (mode < 0 || mode > 9) |
2348 | 0 | mode = 0; |
2349 | | |
2350 | 49.8k | try_quick = 1; |
2351 | | |
2352 | 49.8k | if (mode > 5) { |
2353 | 0 | mode -= 4; |
2354 | 0 | try_quick = 0; |
2355 | 0 | } |
2356 | 49.8k | leftright = 1; |
2357 | 49.8k | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
2358 | | /* silence erroneous "gcc -Wall" warning. */ |
2359 | 49.8k | switch(mode) { |
2360 | 49.8k | case 0: |
2361 | 49.8k | case 1: |
2362 | 49.8k | i = 18; |
2363 | 49.8k | ndigits = 0; |
2364 | 49.8k | break; |
2365 | 0 | case 2: |
2366 | 0 | leftright = 0; |
2367 | 0 | _Py_FALLTHROUGH; |
2368 | 0 | case 4: |
2369 | 0 | if (ndigits <= 0) |
2370 | 0 | ndigits = 1; |
2371 | 0 | ilim = ilim1 = i = ndigits; |
2372 | 0 | break; |
2373 | 0 | case 3: |
2374 | 0 | leftright = 0; |
2375 | 0 | _Py_FALLTHROUGH; |
2376 | 0 | case 5: |
2377 | 0 | i = ndigits + k + 1; |
2378 | 0 | ilim = i; |
2379 | 0 | ilim1 = i - 1; |
2380 | 0 | if (i <= 0) |
2381 | 0 | i = 1; |
2382 | 49.8k | } |
2383 | 49.8k | s0 = rv_alloc(i); |
2384 | 49.8k | if (s0 == NULL) |
2385 | 0 | goto failed_malloc; |
2386 | 49.8k | s = s0; |
2387 | | |
2388 | | |
2389 | 49.8k | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
2390 | | |
2391 | | /* Try to get by with floating-point arithmetic. */ |
2392 | |
|
2393 | 0 | i = 0; |
2394 | 0 | dval(&d2) = dval(&u); |
2395 | 0 | k0 = k; |
2396 | 0 | ilim0 = ilim; |
2397 | 0 | ieps = 2; /* conservative */ |
2398 | 0 | if (k > 0) { |
2399 | 0 | ds = tens[k&0xf]; |
2400 | 0 | j = k >> 4; |
2401 | 0 | if (j & Bletch) { |
2402 | | /* prevent overflows */ |
2403 | 0 | j &= Bletch - 1; |
2404 | 0 | dval(&u) /= bigtens[n_bigtens-1]; |
2405 | 0 | ieps++; |
2406 | 0 | } |
2407 | 0 | for(; j; j >>= 1, i++) |
2408 | 0 | if (j & 1) { |
2409 | 0 | ieps++; |
2410 | 0 | ds *= bigtens[i]; |
2411 | 0 | } |
2412 | 0 | dval(&u) /= ds; |
2413 | 0 | } |
2414 | 0 | else if ((j1 = -k)) { |
2415 | 0 | dval(&u) *= tens[j1 & 0xf]; |
2416 | 0 | for(j = j1 >> 4; j; j >>= 1, i++) |
2417 | 0 | if (j & 1) { |
2418 | 0 | ieps++; |
2419 | 0 | dval(&u) *= bigtens[i]; |
2420 | 0 | } |
2421 | 0 | } |
2422 | 0 | if (k_check && dval(&u) < 1. && ilim > 0) { |
2423 | 0 | if (ilim1 <= 0) |
2424 | 0 | goto fast_failed; |
2425 | 0 | ilim = ilim1; |
2426 | 0 | k--; |
2427 | 0 | dval(&u) *= 10.; |
2428 | 0 | ieps++; |
2429 | 0 | } |
2430 | 0 | dval(&eps) = ieps*dval(&u) + 7.; |
2431 | 0 | word0(&eps) -= (P-1)*Exp_msk1; |
2432 | 0 | if (ilim == 0) { |
2433 | 0 | S = mhi = 0; |
2434 | 0 | dval(&u) -= 5.; |
2435 | 0 | if (dval(&u) > dval(&eps)) |
2436 | 0 | goto one_digit; |
2437 | 0 | if (dval(&u) < -dval(&eps)) |
2438 | 0 | goto no_digits; |
2439 | 0 | goto fast_failed; |
2440 | 0 | } |
2441 | 0 | if (leftright) { |
2442 | | /* Use Steele & White method of only |
2443 | | * generating digits needed. |
2444 | | */ |
2445 | 0 | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
2446 | 0 | for(i = 0;;) { |
2447 | 0 | L = (Long)dval(&u); |
2448 | 0 | dval(&u) -= L; |
2449 | 0 | *s++ = '0' + (int)L; |
2450 | 0 | if (dval(&u) < dval(&eps)) |
2451 | 0 | goto ret1; |
2452 | 0 | if (1. - dval(&u) < dval(&eps)) |
2453 | 0 | goto bump_up; |
2454 | 0 | if (++i >= ilim) |
2455 | 0 | break; |
2456 | 0 | dval(&eps) *= 10.; |
2457 | 0 | dval(&u) *= 10.; |
2458 | 0 | } |
2459 | 0 | } |
2460 | 0 | else { |
2461 | | /* Generate ilim digits, then fix them up. */ |
2462 | 0 | dval(&eps) *= tens[ilim-1]; |
2463 | 0 | for(i = 1;; i++, dval(&u) *= 10.) { |
2464 | 0 | L = (Long)(dval(&u)); |
2465 | 0 | if (!(dval(&u) -= L)) |
2466 | 0 | ilim = i; |
2467 | 0 | *s++ = '0' + (int)L; |
2468 | 0 | if (i == ilim) { |
2469 | 0 | if (dval(&u) > 0.5 + dval(&eps)) |
2470 | 0 | goto bump_up; |
2471 | 0 | else if (dval(&u) < 0.5 - dval(&eps)) { |
2472 | 0 | while(*--s == '0'); |
2473 | 0 | s++; |
2474 | 0 | goto ret1; |
2475 | 0 | } |
2476 | 0 | break; |
2477 | 0 | } |
2478 | 0 | } |
2479 | 0 | } |
2480 | 0 | fast_failed: |
2481 | 0 | s = s0; |
2482 | 0 | dval(&u) = dval(&d2); |
2483 | 0 | k = k0; |
2484 | 0 | ilim = ilim0; |
2485 | 0 | } |
2486 | | |
2487 | | /* Do we have a "small" integer? */ |
2488 | | |
2489 | 49.8k | if (be >= 0 && k <= Int_max) { |
2490 | | /* Yes. */ |
2491 | 13.4k | ds = tens[k]; |
2492 | 13.4k | if (ndigits < 0 && ilim <= 0) { |
2493 | 0 | S = mhi = 0; |
2494 | 0 | if (ilim < 0 || dval(&u) <= 5*ds) |
2495 | 0 | goto no_digits; |
2496 | 0 | goto one_digit; |
2497 | 0 | } |
2498 | 22.1k | for(i = 1;; i++, dval(&u) *= 10.) { |
2499 | 22.1k | L = (Long)(dval(&u) / ds); |
2500 | 22.1k | dval(&u) -= L*ds; |
2501 | 22.1k | *s++ = '0' + (int)L; |
2502 | 22.1k | if (!dval(&u)) { |
2503 | 13.4k | break; |
2504 | 13.4k | } |
2505 | 8.69k | if (i == ilim) { |
2506 | 0 | dval(&u) += dval(&u); |
2507 | 0 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
2508 | 0 | bump_up: |
2509 | 0 | while(*--s == '9') |
2510 | 0 | if (s == s0) { |
2511 | 0 | k++; |
2512 | 0 | *s = '0'; |
2513 | 0 | break; |
2514 | 0 | } |
2515 | 0 | ++*s++; |
2516 | 0 | } |
2517 | 0 | else { |
2518 | | /* Strip trailing zeros. This branch was missing from the |
2519 | | original dtoa.c, leading to surplus trailing zeros in |
2520 | | some cases. See bugs.python.org/issue40780. */ |
2521 | 0 | while (s > s0 && s[-1] == '0') { |
2522 | 0 | --s; |
2523 | 0 | } |
2524 | 0 | } |
2525 | 0 | break; |
2526 | 0 | } |
2527 | 8.69k | } |
2528 | 13.4k | goto ret1; |
2529 | 13.4k | } |
2530 | | |
2531 | 36.3k | m2 = b2; |
2532 | 36.3k | m5 = b5; |
2533 | 36.3k | if (leftright) { |
2534 | 36.3k | i = |
2535 | 36.3k | denorm ? be + (Bias + (P-1) - 1 + 1) : |
2536 | 36.3k | 1 + P - bbits; |
2537 | 36.3k | b2 += i; |
2538 | 36.3k | s2 += i; |
2539 | 36.3k | mhi = i2b(1); |
2540 | 36.3k | if (mhi == NULL) |
2541 | 0 | goto failed_malloc; |
2542 | 36.3k | } |
2543 | 36.3k | if (m2 > 0 && s2 > 0) { |
2544 | 31.1k | i = m2 < s2 ? m2 : s2; |
2545 | 31.1k | b2 -= i; |
2546 | 31.1k | m2 -= i; |
2547 | 31.1k | s2 -= i; |
2548 | 31.1k | } |
2549 | 36.3k | if (b5 > 0) { |
2550 | 12.6k | if (leftright) { |
2551 | 12.6k | if (m5 > 0) { |
2552 | 12.6k | mhi = pow5mult(mhi, m5); |
2553 | 12.6k | if (mhi == NULL) |
2554 | 0 | goto failed_malloc; |
2555 | 12.6k | b1 = mult(mhi, b); |
2556 | 12.6k | Bfree(b); |
2557 | 12.6k | b = b1; |
2558 | 12.6k | if (b == NULL) |
2559 | 0 | goto failed_malloc; |
2560 | 12.6k | } |
2561 | 12.6k | if ((j = b5 - m5)) { |
2562 | 0 | b = pow5mult(b, j); |
2563 | 0 | if (b == NULL) |
2564 | 0 | goto failed_malloc; |
2565 | 0 | } |
2566 | 12.6k | } |
2567 | 0 | else { |
2568 | 0 | b = pow5mult(b, b5); |
2569 | 0 | if (b == NULL) |
2570 | 0 | goto failed_malloc; |
2571 | 0 | } |
2572 | 12.6k | } |
2573 | 36.3k | S = i2b(1); |
2574 | 36.3k | if (S == NULL) |
2575 | 0 | goto failed_malloc; |
2576 | 36.3k | if (s5 > 0) { |
2577 | 20.8k | S = pow5mult(S, s5); |
2578 | 20.8k | if (S == NULL) |
2579 | 0 | goto failed_malloc; |
2580 | 20.8k | } |
2581 | | |
2582 | | /* Check for special case that d is a normalized power of 2. */ |
2583 | | |
2584 | 36.3k | spec_case = 0; |
2585 | 36.3k | if ((mode < 2 || leftright) |
2586 | 36.3k | ) { |
2587 | 36.3k | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
2588 | 36.3k | && word0(&u) & (Exp_mask & ~Exp_msk1) |
2589 | 36.3k | ) { |
2590 | | /* The special case */ |
2591 | 1.03k | b2 += Log2P; |
2592 | 1.03k | s2 += Log2P; |
2593 | 1.03k | spec_case = 1; |
2594 | 1.03k | } |
2595 | 36.3k | } |
2596 | | |
2597 | | /* Arrange for convenient computation of quotients: |
2598 | | * shift left if necessary so divisor has 4 leading 0 bits. |
2599 | | * |
2600 | | * Perhaps we should just compute leading 28 bits of S once |
2601 | | * and for all and pass them and a shift to quorem, so it |
2602 | | * can do shifts and ors to compute the numerator for q. |
2603 | | */ |
2604 | 36.3k | #define iInc 28 |
2605 | 36.3k | i = dshift(S, s2); |
2606 | 36.3k | b2 += i; |
2607 | 36.3k | m2 += i; |
2608 | 36.3k | s2 += i; |
2609 | 36.3k | if (b2 > 0) { |
2610 | 36.3k | b = lshift(b, b2); |
2611 | 36.3k | if (b == NULL) |
2612 | 0 | goto failed_malloc; |
2613 | 36.3k | } |
2614 | 36.3k | if (s2 > 0) { |
2615 | 35.7k | S = lshift(S, s2); |
2616 | 35.7k | if (S == NULL) |
2617 | 0 | goto failed_malloc; |
2618 | 35.7k | } |
2619 | 36.3k | if (k_check) { |
2620 | 26.8k | if (cmp(b,S) < 0) { |
2621 | 2.91k | k--; |
2622 | 2.91k | b = multadd(b, 10, 0); /* we botched the k estimate */ |
2623 | 2.91k | if (b == NULL) |
2624 | 0 | goto failed_malloc; |
2625 | 2.91k | if (leftright) { |
2626 | 2.91k | mhi = multadd(mhi, 10, 0); |
2627 | 2.91k | if (mhi == NULL) |
2628 | 0 | goto failed_malloc; |
2629 | 2.91k | } |
2630 | 2.91k | ilim = ilim1; |
2631 | 2.91k | } |
2632 | 26.8k | } |
2633 | 36.3k | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
2634 | 0 | if (ilim < 0) { |
2635 | | /* no digits, fcvt style */ |
2636 | 0 | no_digits: |
2637 | 0 | k = -1 - ndigits; |
2638 | 0 | goto ret; |
2639 | 0 | } |
2640 | 0 | else { |
2641 | 0 | S = multadd(S, 5, 0); |
2642 | 0 | if (S == NULL) |
2643 | 0 | goto failed_malloc; |
2644 | 0 | if (cmp(b, S) <= 0) |
2645 | 0 | goto no_digits; |
2646 | 0 | } |
2647 | 0 | one_digit: |
2648 | 0 | *s++ = '1'; |
2649 | 0 | k++; |
2650 | 0 | goto ret; |
2651 | 0 | } |
2652 | 36.3k | if (leftright) { |
2653 | 36.3k | if (m2 > 0) { |
2654 | 35.4k | mhi = lshift(mhi, m2); |
2655 | 35.4k | if (mhi == NULL) |
2656 | 0 | goto failed_malloc; |
2657 | 35.4k | } |
2658 | | |
2659 | | /* Compute mlo -- check for special case |
2660 | | * that d is a normalized power of 2. |
2661 | | */ |
2662 | | |
2663 | 36.3k | mlo = mhi; |
2664 | 36.3k | if (spec_case) { |
2665 | 1.03k | mhi = Balloc(mhi->k); |
2666 | 1.03k | if (mhi == NULL) |
2667 | 0 | goto failed_malloc; |
2668 | 1.03k | Bcopy(mhi, mlo); |
2669 | 1.03k | mhi = lshift(mhi, Log2P); |
2670 | 1.03k | if (mhi == NULL) |
2671 | 0 | goto failed_malloc; |
2672 | 1.03k | } |
2673 | | |
2674 | 162k | for(i = 1;;i++) { |
2675 | 162k | dig = quorem(b,S) + '0'; |
2676 | | /* Do we yet have the shortest decimal string |
2677 | | * that will round to d? |
2678 | | */ |
2679 | 162k | j = cmp(b, mlo); |
2680 | 162k | delta = diff(S, mhi); |
2681 | 162k | if (delta == NULL) |
2682 | 0 | goto failed_malloc; |
2683 | 162k | j1 = delta->sign ? 1 : cmp(b, delta); |
2684 | 162k | Bfree(delta); |
2685 | 162k | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
2686 | 162k | ) { |
2687 | 2.03k | if (dig == '9') |
2688 | 533 | goto round_9_up; |
2689 | 1.50k | if (j > 0) |
2690 | 782 | dig++; |
2691 | 1.50k | *s++ = dig; |
2692 | 1.50k | goto ret; |
2693 | 2.03k | } |
2694 | 160k | if (j < 0 || (j == 0 && mode != 1 |
2695 | 140k | && !(word1(&u) & 1) |
2696 | 140k | )) { |
2697 | 20.7k | if (!b->x[0] && b->wds <= 1) { |
2698 | 2.86k | goto accept_dig; |
2699 | 2.86k | } |
2700 | 17.8k | if (j1 > 0) { |
2701 | 3.42k | b = lshift(b, 1); |
2702 | 3.42k | if (b == NULL) |
2703 | 0 | goto failed_malloc; |
2704 | 3.42k | j1 = cmp(b, S); |
2705 | 3.42k | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
2706 | 3.42k | && dig++ == '9') |
2707 | 274 | goto round_9_up; |
2708 | 3.42k | } |
2709 | 20.4k | accept_dig: |
2710 | 20.4k | *s++ = dig; |
2711 | 20.4k | goto ret; |
2712 | 17.8k | } |
2713 | 139k | if (j1 > 0) { |
2714 | 13.6k | if (dig == '9') { /* possible if i == 1 */ |
2715 | 2.72k | round_9_up: |
2716 | 2.72k | *s++ = '9'; |
2717 | 2.72k | goto roundoff; |
2718 | 1.91k | } |
2719 | 11.7k | *s++ = dig + 1; |
2720 | 11.7k | goto ret; |
2721 | 13.6k | } |
2722 | 126k | *s++ = dig; |
2723 | 126k | if (i == ilim) |
2724 | 0 | break; |
2725 | 126k | b = multadd(b, 10, 0); |
2726 | 126k | if (b == NULL) |
2727 | 0 | goto failed_malloc; |
2728 | 126k | if (mlo == mhi) { |
2729 | 123k | mlo = mhi = multadd(mhi, 10, 0); |
2730 | 123k | if (mlo == NULL) |
2731 | 0 | goto failed_malloc; |
2732 | 123k | } |
2733 | 2.34k | else { |
2734 | 2.34k | mlo = multadd(mlo, 10, 0); |
2735 | 2.34k | if (mlo == NULL) |
2736 | 0 | goto failed_malloc; |
2737 | 2.34k | mhi = multadd(mhi, 10, 0); |
2738 | 2.34k | if (mhi == NULL) |
2739 | 0 | goto failed_malloc; |
2740 | 2.34k | } |
2741 | 126k | } |
2742 | 36.3k | } |
2743 | 0 | else |
2744 | 0 | for(i = 1;; i++) { |
2745 | 0 | *s++ = dig = quorem(b,S) + '0'; |
2746 | 0 | if (!b->x[0] && b->wds <= 1) { |
2747 | 0 | goto ret; |
2748 | 0 | } |
2749 | 0 | if (i >= ilim) |
2750 | 0 | break; |
2751 | 0 | b = multadd(b, 10, 0); |
2752 | 0 | if (b == NULL) |
2753 | 0 | goto failed_malloc; |
2754 | 0 | } |
2755 | | |
2756 | | /* Round off last digit */ |
2757 | | |
2758 | 0 | b = lshift(b, 1); |
2759 | 0 | if (b == NULL) |
2760 | 0 | goto failed_malloc; |
2761 | 0 | j = cmp(b, S); |
2762 | 0 | if (j > 0 || (j == 0 && dig & 1)) { |
2763 | 2.72k | roundoff: |
2764 | 2.72k | while(*--s == '9') |
2765 | 2.72k | if (s == s0) { |
2766 | 2.72k | k++; |
2767 | 2.72k | *s++ = '1'; |
2768 | 2.72k | goto ret; |
2769 | 2.72k | } |
2770 | 0 | ++*s++; |
2771 | 0 | } |
2772 | 0 | else { |
2773 | 0 | while(*--s == '0'); |
2774 | 0 | s++; |
2775 | 0 | } |
2776 | 36.3k | ret: |
2777 | 36.3k | Bfree(S); |
2778 | 36.3k | if (mhi) { |
2779 | 36.3k | if (mlo && mlo != mhi) |
2780 | 1.03k | Bfree(mlo); |
2781 | 36.3k | Bfree(mhi); |
2782 | 36.3k | } |
2783 | 49.8k | ret1: |
2784 | 49.8k | Bfree(b); |
2785 | 49.8k | *s = 0; |
2786 | 49.8k | *decpt = k + 1; |
2787 | 49.8k | if (rve) |
2788 | 49.8k | *rve = s; |
2789 | 49.8k | return s0; |
2790 | 0 | failed_malloc: |
2791 | 0 | if (S) |
2792 | 0 | Bfree(S); |
2793 | 0 | if (mlo && mlo != mhi) |
2794 | 0 | Bfree(mlo); |
2795 | 0 | if (mhi) |
2796 | 0 | Bfree(mhi); |
2797 | 0 | if (b) |
2798 | 0 | Bfree(b); |
2799 | 0 | if (s0) |
2800 | 0 | _Py_dg_freedtoa(s0); |
2801 | 0 | return NULL; |
2802 | 36.3k | } |
2803 | | |
2804 | | #endif // _PY_SHORT_FLOAT_REPR == 1 |
2805 | | |
2806 | | PyStatus |
2807 | | _PyDtoa_Init(PyInterpreterState *interp) |
2808 | 16 | { |
2809 | 16 | #if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER) |
2810 | 16 | Bigint **p5s = interp->dtoa.p5s; |
2811 | | |
2812 | | // 5**4 = 625 |
2813 | 16 | Bigint *p5 = i2b(625); |
2814 | 16 | if (p5 == NULL) { |
2815 | 0 | return PyStatus_NoMemory(); |
2816 | 0 | } |
2817 | 16 | p5s[0] = p5; |
2818 | | |
2819 | | // compute 5**8, 5**16, 5**32, ..., 5**512 |
2820 | 128 | for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) { |
2821 | 112 | p5 = mult(p5, p5); |
2822 | 112 | if (p5 == NULL) { |
2823 | 0 | return PyStatus_NoMemory(); |
2824 | 0 | } |
2825 | 112 | p5s[i] = p5; |
2826 | 112 | } |
2827 | | |
2828 | 16 | #endif |
2829 | 16 | return PyStatus_Ok(); |
2830 | 16 | } |
2831 | | |
2832 | | void |
2833 | | _PyDtoa_Fini(PyInterpreterState *interp) |
2834 | 0 | { |
2835 | 0 | #if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER) |
2836 | 0 | Bigint **p5s = interp->dtoa.p5s; |
2837 | 0 | for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) { |
2838 | 0 | Bigint *p5 = p5s[i]; |
2839 | 0 | p5s[i] = NULL; |
2840 | 0 | Bfree(p5); |
2841 | 0 | } |
2842 | 0 | #endif |
2843 | 0 | } |