Coverage Report

Created: 2025-07-04 06:49

/src/cpython/Python/perf_jit_trampoline.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Python Perf Trampoline Support - JIT Dump Implementation
3
 *
4
 * This file implements the perf jitdump API for Python's performance profiling
5
 * integration. It allows perf (Linux performance analysis tool) to understand
6
 * and profile dynamically generated Python bytecode by creating JIT dump files
7
 * that perf can inject into its analysis.
8
 *
9
 *
10
 * IMPORTANT: This file exports specific callback functions that are part of
11
 * Python's internal API. Do not modify the function signatures or behavior
12
 * of exported functions without coordinating with the Python core team.
13
 *
14
 * Usually the binary and libraries are mapped in separate region like below:
15
 *
16
 *   address ->
17
 *    --+---------------------+--//--+---------------------+--
18
 *      | .text | .data | ... |      | .text | .data | ... |
19
 *    --+---------------------+--//--+---------------------+--
20
 *          myprog                      libc.so
21
 *
22
 * So it'd be easy and straight-forward to find a mapped binary or library from an
23
 * address.
24
 *
25
 * But for JIT code, the code arena only cares about the code section. But the
26
 * resulting DSOs (which is generated by perf inject -j) contain ELF headers and
27
 * unwind info too. Then it'd generate following address space with synthesized
28
 * MMAP events. Let's say it has a sample between address B and C.
29
 *
30
 *                                                sample
31
 *                                                  |
32
 *   address ->                         A       B   v   C
33
 *   ---------------------------------------------------------------------------------------------------
34
 *   /tmp/jitted-PID-0.so   | (headers) | .text | unwind info |
35
 *   /tmp/jitted-PID-1.so           | (headers) | .text | unwind info |
36
 *   /tmp/jitted-PID-2.so                   | (headers) | .text | unwind info |
37
 *     ...
38
 *   ---------------------------------------------------------------------------------------------------
39
 *
40
 * If it only maps the .text section, it'd find the jitted-PID-1.so but cannot see
41
 * the unwind info. If it maps both .text section and unwind sections, the sample
42
 * could be mapped to either jitted-PID-0.so or jitted-PID-1.so and it's confusing
43
 * which one is right. So to make perf happy we have non-overlapping ranges for each
44
 * DSO:
45
 *
46
 *   address ->
47
 *   -------------------------------------------------------------------------------------------------------
48
 *   /tmp/jitted-PID-0.so   | (headers) | .text | unwind info |
49
 *   /tmp/jitted-PID-1.so                         | (headers) | .text | unwind info |
50
 *   /tmp/jitted-PID-2.so                                               | (headers) | .text | unwind info |
51
 *     ...
52
 *   -------------------------------------------------------------------------------------------------------
53
 *
54
 * As the trampolines are constant, we add a constant padding but in general the padding needs to have the
55
 * size of the unwind info rounded to 16 bytes. In general, for our trampolines this is 0x50
56
 */
57
58
59
60
#include "Python.h"
61
#include "pycore_ceval.h"         // _PyPerf_Callbacks
62
#include "pycore_frame.h"
63
#include "pycore_interp.h"
64
#include "pycore_runtime.h"       // _PyRuntime
65
66
#ifdef PY_HAVE_PERF_TRAMPOLINE
67
68
/* Standard library includes for perf jitdump implementation */
69
#include <elf.h>                  // ELF architecture constants
70
#include <fcntl.h>                // File control operations
71
#include <stdio.h>                // Standard I/O operations
72
#include <stdlib.h>               // Standard library functions
73
#include <sys/mman.h>             // Memory mapping functions (mmap)
74
#include <sys/types.h>            // System data types
75
#include <unistd.h>               // System calls (sysconf, getpid)
76
#include <sys/time.h>             // Time functions (gettimeofday)
77
#include <sys/syscall.h>          // System call interface
78
79
// =============================================================================
80
//                           CONSTANTS AND CONFIGURATION
81
// =============================================================================
82
83
/*
84
 * Memory layout considerations for perf jitdump:
85
 *
86
 * Perf expects non-overlapping memory regions for each JIT-compiled function.
87
 * When perf processes the jitdump file, it creates synthetic DSO (Dynamic
88
 * Shared Object) files that contain:
89
 * - ELF headers
90
 * - .text section (actual machine code)
91
 * - Unwind information (for stack traces)
92
 *
93
 * To ensure proper address space layout, we add padding between code regions.
94
 * This prevents address conflicts when perf maps the synthesized DSOs.
95
 *
96
 * Memory layout example:
97
 * /tmp/jitted-PID-0.so: [headers][.text][unwind_info][padding]
98
 * /tmp/jitted-PID-1.so:                                       [headers][.text][unwind_info][padding]
99
 *
100
 * The padding size (0x100) is chosen to accommodate typical unwind info sizes
101
 * while maintaining 16-byte alignment requirements.
102
 */
103
0
#define PERF_JIT_CODE_PADDING 0x100
104
105
/* Convenient access to the global trampoline API state */
106
0
#define trampoline_api _PyRuntime.ceval.perf.trampoline_api
107
108
/* Type aliases for clarity and portability */
109
typedef uint64_t uword;                    // Word-sized unsigned integer
110
typedef const char* CodeComments;          // Code comment strings
111
112
/* Memory size constants */
113
0
#define MB (1024 * 1024)                   // 1 Megabyte for buffer sizing
114
115
// =============================================================================
116
//                        ARCHITECTURE-SPECIFIC DEFINITIONS
117
// =============================================================================
118
119
/*
120
 * Returns the ELF machine architecture constant for the current platform.
121
 * This is required for the jitdump header to correctly identify the target
122
 * architecture for perf processing.
123
 *
124
 */
125
0
static uint64_t GetElfMachineArchitecture(void) {
126
0
#if defined(__x86_64__) || defined(_M_X64)
127
0
    return EM_X86_64;
128
#elif defined(__i386__) || defined(_M_IX86)
129
    return EM_386;
130
#elif defined(__aarch64__)
131
    return EM_AARCH64;
132
#elif defined(__arm__) || defined(_M_ARM)
133
    return EM_ARM;
134
#elif defined(__riscv)
135
    return EM_RISCV;
136
#else
137
    Py_UNREACHABLE();  // Unsupported architecture - should never reach here
138
    return 0;
139
#endif
140
0
}
141
142
// =============================================================================
143
//                           PERF JITDUMP DATA STRUCTURES
144
// =============================================================================
145
146
/*
147
 * Perf jitdump file format structures
148
 *
149
 * These structures define the binary format that perf expects for JIT dump files.
150
 * The format is documented in the Linux perf tools source code and must match
151
 * exactly for proper perf integration.
152
 */
153
154
/*
155
 * Jitdump file header - written once at the beginning of each jitdump file
156
 * Contains metadata about the process and jitdump format version
157
 */
158
typedef struct {
159
    uint32_t magic;              // Magic number (0x4A695444 = "JiTD")
160
    uint32_t version;            // Jitdump format version (currently 1)
161
    uint32_t size;               // Size of this header structure
162
    uint32_t elf_mach_target;    // Target architecture (from GetElfMachineArchitecture)
163
    uint32_t reserved;           // Reserved field (must be 0)
164
    uint32_t process_id;         // Process ID of the JIT compiler
165
    uint64_t time_stamp;         // Timestamp when jitdump was created
166
    uint64_t flags;              // Feature flags (currently unused)
167
} Header;
168
169
/*
170
 * Perf event types supported by the jitdump format
171
 * Each event type has a corresponding structure format
172
 */
173
enum PerfEvent {
174
    PerfLoad = 0,           // Code load event (new JIT function)
175
    PerfMove = 1,           // Code move event (function relocated)
176
    PerfDebugInfo = 2,      // Debug information event
177
    PerfClose = 3,          // JIT session close event
178
    PerfUnwindingInfo = 4   // Stack unwinding information event
179
};
180
181
/*
182
 * Base event structure - common header for all perf events
183
 * Every event in the jitdump file starts with this structure
184
 */
185
struct BaseEvent {
186
    uint32_t event;         // Event type (from PerfEvent enum)
187
    uint32_t size;          // Total size of this event including payload
188
    uint64_t time_stamp;    // Timestamp when event occurred
189
};
190
191
/*
192
 * Code load event - indicates a new JIT-compiled function is available
193
 * This is the most important event type for Python profiling
194
 */
195
typedef struct {
196
    struct BaseEvent base;   // Common event header
197
    uint32_t process_id;     // Process ID where code was generated
198
    uint32_t thread_id;      // Thread ID where code was generated
199
    uint64_t vma;            // Virtual memory address where code is loaded
200
    uint64_t code_address;   // Address of the actual machine code
201
    uint64_t code_size;      // Size of the machine code in bytes
202
    uint64_t code_id;        // Unique identifier for this code region
203
    /* Followed by:
204
     * - null-terminated function name string
205
     * - raw machine code bytes
206
     */
207
} CodeLoadEvent;
208
209
/*
210
 * Code unwinding information event - provides DWARF data for stack traces
211
 * Essential for proper stack unwinding during profiling
212
 */
213
typedef struct {
214
    struct BaseEvent base;      // Common event header
215
    uint64_t unwind_data_size;  // Size of the unwinding data
216
    uint64_t eh_frame_hdr_size; // Size of the EH frame header
217
    uint64_t mapped_size;       // Total mapped size (with padding)
218
    /* Followed by:
219
     * - EH frame header
220
     * - DWARF unwinding information
221
     * - Padding to alignment boundary
222
     */
223
} CodeUnwindingInfoEvent;
224
225
// =============================================================================
226
//                              GLOBAL STATE MANAGEMENT
227
// =============================================================================
228
229
/*
230
 * Global state for the perf jitdump implementation
231
 *
232
 * This structure maintains all the state needed for generating jitdump files.
233
 * It's designed as a singleton since there's typically only one jitdump file
234
 * per Python process.
235
 */
236
typedef struct {
237
    FILE* perf_map;          // File handle for the jitdump file
238
    PyThread_type_lock map_lock;  // Thread synchronization lock
239
    void* mapped_buffer;     // Memory-mapped region (signals perf we're active)
240
    size_t mapped_size;      // Size of the mapped region
241
    int code_id;             // Counter for unique code region identifiers
242
} PerfMapJitState;
243
244
/* Global singleton instance */
245
static PerfMapJitState perf_jit_map_state;
246
247
// =============================================================================
248
//                              TIME UTILITIES
249
// =============================================================================
250
251
/* Time conversion constant */
252
static const intptr_t nanoseconds_per_second = 1000000000;
253
254
/*
255
 * Get current monotonic time in nanoseconds
256
 *
257
 * Monotonic time is preferred for event timestamps because it's not affected
258
 * by system clock adjustments. This ensures consistent timing relationships
259
 * between events even if the system clock is changed.
260
 *
261
 * Returns: Current monotonic time in nanoseconds since an arbitrary epoch
262
 */
263
0
static int64_t get_current_monotonic_ticks(void) {
264
0
    struct timespec ts;
265
0
    if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
266
0
        Py_UNREACHABLE();  // Should never fail on supported systems
267
0
        return 0;
268
0
    }
269
270
    /* Convert to nanoseconds for maximum precision */
271
0
    int64_t result = ts.tv_sec;
272
0
    result *= nanoseconds_per_second;
273
0
    result += ts.tv_nsec;
274
0
    return result;
275
0
}
276
277
/*
278
 * Get current wall clock time in microseconds
279
 *
280
 * Used for the jitdump file header timestamp. Unlike monotonic time,
281
 * this represents actual wall clock time that can be correlated with
282
 * other system events.
283
 *
284
 * Returns: Current time in microseconds since Unix epoch
285
 */
286
0
static int64_t get_current_time_microseconds(void) {
287
0
    struct timeval tv;
288
0
    if (gettimeofday(&tv, NULL) < 0) {
289
0
        Py_UNREACHABLE();  // Should never fail on supported systems
290
0
        return 0;
291
0
    }
292
0
    return ((int64_t)(tv.tv_sec) * 1000000) + tv.tv_usec;
293
0
}
294
295
// =============================================================================
296
//                              UTILITY FUNCTIONS
297
// =============================================================================
298
299
/*
300
 * Round up a value to the next multiple of a given number
301
 *
302
 * This is essential for maintaining proper alignment requirements in the
303
 * jitdump format. Many structures need to be aligned to specific boundaries
304
 * (typically 8 or 16 bytes) for efficient processing by perf.
305
 *
306
 * Args:
307
 *   value: The value to round up
308
 *   multiple: The multiple to round up to
309
 *
310
 * Returns: The smallest value >= input that is a multiple of 'multiple'
311
 */
312
0
static size_t round_up(int64_t value, int64_t multiple) {
313
0
    if (multiple == 0) {
314
0
        return value;  // Avoid division by zero
315
0
    }
316
317
0
    int64_t remainder = value % multiple;
318
0
    if (remainder == 0) {
319
0
        return value;  // Already aligned
320
0
    }
321
322
    /* Calculate how much to add to reach the next multiple */
323
0
    int64_t difference = multiple - remainder;
324
0
    int64_t rounded_up_value = value + difference;
325
326
0
    return rounded_up_value;
327
0
}
328
329
// =============================================================================
330
//                              FILE I/O UTILITIES
331
// =============================================================================
332
333
/*
334
 * Write data to the jitdump file with error handling
335
 *
336
 * This function ensures that all data is written to the file, handling
337
 * partial writes that can occur with large buffers or when the system
338
 * is under load.
339
 *
340
 * Args:
341
 *   buffer: Pointer to data to write
342
 *   size: Number of bytes to write
343
 */
344
0
static void perf_map_jit_write_fully(const void* buffer, size_t size) {
345
0
    FILE* out_file = perf_jit_map_state.perf_map;
346
0
    const char* ptr = (const char*)(buffer);
347
348
0
    while (size > 0) {
349
0
        const size_t written = fwrite(ptr, 1, size, out_file);
350
0
        if (written == 0) {
351
0
            Py_UNREACHABLE();  // Write failure - should be very rare
352
0
            break;
353
0
        }
354
0
        size -= written;
355
0
        ptr += written;
356
0
    }
357
0
}
358
359
/*
360
 * Write the jitdump file header
361
 *
362
 * The header must be written exactly once at the beginning of each jitdump
363
 * file. It provides metadata that perf uses to parse the rest of the file.
364
 *
365
 * Args:
366
 *   pid: Process ID to include in the header
367
 *   out_file: File handle to write to (currently unused, uses global state)
368
 */
369
0
static void perf_map_jit_write_header(int pid, FILE* out_file) {
370
0
    Header header;
371
372
    /* Initialize header with required values */
373
0
    header.magic = 0x4A695444;                    // "JiTD" magic number
374
0
    header.version = 1;                           // Current jitdump version
375
0
    header.size = sizeof(Header);                 // Header size for validation
376
0
    header.elf_mach_target = GetElfMachineArchitecture();  // Target architecture
377
0
    header.process_id = pid;                      // Process identifier
378
0
    header.time_stamp = get_current_time_microseconds();   // Creation time
379
0
    header.flags = 0;                             // No special flags currently used
380
381
0
    perf_map_jit_write_fully(&header, sizeof(header));
382
0
}
383
384
// =============================================================================
385
//                              DWARF CONSTANTS AND UTILITIES
386
// =============================================================================
387
388
/*
389
 * DWARF (Debug With Arbitrary Record Formats) constants
390
 *
391
 * DWARF is a debugging data format used to provide stack unwinding information.
392
 * These constants define the various encoding types and opcodes used in
393
 * DWARF Call Frame Information (CFI) records.
394
 */
395
396
/* DWARF Call Frame Information version */
397
#define DWRF_CIE_VERSION 1
398
399
/* DWARF CFA (Call Frame Address) opcodes */
400
enum {
401
    DWRF_CFA_nop = 0x0,                    // No operation
402
    DWRF_CFA_offset_extended = 0x5,        // Extended offset instruction
403
    DWRF_CFA_def_cfa = 0xc,               // Define CFA rule
404
    DWRF_CFA_def_cfa_offset = 0xe,        // Define CFA offset
405
    DWRF_CFA_offset_extended_sf = 0x11,   // Extended signed offset
406
    DWRF_CFA_advance_loc = 0x40,          // Advance location counter
407
    DWRF_CFA_offset = 0x80                // Simple offset instruction
408
};
409
410
/* DWARF Exception Handling pointer encodings */
411
enum {
412
    DWRF_EH_PE_absptr = 0x00,             // Absolute pointer
413
    DWRF_EH_PE_omit = 0xff,               // Omitted value
414
415
    /* Data type encodings */
416
    DWRF_EH_PE_uleb128 = 0x01,            // Unsigned LEB128
417
    DWRF_EH_PE_udata2 = 0x02,             // Unsigned 2-byte
418
    DWRF_EH_PE_udata4 = 0x03,             // Unsigned 4-byte
419
    DWRF_EH_PE_udata8 = 0x04,             // Unsigned 8-byte
420
    DWRF_EH_PE_sleb128 = 0x09,            // Signed LEB128
421
    DWRF_EH_PE_sdata2 = 0x0a,             // Signed 2-byte
422
    DWRF_EH_PE_sdata4 = 0x0b,             // Signed 4-byte
423
    DWRF_EH_PE_sdata8 = 0x0c,             // Signed 8-byte
424
    DWRF_EH_PE_signed = 0x08,             // Signed flag
425
426
    /* Reference type encodings */
427
    DWRF_EH_PE_pcrel = 0x10,              // PC-relative
428
    DWRF_EH_PE_textrel = 0x20,            // Text-relative
429
    DWRF_EH_PE_datarel = 0x30,            // Data-relative
430
    DWRF_EH_PE_funcrel = 0x40,            // Function-relative
431
    DWRF_EH_PE_aligned = 0x50,            // Aligned
432
    DWRF_EH_PE_indirect = 0x80            // Indirect
433
};
434
435
/* Additional DWARF constants for debug information */
436
enum { DWRF_TAG_compile_unit = 0x11 };
437
enum { DWRF_children_no = 0, DWRF_children_yes = 1 };
438
enum {
439
    DWRF_AT_name = 0x03,         // Name attribute
440
    DWRF_AT_stmt_list = 0x10,    // Statement list
441
    DWRF_AT_low_pc = 0x11,       // Low PC address
442
    DWRF_AT_high_pc = 0x12       // High PC address
443
};
444
enum {
445
    DWRF_FORM_addr = 0x01,       // Address form
446
    DWRF_FORM_data4 = 0x06,      // 4-byte data
447
    DWRF_FORM_string = 0x08      // String form
448
};
449
450
/* Line number program opcodes */
451
enum {
452
    DWRF_LNS_extended_op = 0,    // Extended opcode
453
    DWRF_LNS_copy = 1,           // Copy operation
454
    DWRF_LNS_advance_pc = 2,     // Advance program counter
455
    DWRF_LNS_advance_line = 3    // Advance line number
456
};
457
458
/* Line number extended opcodes */
459
enum {
460
    DWRF_LNE_end_sequence = 1,   // End of sequence
461
    DWRF_LNE_set_address = 2     // Set address
462
};
463
464
/*
465
 * Architecture-specific DWARF register numbers
466
 *
467
 * These constants define the register numbering scheme used by DWARF
468
 * for each supported architecture. The numbers must match the ABI
469
 * specification for proper stack unwinding.
470
 */
471
enum {
472
#ifdef __x86_64__
473
    /* x86_64 register numbering (note: order is defined by x86_64 ABI) */
474
    DWRF_REG_AX,    // RAX
475
    DWRF_REG_DX,    // RDX
476
    DWRF_REG_CX,    // RCX
477
    DWRF_REG_BX,    // RBX
478
    DWRF_REG_SI,    // RSI
479
    DWRF_REG_DI,    // RDI
480
    DWRF_REG_BP,    // RBP
481
    DWRF_REG_SP,    // RSP
482
    DWRF_REG_8,     // R8
483
    DWRF_REG_9,     // R9
484
    DWRF_REG_10,    // R10
485
    DWRF_REG_11,    // R11
486
    DWRF_REG_12,    // R12
487
    DWRF_REG_13,    // R13
488
    DWRF_REG_14,    // R14
489
    DWRF_REG_15,    // R15
490
    DWRF_REG_RA,    // Return address (RIP)
491
#elif defined(__aarch64__) && defined(__AARCH64EL__) && !defined(__ILP32__)
492
    /* AArch64 register numbering */
493
    DWRF_REG_FP = 29,  // Frame Pointer
494
    DWRF_REG_RA = 30,  // Link register (return address)
495
    DWRF_REG_SP = 31,  // Stack pointer
496
#else
497
#    error "Unsupported target architecture"
498
#endif
499
};
500
501
/* DWARF encoding constants used in EH frame headers */
502
static const uint8_t DwarfUData4 = 0x03;     // Unsigned 4-byte data
503
static const uint8_t DwarfSData4 = 0x0b;     // Signed 4-byte data
504
static const uint8_t DwarfPcRel = 0x10;      // PC-relative encoding
505
static const uint8_t DwarfDataRel = 0x30;    // Data-relative encoding
506
507
// =============================================================================
508
//                              ELF OBJECT CONTEXT
509
// =============================================================================
510
511
/*
512
 * Context for building ELF/DWARF structures
513
 *
514
 * This structure maintains state while constructing DWARF unwind information.
515
 * It acts as a simple buffer manager with pointers to track current position
516
 * and important landmarks within the buffer.
517
 */
518
typedef struct ELFObjectContext {
519
    uint8_t* p;            // Current write position in buffer
520
    uint8_t* startp;       // Start of buffer (for offset calculations)
521
    uint8_t* eh_frame_p;   // Start of EH frame data (for relative offsets)
522
    uint32_t code_size;    // Size of the code being described
523
} ELFObjectContext;
524
525
/*
526
 * EH Frame Header structure for DWARF unwinding
527
 *
528
 * This structure provides metadata about the DWARF unwinding information
529
 * that follows. It's required by the perf jitdump format to enable proper
530
 * stack unwinding during profiling.
531
 */
532
typedef struct {
533
    unsigned char version;           // EH frame version (always 1)
534
    unsigned char eh_frame_ptr_enc;  // Encoding of EH frame pointer
535
    unsigned char fde_count_enc;     // Encoding of FDE count
536
    unsigned char table_enc;         // Encoding of table entries
537
    int32_t eh_frame_ptr;           // Pointer to EH frame data
538
    int32_t eh_fde_count;           // Number of FDEs (Frame Description Entries)
539
    int32_t from;                   // Start address of code range
540
    int32_t to;                     // End address of code range
541
} EhFrameHeader;
542
543
// =============================================================================
544
//                              DWARF GENERATION UTILITIES
545
// =============================================================================
546
547
/*
548
 * Append a null-terminated string to the ELF context buffer
549
 *
550
 * Args:
551
 *   ctx: ELF object context
552
 *   str: String to append (must be null-terminated)
553
 *
554
 * Returns: Offset from start of buffer where string was written
555
 */
556
0
static uint32_t elfctx_append_string(ELFObjectContext* ctx, const char* str) {
557
0
    uint8_t* p = ctx->p;
558
0
    uint32_t ofs = (uint32_t)(p - ctx->startp);
559
560
    /* Copy string including null terminator */
561
0
    do {
562
0
        *p++ = (uint8_t)*str;
563
0
    } while (*str++);
564
565
0
    ctx->p = p;
566
0
    return ofs;
567
0
}
568
569
/*
570
 * Append a SLEB128 (Signed Little Endian Base 128) value
571
 *
572
 * SLEB128 is a variable-length encoding used extensively in DWARF.
573
 * It efficiently encodes small numbers in fewer bytes.
574
 *
575
 * Args:
576
 *   ctx: ELF object context
577
 *   v: Signed value to encode
578
 */
579
0
static void elfctx_append_sleb128(ELFObjectContext* ctx, int32_t v) {
580
0
    uint8_t* p = ctx->p;
581
582
    /* Encode 7 bits at a time, with continuation bit in MSB */
583
0
    for (; (uint32_t)(v + 0x40) >= 0x80; v >>= 7) {
584
0
        *p++ = (uint8_t)((v & 0x7f) | 0x80);  // Set continuation bit
585
0
    }
586
0
    *p++ = (uint8_t)(v & 0x7f);  // Final byte without continuation bit
587
588
0
    ctx->p = p;
589
0
}
590
591
/*
592
 * Append a ULEB128 (Unsigned Little Endian Base 128) value
593
 *
594
 * Similar to SLEB128 but for unsigned values.
595
 *
596
 * Args:
597
 *   ctx: ELF object context
598
 *   v: Unsigned value to encode
599
 */
600
0
static void elfctx_append_uleb128(ELFObjectContext* ctx, uint32_t v) {
601
0
    uint8_t* p = ctx->p;
602
603
    /* Encode 7 bits at a time, with continuation bit in MSB */
604
0
    for (; v >= 0x80; v >>= 7) {
605
0
        *p++ = (char)((v & 0x7f) | 0x80);  // Set continuation bit
606
0
    }
607
0
    *p++ = (char)v;  // Final byte without continuation bit
608
609
0
    ctx->p = p;
610
0
}
611
612
/*
613
 * Macros for generating DWARF structures
614
 *
615
 * These macros provide a convenient way to write various data types
616
 * to the DWARF buffer while automatically advancing the pointer.
617
 */
618
#define DWRF_U8(x) (*p++ = (x))                                    // Write unsigned 8-bit
619
#define DWRF_I8(x) (*(int8_t*)p = (x), p++)                       // Write signed 8-bit
620
#define DWRF_U16(x) (*(uint16_t*)p = (x), p += 2)                 // Write unsigned 16-bit
621
#define DWRF_U32(x) (*(uint32_t*)p = (x), p += 4)                 // Write unsigned 32-bit
622
#define DWRF_ADDR(x) (*(uintptr_t*)p = (x), p += sizeof(uintptr_t)) // Write address
623
#define DWRF_UV(x) (ctx->p = p, elfctx_append_uleb128(ctx, (x)), p = ctx->p) // Write ULEB128
624
#define DWRF_SV(x) (ctx->p = p, elfctx_append_sleb128(ctx, (x)), p = ctx->p) // Write SLEB128
625
#define DWRF_STR(str) (ctx->p = p, elfctx_append_string(ctx, (str)), p = ctx->p) // Write string
626
627
/* Align to specified boundary with NOP instructions */
628
#define DWRF_ALIGNNOP(s)                                          \
629
    while ((uintptr_t)p & ((s)-1)) {                              \
630
        *p++ = DWRF_CFA_nop;                                       \
631
    }
632
633
/* Write a DWARF section with automatic size calculation */
634
#define DWRF_SECTION(name, stmt)                                  \
635
0
    {                                                             \
636
0
        uint32_t* szp_##name = (uint32_t*)p;                      \
637
0
        p += 4;                                                   \
638
0
        stmt;                                                     \
639
0
        *szp_##name = (uint32_t)((p - (uint8_t*)szp_##name) - 4); \
640
0
    }
641
642
// =============================================================================
643
//                              DWARF EH FRAME GENERATION
644
// =============================================================================
645
646
/*
647
 * Initialize DWARF .eh_frame section for a code region
648
 *
649
 * The .eh_frame section contains Call Frame Information (CFI) that describes
650
 * how to unwind the stack at any point in the code. This is essential for
651
 * proper profiling as it allows perf to generate accurate call graphs.
652
 *
653
 * The function generates two main components:
654
 * 1. CIE (Common Information Entry) - describes calling conventions
655
 * 2. FDE (Frame Description Entry) - describes specific function unwinding
656
 *
657
 * Args:
658
 *   ctx: ELF object context containing code size and buffer pointers
659
 */
660
0
static void elf_init_ehframe(ELFObjectContext* ctx) {
661
0
    uint8_t* p = ctx->p;
662
0
    uint8_t* framep = p;  // Remember start of frame data
663
664
    /*
665
    * DWARF Unwind Table for Trampoline Function
666
    *
667
    * This section defines DWARF Call Frame Information (CFI) using encoded macros
668
    * like `DWRF_U8`, `DWRF_UV`, and `DWRF_SECTION` to describe how the trampoline function
669
    * preserves and restores registers. This is used by profiling tools (e.g., `perf`)
670
    * and debuggers for stack unwinding in JIT-compiled code.
671
    *
672
    * -------------------------------------------------
673
    * TO REGENERATE THIS TABLE FROM GCC OBJECTS:
674
    * -------------------------------------------------
675
    *
676
    * 1. Create a trampoline source file (e.g., `trampoline.c`):
677
    *
678
    *      #include <Python.h>
679
    *      typedef PyObject* (*py_evaluator)(void*, void*, int);
680
    *      PyObject* trampoline(void *ts, void *f, int throwflag, py_evaluator evaluator) {
681
    *          return evaluator(ts, f, throwflag);
682
    *      }
683
    *
684
    * 2. Compile to an object file with frame pointer preservation:
685
    *
686
    *      gcc trampoline.c -I. -I./Include -O2 -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c
687
    *
688
    * 3. Extract DWARF unwind info from the object file:
689
    *
690
    *      readelf -w trampoline.o
691
    *
692
    *    Example output from `.eh_frame`:
693
    *
694
    *      00000000 CIE
695
    *        Version:               1
696
    *        Augmentation:          "zR"
697
    *        Code alignment factor: 4
698
    *        Data alignment factor: -8
699
    *        Return address column: 30
700
    *        DW_CFA_def_cfa: r31 (sp) ofs 0
701
    *
702
    *      00000014 FDE cie=00000000 pc=0..14
703
    *        DW_CFA_advance_loc: 4
704
    *        DW_CFA_def_cfa_offset: 16
705
    *        DW_CFA_offset: r29 at cfa-16
706
    *        DW_CFA_offset: r30 at cfa-8
707
    *        DW_CFA_advance_loc: 12
708
    *        DW_CFA_restore: r30
709
    *        DW_CFA_restore: r29
710
    *        DW_CFA_def_cfa_offset: 0
711
    *
712
    * -- These values can be verified by comparing with `readelf -w` or `llvm-dwarfdump --eh-frame`.
713
    *
714
    * ----------------------------------
715
    * HOW TO TRANSLATE TO DWRF_* MACROS:
716
    * ----------------------------------
717
    *
718
    * After compiling your trampoline with:
719
    *
720
    *     gcc trampoline.c -I. -I./Include -O2 -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c
721
    *
722
    * run:
723
    *
724
    *     readelf -w trampoline.o
725
    *
726
    * to inspect the generated `.eh_frame` data. You will see two main components:
727
    *
728
    *     1. A CIE (Common Information Entry): shared configuration used by all FDEs.
729
    *     2. An FDE (Frame Description Entry): function-specific unwind instructions.
730
    *
731
    * ---------------------
732
    * Translating the CIE:
733
    * ---------------------
734
    * From `readelf -w`, you might see:
735
    *
736
    *   00000000 0000000000000010 00000000 CIE
737
    *     Version:               1
738
    *     Augmentation:          "zR"
739
    *     Code alignment factor: 4
740
    *     Data alignment factor: -8
741
    *     Return address column: 30
742
    *     Augmentation data:     1b
743
    *     DW_CFA_def_cfa: r31 (sp) ofs 0
744
    *
745
    * Map this to:
746
    *
747
    *     DWRF_SECTION(CIE,
748
    *         DWRF_U32(0);                             // CIE ID (always 0 for CIEs)
749
    *         DWRF_U8(DWRF_CIE_VERSION);              // Version: 1
750
    *         DWRF_STR("zR");                         // Augmentation string "zR"
751
    *         DWRF_UV(4);                             // Code alignment factor = 4
752
    *         DWRF_SV(-8);                            // Data alignment factor = -8
753
    *         DWRF_U8(DWRF_REG_RA);                   // Return address register (e.g., x30 = 30)
754
    *         DWRF_UV(1);                             // Augmentation data length = 1
755
    *         DWRF_U8(DWRF_EH_PE_pcrel | DWRF_EH_PE_sdata4); // Encoding for FDE pointers
756
    *
757
    *         DWRF_U8(DWRF_CFA_def_cfa);              // DW_CFA_def_cfa
758
    *         DWRF_UV(DWRF_REG_SP);                   // Register: SP (r31)
759
    *         DWRF_UV(0);                             // Offset = 0
760
    *
761
    *         DWRF_ALIGNNOP(sizeof(uintptr_t));       // Align to pointer size boundary
762
    *     )
763
    *
764
    * Notes:
765
    *   - Use `DWRF_UV` for unsigned LEB128, `DWRF_SV` for signed LEB128.
766
    *   - `DWRF_REG_RA` and `DWRF_REG_SP` are architecture-defined constants.
767
    *
768
    * ---------------------
769
    * Translating the FDE:
770
    * ---------------------
771
    * From `readelf -w`:
772
    *
773
    *   00000014 0000000000000020 00000018 FDE cie=00000000 pc=0000000000000000..0000000000000014
774
    *     DW_CFA_advance_loc: 4
775
    *     DW_CFA_def_cfa_offset: 16
776
    *     DW_CFA_offset: r29 at cfa-16
777
    *     DW_CFA_offset: r30 at cfa-8
778
    *     DW_CFA_advance_loc: 12
779
    *     DW_CFA_restore: r30
780
    *     DW_CFA_restore: r29
781
    *     DW_CFA_def_cfa_offset: 0
782
    *
783
    * Map the FDE header and instructions to:
784
    *
785
    *     DWRF_SECTION(FDE,
786
    *         DWRF_U32((uint32_t)(p - framep));       // Offset to CIE (relative from here)
787
    *         DWRF_U32(-0x30);                        // Initial PC-relative location of the code
788
    *         DWRF_U32(ctx->code_size);               // Code range covered by this FDE
789
    *         DWRF_U8(0);                             // Augmentation data length (none)
790
    *
791
    *         DWRF_U8(DWRF_CFA_advance_loc | 1);      // Advance location by 1 unit (1 * 4 = 4 bytes)
792
    *         DWRF_U8(DWRF_CFA_def_cfa_offset);       // CFA = SP + 16
793
    *         DWRF_UV(16);
794
    *
795
    *         DWRF_U8(DWRF_CFA_offset | DWRF_REG_FP); // Save x29 (frame pointer)
796
    *         DWRF_UV(2);                             // At offset 2 * 8 = 16 bytes
797
    *
798
    *         DWRF_U8(DWRF_CFA_offset | DWRF_REG_RA); // Save x30 (return address)
799
    *         DWRF_UV(1);                             // At offset 1 * 8 = 8 bytes
800
    *
801
    *         DWRF_U8(DWRF_CFA_advance_loc | 3);      // Advance location by 3 units (3 * 4 = 12 bytes)
802
    *
803
    *         DWRF_U8(DWRF_CFA_offset | DWRF_REG_RA); // Restore x30
804
    *         DWRF_U8(DWRF_CFA_offset | DWRF_REG_FP); // Restore x29
805
    *
806
    *         DWRF_U8(DWRF_CFA_def_cfa_offset);       // CFA = SP
807
    *         DWRF_UV(0);
808
    *     )
809
    *
810
    * To regenerate:
811
    *   1. Get the `code alignment factor`, `data alignment factor`, and `RA column` from the CIE.
812
    *   2. Note the range of the function from the FDE's `pc=...` line and map it to the JIT code as
813
    *      the code is in a different address space every time.
814
    *   3. For each `DW_CFA_*` entry, use the corresponding `DWRF_*` macro:
815
    *        - `DW_CFA_def_cfa_offset`     → DWRF_U8(DWRF_CFA_def_cfa_offset), DWRF_UV(value)
816
    *        - `DW_CFA_offset: rX`         → DWRF_U8(DWRF_CFA_offset | reg), DWRF_UV(offset)
817
    *        - `DW_CFA_restore: rX`        → DWRF_U8(DWRF_CFA_offset | reg) // restore is same as reusing offset
818
    *        - `DW_CFA_advance_loc: N`     → DWRF_U8(DWRF_CFA_advance_loc | (N / code_alignment_factor))
819
    *   4. Use `DWRF_REG_FP`, `DWRF_REG_RA`, etc., for register numbers.
820
    *   5. Use `sizeof(uintptr_t)` (typically 8) for pointer size calculations and alignment.
821
    */
822
823
    /*
824
     * Emit DWARF EH CIE (Common Information Entry)
825
     *
826
     * The CIE describes the calling conventions and basic unwinding rules
827
     * that apply to all functions in this compilation unit.
828
     */
829
0
    DWRF_SECTION(CIE,
830
0
        DWRF_U32(0);                           // CIE ID (0 indicates this is a CIE)
831
0
        DWRF_U8(DWRF_CIE_VERSION);            // CIE version (1)
832
0
        DWRF_STR("zR");                       // Augmentation string ("zR" = has LSDA)
833
0
        DWRF_UV(1);                           // Code alignment factor
834
0
        DWRF_SV(-(int64_t)sizeof(uintptr_t)); // Data alignment factor (negative)
835
0
        DWRF_U8(DWRF_REG_RA);                 // Return address register number
836
0
        DWRF_UV(1);                           // Augmentation data length
837
0
        DWRF_U8(DWRF_EH_PE_pcrel | DWRF_EH_PE_sdata4); // FDE pointer encoding
838
839
        /* Initial CFI instructions - describe default calling convention */
840
0
        DWRF_U8(DWRF_CFA_def_cfa);            // Define CFA (Call Frame Address)
841
0
        DWRF_UV(DWRF_REG_SP);                 // CFA = SP register
842
0
        DWRF_UV(sizeof(uintptr_t));           // CFA = SP + pointer_size
843
0
        DWRF_U8(DWRF_CFA_offset|DWRF_REG_RA); // Return address is saved
844
0
        DWRF_UV(1);                           // At offset 1 from CFA
845
846
0
        DWRF_ALIGNNOP(sizeof(uintptr_t));     // Align to pointer boundary
847
0
    )
848
849
0
    ctx->eh_frame_p = p;  // Remember start of FDE data
850
851
    /*
852
     * Emit DWARF EH FDE (Frame Description Entry)
853
     *
854
     * The FDE describes unwinding information specific to this function.
855
     * It references the CIE and provides function-specific CFI instructions.
856
     */
857
0
    DWRF_SECTION(FDE,
858
0
        DWRF_U32((uint32_t)(p - framep));     // Offset to CIE (backwards reference)
859
0
        DWRF_U32(-0x30);                      // Machine code offset relative to .text
860
0
        DWRF_U32(ctx->code_size);             // Address range covered by this FDE (code lenght)
861
0
        DWRF_U8(0);                           // Augmentation data length (none)
862
863
        /*
864
         * Architecture-specific CFI instructions
865
         *
866
         * These instructions describe how registers are saved and restored
867
         * during function calls. Each architecture has different calling
868
         * conventions and register usage patterns.
869
         */
870
0
#ifdef __x86_64__
871
        /* x86_64 calling convention unwinding rules */
872
#  if defined(__CET__) && (__CET__ & 1)
873
        DWRF_U8(DWRF_CFA_advance_loc | 8);    // Advance location by 8 bytes when CET protection is enabled
874
#  else
875
0
        DWRF_U8(DWRF_CFA_advance_loc | 4);    // Advance location by 4 bytes
876
0
#  endif
877
0
        DWRF_U8(DWRF_CFA_def_cfa_offset);     // Redefine CFA offset
878
0
        DWRF_UV(16);                          // New offset: SP + 16
879
0
        DWRF_U8(DWRF_CFA_advance_loc | 6);    // Advance location by 6 bytes
880
0
        DWRF_U8(DWRF_CFA_def_cfa_offset);     // Redefine CFA offset
881
0
        DWRF_UV(8);                           // New offset: SP + 8
882
#elif defined(__aarch64__) && defined(__AARCH64EL__) && !defined(__ILP32__)
883
        /* AArch64 calling convention unwinding rules */
884
        DWRF_U8(DWRF_CFA_advance_loc | 1);        // Advance location by 1 instruction (stp x29, x30)
885
        DWRF_U8(DWRF_CFA_def_cfa_offset);         // Redefine CFA offset
886
        DWRF_UV(16);                              // CFA = SP + 16 (stack pointer after push)
887
        DWRF_U8(DWRF_CFA_offset | DWRF_REG_FP);   // Frame pointer (x29) saved
888
        DWRF_UV(2);                               // At offset 2 from CFA (2 * 8 = 16 bytes)
889
        DWRF_U8(DWRF_CFA_offset | DWRF_REG_RA);   // Link register (x30) saved
890
        DWRF_UV(1);                               // At offset 1 from CFA (1 * 8 = 8 bytes)
891
        DWRF_U8(DWRF_CFA_advance_loc | 3);        // Advance by 3 instructions (mov x16, x3; mov x29, sp; ldp...)
892
        DWRF_U8(DWRF_CFA_offset | DWRF_REG_FP);   // Restore frame pointer (x29)
893
        DWRF_U8(DWRF_CFA_offset | DWRF_REG_RA);   // Restore link register (x30)
894
        DWRF_U8(DWRF_CFA_def_cfa_offset);         // Final CFA adjustment
895
        DWRF_UV(0);                               // CFA = SP + 0 (stack restored)
896
897
#else
898
#    error "Unsupported target architecture"
899
#endif
900
901
0
        DWRF_ALIGNNOP(sizeof(uintptr_t));     // Align to pointer boundary
902
0
    )
903
904
0
    ctx->p = p;  // Update context pointer to end of generated data
905
0
}
906
907
// =============================================================================
908
//                              JITDUMP INITIALIZATION
909
// =============================================================================
910
911
/*
912
 * Initialize the perf jitdump interface
913
 *
914
 * This function sets up everything needed to generate jitdump files:
915
 * 1. Creates the jitdump file with a unique name
916
 * 2. Maps the first page to signal perf that we're using the interface
917
 * 3. Writes the jitdump header
918
 * 4. Initializes synchronization primitives
919
 *
920
 * The memory mapping is crucial - perf detects jitdump files by scanning
921
 * for processes that have mapped files matching the pattern /tmp/jit-*.dump
922
 *
923
 * Returns: Pointer to initialized state, or NULL on failure
924
 */
925
0
static void* perf_map_jit_init(void) {
926
0
    char filename[100];
927
0
    int pid = getpid();
928
929
    /* Create unique filename based on process ID */
930
0
    snprintf(filename, sizeof(filename) - 1, "/tmp/jit-%d.dump", pid);
931
932
    /* Create/open the jitdump file with appropriate permissions */
933
0
    const int fd = open(filename, O_CREAT | O_TRUNC | O_RDWR, 0666);
934
0
    if (fd == -1) {
935
0
        return NULL;  // Failed to create file
936
0
    }
937
938
    /* Get system page size for memory mapping */
939
0
    const long page_size = sysconf(_SC_PAGESIZE);
940
0
    if (page_size == -1) {
941
0
        close(fd);
942
0
        return NULL;  // Failed to get page size
943
0
    }
944
945
    /*
946
     * Map the first page of the jitdump file
947
     *
948
     * This memory mapping serves as a signal to perf that this process
949
     * is generating JIT code. Perf scans /proc/.../maps looking for mapped
950
     * files that match the jitdump naming pattern.
951
     *
952
     * The mapping must be PROT_READ | PROT_EXEC to be detected by perf.
953
     */
954
0
    perf_jit_map_state.mapped_buffer = mmap(
955
0
        NULL,                    // Let kernel choose address
956
0
        page_size,               // Map one page
957
0
        PROT_READ | PROT_EXEC,   // Read and execute permissions (required by perf)
958
0
        MAP_PRIVATE,             // Private mapping
959
0
        fd,                      // File descriptor
960
0
        0                        // Offset 0 (first page)
961
0
    );
962
963
0
    if (perf_jit_map_state.mapped_buffer == NULL) {
964
0
        close(fd);
965
0
        return NULL;  // Memory mapping failed
966
0
    }
967
968
0
    perf_jit_map_state.mapped_size = page_size;
969
970
    /* Convert file descriptor to FILE* for easier I/O operations */
971
0
    perf_jit_map_state.perf_map = fdopen(fd, "w+");
972
0
    if (perf_jit_map_state.perf_map == NULL) {
973
0
        close(fd);
974
0
        return NULL;  // Failed to create FILE*
975
0
    }
976
977
    /*
978
     * Set up file buffering for better performance
979
     *
980
     * We use a large buffer (2MB) because jitdump files can be written
981
     * frequently during program execution. Buffering reduces system call
982
     * overhead and improves overall performance.
983
     */
984
0
    setvbuf(perf_jit_map_state.perf_map, NULL, _IOFBF, 2 * MB);
985
986
    /* Write the jitdump file header */
987
0
    perf_map_jit_write_header(pid, perf_jit_map_state.perf_map);
988
989
    /*
990
     * Initialize thread synchronization lock
991
     *
992
     * Multiple threads may attempt to write to the jitdump file
993
     * simultaneously. This lock ensures thread-safe access to the
994
     * global jitdump state.
995
     */
996
0
    perf_jit_map_state.map_lock = PyThread_allocate_lock();
997
0
    if (perf_jit_map_state.map_lock == NULL) {
998
0
        fclose(perf_jit_map_state.perf_map);
999
0
        return NULL;  // Failed to create lock
1000
0
    }
1001
1002
    /* Initialize code ID counter */
1003
0
    perf_jit_map_state.code_id = 0;
1004
1005
    /* Configure trampoline API with padding information */
1006
0
    trampoline_api.code_padding = PERF_JIT_CODE_PADDING;
1007
1008
0
    return &perf_jit_map_state;
1009
0
}
1010
1011
// =============================================================================
1012
//                              MAIN JITDUMP ENTRY WRITING
1013
// =============================================================================
1014
1015
/*
1016
 * Write a complete jitdump entry for a Python function
1017
 *
1018
 * This is the main function called by Python's trampoline system whenever
1019
 * a new piece of JIT-compiled code needs to be recorded. It writes both
1020
 * the unwinding information and the code load event to the jitdump file.
1021
 *
1022
 * The function performs these steps:
1023
 * 1. Initialize jitdump system if not already done
1024
 * 2. Extract function name and filename from Python code object
1025
 * 3. Generate DWARF unwinding information
1026
 * 4. Write unwinding info event to jitdump file
1027
 * 5. Write code load event to jitdump file
1028
 *
1029
 * Args:
1030
 *   state: Jitdump state (currently unused, uses global state)
1031
 *   code_addr: Address where the compiled code resides
1032
 *   code_size: Size of the compiled code in bytes
1033
 *   co: Python code object containing metadata
1034
 *
1035
 * IMPORTANT: This function signature is part of Python's internal API
1036
 * and must not be changed without coordinating with core Python development.
1037
 */
1038
static void perf_map_jit_write_entry(void *state, const void *code_addr,
1039
                                    unsigned int code_size, PyCodeObject *co)
1040
0
{
1041
    /* Initialize jitdump system on first use */
1042
0
    if (perf_jit_map_state.perf_map == NULL) {
1043
0
        void* ret = perf_map_jit_init();
1044
0
        if(ret == NULL){
1045
0
            return;  // Initialization failed, silently abort
1046
0
        }
1047
0
    }
1048
1049
    /*
1050
     * Extract function information from Python code object
1051
     *
1052
     * We create a human-readable function name by combining the qualified
1053
     * name (includes class/module context) with the filename. This helps
1054
     * developers identify functions in perf reports.
1055
     */
1056
0
    const char *entry = "";
1057
0
    if (co->co_qualname != NULL) {
1058
0
        entry = PyUnicode_AsUTF8(co->co_qualname);
1059
0
    }
1060
1061
0
    const char *filename = "";
1062
0
    if (co->co_filename != NULL) {
1063
0
        filename = PyUnicode_AsUTF8(co->co_filename);
1064
0
    }
1065
1066
    /*
1067
     * Create formatted function name for perf display
1068
     *
1069
     * Format: "py::<function_name>:<filename>"
1070
     * The "py::" prefix helps identify Python functions in mixed-language
1071
     * profiles (e.g., when profiling C extensions alongside Python code).
1072
     */
1073
0
    size_t perf_map_entry_size = snprintf(NULL, 0, "py::%s:%s", entry, filename) + 1;
1074
0
    char* perf_map_entry = (char*) PyMem_RawMalloc(perf_map_entry_size);
1075
0
    if (perf_map_entry == NULL) {
1076
0
        return;  // Memory allocation failed
1077
0
    }
1078
0
    snprintf(perf_map_entry, perf_map_entry_size, "py::%s:%s", entry, filename);
1079
1080
0
    const size_t name_length = strlen(perf_map_entry);
1081
0
    uword base = (uword)code_addr;
1082
0
    uword size = code_size;
1083
1084
    /*
1085
     * Generate DWARF unwinding information
1086
     *
1087
     * DWARF data is essential for proper stack unwinding during profiling.
1088
     * Without it, perf cannot generate accurate call graphs, especially
1089
     * in optimized code where frame pointers may be omitted.
1090
     */
1091
0
    ELFObjectContext ctx;
1092
0
    char buffer[1024];  // Buffer for DWARF data (1KB should be sufficient)
1093
0
    ctx.code_size = code_size;
1094
0
    ctx.startp = ctx.p = (uint8_t*)buffer;
1095
1096
    /* Generate EH frame (Exception Handling frame) data */
1097
0
    elf_init_ehframe(&ctx);
1098
0
    int eh_frame_size = ctx.p - ctx.startp;
1099
1100
    /*
1101
     * Write Code Unwinding Information Event
1102
     *
1103
     * This event must be written before the code load event to ensure
1104
     * perf has the unwinding information available when it processes
1105
     * the code region.
1106
     */
1107
0
    CodeUnwindingInfoEvent ev2;
1108
0
    ev2.base.event = PerfUnwindingInfo;
1109
0
    ev2.base.time_stamp = get_current_monotonic_ticks();
1110
0
    ev2.unwind_data_size = sizeof(EhFrameHeader) + eh_frame_size;
1111
1112
    /* Verify we don't exceed our padding budget */
1113
0
    assert(ev2.unwind_data_size <= PERF_JIT_CODE_PADDING);
1114
1115
0
    ev2.eh_frame_hdr_size = sizeof(EhFrameHeader);
1116
0
    ev2.mapped_size = round_up(ev2.unwind_data_size, 16);  // 16-byte alignment
1117
1118
    /* Calculate total event size with padding */
1119
0
    int content_size = sizeof(ev2) + sizeof(EhFrameHeader) + eh_frame_size;
1120
0
    int padding_size = round_up(content_size, 8) - content_size;  // 8-byte align
1121
0
    ev2.base.size = content_size + padding_size;
1122
1123
    /* Write the unwinding info event header */
1124
0
    perf_map_jit_write_fully(&ev2, sizeof(ev2));
1125
1126
    /*
1127
     * Write EH Frame Header
1128
     *
1129
     * The EH frame header provides metadata about the DWARF unwinding
1130
     * information that follows. It includes pointers and counts that
1131
     * help perf navigate the unwinding data efficiently.
1132
     */
1133
0
    EhFrameHeader f;
1134
0
    f.version = 1;
1135
0
    f.eh_frame_ptr_enc = DwarfSData4 | DwarfPcRel;  // PC-relative signed 4-byte
1136
0
    f.fde_count_enc = DwarfUData4;                  // Unsigned 4-byte count
1137
0
    f.table_enc = DwarfSData4 | DwarfDataRel;       // Data-relative signed 4-byte
1138
1139
    /* Calculate relative offsets for EH frame navigation */
1140
0
    f.eh_frame_ptr = -(eh_frame_size + 4 * sizeof(unsigned char));
1141
0
    f.eh_fde_count = 1;  // We generate exactly one FDE per function
1142
0
    f.from = -(round_up(code_size, 8) + eh_frame_size);
1143
1144
0
    int cie_size = ctx.eh_frame_p - ctx.startp;
1145
0
    f.to = -(eh_frame_size - cie_size);
1146
1147
    /* Write EH frame data and header */
1148
0
    perf_map_jit_write_fully(ctx.startp, eh_frame_size);
1149
0
    perf_map_jit_write_fully(&f, sizeof(f));
1150
1151
    /* Write padding to maintain alignment */
1152
0
    char padding_bytes[] = "\0\0\0\0\0\0\0\0";
1153
0
    perf_map_jit_write_fully(&padding_bytes, padding_size);
1154
1155
    /*
1156
     * Write Code Load Event
1157
     *
1158
     * This event tells perf about the new code region. It includes:
1159
     * - Memory addresses and sizes
1160
     * - Process and thread identification
1161
     * - Function name for symbol resolution
1162
     * - The actual machine code bytes
1163
     */
1164
0
    CodeLoadEvent ev;
1165
0
    ev.base.event = PerfLoad;
1166
0
    ev.base.size = sizeof(ev) + (name_length+1) + size;
1167
0
    ev.base.time_stamp = get_current_monotonic_ticks();
1168
0
    ev.process_id = getpid();
1169
0
    ev.thread_id = syscall(SYS_gettid);  // Get thread ID via system call
1170
0
    ev.vma = base;                       // Virtual memory address
1171
0
    ev.code_address = base;              // Same as VMA for our use case
1172
0
    ev.code_size = size;
1173
1174
    /* Assign unique code ID and increment counter */
1175
0
    perf_jit_map_state.code_id += 1;
1176
0
    ev.code_id = perf_jit_map_state.code_id;
1177
1178
    /* Write code load event and associated data */
1179
0
    perf_map_jit_write_fully(&ev, sizeof(ev));
1180
0
    perf_map_jit_write_fully(perf_map_entry, name_length+1);  // Include null terminator
1181
0
    perf_map_jit_write_fully((void*)(base), size);           // Copy actual machine code
1182
1183
    /* Clean up allocated memory */
1184
0
    PyMem_RawFree(perf_map_entry);
1185
0
}
1186
1187
// =============================================================================
1188
//                              CLEANUP AND FINALIZATION
1189
// =============================================================================
1190
1191
/*
1192
 * Finalize and cleanup the perf jitdump system
1193
 *
1194
 * This function is called when Python is shutting down or when the
1195
 * perf trampoline system is being disabled. It ensures all resources
1196
 * are properly released and all buffered data is flushed to disk.
1197
 *
1198
 * Args:
1199
 *   state: Jitdump state (currently unused, uses global state)
1200
 *
1201
 * Returns: 0 on success
1202
 *
1203
 * IMPORTANT: This function signature is part of Python's internal API
1204
 * and must not be changed without coordinating with core Python development.
1205
 */
1206
0
static int perf_map_jit_fini(void* state) {
1207
    /*
1208
     * Close jitdump file with proper synchronization
1209
     *
1210
     * We need to acquire the lock to ensure no other threads are
1211
     * writing to the file when we close it. This prevents corruption
1212
     * and ensures all data is properly flushed.
1213
     */
1214
0
    if (perf_jit_map_state.perf_map != NULL) {
1215
0
        PyThread_acquire_lock(perf_jit_map_state.map_lock, 1);
1216
0
        fclose(perf_jit_map_state.perf_map);  // This also flushes buffers
1217
0
        PyThread_release_lock(perf_jit_map_state.map_lock);
1218
1219
        /* Clean up synchronization primitive */
1220
0
        PyThread_free_lock(perf_jit_map_state.map_lock);
1221
0
        perf_jit_map_state.perf_map = NULL;
1222
0
    }
1223
1224
    /*
1225
     * Unmap the memory region
1226
     *
1227
     * This removes the signal to perf that we were generating JIT code.
1228
     * After this point, perf will no longer detect this process as
1229
     * having JIT capabilities.
1230
     */
1231
0
    if (perf_jit_map_state.mapped_buffer != NULL) {
1232
0
        munmap(perf_jit_map_state.mapped_buffer, perf_jit_map_state.mapped_size);
1233
0
        perf_jit_map_state.mapped_buffer = NULL;
1234
0
    }
1235
1236
    /* Clear global state reference */
1237
0
    trampoline_api.state = NULL;
1238
1239
0
    return 0;  // Success
1240
0
}
1241
1242
// =============================================================================
1243
//                              PUBLIC API EXPORT
1244
// =============================================================================
1245
1246
/*
1247
 * Python Perf Callbacks Structure
1248
 *
1249
 * This structure defines the callback interface that Python's trampoline
1250
 * system uses to integrate with perf profiling. It contains function
1251
 * pointers for initialization, event writing, and cleanup.
1252
 *
1253
 * CRITICAL: This structure and its contents are part of Python's internal
1254
 * API. The function signatures and behavior must remain stable to maintain
1255
 * compatibility with the Python interpreter's perf integration system.
1256
 *
1257
 * Used by: Python's _PyPerf_Callbacks system in pycore_ceval.h
1258
 */
1259
_PyPerf_Callbacks _Py_perfmap_jit_callbacks = {
1260
    &perf_map_jit_init,        // Initialization function
1261
    &perf_map_jit_write_entry, // Event writing function
1262
    &perf_map_jit_fini,        // Cleanup function
1263
};
1264
1265
#endif /* PY_HAVE_PERF_TRAMPOLINE */