/src/cpython/Python/pyhash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Set of hash utility functions to help maintaining the invariant that |
2 | | if a==b then hash(a)==hash(b) |
3 | | |
4 | | All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
5 | | */ |
6 | | #include "Python.h" |
7 | | #include "pycore_pyhash.h" // _Py_HashSecret_t |
8 | | |
9 | | #ifdef __APPLE__ |
10 | | # include <libkern/OSByteOrder.h> |
11 | | #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H) |
12 | | # include <endian.h> |
13 | | #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H) |
14 | | # include <sys/endian.h> |
15 | | #endif |
16 | | |
17 | | _Py_HashSecret_t _Py_HashSecret = {{0}}; |
18 | | |
19 | | #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL |
20 | | extern PyHash_FuncDef PyHash_Func; |
21 | | #else |
22 | | static PyHash_FuncDef PyHash_Func; |
23 | | #endif |
24 | | |
25 | | /* Count Py_HashBuffer() calls */ |
26 | | #ifdef Py_HASH_STATS |
27 | | #define Py_HASH_STATS_MAX 32 |
28 | | static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; |
29 | | #endif |
30 | | |
31 | | /* For numeric types, the hash of a number x is based on the reduction |
32 | | of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that |
33 | | hash(x) == hash(y) whenever x and y are numerically equal, even if |
34 | | x and y have different types. |
35 | | |
36 | | A quick summary of the hashing strategy: |
37 | | |
38 | | (1) First define the 'reduction of x modulo P' for any rational |
39 | | number x; this is a standard extension of the usual notion of |
40 | | reduction modulo P for integers. If x == p/q (written in lowest |
41 | | terms), the reduction is interpreted as the reduction of p times |
42 | | the inverse of the reduction of q, all modulo P; if q is exactly |
43 | | divisible by P then define the reduction to be infinity. So we've |
44 | | got a well-defined map |
45 | | |
46 | | reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. |
47 | | |
48 | | (2) Now for a rational number x, define hash(x) by: |
49 | | |
50 | | reduce(x) if x >= 0 |
51 | | -reduce(-x) if x < 0 |
52 | | |
53 | | If the result of the reduction is infinity (this is impossible for |
54 | | integers, floats and Decimals) then use the predefined hash value |
55 | | _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. |
56 | | _PyHASH_INF and -_PyHASH_INF are also used for the |
57 | | hashes of float and Decimal infinities. |
58 | | |
59 | | NaNs hash with a pointer hash. Having distinct hash values prevents |
60 | | catastrophic pileups from distinct NaN instances which used to always |
61 | | have the same hash value but would compare unequal. |
62 | | |
63 | | A selling point for the above strategy is that it makes it possible |
64 | | to compute hashes of decimal and binary floating-point numbers |
65 | | efficiently, even if the exponent of the binary or decimal number |
66 | | is large. The key point is that |
67 | | |
68 | | reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) |
69 | | |
70 | | provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a |
71 | | binary or decimal float is never infinity, since the denominator is a power |
72 | | of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, |
73 | | for nonnegative x, |
74 | | |
75 | | reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS |
76 | | |
77 | | reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS |
78 | | |
79 | | and reduce(10**e) can be computed efficiently by the usual modular |
80 | | exponentiation algorithm. For reduce(2**e) it's even better: since |
81 | | P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication |
82 | | by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. |
83 | | |
84 | | */ |
85 | | |
86 | | Py_hash_t |
87 | | _Py_HashDouble(PyObject *inst, double v) |
88 | 365 | { |
89 | 365 | int e, sign; |
90 | 365 | double m; |
91 | 365 | Py_uhash_t x, y; |
92 | | |
93 | 365 | if (!isfinite(v)) { |
94 | 0 | if (isinf(v)) |
95 | 0 | return v > 0 ? _PyHASH_INF : -_PyHASH_INF; |
96 | 0 | else |
97 | 0 | return PyObject_GenericHash(inst); |
98 | 0 | } |
99 | | |
100 | 365 | m = frexp(v, &e); |
101 | | |
102 | 365 | sign = 1; |
103 | 365 | if (m < 0) { |
104 | 12 | sign = -1; |
105 | 12 | m = -m; |
106 | 12 | } |
107 | | |
108 | | /* process 28 bits at a time; this should work well both for binary |
109 | | and hexadecimal floating point. */ |
110 | 365 | x = 0; |
111 | 745 | while (m) { |
112 | 380 | x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); |
113 | 380 | m *= 268435456.0; /* 2**28 */ |
114 | 380 | e -= 28; |
115 | 380 | y = (Py_uhash_t)m; /* pull out integer part */ |
116 | 380 | m -= y; |
117 | 380 | x += y; |
118 | 380 | if (x >= _PyHASH_MODULUS) |
119 | 0 | x -= _PyHASH_MODULUS; |
120 | 380 | } |
121 | | |
122 | | /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ |
123 | 365 | e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); |
124 | 365 | x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); |
125 | | |
126 | 365 | x = x * sign; |
127 | 365 | if (x == (Py_uhash_t)-1) |
128 | 3 | x = (Py_uhash_t)-2; |
129 | 365 | return (Py_hash_t)x; |
130 | 365 | } |
131 | | |
132 | | Py_hash_t |
133 | | Py_HashPointer(const void *ptr) |
134 | 940k | { |
135 | 940k | Py_hash_t hash = _Py_HashPointerRaw(ptr); |
136 | 940k | if (hash == -1) { |
137 | 0 | hash = -2; |
138 | 0 | } |
139 | 940k | return hash; |
140 | 940k | } |
141 | | |
142 | | Py_hash_t |
143 | | PyObject_GenericHash(PyObject *obj) |
144 | 938k | { |
145 | 938k | return Py_HashPointer(obj); |
146 | 938k | } |
147 | | |
148 | | Py_hash_t |
149 | | Py_HashBuffer(const void *ptr, Py_ssize_t len) |
150 | 51.8M | { |
151 | | /* |
152 | | We make the hash of the empty string be 0, rather than using |
153 | | (prefix ^ suffix), since this slightly obfuscates the hash secret |
154 | | */ |
155 | 51.8M | if (len == 0) { |
156 | 32 | return 0; |
157 | 32 | } |
158 | | |
159 | | #ifdef Py_HASH_STATS |
160 | | hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++; |
161 | | #endif |
162 | | |
163 | 51.8M | Py_hash_t x; |
164 | | #if Py_HASH_CUTOFF > 0 |
165 | | if (len < Py_HASH_CUTOFF) { |
166 | | /* Optimize hashing of very small strings with inline DJBX33A. */ |
167 | | Py_uhash_t hash; |
168 | | const unsigned char *p = ptr; |
169 | | hash = 5381; /* DJBX33A starts with 5381 */ |
170 | | |
171 | | switch(len) { |
172 | | /* ((hash << 5) + hash) + *p == hash * 33 + *p */ |
173 | | case 7: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
174 | | case 6: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
175 | | case 5: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
176 | | case 4: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
177 | | case 3: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
178 | | case 2: hash = ((hash << 5) + hash) + *p++; _Py_FALLTHROUGH; |
179 | | case 1: hash = ((hash << 5) + hash) + *p++; break; |
180 | | default: |
181 | | Py_UNREACHABLE(); |
182 | | } |
183 | | hash ^= len; |
184 | | hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix; |
185 | | x = (Py_hash_t)hash; |
186 | | } |
187 | | else |
188 | | #endif /* Py_HASH_CUTOFF */ |
189 | 51.8M | { |
190 | 51.8M | x = PyHash_Func.hash(ptr, len); |
191 | 51.8M | } |
192 | | |
193 | 51.8M | if (x == -1) { |
194 | 0 | return -2; |
195 | 0 | } |
196 | 51.8M | return x; |
197 | 51.8M | } |
198 | | |
199 | | void |
200 | | _PyHash_Fini(void) |
201 | 0 | { |
202 | | #ifdef Py_HASH_STATS |
203 | | fprintf(stderr, "len calls total\n"); |
204 | | Py_ssize_t total = 0; |
205 | | for (int i = 1; i <= Py_HASH_STATS_MAX; i++) { |
206 | | total += hashstats[i]; |
207 | | fprintf(stderr, "%2i %8zd %8zd\n", i, hashstats[i], total); |
208 | | } |
209 | | total += hashstats[0]; |
210 | | fprintf(stderr, "> %8zd %8zd\n", hashstats[0], total); |
211 | | #endif |
212 | 0 | } |
213 | | |
214 | | PyHash_FuncDef * |
215 | | PyHash_GetFuncDef(void) |
216 | 16 | { |
217 | 16 | return &PyHash_Func; |
218 | 16 | } |
219 | | |
220 | | /* Optimized memcpy() for Windows */ |
221 | | #ifdef _MSC_VER |
222 | | # if SIZEOF_PY_UHASH_T == 4 |
223 | | # define PY_UHASH_CPY(dst, src) do { \ |
224 | | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
225 | | } while(0) |
226 | | # elif SIZEOF_PY_UHASH_T == 8 |
227 | | # define PY_UHASH_CPY(dst, src) do { \ |
228 | | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
229 | | dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \ |
230 | | } while(0) |
231 | | # else |
232 | | # error SIZEOF_PY_UHASH_T must be 4 or 8 |
233 | | # endif /* SIZEOF_PY_UHASH_T */ |
234 | | #else /* not Windows */ |
235 | | # define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T) |
236 | | #endif /* _MSC_VER */ |
237 | | |
238 | | |
239 | | #if Py_HASH_ALGORITHM == Py_HASH_FNV |
240 | | /* ************************************************************************** |
241 | | * Modified Fowler-Noll-Vo (FNV) hash function |
242 | | */ |
243 | | static Py_hash_t |
244 | | fnv(const void *src, Py_ssize_t len) |
245 | | { |
246 | | const unsigned char *p = src; |
247 | | Py_uhash_t x; |
248 | | Py_ssize_t remainder, blocks; |
249 | | union { |
250 | | Py_uhash_t value; |
251 | | unsigned char bytes[SIZEOF_PY_UHASH_T]; |
252 | | } block; |
253 | | |
254 | | #ifdef Py_DEBUG |
255 | | assert(_Py_HashSecret_Initialized); |
256 | | #endif |
257 | | remainder = len % SIZEOF_PY_UHASH_T; |
258 | | if (remainder == 0) { |
259 | | /* Process at least one block byte by byte to reduce hash collisions |
260 | | * for strings with common prefixes. */ |
261 | | remainder = SIZEOF_PY_UHASH_T; |
262 | | } |
263 | | blocks = (len - remainder) / SIZEOF_PY_UHASH_T; |
264 | | |
265 | | x = (Py_uhash_t) _Py_HashSecret.fnv.prefix; |
266 | | x ^= (Py_uhash_t) *p << 7; |
267 | | while (blocks--) { |
268 | | PY_UHASH_CPY(block.bytes, p); |
269 | | x = (PyHASH_MULTIPLIER * x) ^ block.value; |
270 | | p += SIZEOF_PY_UHASH_T; |
271 | | } |
272 | | /* add remainder */ |
273 | | for (; remainder > 0; remainder--) |
274 | | x = (PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; |
275 | | x ^= (Py_uhash_t) len; |
276 | | x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix; |
277 | | if (x == (Py_uhash_t) -1) { |
278 | | x = (Py_uhash_t) -2; |
279 | | } |
280 | | return x; |
281 | | } |
282 | | |
283 | | static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, |
284 | | 16 * SIZEOF_PY_HASH_T}; |
285 | | |
286 | | #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */ |
287 | | |
288 | | |
289 | | /* ************************************************************************** |
290 | | <MIT License> |
291 | | Copyright (c) 2013 Marek Majkowski <marek@popcount.org> |
292 | | |
293 | | Permission is hereby granted, free of charge, to any person obtaining a copy |
294 | | of this software and associated documentation files (the "Software"), to deal |
295 | | in the Software without restriction, including without limitation the rights |
296 | | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
297 | | copies of the Software, and to permit persons to whom the Software is |
298 | | furnished to do so, subject to the following conditions: |
299 | | |
300 | | The above copyright notice and this permission notice shall be included in |
301 | | all copies or substantial portions of the Software. |
302 | | |
303 | | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
304 | | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
305 | | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
306 | | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
307 | | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
308 | | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
309 | | THE SOFTWARE. |
310 | | </MIT License> |
311 | | |
312 | | Original location: |
313 | | https://github.com/majek/csiphash/ |
314 | | |
315 | | Solution inspired by code from: |
316 | | Samuel Neves (supercop/crypto_auth/siphash24/little) |
317 | | djb (supercop/crypto_auth/siphash24/little2) |
318 | | Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c) |
319 | | |
320 | | Modified for Python by Christian Heimes: |
321 | | - C89 / MSVC compatibility |
322 | | - _rotl64() on Windows |
323 | | - letoh64() fallback |
324 | | */ |
325 | | |
326 | | /* byte swap little endian to host endian |
327 | | * Endian conversion not only ensures that the hash function returns the same |
328 | | * value on all platforms. It is also required to for a good dispersion of |
329 | | * the hash values' least significant bits. |
330 | | */ |
331 | | #if PY_LITTLE_ENDIAN |
332 | 322M | # define _le64toh(x) ((uint64_t)(x)) |
333 | | #elif defined(__APPLE__) |
334 | | # define _le64toh(x) OSSwapLittleToHostInt64(x) |
335 | | #elif defined(HAVE_LETOH64) |
336 | | # define _le64toh(x) le64toh(x) |
337 | | #else |
338 | | # define _le64toh(x) (((uint64_t)(x) << 56) | \ |
339 | | (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \ |
340 | | (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \ |
341 | | (((uint64_t)(x) << 8) & 0xff00000000ULL) | \ |
342 | | (((uint64_t)(x) >> 8) & 0xff000000ULL) | \ |
343 | | (((uint64_t)(x) >> 24) & 0xff0000ULL) | \ |
344 | | (((uint64_t)(x) >> 40) & 0xff00ULL) | \ |
345 | | ((uint64_t)(x) >> 56)) |
346 | | #endif |
347 | | |
348 | | |
349 | | #ifdef _MSC_VER |
350 | | # define ROTATE(x, b) _rotl64(x, b) |
351 | | #else |
352 | 2.24G | # define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) ) |
353 | | #endif |
354 | | |
355 | | #define HALF_ROUND(a,b,c,d,s,t) \ |
356 | 748M | a += b; c += d; \ |
357 | 748M | b = ROTATE(b, s) ^ a; \ |
358 | 748M | d = ROTATE(d, t) ^ c; \ |
359 | 748M | a = ROTATE(a, 32); |
360 | | |
361 | | #define SINGLE_ROUND(v0,v1,v2,v3) \ |
362 | 374M | HALF_ROUND(v0,v1,v2,v3,13,16); \ |
363 | 374M | HALF_ROUND(v2,v1,v0,v3,17,21); |
364 | | |
365 | | #define DOUBLE_ROUND(v0,v1,v2,v3) \ |
366 | | SINGLE_ROUND(v0,v1,v2,v3); \ |
367 | | SINGLE_ROUND(v0,v1,v2,v3); |
368 | | |
369 | | |
370 | | static uint64_t |
371 | 51.8M | siphash13(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) { |
372 | 51.8M | uint64_t b = (uint64_t)src_sz << 56; |
373 | 51.8M | const uint8_t *in = (const uint8_t*)src; |
374 | | |
375 | 51.8M | uint64_t v0 = k0 ^ 0x736f6d6570736575ULL; |
376 | 51.8M | uint64_t v1 = k1 ^ 0x646f72616e646f6dULL; |
377 | 51.8M | uint64_t v2 = k0 ^ 0x6c7967656e657261ULL; |
378 | 51.8M | uint64_t v3 = k1 ^ 0x7465646279746573ULL; |
379 | | |
380 | 51.8M | uint64_t t; |
381 | 51.8M | uint8_t *pt; |
382 | | |
383 | 218M | while (src_sz >= 8) { |
384 | 167M | uint64_t mi; |
385 | 167M | memcpy(&mi, in, sizeof(mi)); |
386 | 167M | mi = _le64toh(mi); |
387 | 167M | in += sizeof(mi); |
388 | 167M | src_sz -= sizeof(mi); |
389 | 167M | v3 ^= mi; |
390 | 167M | SINGLE_ROUND(v0,v1,v2,v3); |
391 | 167M | v0 ^= mi; |
392 | 167M | } |
393 | | |
394 | 51.8M | t = 0; |
395 | 51.8M | pt = (uint8_t *)&t; |
396 | 51.8M | switch (src_sz) { |
397 | 255k | case 7: pt[6] = in[6]; _Py_FALLTHROUGH; |
398 | 3.14M | case 6: pt[5] = in[5]; _Py_FALLTHROUGH; |
399 | 3.63M | case 5: pt[4] = in[4]; _Py_FALLTHROUGH; |
400 | 6.52M | case 4: memcpy(pt, in, sizeof(uint32_t)); break; |
401 | 2.02M | case 3: pt[2] = in[2]; _Py_FALLTHROUGH; |
402 | 41.3M | case 2: pt[1] = in[1]; _Py_FALLTHROUGH; |
403 | 42.7M | case 1: pt[0] = in[0]; break; |
404 | 51.8M | } |
405 | 51.8M | b |= _le64toh(t); |
406 | | |
407 | 51.8M | v3 ^= b; |
408 | 51.8M | SINGLE_ROUND(v0,v1,v2,v3); |
409 | 51.8M | v0 ^= b; |
410 | 51.8M | v2 ^= 0xff; |
411 | 51.8M | SINGLE_ROUND(v0,v1,v2,v3); |
412 | 51.8M | SINGLE_ROUND(v0,v1,v2,v3); |
413 | 51.8M | SINGLE_ROUND(v0,v1,v2,v3); |
414 | | |
415 | | /* modified */ |
416 | 51.8M | t = (v0 ^ v1) ^ (v2 ^ v3); |
417 | 51.8M | return t; |
418 | 51.8M | } |
419 | | |
420 | | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 |
421 | | static uint64_t |
422 | | siphash24(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) { |
423 | | uint64_t b = (uint64_t)src_sz << 56; |
424 | | const uint8_t *in = (const uint8_t*)src; |
425 | | |
426 | | uint64_t v0 = k0 ^ 0x736f6d6570736575ULL; |
427 | | uint64_t v1 = k1 ^ 0x646f72616e646f6dULL; |
428 | | uint64_t v2 = k0 ^ 0x6c7967656e657261ULL; |
429 | | uint64_t v3 = k1 ^ 0x7465646279746573ULL; |
430 | | |
431 | | uint64_t t; |
432 | | uint8_t *pt; |
433 | | |
434 | | while (src_sz >= 8) { |
435 | | uint64_t mi; |
436 | | memcpy(&mi, in, sizeof(mi)); |
437 | | mi = _le64toh(mi); |
438 | | in += sizeof(mi); |
439 | | src_sz -= sizeof(mi); |
440 | | v3 ^= mi; |
441 | | DOUBLE_ROUND(v0,v1,v2,v3); |
442 | | v0 ^= mi; |
443 | | } |
444 | | |
445 | | t = 0; |
446 | | pt = (uint8_t *)&t; |
447 | | switch (src_sz) { |
448 | | case 7: pt[6] = in[6]; _Py_FALLTHROUGH; |
449 | | case 6: pt[5] = in[5]; _Py_FALLTHROUGH; |
450 | | case 5: pt[4] = in[4]; _Py_FALLTHROUGH; |
451 | | case 4: memcpy(pt, in, sizeof(uint32_t)); break; |
452 | | case 3: pt[2] = in[2]; _Py_FALLTHROUGH; |
453 | | case 2: pt[1] = in[1]; _Py_FALLTHROUGH; |
454 | | case 1: pt[0] = in[0]; break; |
455 | | } |
456 | | b |= _le64toh(t); |
457 | | |
458 | | v3 ^= b; |
459 | | DOUBLE_ROUND(v0,v1,v2,v3); |
460 | | v0 ^= b; |
461 | | v2 ^= 0xff; |
462 | | DOUBLE_ROUND(v0,v1,v2,v3); |
463 | | DOUBLE_ROUND(v0,v1,v2,v3); |
464 | | |
465 | | /* modified */ |
466 | | t = (v0 ^ v1) ^ (v2 ^ v3); |
467 | | return t; |
468 | | } |
469 | | #endif |
470 | | |
471 | | uint64_t |
472 | | _Py_KeyedHash(uint64_t key, const void *src, Py_ssize_t src_sz) |
473 | 0 | { |
474 | 0 | return siphash13(key, 0, src, src_sz); |
475 | 0 | } |
476 | | |
477 | | |
478 | | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH13 |
479 | | static Py_hash_t |
480 | 51.8M | pysiphash(const void *src, Py_ssize_t src_sz) { |
481 | 51.8M | return (Py_hash_t)siphash13( |
482 | 51.8M | _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1), |
483 | 51.8M | src, src_sz); |
484 | 51.8M | } |
485 | | |
486 | | static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash13", 64, 128}; |
487 | | #endif |
488 | | |
489 | | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 |
490 | | static Py_hash_t |
491 | | pysiphash(const void *src, Py_ssize_t src_sz) { |
492 | | return (Py_hash_t)siphash24( |
493 | | _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1), |
494 | | src, src_sz); |
495 | | } |
496 | | |
497 | | static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash24", 64, 128}; |
498 | | #endif |