Coverage Report

Created: 2025-07-11 06:24

/src/cpython/Python/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
34
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.41M
#define word0(x) (x)->L[1]
181
944k
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
3.72M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
65.1k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
536k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
1.79M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
151k
#define Exp_shift  20
235
83.7k
#define Exp_shift1 20
236
407k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
846k
#define Exp_mask  0x7ff00000
239
358k
#define P 53
240
#define Nbits 53
241
185k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
261k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
85.5k
#define Exp_1  0x3ff00000
246
38.2k
#define Exp_11 0x3ff00000
247
170k
#define Ebits 11
248
132k
#define Frac_mask  0xfffff
249
40.5k
#define Frac_mask1 0xfffff
250
1.06M
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
58.2k
#define Bndry_mask  0xfffff
253
6.81k
#define Bndry_mask1 0xfffff
254
59.4k
#define Sign_bit 0x80000000
255
5.78k
#define Log2P 1
256
#define Tiny0 0
257
19.7k
#define Tiny1 1
258
41.8k
#define Quick_max 14
259
25.7k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
570k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.64k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.30k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
14.1M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.29M
#define freelist interp->dtoa.freelist
336
207
#define private_mem interp->dtoa.preallocated
337
553
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.32M
{
344
1.32M
    int x;
345
1.32M
    Bigint *rv;
346
1.32M
    unsigned int len;
347
1.32M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.32M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.32M
        freelist[k] = rv->next;
351
207
    else {
352
207
        x = 1 << k;
353
207
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
207
            /sizeof(double);
355
207
        if (k <= Bigint_Kmax &&
356
207
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
207
        ) {
358
173
            rv = (Bigint*)pmem_next;
359
173
            pmem_next += len;
360
173
        }
361
34
        else {
362
34
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
34
            if (rv == NULL)
364
0
                return NULL;
365
34
        }
366
207
        rv->k = k;
367
207
        rv->maxwds = x;
368
207
    }
369
1.32M
    rv->sign = rv->wds = 0;
370
1.32M
    return rv;
371
1.32M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
3.98M
{
378
3.98M
    if (v) {
379
1.32M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.32M
        else {
382
1.32M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.32M
            v->next = freelist[v->k];
384
1.32M
            freelist[v->k] = v;
385
1.32M
        }
386
1.32M
    }
387
3.98M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
86.8k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
86.8k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
589k
{
445
589k
    int i, wds;
446
589k
    ULong *x;
447
589k
    ULLong carry, y;
448
589k
    Bigint *b1;
449
450
589k
    wds = b->wds;
451
589k
    x = b->x;
452
589k
    i = 0;
453
589k
    carry = a;
454
2.09M
    do {
455
2.09M
        y = *x * (ULLong)m + carry;
456
2.09M
        carry = y >> 32;
457
2.09M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.09M
    }
459
2.09M
    while(++i < wds);
460
589k
    if (carry) {
461
38.5k
        if (wds >= b->maxwds) {
462
1.63k
            b1 = Balloc(b->k+1);
463
1.63k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.63k
            Bcopy(b1, b);
468
1.63k
            Bfree(b);
469
1.63k
            b = b1;
470
1.63k
        }
471
38.5k
        b->x[wds++] = (ULong)carry;
472
38.5k
        b->wds = wds;
473
38.5k
    }
474
589k
    return b;
475
589k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
65.1k
{
486
65.1k
    Bigint *b;
487
65.1k
    int i, k;
488
65.1k
    Long x, y;
489
490
65.1k
    x = (nd + 8) / 9;
491
95.1k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
65.1k
    b = Balloc(k);
493
65.1k
    if (b == NULL)
494
0
        return NULL;
495
65.1k
    b->x[0] = y9;
496
65.1k
    b->wds = 1;
497
498
65.1k
    if (nd <= 9)
499
41.4k
      return b;
500
501
23.7k
    s += 9;
502
181k
    for (i = 9; i < nd0; i++) {
503
157k
        b = multadd(b, 10, *s++ - '0');
504
157k
        if (b == NULL)
505
0
            return NULL;
506
157k
    }
507
23.7k
    s++;
508
80.7k
    for(; i < nd; i++) {
509
56.9k
        b = multadd(b, 10, *s++ - '0');
510
56.9k
        if (b == NULL)
511
0
            return NULL;
512
56.9k
    }
513
23.7k
    return b;
514
23.7k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
109k
{
521
109k
    int k = 0;
522
523
109k
    if (!(x & 0xffff0000)) {
524
66.3k
        k = 16;
525
66.3k
        x <<= 16;
526
66.3k
    }
527
109k
    if (!(x & 0xff000000)) {
528
68.5k
        k += 8;
529
68.5k
        x <<= 8;
530
68.5k
    }
531
109k
    if (!(x & 0xf0000000)) {
532
64.8k
        k += 4;
533
64.8k
        x <<= 4;
534
64.8k
    }
535
109k
    if (!(x & 0xc0000000)) {
536
62.6k
        k += 2;
537
62.6k
        x <<= 2;
538
62.6k
    }
539
109k
    if (!(x & 0x80000000)) {
540
64.3k
        k++;
541
64.3k
        if (!(x & 0x40000000))
542
0
            return 32;
543
64.3k
    }
544
109k
    return k;
545
109k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
41.8k
{
553
41.8k
    int k;
554
41.8k
    ULong x = *y;
555
556
41.8k
    if (x & 7) {
557
24.2k
        if (x & 1)
558
12.6k
            return 0;
559
11.6k
        if (x & 2) {
560
7.06k
            *y = x >> 1;
561
7.06k
            return 1;
562
7.06k
        }
563
4.61k
        *y = x >> 2;
564
4.61k
        return 2;
565
11.6k
    }
566
17.5k
    k = 0;
567
17.5k
    if (!(x & 0xffff)) {
568
7.28k
        k = 16;
569
7.28k
        x >>= 16;
570
7.28k
    }
571
17.5k
    if (!(x & 0xff)) {
572
3.70k
        k += 8;
573
3.70k
        x >>= 8;
574
3.70k
    }
575
17.5k
    if (!(x & 0xf)) {
576
9.27k
        k += 4;
577
9.27k
        x >>= 4;
578
9.27k
    }
579
17.5k
    if (!(x & 0x3)) {
580
9.60k
        k += 2;
581
9.60k
        x >>= 2;
582
9.60k
    }
583
17.5k
    if (!(x & 1)) {
584
11.9k
        k++;
585
11.9k
        x >>= 1;
586
11.9k
        if (!x)
587
0
            return 32;
588
11.9k
    }
589
17.5k
    *y = x;
590
17.5k
    return k;
591
17.5k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
151k
{
598
151k
    Bigint *b;
599
600
151k
    b = Balloc(1);
601
151k
    if (b == NULL)
602
0
        return NULL;
603
151k
    b->x[0] = i;
604
151k
    b->wds = 1;
605
151k
    return b;
606
151k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
361k
{
614
361k
    Bigint *c;
615
361k
    int k, wa, wb, wc;
616
361k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
361k
    ULong y;
618
361k
    ULLong carry, z;
619
620
361k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
4.23k
        c = Balloc(0);
622
4.23k
        if (c == NULL)
623
0
            return NULL;
624
4.23k
        c->wds = 1;
625
4.23k
        c->x[0] = 0;
626
4.23k
        return c;
627
4.23k
    }
628
629
356k
    if (a->wds < b->wds) {
630
171k
        c = a;
631
171k
        a = b;
632
171k
        b = c;
633
171k
    }
634
356k
    k = a->k;
635
356k
    wa = a->wds;
636
356k
    wb = b->wds;
637
356k
    wc = wa + wb;
638
356k
    if (wc > a->maxwds)
639
155k
        k++;
640
356k
    c = Balloc(k);
641
356k
    if (c == NULL)
642
0
        return NULL;
643
3.40M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.04M
        *x = 0;
645
356k
    xa = a->x;
646
356k
    xae = xa + wa;
647
356k
    xb = b->x;
648
356k
    xbe = xb + wb;
649
356k
    xc0 = c->x;
650
1.14M
    for(; xb < xbe; xc0++) {
651
783k
        if ((y = *xb++)) {
652
779k
            x = xa;
653
779k
            xc = xc0;
654
779k
            carry = 0;
655
7.90M
            do {
656
7.90M
                z = *x++ * (ULLong)y + *xc + carry;
657
7.90M
                carry = z >> 32;
658
7.90M
                *xc++ = (ULong)(z & FFFFFFFF);
659
7.90M
            }
660
7.90M
            while(x < xae);
661
779k
            *xc = (ULong)carry;
662
779k
        }
663
783k
    }
664
612k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
356k
    c->wds = wc;
666
356k
    return c;
667
356k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
111k
{
678
111k
    Bigint *b1, *p5, **p5s;
679
111k
    int i;
680
111k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
111k
    assert(0 <= k && k < 1024);
688
689
111k
    if ((i = k & 3)) {
690
77.6k
        b = multadd(b, p05[i-1], 0);
691
77.6k
        if (b == NULL)
692
0
            return NULL;
693
77.6k
    }
694
695
111k
    if (!(k >>= 2))
696
9.30k
        return b;
697
102k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
102k
    p5s = interp->dtoa.p5s;
699
515k
    for(;;) {
700
515k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
515k
        p5 = *p5s;
702
515k
        p5s++;
703
515k
        if (k & 1) {
704
303k
            b1 = mult(b, p5);
705
303k
            Bfree(b);
706
303k
            b = b1;
707
303k
            if (b == NULL)
708
0
                return NULL;
709
303k
        }
710
515k
        if (!(k >>= 1))
711
102k
            break;
712
515k
    }
713
102k
    return b;
714
102k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
280k
{
775
280k
    int i, k1, n, n1;
776
280k
    Bigint *b1;
777
280k
    ULong *x, *x1, *xe, z;
778
779
280k
    if (!k || (!b->x[0] && b->wds == 1))
780
4.72k
        return b;
781
782
275k
    n = k >> 5;
783
275k
    k1 = b->k;
784
275k
    n1 = n + b->wds + 1;
785
679k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
403k
        k1++;
787
275k
    b1 = Balloc(k1);
788
275k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
275k
    x1 = b1->x;
793
1.61M
    for(i = 0; i < n; i++)
794
1.33M
        *x1++ = 0;
795
275k
    x = b->x;
796
275k
    xe = x + b->wds;
797
275k
    if (k &= 0x1f) {
798
273k
        k1 = 32 - k;
799
273k
        z = 0;
800
1.37M
        do {
801
1.37M
            *x1++ = *x << k | z;
802
1.37M
            z = *x++ >> k1;
803
1.37M
        }
804
1.37M
        while(x < xe);
805
273k
        if ((*x1 = z))
806
42.0k
            ++n1;
807
273k
    }
808
1.90k
    else do
809
4.62k
             *x1++ = *x++;
810
4.62k
        while(x < xe);
811
275k
    b1->wds = n1 - 1;
812
275k
    Bfree(b);
813
275k
    return b1;
814
275k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
782k
{
822
782k
    ULong *xa, *xa0, *xb, *xb0;
823
782k
    int i, j;
824
825
782k
    i = a->wds;
826
782k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
782k
    if (i -= j)
834
172k
        return i;
835
609k
    xa0 = a->x;
836
609k
    xa = xa0 + j;
837
609k
    xb0 = b->x;
838
609k
    xb = xb0 + j;
839
744k
    for(;;) {
840
744k
        if (*--xa != *--xb)
841
593k
            return *xa < *xb ? -1 : 1;
842
151k
        if (xa <= xa0)
843
16.5k
            break;
844
151k
    }
845
16.5k
    return 0;
846
609k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
203k
{
855
203k
    Bigint *c;
856
203k
    int i, wa, wb;
857
203k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
203k
    ULLong borrow, y;
859
860
203k
    i = cmp(a,b);
861
203k
    if (!i) {
862
2.98k
        c = Balloc(0);
863
2.98k
        if (c == NULL)
864
0
            return NULL;
865
2.98k
        c->wds = 1;
866
2.98k
        c->x[0] = 0;
867
2.98k
        return c;
868
2.98k
    }
869
200k
    if (i < 0) {
870
38.6k
        c = a;
871
38.6k
        a = b;
872
38.6k
        b = c;
873
38.6k
        i = 1;
874
38.6k
    }
875
161k
    else
876
161k
        i = 0;
877
200k
    c = Balloc(a->k);
878
200k
    if (c == NULL)
879
0
        return NULL;
880
200k
    c->sign = i;
881
200k
    wa = a->wds;
882
200k
    xa = a->x;
883
200k
    xae = xa + wa;
884
200k
    wb = b->wds;
885
200k
    xb = b->x;
886
200k
    xbe = xb + wb;
887
200k
    xc = c->x;
888
200k
    borrow = 0;
889
1.55M
    do {
890
1.55M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.55M
        borrow = y >> 32 & (ULong)1;
892
1.55M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.55M
    }
894
1.55M
    while(xb < xbe);
895
406k
    while(xa < xae) {
896
206k
        y = *xa++ - borrow;
897
206k
        borrow = y >> 32 & (ULong)1;
898
206k
        *xc++ = (ULong)(y & FFFFFFFF);
899
206k
    }
900
303k
    while(!*--xc)
901
102k
        wa--;
902
200k
    c->wds = wa;
903
200k
    return c;
904
200k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
36.6k
{
912
36.6k
    Long L;
913
36.6k
    U u;
914
915
36.6k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
36.6k
    word0(&u) = L;
917
36.6k
    word1(&u) = 0;
918
36.6k
    return dval(&u);
919
36.6k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
68.5k
{
926
68.5k
    ULong *xa, *xa0, w, y, z;
927
68.5k
    int k;
928
68.5k
    U d;
929
930
68.5k
    xa0 = a->x;
931
68.5k
    xa = xa0 + a->wds;
932
68.5k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
68.5k
    k = hi0bits(y);
937
68.5k
    *e = 32 - k;
938
68.5k
    if (k < Ebits) {
939
16.5k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
16.5k
        w = xa > xa0 ? *--xa : 0;
941
16.5k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
16.5k
        goto ret_d;
943
16.5k
    }
944
52.0k
    z = xa > xa0 ? *--xa : 0;
945
52.0k
    if (k -= Ebits) {
946
47.7k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
47.7k
        y = xa > xa0 ? *--xa : 0;
948
47.7k
        word1(&d) = z << k | y >> (32 - k);
949
47.7k
    }
950
4.25k
    else {
951
4.25k
        word0(&d) = Exp_1 | y;
952
4.25k
        word1(&d) = z;
953
4.25k
    }
954
68.5k
  ret_d:
955
68.5k
    return dval(&d);
956
52.0k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
90.6k
{
982
90.6k
    Bigint *b;
983
984
90.6k
    b = Balloc(1);
985
90.6k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
90.6k
    b->wds = 2;
990
90.6k
    b->x[0] = word1(d);
991
90.6k
    b->x[1] = word0(d) & Frac_mask;
992
90.6k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
90.6k
    if (*e < Etiny)
994
4.72k
        *e = Etiny;
995
85.9k
    else
996
85.9k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
90.6k
    if (scale && (b->x[0] || b->x[1])) {
1000
27.5k
        *e -= scale;
1001
27.5k
        if (*e < Etiny) {
1002
24.1k
            scale = Etiny - *e;
1003
24.1k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
24.1k
            assert(0 < scale && scale <= P - 1);
1006
24.1k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
11.3k
                assert(b->x[0] == 0);
1009
11.3k
                b->x[0] = b->x[1];
1010
11.3k
                b->x[1] = 0;
1011
11.3k
                scale -= 32;
1012
11.3k
            }
1013
24.1k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
22.5k
                assert(b->x[0] << (32 - scale) == 0);
1016
22.5k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
22.5k
                b->x[1] >>= scale;
1018
22.5k
            }
1019
24.1k
        }
1020
27.5k
    }
1021
    /* Ensure b is normalized. */
1022
90.6k
    if (!b->x[1])
1023
19.6k
        b->wds = 1;
1024
1025
90.6k
    return b;
1026
90.6k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
41.8k
{
1040
41.8k
    Bigint *b;
1041
41.8k
    int de, k;
1042
41.8k
    ULong *x, y, z;
1043
41.8k
    int i;
1044
1045
41.8k
    b = Balloc(1);
1046
41.8k
    if (b == NULL)
1047
0
        return NULL;
1048
41.8k
    x = b->x;
1049
1050
41.8k
    z = word0(d) & Frac_mask;
1051
41.8k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
41.8k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
38.2k
        z |= Exp_msk1;
1054
41.8k
    if ((y = word1(d))) {
1055
30.2k
        if ((k = lo0bits(&y))) {
1056
18.4k
            x[0] = y | z << (32 - k);
1057
18.4k
            z >>= k;
1058
18.4k
        }
1059
11.7k
        else
1060
11.7k
            x[0] = y;
1061
30.2k
        i =
1062
30.2k
            b->wds = (x[1] = z) ? 2 : 1;
1063
30.2k
    }
1064
11.5k
    else {
1065
11.5k
        k = lo0bits(&z);
1066
11.5k
        x[0] = z;
1067
11.5k
        i =
1068
11.5k
            b->wds = 1;
1069
11.5k
        k += 32;
1070
11.5k
    }
1071
41.8k
    if (de) {
1072
38.2k
        *e = de - Bias - (P-1) + k;
1073
38.2k
        *bits = P - k;
1074
38.2k
    }
1075
3.64k
    else {
1076
3.64k
        *e = de - Bias - (P-1) + 1 + k;
1077
3.64k
        *bits = 32*i - hi0bits(x[i-1]);
1078
3.64k
    }
1079
41.8k
    return b;
1080
41.8k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
34.2k
{
1088
34.2k
    U da, db;
1089
34.2k
    int k, ka, kb;
1090
1091
34.2k
    dval(&da) = b2d(a, &ka);
1092
34.2k
    dval(&db) = b2d(b, &kb);
1093
34.2k
    k = ka - kb + 32*(a->wds - b->wds);
1094
34.2k
    if (k > 0)
1095
21.0k
        word0(&da) += k*Exp_msk1;
1096
13.1k
    else {
1097
13.1k
        k = -k;
1098
13.1k
        word0(&db) += k*Exp_msk1;
1099
13.1k
    }
1100
34.2k
    return dval(&da) / dval(&db);
1101
34.2k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
21.4k
#define Scale_Bit 0x10
1119
22.5k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
36.9k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
36.9k
{
1129
36.9k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
36.9k
    if (p2 > 0)
1131
22.3k
        rv -= p2;
1132
36.9k
    return rv & kmask;
1133
36.9k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
229k
{
1142
229k
    int n;
1143
229k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
229k
    ULLong borrow, carry, y, ys;
1145
1146
229k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
229k
    if (b->wds < n)
1152
6.24k
        return 0;
1153
223k
    sx = S->x;
1154
223k
    sxe = sx + --n;
1155
223k
    bx = b->x;
1156
223k
    bxe = bx + n;
1157
223k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
223k
    if (q) {
1163
178k
        borrow = 0;
1164
178k
        carry = 0;
1165
1.09M
        do {
1166
1.09M
            ys = *sx++ * (ULLong)q + carry;
1167
1.09M
            carry = ys >> 32;
1168
1.09M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.09M
            borrow = y >> 32 & (ULong)1;
1170
1.09M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.09M
        }
1172
1.09M
        while(sx <= sxe);
1173
178k
        if (!*bxe) {
1174
725
            bx = b->x;
1175
725
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
725
            b->wds = n;
1178
725
        }
1179
178k
    }
1180
223k
    if (cmp(b, S) >= 0) {
1181
17.3k
        q++;
1182
17.3k
        borrow = 0;
1183
17.3k
        carry = 0;
1184
17.3k
        bx = b->x;
1185
17.3k
        sx = S->x;
1186
103k
        do {
1187
103k
            ys = *sx++ + carry;
1188
103k
            carry = ys >> 32;
1189
103k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
103k
            borrow = y >> 32 & (ULong)1;
1191
103k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
103k
        }
1193
103k
        while(sx <= sxe);
1194
17.3k
        bx = b->x;
1195
17.3k
        bxe = bx + n;
1196
17.3k
        if (!*bxe) {
1197
17.8k
            while(--bxe > bx && !*bxe)
1198
1.25k
                --n;
1199
16.5k
            b->wds = n;
1200
16.5k
        }
1201
17.3k
    }
1202
223k
    return q;
1203
229k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
2.80k
{
1214
2.80k
    U u;
1215
1216
2.80k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
399
        word0(&u) = (P+2)*Exp_msk1;
1219
399
        word1(&u) = 0;
1220
399
        return u.d;
1221
399
    }
1222
2.40k
    else {
1223
2.40k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.40k
        return ulp(x);
1225
2.40k
    }
1226
2.80k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
6.49k
{
1277
6.49k
    Bigint *b, *d;
1278
6.49k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
6.49k
    nd = bc->nd;
1281
6.49k
    nd0 = bc->nd0;
1282
6.49k
    p5 = nd + bc->e0;
1283
6.49k
    b = sd2b(rv, bc->scale, &p2);
1284
6.49k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
6.49k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
6.49k
    b = lshift(b, 1);
1294
6.49k
    if (b == NULL)
1295
0
        return -1;
1296
6.49k
    b->x[0] |= 1;
1297
6.49k
    p2--;
1298
1299
6.49k
    p2 -= p5;
1300
6.49k
    d = i2b(1);
1301
6.49k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
6.49k
    if (p5 > 0) {
1309
4.46k
        d = pow5mult(d, p5);
1310
4.46k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
4.46k
    }
1315
2.02k
    else if (p5 < 0) {
1316
1.57k
        b = pow5mult(b, -p5);
1317
1.57k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.57k
    }
1322
6.49k
    if (p2 > 0) {
1323
3.23k
        b2 = p2;
1324
3.23k
        d2 = 0;
1325
3.23k
    }
1326
3.25k
    else {
1327
3.25k
        b2 = 0;
1328
3.25k
        d2 = -p2;
1329
3.25k
    }
1330
6.49k
    i = dshift(d, d2);
1331
6.49k
    if ((b2 += i) > 0) {
1332
6.21k
        b = lshift(b, b2);
1333
6.21k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
6.21k
    }
1338
6.49k
    if ((d2 += i) > 0) {
1339
5.88k
        d = lshift(d, d2);
1340
5.88k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
5.88k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
6.49k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
930
        dd = -1;
1352
5.56k
    else {
1353
5.56k
        i = 0;
1354
110k
        for(;;) {
1355
110k
            b = multadd(b, 10, 0);
1356
110k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
110k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
110k
            i++;
1362
1363
110k
            if (dd)
1364
4.40k
                break;
1365
106k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
662
                dd = i < nd;
1368
662
                break;
1369
662
            }
1370
105k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
497
                dd = -1;
1373
497
                break;
1374
497
            }
1375
105k
        }
1376
5.56k
    }
1377
6.49k
    Bfree(b);
1378
6.49k
    Bfree(d);
1379
6.49k
    if (dd > 0 || (dd == 0 && odd))
1380
1.44k
        dval(rv) += sulp(rv, bc);
1381
6.49k
    return 0;
1382
6.49k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
598k
{
1388
598k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
598k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
598k
    const char *s, *s0, *s1;
1391
598k
    double aadj, aadj1;
1392
598k
    U aadj2, adj, rv, rv0;
1393
598k
    ULong y, z, abs_exp;
1394
598k
    Long L;
1395
598k
    BCinfo bc;
1396
598k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
598k
    size_t ndigits, fraclen;
1398
598k
    double result;
1399
1400
598k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
598k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
598k
    sign = 0;
1407
598k
    switch (c) {
1408
474k
    case '-':
1409
474k
        sign = 1;
1410
474k
        _Py_FALLTHROUGH;
1411
474k
    case '+':
1412
474k
        c = *++s;
1413
598k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
598k
    s1 = s;
1417
616k
    while (c == '0')
1418
18.6k
        c = *++s;
1419
598k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
598k
    s0 = s1 = s;
1426
2.89M
    while ('0' <= c && c <= '9')
1427
2.29M
        c = *++s;
1428
598k
    ndigits = s - s1;
1429
598k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
598k
    if (c == '.') {
1433
59.1k
        c = *++s;
1434
59.1k
        if (!ndigits) {
1435
19.3k
            s1 = s;
1436
606k
            while (c == '0')
1437
586k
                c = *++s;
1438
19.3k
            lz = lz || s != s1;
1439
19.3k
            fraclen += (s - s1);
1440
19.3k
            s0 = s;
1441
19.3k
        }
1442
59.1k
        s1 = s;
1443
13.3M
        while ('0' <= c && c <= '9')
1444
13.2M
            c = *++s;
1445
59.1k
        ndigits += s - s1;
1446
59.1k
        fraclen += s - s1;
1447
59.1k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
598k
    if (!ndigits && !lz) {
1453
23
        if (se)
1454
23
            *se = (char *)s00;
1455
23
        goto parse_error;
1456
23
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
598k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
598k
    nd = (int)ndigits;
1466
598k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
598k
    e = 0;
1470
598k
    if (c == 'e' || c == 'E') {
1471
536k
        s00 = s;
1472
536k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
536k
        esign = 0;
1476
536k
        switch (c) {
1477
25.8k
        case '-':
1478
25.8k
            esign = 1;
1479
25.8k
            _Py_FALLTHROUGH;
1480
37.9k
        case '+':
1481
37.9k
            c = *++s;
1482
536k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
536k
        s1 = s;
1486
541k
        while (c == '0')
1487
5.13k
            c = *++s;
1488
536k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
536k
        s1 = s;
1492
536k
        abs_exp = 0;
1493
2.24M
        while ('0' <= c && c <= '9') {
1494
1.70M
            abs_exp = 10*abs_exp + (c - '0');
1495
1.70M
            c = *++s;
1496
1.70M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
536k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
4.88k
            e = (int)MAX_ABS_EXP;
1503
531k
        else
1504
531k
            e = (int)abs_exp;
1505
536k
        if (esign)
1506
25.8k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
536k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
536k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
598k
    e -= nd - nd0;
1515
598k
    if (nd0 <= 0)
1516
23.5k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
598k
    if (se)
1520
598k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
598k
    if (!nd)
1525
10.2k
        goto ret;
1526
2.85M
    for (i = nd; i > 0; ) {
1527
2.85M
        --i;
1528
2.85M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
587k
            ++i;
1530
587k
            break;
1531
587k
        }
1532
2.85M
    }
1533
587k
    e += nd - i;
1534
587k
    nd = i;
1535
587k
    if (nd0 > nd)
1536
9.32k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
587k
    bc.e0 = e1 = e;
1575
587k
    y = z = 0;
1576
1.71M
    for (i = 0; i < nd; i++) {
1577
1.15M
        if (i < 9)
1578
931k
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
219k
        else if (i < DBL_DIG+1)
1580
199k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
20.0k
        else
1582
20.0k
            break;
1583
1.15M
    }
1584
1585
587k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
587k
    dval(&rv) = y;
1587
587k
    if (k > 9) {
1588
34.0k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
34.0k
    }
1590
587k
    if (nd <= DBL_DIG
1591
587k
        && Flt_Rounds == 1
1592
587k
        ) {
1593
561k
        if (!e)
1594
12.1k
            goto ret;
1595
548k
        if (e > 0) {
1596
507k
            if (e <= Ten_pmax) {
1597
23.2k
                dval(&rv) *= tens[e];
1598
23.2k
                goto ret;
1599
23.2k
            }
1600
483k
            i = DBL_DIG - nd;
1601
483k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
3.69k
                e -= i;
1606
3.69k
                dval(&rv) *= tens[i];
1607
3.69k
                dval(&rv) *= tens[e];
1608
3.69k
                goto ret;
1609
3.69k
            }
1610
483k
        }
1611
41.6k
        else if (e >= -Ten_pmax) {
1612
23.9k
            dval(&rv) /= tens[-e];
1613
23.9k
            goto ret;
1614
23.9k
        }
1615
548k
    }
1616
524k
    e1 += nd - k;
1617
1618
524k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
524k
    if (e1 > 0) {
1623
492k
        if ((i = e1 & 15))
1624
481k
            dval(&rv) *= tens[i];
1625
492k
        if (e1 &= ~15) {
1626
485k
            if (e1 > DBL_MAX_10_EXP)
1627
457k
                goto ovfl;
1628
28.2k
            e1 >>= 4;
1629
81.1k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
52.9k
                if (e1 & 1)
1631
24.3k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
28.2k
            word0(&rv) -= P*Exp_msk1;
1634
28.2k
            dval(&rv) *= bigtens[j];
1635
28.2k
            if ((z = word0(&rv) & Exp_mask)
1636
28.2k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
755
                goto ovfl;
1638
27.4k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
569
                word0(&rv) = Big0;
1642
569
                word1(&rv) = Big1;
1643
569
            }
1644
26.8k
            else
1645
26.8k
                word0(&rv) += P*Exp_msk1;
1646
27.4k
        }
1647
492k
    }
1648
32.1k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
28.8k
        e1 = -e1;
1660
28.8k
        if ((i = e1 & 15))
1661
25.3k
            dval(&rv) /= tens[i];
1662
28.8k
        if (e1 >>= 4) {
1663
22.5k
            if (e1 >= 1 << n_bigtens)
1664
1.13k
                goto undfl;
1665
21.4k
            if (e1 & Scale_Bit)
1666
17.0k
                bc.scale = 2*P;
1667
113k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
92.1k
                if (e1 & 1)
1669
54.0k
                    dval(&rv) *= tinytens[j];
1670
21.4k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
17.0k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
15.6k
                if (j >= 32) {
1674
8.80k
                    word1(&rv) = 0;
1675
8.80k
                    if (j >= 53)
1676
5.04k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
3.75k
                    else
1678
3.75k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
8.80k
                }
1680
6.89k
                else
1681
6.89k
                    word1(&rv) &= 0xffffffff << j;
1682
15.6k
            }
1683
21.4k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
21.4k
        }
1686
28.8k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
65.1k
    bc.nd = nd;
1693
65.1k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
65.1k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
59.0k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
59.0k
            --i;
1708
59.0k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
9.03k
                ++i;
1710
9.03k
                break;
1711
9.03k
            }
1712
59.0k
        }
1713
9.03k
        e += nd - i;
1714
9.03k
        nd = i;
1715
9.03k
        if (nd0 > nd)
1716
6.18k
            nd0 = nd;
1717
9.03k
        if (nd < 9) { /* must recompute y */
1718
3.79k
            y = 0;
1719
20.3k
            for(i = 0; i < nd0; ++i)
1720
16.5k
                y = 10*y + s0[i] - '0';
1721
10.1k
            for(; i < nd; ++i)
1722
6.31k
                y = 10*y + s0[i+1] - '0';
1723
3.79k
        }
1724
9.03k
    }
1725
65.1k
    bd0 = s2b(s0, nd0, nd, y);
1726
65.1k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
84.1k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
84.1k
        bd = Balloc(bd0->k);
1758
84.1k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
84.1k
        Bcopy(bd, bd0);
1762
84.1k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
84.1k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
84.1k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
84.1k
        bs = i2b(1);
1772
84.1k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
84.1k
        if (e >= 0) {
1777
38.9k
            bb2 = bb5 = 0;
1778
38.9k
            bd2 = bd5 = e;
1779
38.9k
        }
1780
45.2k
        else {
1781
45.2k
            bb2 = bb5 = -e;
1782
45.2k
            bd2 = bd5 = 0;
1783
45.2k
        }
1784
84.1k
        if (bbe >= 0)
1785
40.2k
            bb2 += bbe;
1786
43.9k
        else
1787
43.9k
            bd2 -= bbe;
1788
84.1k
        bs2 = bb2;
1789
84.1k
        bb2++;
1790
84.1k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
84.1k
        i = bb2 < bd2 ? bb2 : bd2;
1811
84.1k
        if (i > bs2)
1812
43.7k
            i = bs2;
1813
84.1k
        if (i > 0) {
1814
83.2k
            bb2 -= i;
1815
83.2k
            bd2 -= i;
1816
83.2k
            bs2 -= i;
1817
83.2k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
84.1k
        if (bb5 > 0) {
1821
45.2k
            bs = pow5mult(bs, bb5);
1822
45.2k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
45.2k
            Bigint *bb1 = mult(bs, bb);
1826
45.2k
            Bfree(bb);
1827
45.2k
            bb = bb1;
1828
45.2k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
45.2k
        }
1832
84.1k
        if (bb2 > 0) {
1833
84.1k
            bb = lshift(bb, bb2);
1834
84.1k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
84.1k
        }
1838
84.1k
        if (bd5 > 0) {
1839
32.5k
            bd = pow5mult(bd, bd5);
1840
32.5k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
32.5k
        }
1844
84.1k
        if (bd2 > 0) {
1845
43.7k
            bd = lshift(bd, bd2);
1846
43.7k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
43.7k
        }
1850
84.1k
        if (bs2 > 0) {
1851
37.2k
            bs = lshift(bs, bs2);
1852
37.2k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
37.2k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
84.1k
        delta = diff(bb, bd);
1862
84.1k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
84.1k
        dsign = delta->sign;
1866
84.1k
        delta->sign = 0;
1867
84.1k
        i = cmp(delta, bs);
1868
84.1k
        if (bc.nd > nd && i <= 0) {
1869
9.03k
            if (dsign)
1870
5.80k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
3.23k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.08k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.08k
                if (j - bc.scale >= 2) {
1890
688
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
688
                    break; /* Use bigcomp. */
1892
688
                }
1893
1.08k
            }
1894
1895
2.54k
            {
1896
2.54k
                bc.nd = nd;
1897
2.54k
                i = -1; /* Discarded digits make delta smaller. */
1898
2.54k
            }
1899
2.54k
        }
1900
1901
77.6k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
39.8k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
39.8k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
39.8k
                ) {
1908
36.6k
                break;
1909
36.6k
            }
1910
3.19k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
437
                break;
1913
437
            }
1914
2.75k
            delta = lshift(delta,Log2P);
1915
2.75k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.75k
            if (cmp(delta, bs) > 0)
1919
1.00k
                goto drop_down;
1920
1.75k
            break;
1921
2.75k
        }
1922
37.8k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.62k
            if (dsign) {
1925
1.93k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
1.93k
                    &&  word1(&rv) == (
1927
1.06k
                        (bc.scale &&
1928
1.06k
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
1.06k
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
709
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
709
                        + Exp_msk1
1934
709
                        ;
1935
709
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
709
                    break;
1938
709
                }
1939
1.93k
            }
1940
1.68k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
1.00k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
1.00k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
1.00k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
1.00k
                word0(&rv) = L | Bndry_mask1;
1958
1.00k
                word1(&rv) = 0xffffffff;
1959
1.00k
                break;
1960
1.00k
            }
1961
2.91k
            if (!odd)
1962
2.23k
                break;
1963
674
            if (dsign)
1964
302
                dval(&rv) += sulp(&rv, &bc);
1965
372
            else {
1966
372
                dval(&rv) -= sulp(&rv, &bc);
1967
372
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
372
            }
1973
            /* dsign = 1 - dsign; */
1974
674
            break;
1975
674
        }
1976
34.2k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
24.8k
            if (dsign)
1978
10.6k
                aadj = aadj1 = 1.;
1979
14.1k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.89k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.89k
                aadj = 1.;
1986
9.89k
                aadj1 = -1.;
1987
9.89k
            }
1988
4.23k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
4.23k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
4.23k
                else
1995
4.23k
                    aadj *= 0.5;
1996
4.23k
                aadj1 = -aadj;
1997
4.23k
            }
1998
24.8k
        }
1999
9.46k
        else {
2000
9.46k
            aadj *= 0.5;
2001
9.46k
            aadj1 = dsign ? aadj : -aadj;
2002
9.46k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
9.46k
        }
2005
34.2k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
34.2k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.76k
            dval(&rv0) = dval(&rv);
2011
1.76k
            word0(&rv) -= P*Exp_msk1;
2012
1.76k
            adj.d = aadj1 * ulp(&rv);
2013
1.76k
            dval(&rv) += adj.d;
2014
1.76k
            if ((word0(&rv) & Exp_mask) >=
2015
1.76k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.34k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
957
                    goto ovfl;
2018
957
                }
2019
388
                word0(&rv) = Big0;
2020
388
                word1(&rv) = Big1;
2021
388
                goto cont;
2022
1.34k
            }
2023
424
            else
2024
424
                word0(&rv) += P*Exp_msk1;
2025
1.76k
        }
2026
32.4k
        else {
2027
32.4k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
12.8k
                if (aadj <= 0x7fffffff) {
2029
12.8k
                    if ((z = (ULong)aadj) <= 0)
2030
726
                        z = 1;
2031
12.8k
                    aadj = z;
2032
12.8k
                    aadj1 = dsign ? aadj : -aadj;
2033
12.8k
                }
2034
12.8k
                dval(&aadj2) = aadj1;
2035
12.8k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
12.8k
                aadj1 = dval(&aadj2);
2037
12.8k
            }
2038
32.4k
            adj.d = aadj1 * ulp(&rv);
2039
32.4k
            dval(&rv) += adj.d;
2040
32.4k
        }
2041
32.9k
        z = word0(&rv) & Exp_mask;
2042
32.9k
        if (bc.nd == nd) {
2043
29.2k
            if (!bc.scale)
2044
16.4k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
14.9k
                    L = (Long)aadj;
2047
14.9k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
14.9k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
14.9k
                        if (aadj < .4999999 || aadj > .5000001)
2051
14.3k
                            break;
2052
14.9k
                    }
2053
3
                    else if (aadj < .4999999/FLT_RADIX)
2054
3
                        break;
2055
14.9k
                }
2056
29.2k
        }
2057
18.9k
      cont:
2058
18.9k
        Bfree(bb); bb = NULL;
2059
18.9k
        Bfree(bd); bd = NULL;
2060
18.9k
        Bfree(bs); bs = NULL;
2061
18.9k
        Bfree(delta); delta = NULL;
2062
18.9k
    }
2063
64.2k
    if (bc.nd > nd) {
2064
6.49k
        error = bigcomp(&rv, s0, &bc);
2065
6.49k
        if (error)
2066
0
            goto failed_malloc;
2067
6.49k
    }
2068
2069
64.2k
    if (bc.scale) {
2070
17.0k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
17.0k
        word1(&rv0) = 0;
2072
17.0k
        dval(&rv) *= dval(&rv0);
2073
17.0k
    }
2074
2075
137k
  ret:
2076
137k
    result = sign ? -dval(&rv) : dval(&rv);
2077
137k
    goto done;
2078
2079
23
  parse_error:
2080
23
    result = 0.0;
2081
23
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
1.13k
  undfl:
2089
1.13k
    result = sign ? -0.0 : 0.0;
2090
1.13k
    goto done;
2091
2092
459k
  ovfl:
2093
459k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
459k
    word0(&rv) = Exp_mask;
2096
459k
    word1(&rv) = 0;
2097
459k
    result = sign ? -dval(&rv) : dval(&rv);
2098
459k
    goto done;
2099
2100
598k
  done:
2101
598k
    Bfree(bb);
2102
598k
    Bfree(bd);
2103
598k
    Bfree(bs);
2104
598k
    Bfree(bd0);
2105
598k
    Bfree(delta);
2106
598k
    return result;
2107
2108
64.2k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
46.8k
{
2113
46.8k
    int j, k, *r;
2114
2115
46.8k
    j = sizeof(ULong);
2116
46.8k
    for(k = 0;
2117
46.8k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
46.8k
        j <<= 1)
2119
0
        k++;
2120
46.8k
    r = (int*)Balloc(k);
2121
46.8k
    if (r == NULL)
2122
0
        return NULL;
2123
46.8k
    *r = k;
2124
46.8k
    return (char *)(r+1);
2125
46.8k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
5.01k
{
2130
5.01k
    char *rv, *t;
2131
2132
5.01k
    rv = rv_alloc(n);
2133
5.01k
    if (rv == NULL)
2134
0
        return NULL;
2135
5.01k
    t = rv;
2136
14.7k
    while((*t = *s++)) t++;
2137
5.01k
    if (rve)
2138
5.01k
        *rve = t;
2139
5.01k
    return rv;
2140
5.01k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
46.8k
{
2151
46.8k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
46.8k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
46.8k
    Bfree(b);
2154
46.8k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
46.8k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
46.8k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
46.8k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
46.8k
        spec_case, try_quick;
2235
46.8k
    Long L;
2236
46.8k
    int denorm;
2237
46.8k
    ULong x;
2238
46.8k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
46.8k
    U d2, eps, u;
2240
46.8k
    double ds;
2241
46.8k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
46.8k
    mlo = mhi = S = 0;
2246
46.8k
    s0 = 0;
2247
2248
46.8k
    u.d = dd;
2249
46.8k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
12.6k
        *sign = 1;
2252
12.6k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
12.6k
    }
2254
34.2k
    else
2255
34.2k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
46.8k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
671
    {
2260
        /* Infinity or NaN */
2261
671
        *decpt = 9999;
2262
671
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
671
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
671
    }
2266
46.2k
    if (!dval(&u)) {
2267
4.34k
        *decpt = 1;
2268
4.34k
        return nrv_alloc("0", rve, 1);
2269
4.34k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
41.8k
    b = d2b(&u, &be, &bbits);
2274
41.8k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
41.8k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
38.2k
        dval(&d2) = dval(&u);
2278
38.2k
        word0(&d2) &= Frac_mask1;
2279
38.2k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
38.2k
        i -= Bias;
2304
38.2k
        denorm = 0;
2305
38.2k
    }
2306
3.64k
    else {
2307
        /* d is denormalized */
2308
2309
3.64k
        i = bbits + be + (Bias + (P-1) - 1);
2310
3.64k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
3.64k
            : word1(&u) << (32 - i);
2312
3.64k
        dval(&d2) = x;
2313
3.64k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
3.64k
        i -= (Bias + (P-1) - 1) + 1;
2315
3.64k
        denorm = 1;
2316
3.64k
    }
2317
41.8k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
41.8k
        i*0.301029995663981;
2319
41.8k
    k = (int)ds;
2320
41.8k
    if (ds < 0. && ds != k)
2321
11.4k
        k--;    /* want k = floor(ds) */
2322
41.8k
    k_check = 1;
2323
41.8k
    if (k >= 0 && k <= Ten_pmax) {
2324
19.5k
        if (dval(&u) < tens[k])
2325
2.13k
            k--;
2326
19.5k
        k_check = 0;
2327
19.5k
    }
2328
41.8k
    j = bbits - i - 1;
2329
41.8k
    if (j >= 0) {
2330
17.5k
        b2 = 0;
2331
17.5k
        s2 = j;
2332
17.5k
    }
2333
24.3k
    else {
2334
24.3k
        b2 = -j;
2335
24.3k
        s2 = 0;
2336
24.3k
    }
2337
41.8k
    if (k >= 0) {
2338
29.8k
        b5 = 0;
2339
29.8k
        s5 = k;
2340
29.8k
        s2 += k;
2341
29.8k
    }
2342
11.9k
    else {
2343
11.9k
        b2 -= k;
2344
11.9k
        b5 = -k;
2345
11.9k
        s5 = 0;
2346
11.9k
    }
2347
41.8k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
41.8k
    try_quick = 1;
2351
2352
41.8k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
41.8k
    leftright = 1;
2357
41.8k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
41.8k
    switch(mode) {
2360
41.8k
    case 0:
2361
41.8k
    case 1:
2362
41.8k
        i = 18;
2363
41.8k
        ndigits = 0;
2364
41.8k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
41.8k
    }
2383
41.8k
    s0 = rv_alloc(i);
2384
41.8k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
41.8k
    s = s0;
2387
2388
2389
41.8k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
41.8k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
11.4k
        ds = tens[k];
2492
11.4k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
17.3k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
17.3k
            L = (Long)(dval(&u) / ds);
2500
17.3k
            dval(&u) -= L*ds;
2501
17.3k
            *s++ = '0' + (int)L;
2502
17.3k
            if (!dval(&u)) {
2503
11.4k
                break;
2504
11.4k
            }
2505
5.89k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
5.89k
        }
2528
11.4k
        goto ret1;
2529
11.4k
    }
2530
2531
30.4k
    m2 = b2;
2532
30.4k
    m5 = b5;
2533
30.4k
    if (leftright) {
2534
30.4k
        i =
2535
30.4k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
30.4k
            1 + P - bbits;
2537
30.4k
        b2 += i;
2538
30.4k
        s2 += i;
2539
30.4k
        mhi = i2b(1);
2540
30.4k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
30.4k
    }
2543
30.4k
    if (m2 > 0 && s2 > 0) {
2544
26.2k
        i = m2 < s2 ? m2 : s2;
2545
26.2k
        b2 -= i;
2546
26.2k
        m2 -= i;
2547
26.2k
        s2 -= i;
2548
26.2k
    }
2549
30.4k
    if (b5 > 0) {
2550
11.9k
        if (leftright) {
2551
11.9k
            if (m5 > 0) {
2552
11.9k
                mhi = pow5mult(mhi, m5);
2553
11.9k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
11.9k
                b1 = mult(mhi, b);
2556
11.9k
                Bfree(b);
2557
11.9k
                b = b1;
2558
11.9k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
11.9k
            }
2561
11.9k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
11.9k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
11.9k
    }
2573
30.4k
    S = i2b(1);
2574
30.4k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
30.4k
    if (s5 > 0) {
2577
15.8k
        S = pow5mult(S, s5);
2578
15.8k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
15.8k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
30.4k
    spec_case = 0;
2585
30.4k
    if ((mode < 2 || leftright)
2586
30.4k
        ) {
2587
30.4k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
30.4k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
30.4k
            ) {
2590
            /* The special case */
2591
1.00k
            b2 += Log2P;
2592
1.00k
            s2 += Log2P;
2593
1.00k
            spec_case = 1;
2594
1.00k
        }
2595
30.4k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
30.4k
#define iInc 28
2605
30.4k
    i = dshift(S, s2);
2606
30.4k
    b2 += i;
2607
30.4k
    m2 += i;
2608
30.4k
    s2 += i;
2609
30.4k
    if (b2 > 0) {
2610
30.4k
        b = lshift(b, b2);
2611
30.4k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
30.4k
    }
2614
30.4k
    if (s2 > 0) {
2615
29.7k
        S = lshift(S, s2);
2616
29.7k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
29.7k
    }
2619
30.4k
    if (k_check) {
2620
22.3k
        if (cmp(b,S) < 0) {
2621
2.58k
            k--;
2622
2.58k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.58k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.58k
            if (leftright) {
2626
2.58k
                mhi = multadd(mhi, 10, 0);
2627
2.58k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.58k
            }
2630
2.58k
            ilim = ilim1;
2631
2.58k
        }
2632
22.3k
    }
2633
30.4k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
30.4k
    if (leftright) {
2653
30.4k
        if (m2 > 0) {
2654
29.5k
            mhi = lshift(mhi, m2);
2655
29.5k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
29.5k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
30.4k
        mlo = mhi;
2664
30.4k
        if (spec_case) {
2665
1.00k
            mhi = Balloc(mhi->k);
2666
1.00k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.00k
            Bcopy(mhi, mlo);
2669
1.00k
            mhi = lshift(mhi, Log2P);
2670
1.00k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.00k
        }
2673
2674
119k
        for(i = 1;;i++) {
2675
119k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
119k
            j = cmp(b, mlo);
2680
119k
            delta = diff(S, mhi);
2681
119k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
119k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
119k
            Bfree(delta);
2685
119k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
119k
                ) {
2687
2.02k
                if (dig == '9')
2688
536
                    goto round_9_up;
2689
1.48k
                if (j > 0)
2690
736
                    dig++;
2691
1.48k
                *s++ = dig;
2692
1.48k
                goto ret;
2693
2.02k
            }
2694
117k
            if (j < 0 || (j == 0 && mode != 1
2695
100k
                          && !(word1(&u) & 1)
2696
100k
                    )) {
2697
17.4k
                if (!b->x[0] && b->wds <= 1) {
2698
2.57k
                    goto accept_dig;
2699
2.57k
                }
2700
14.9k
                if (j1 > 0) {
2701
2.87k
                    b = lshift(b, 1);
2702
2.87k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
2.87k
                    j1 = cmp(b, S);
2705
2.87k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
2.87k
                        && dig++ == '9')
2707
269
                        goto round_9_up;
2708
2.87k
                }
2709
17.2k
              accept_dig:
2710
17.2k
                *s++ = dig;
2711
17.2k
                goto ret;
2712
14.9k
            }
2713
99.9k
            if (j1 > 0) {
2714
10.9k
                if (dig == '9') { /* possible if i == 1 */
2715
2.51k
                  round_9_up:
2716
2.51k
                    *s++ = '9';
2717
2.51k
                    goto roundoff;
2718
1.71k
                }
2719
9.20k
                *s++ = dig + 1;
2720
9.20k
                goto ret;
2721
10.9k
            }
2722
89.0k
            *s++ = dig;
2723
89.0k
            if (i == ilim)
2724
0
                break;
2725
89.0k
            b = multadd(b, 10, 0);
2726
89.0k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
89.0k
            if (mlo == mhi) {
2729
86.1k
                mlo = mhi = multadd(mhi, 10, 0);
2730
86.1k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
86.1k
            }
2733
2.84k
            else {
2734
2.84k
                mlo = multadd(mlo, 10, 0);
2735
2.84k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.84k
                mhi = multadd(mhi, 10, 0);
2738
2.84k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.84k
            }
2741
89.0k
        }
2742
30.4k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.51k
      roundoff:
2764
2.51k
        while(*--s == '9')
2765
2.51k
            if (s == s0) {
2766
2.51k
                k++;
2767
2.51k
                *s++ = '1';
2768
2.51k
                goto ret;
2769
2.51k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
30.4k
  ret:
2777
30.4k
    Bfree(S);
2778
30.4k
    if (mhi) {
2779
30.4k
        if (mlo && mlo != mhi)
2780
1.00k
            Bfree(mlo);
2781
30.4k
        Bfree(mhi);
2782
30.4k
    }
2783
41.8k
  ret1:
2784
41.8k
    Bfree(b);
2785
41.8k
    *s = 0;
2786
41.8k
    *decpt = k + 1;
2787
41.8k
    if (rve)
2788
41.8k
        *rve = s;
2789
41.8k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
30.4k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
16
{
2809
16
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
16
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
16
    Bigint *p5 = i2b(625);
2814
16
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
16
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
128
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
112
        p5 = mult(p5, p5);
2822
112
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
112
        p5s[i] = p5;
2826
112
    }
2827
2828
16
#endif
2829
16
    return PyStatus_Ok();
2830
16
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
0
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}