Coverage Report

Created: 2025-08-26 06:26

/src/cpython/Python/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
35
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.54M
#define word0(x) (x)->L[1]
181
1.04M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
4.16M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
68.0k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
614k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
2.03M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
159k
#define Exp_shift  20
235
88.5k
#define Exp_shift1 20
236
425k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
943k
#define Exp_mask  0x7ff00000
239
376k
#define P 53
240
#define Nbits 53
241
194k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
277k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
89.2k
#define Exp_1  0x3ff00000
246
39.9k
#define Exp_11 0x3ff00000
247
176k
#define Ebits 11
248
139k
#define Frac_mask  0xfffff
249
42.2k
#define Frac_mask1 0xfffff
250
1.22M
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
62.0k
#define Bndry_mask  0xfffff
253
6.75k
#define Bndry_mask1 0xfffff
254
64.2k
#define Sign_bit 0x80000000
255
6.02k
#define Log2P 1
256
#define Tiny0 0
257
19.7k
#define Tiny1 1
258
44.2k
#define Quick_max 14
259
27.0k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
650k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.73k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.36k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
14.5M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.55M
#define freelist interp->dtoa.freelist
336
208
#define private_mem interp->dtoa.preallocated
337
554
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.38M
{
344
1.38M
    int x;
345
1.38M
    Bigint *rv;
346
1.38M
    unsigned int len;
347
1.38M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.38M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.38M
        freelist[k] = rv->next;
351
208
    else {
352
208
        x = 1 << k;
353
208
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
208
            /sizeof(double);
355
208
        if (k <= Bigint_Kmax &&
356
208
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
208
        ) {
358
173
            rv = (Bigint*)pmem_next;
359
173
            pmem_next += len;
360
173
        }
361
35
        else {
362
35
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
35
            if (rv == NULL)
364
0
                return NULL;
365
35
        }
366
208
        rv->k = k;
367
208
        rv->maxwds = x;
368
208
    }
369
1.38M
    rv->sign = rv->wds = 0;
370
1.38M
    return rv;
371
1.38M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
4.44M
{
378
4.44M
    if (v) {
379
1.38M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.38M
        else {
382
1.38M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.38M
            v->next = freelist[v->k];
384
1.38M
            freelist[v->k] = v;
385
1.38M
        }
386
1.38M
    }
387
4.44M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
90.9k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
90.9k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
608k
{
445
608k
    int i, wds;
446
608k
    ULong *x;
447
608k
    ULLong carry, y;
448
608k
    Bigint *b1;
449
450
608k
    wds = b->wds;
451
608k
    x = b->x;
452
608k
    i = 0;
453
608k
    carry = a;
454
2.04M
    do {
455
2.04M
        y = *x * (ULLong)m + carry;
456
2.04M
        carry = y >> 32;
457
2.04M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.04M
    }
459
2.04M
    while(++i < wds);
460
608k
    if (carry) {
461
39.2k
        if (wds >= b->maxwds) {
462
1.50k
            b1 = Balloc(b->k+1);
463
1.50k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.50k
            Bcopy(b1, b);
468
1.50k
            Bfree(b);
469
1.50k
            b = b1;
470
1.50k
        }
471
39.2k
        b->x[wds++] = (ULong)carry;
472
39.2k
        b->wds = wds;
473
39.2k
    }
474
608k
    return b;
475
608k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
68.0k
{
486
68.0k
    Bigint *b;
487
68.0k
    int i, k;
488
68.0k
    Long x, y;
489
490
68.0k
    x = (nd + 8) / 9;
491
97.9k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
68.0k
    b = Balloc(k);
493
68.0k
    if (b == NULL)
494
0
        return NULL;
495
68.0k
    b->x[0] = y9;
496
68.0k
    b->wds = 1;
497
498
68.0k
    if (nd <= 9)
499
43.7k
      return b;
500
501
24.2k
    s += 9;
502
186k
    for (i = 9; i < nd0; i++) {
503
162k
        b = multadd(b, 10, *s++ - '0');
504
162k
        if (b == NULL)
505
0
            return NULL;
506
162k
    }
507
24.2k
    s++;
508
78.9k
    for(; i < nd; i++) {
509
54.7k
        b = multadd(b, 10, *s++ - '0');
510
54.7k
        if (b == NULL)
511
0
            return NULL;
512
54.7k
    }
513
24.2k
    return b;
514
24.2k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
114k
{
521
114k
    int k = 0;
522
523
114k
    if (!(x & 0xffff0000)) {
524
69.0k
        k = 16;
525
69.0k
        x <<= 16;
526
69.0k
    }
527
114k
    if (!(x & 0xff000000)) {
528
71.4k
        k += 8;
529
71.4k
        x <<= 8;
530
71.4k
    }
531
114k
    if (!(x & 0xf0000000)) {
532
69.5k
        k += 4;
533
69.5k
        x <<= 4;
534
69.5k
    }
535
114k
    if (!(x & 0xc0000000)) {
536
65.4k
        k += 2;
537
65.4k
        x <<= 2;
538
65.4k
    }
539
114k
    if (!(x & 0x80000000)) {
540
67.6k
        k++;
541
67.6k
        if (!(x & 0x40000000))
542
0
            return 32;
543
67.6k
    }
544
114k
    return k;
545
114k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
44.2k
{
553
44.2k
    int k;
554
44.2k
    ULong x = *y;
555
556
44.2k
    if (x & 7) {
557
24.9k
        if (x & 1)
558
13.2k
            return 0;
559
11.7k
        if (x & 2) {
560
7.22k
            *y = x >> 1;
561
7.22k
            return 1;
562
7.22k
        }
563
4.47k
        *y = x >> 2;
564
4.47k
        return 2;
565
11.7k
    }
566
19.3k
    k = 0;
567
19.3k
    if (!(x & 0xffff)) {
568
7.53k
        k = 16;
569
7.53k
        x >>= 16;
570
7.53k
    }
571
19.3k
    if (!(x & 0xff)) {
572
3.91k
        k += 8;
573
3.91k
        x >>= 8;
574
3.91k
    }
575
19.3k
    if (!(x & 0xf)) {
576
10.0k
        k += 4;
577
10.0k
        x >>= 4;
578
10.0k
    }
579
19.3k
    if (!(x & 0x3)) {
580
10.4k
        k += 2;
581
10.4k
        x >>= 2;
582
10.4k
    }
583
19.3k
    if (!(x & 1)) {
584
13.4k
        k++;
585
13.4k
        x >>= 1;
586
13.4k
        if (!x)
587
0
            return 32;
588
13.4k
    }
589
19.3k
    *y = x;
590
19.3k
    return k;
591
19.3k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
159k
{
598
159k
    Bigint *b;
599
600
159k
    b = Balloc(1);
601
159k
    if (b == NULL)
602
0
        return NULL;
603
159k
    b->x[0] = i;
604
159k
    b->wds = 1;
605
159k
    return b;
606
159k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
380k
{
614
380k
    Bigint *c;
615
380k
    int k, wa, wb, wc;
616
380k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
380k
    ULong y;
618
380k
    ULLong carry, z;
619
620
380k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
4.68k
        c = Balloc(0);
622
4.68k
        if (c == NULL)
623
0
            return NULL;
624
4.68k
        c->wds = 1;
625
4.68k
        c->x[0] = 0;
626
4.68k
        return c;
627
4.68k
    }
628
629
376k
    if (a->wds < b->wds) {
630
178k
        c = a;
631
178k
        a = b;
632
178k
        b = c;
633
178k
    }
634
376k
    k = a->k;
635
376k
    wa = a->wds;
636
376k
    wb = b->wds;
637
376k
    wc = wa + wb;
638
376k
    if (wc > a->maxwds)
639
159k
        k++;
640
376k
    c = Balloc(k);
641
376k
    if (c == NULL)
642
0
        return NULL;
643
3.59M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.22M
        *x = 0;
645
376k
    xa = a->x;
646
376k
    xae = xa + wa;
647
376k
    xb = b->x;
648
376k
    xbe = xb + wb;
649
376k
    xc0 = c->x;
650
1.19M
    for(; xb < xbe; xc0++) {
651
819k
        if ((y = *xb++)) {
652
815k
            x = xa;
653
815k
            xc = xc0;
654
815k
            carry = 0;
655
8.35M
            do {
656
8.35M
                z = *x++ * (ULLong)y + *xc + carry;
657
8.35M
                carry = z >> 32;
658
8.35M
                *xc++ = (ULong)(z & FFFFFFFF);
659
8.35M
            }
660
8.35M
            while(x < xae);
661
815k
            *xc = (ULong)carry;
662
815k
        }
663
819k
    }
664
645k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
376k
    c->wds = wc;
666
376k
    return c;
667
376k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
118k
{
678
118k
    Bigint *b1, *p5, **p5s;
679
118k
    int i;
680
118k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
118k
    assert(0 <= k && k < 1024);
688
689
118k
    if ((i = k & 3)) {
690
80.7k
        b = multadd(b, p05[i-1], 0);
691
80.7k
        if (b == NULL)
692
0
            return NULL;
693
80.7k
    }
694
695
118k
    if (!(k >>= 2))
696
9.58k
        return b;
697
108k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
108k
    p5s = interp->dtoa.p5s;
699
542k
    for(;;) {
700
542k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
542k
        p5 = *p5s;
702
542k
        p5s++;
703
542k
        if (k & 1) {
704
319k
            b1 = mult(b, p5);
705
319k
            Bfree(b);
706
319k
            b = b1;
707
319k
            if (b == NULL)
708
0
                return NULL;
709
319k
        }
710
542k
        if (!(k >>= 1))
711
108k
            break;
712
542k
    }
713
108k
    return b;
714
108k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
294k
{
775
294k
    int i, k1, n, n1;
776
294k
    Bigint *b1;
777
294k
    ULong *x, *x1, *xe, z;
778
779
294k
    if (!k || (!b->x[0] && b->wds == 1))
780
5.14k
        return b;
781
782
289k
    n = k >> 5;
783
289k
    k1 = b->k;
784
289k
    n1 = n + b->wds + 1;
785
708k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
419k
        k1++;
787
289k
    b1 = Balloc(k1);
788
289k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
289k
    x1 = b1->x;
793
1.67M
    for(i = 0; i < n; i++)
794
1.38M
        *x1++ = 0;
795
289k
    x = b->x;
796
289k
    xe = x + b->wds;
797
289k
    if (k &= 0x1f) {
798
287k
        k1 = 32 - k;
799
287k
        z = 0;
800
1.47M
        do {
801
1.47M
            *x1++ = *x << k | z;
802
1.47M
            z = *x++ >> k1;
803
1.47M
        }
804
1.47M
        while(x < xe);
805
287k
        if ((*x1 = z))
806
44.2k
            ++n1;
807
287k
    }
808
1.82k
    else do
809
4.30k
             *x1++ = *x++;
810
4.30k
        while(x < xe);
811
289k
    b1->wds = n1 - 1;
812
289k
    Bfree(b);
813
289k
    return b1;
814
289k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
815k
{
822
815k
    ULong *xa, *xa0, *xb, *xb0;
823
815k
    int i, j;
824
825
815k
    i = a->wds;
826
815k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
815k
    if (i -= j)
834
177k
        return i;
835
638k
    xa0 = a->x;
836
638k
    xa = xa0 + j;
837
638k
    xb0 = b->x;
838
638k
    xb = xb0 + j;
839
775k
    for(;;) {
840
775k
        if (*--xa != *--xb)
841
621k
            return *xa < *xb ? -1 : 1;
842
154k
        if (xa <= xa0)
843
17.0k
            break;
844
154k
    }
845
17.0k
    return 0;
846
638k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
211k
{
855
211k
    Bigint *c;
856
211k
    int i, wa, wb;
857
211k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
211k
    ULLong borrow, y;
859
860
211k
    i = cmp(a,b);
861
211k
    if (!i) {
862
2.88k
        c = Balloc(0);
863
2.88k
        if (c == NULL)
864
0
            return NULL;
865
2.88k
        c->wds = 1;
866
2.88k
        c->x[0] = 0;
867
2.88k
        return c;
868
2.88k
    }
869
208k
    if (i < 0) {
870
40.1k
        c = a;
871
40.1k
        a = b;
872
40.1k
        b = c;
873
40.1k
        i = 1;
874
40.1k
    }
875
168k
    else
876
168k
        i = 0;
877
208k
    c = Balloc(a->k);
878
208k
    if (c == NULL)
879
0
        return NULL;
880
208k
    c->sign = i;
881
208k
    wa = a->wds;
882
208k
    xa = a->x;
883
208k
    xae = xa + wa;
884
208k
    wb = b->wds;
885
208k
    xb = b->x;
886
208k
    xbe = xb + wb;
887
208k
    xc = c->x;
888
208k
    borrow = 0;
889
1.56M
    do {
890
1.56M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.56M
        borrow = y >> 32 & (ULong)1;
892
1.56M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.56M
    }
894
1.56M
    while(xb < xbe);
895
429k
    while(xa < xae) {
896
220k
        y = *xa++ - borrow;
897
220k
        borrow = y >> 32 & (ULong)1;
898
220k
        *xc++ = (ULong)(y & FFFFFFFF);
899
220k
    }
900
313k
    while(!*--xc)
901
105k
        wa--;
902
208k
    c->wds = wa;
903
208k
    return c;
904
208k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
38.1k
{
912
38.1k
    Long L;
913
38.1k
    U u;
914
915
38.1k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
38.1k
    word0(&u) = L;
917
38.1k
    word1(&u) = 0;
918
38.1k
    return dval(&u);
919
38.1k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
71.1k
{
926
71.1k
    ULong *xa, *xa0, w, y, z;
927
71.1k
    int k;
928
71.1k
    U d;
929
930
71.1k
    xa0 = a->x;
931
71.1k
    xa = xa0 + a->wds;
932
71.1k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
71.1k
    k = hi0bits(y);
937
71.1k
    *e = 32 - k;
938
71.1k
    if (k < Ebits) {
939
17.3k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
17.3k
        w = xa > xa0 ? *--xa : 0;
941
17.3k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
17.3k
        goto ret_d;
943
17.3k
    }
944
53.8k
    z = xa > xa0 ? *--xa : 0;
945
53.8k
    if (k -= Ebits) {
946
50.2k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
50.2k
        y = xa > xa0 ? *--xa : 0;
948
50.2k
        word1(&d) = z << k | y >> (32 - k);
949
50.2k
    }
950
3.54k
    else {
951
3.54k
        word0(&d) = Exp_1 | y;
952
3.54k
        word1(&d) = z;
953
3.54k
    }
954
71.1k
  ret_d:
955
71.1k
    return dval(&d);
956
53.8k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
95.2k
{
982
95.2k
    Bigint *b;
983
984
95.2k
    b = Balloc(1);
985
95.2k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
95.2k
    b->wds = 2;
990
95.2k
    b->x[0] = word1(d);
991
95.2k
    b->x[1] = word0(d) & Frac_mask;
992
95.2k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
95.2k
    if (*e < Etiny)
994
5.14k
        *e = Etiny;
995
90.1k
    else
996
90.1k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
95.2k
    if (scale && (b->x[0] || b->x[1])) {
1000
29.2k
        *e -= scale;
1001
29.2k
        if (*e < Etiny) {
1002
26.0k
            scale = Etiny - *e;
1003
26.0k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
26.0k
            assert(0 < scale && scale <= P - 1);
1006
26.0k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
13.5k
                assert(b->x[0] == 0);
1009
13.5k
                b->x[0] = b->x[1];
1010
13.5k
                b->x[1] = 0;
1011
13.5k
                scale -= 32;
1012
13.5k
            }
1013
26.0k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
24.5k
                assert(b->x[0] << (32 - scale) == 0);
1016
24.5k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
24.5k
                b->x[1] >>= scale;
1018
24.5k
            }
1019
26.0k
        }
1020
29.2k
    }
1021
    /* Ensure b is normalized. */
1022
95.2k
    if (!b->x[1])
1023
22.3k
        b->wds = 1;
1024
1025
95.2k
    return b;
1026
95.2k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
44.2k
{
1040
44.2k
    Bigint *b;
1041
44.2k
    int de, k;
1042
44.2k
    ULong *x, y, z;
1043
44.2k
    int i;
1044
1045
44.2k
    b = Balloc(1);
1046
44.2k
    if (b == NULL)
1047
0
        return NULL;
1048
44.2k
    x = b->x;
1049
1050
44.2k
    z = word0(d) & Frac_mask;
1051
44.2k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
44.2k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
39.9k
        z |= Exp_msk1;
1054
44.2k
    if ((y = word1(d))) {
1055
31.5k
        if ((k = lo0bits(&y))) {
1056
18.9k
            x[0] = y | z << (32 - k);
1057
18.9k
            z >>= k;
1058
18.9k
        }
1059
12.5k
        else
1060
12.5k
            x[0] = y;
1061
31.5k
        i =
1062
31.5k
            b->wds = (x[1] = z) ? 2 : 1;
1063
31.5k
    }
1064
12.7k
    else {
1065
12.7k
        k = lo0bits(&z);
1066
12.7k
        x[0] = z;
1067
12.7k
        i =
1068
12.7k
            b->wds = 1;
1069
12.7k
        k += 32;
1070
12.7k
    }
1071
44.2k
    if (de) {
1072
39.9k
        *e = de - Bias - (P-1) + k;
1073
39.9k
        *bits = P - k;
1074
39.9k
    }
1075
4.36k
    else {
1076
4.36k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.36k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.36k
    }
1079
44.2k
    return b;
1080
44.2k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
35.5k
{
1088
35.5k
    U da, db;
1089
35.5k
    int k, ka, kb;
1090
1091
35.5k
    dval(&da) = b2d(a, &ka);
1092
35.5k
    dval(&db) = b2d(b, &kb);
1093
35.5k
    k = ka - kb + 32*(a->wds - b->wds);
1094
35.5k
    if (k > 0)
1095
21.8k
        word0(&da) += k*Exp_msk1;
1096
13.7k
    else {
1097
13.7k
        k = -k;
1098
13.7k
        word0(&db) += k*Exp_msk1;
1099
13.7k
    }
1100
35.5k
    return dval(&da) / dval(&db);
1101
35.5k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
22.9k
#define Scale_Bit 0x10
1119
23.8k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
38.7k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
38.7k
{
1129
38.7k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
38.7k
    if (p2 > 0)
1131
23.6k
        rv -= p2;
1132
38.7k
    return rv & kmask;
1133
38.7k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
243k
{
1142
243k
    int n;
1143
243k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
243k
    ULLong borrow, carry, y, ys;
1145
1146
243k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
243k
    if (b->wds < n)
1152
7.87k
        return 0;
1153
235k
    sx = S->x;
1154
235k
    sxe = sx + --n;
1155
235k
    bx = b->x;
1156
235k
    bxe = bx + n;
1157
235k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
235k
    if (q) {
1163
188k
        borrow = 0;
1164
188k
        carry = 0;
1165
1.09M
        do {
1166
1.09M
            ys = *sx++ * (ULLong)q + carry;
1167
1.09M
            carry = ys >> 32;
1168
1.09M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.09M
            borrow = y >> 32 & (ULong)1;
1170
1.09M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.09M
        }
1172
1.09M
        while(sx <= sxe);
1173
188k
        if (!*bxe) {
1174
728
            bx = b->x;
1175
728
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
728
            b->wds = n;
1178
728
        }
1179
188k
    }
1180
235k
    if (cmp(b, S) >= 0) {
1181
18.5k
        q++;
1182
18.5k
        borrow = 0;
1183
18.5k
        carry = 0;
1184
18.5k
        bx = b->x;
1185
18.5k
        sx = S->x;
1186
111k
        do {
1187
111k
            ys = *sx++ + carry;
1188
111k
            carry = ys >> 32;
1189
111k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
111k
            borrow = y >> 32 & (ULong)1;
1191
111k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
111k
        }
1193
111k
        while(sx <= sxe);
1194
18.5k
        bx = b->x;
1195
18.5k
        bxe = bx + n;
1196
18.5k
        if (!*bxe) {
1197
19.2k
            while(--bxe > bx && !*bxe)
1198
1.58k
                --n;
1199
17.7k
            b->wds = n;
1200
17.7k
        }
1201
18.5k
    }
1202
235k
    return q;
1203
243k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
2.93k
{
1214
2.93k
    U u;
1215
1216
2.93k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
398
        word0(&u) = (P+2)*Exp_msk1;
1219
398
        word1(&u) = 0;
1220
398
        return u.d;
1221
398
    }
1222
2.53k
    else {
1223
2.53k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.53k
        return ulp(x);
1225
2.53k
    }
1226
2.93k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
6.82k
{
1277
6.82k
    Bigint *b, *d;
1278
6.82k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
6.82k
    nd = bc->nd;
1281
6.82k
    nd0 = bc->nd0;
1282
6.82k
    p5 = nd + bc->e0;
1283
6.82k
    b = sd2b(rv, bc->scale, &p2);
1284
6.82k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
6.82k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
6.82k
    b = lshift(b, 1);
1294
6.82k
    if (b == NULL)
1295
0
        return -1;
1296
6.82k
    b->x[0] |= 1;
1297
6.82k
    p2--;
1298
1299
6.82k
    p2 -= p5;
1300
6.82k
    d = i2b(1);
1301
6.82k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
6.82k
    if (p5 > 0) {
1309
4.58k
        d = pow5mult(d, p5);
1310
4.58k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
4.58k
    }
1315
2.24k
    else if (p5 < 0) {
1316
1.57k
        b = pow5mult(b, -p5);
1317
1.57k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.57k
    }
1322
6.82k
    if (p2 > 0) {
1323
3.41k
        b2 = p2;
1324
3.41k
        d2 = 0;
1325
3.41k
    }
1326
3.40k
    else {
1327
3.40k
        b2 = 0;
1328
3.40k
        d2 = -p2;
1329
3.40k
    }
1330
6.82k
    i = dshift(d, d2);
1331
6.82k
    if ((b2 += i) > 0) {
1332
6.56k
        b = lshift(b, b2);
1333
6.56k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
6.56k
    }
1338
6.82k
    if ((d2 += i) > 0) {
1339
6.23k
        d = lshift(d, d2);
1340
6.23k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
6.23k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
6.82k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
855
        dd = -1;
1352
5.97k
    else {
1353
5.97k
        i = 0;
1354
120k
        for(;;) {
1355
120k
            b = multadd(b, 10, 0);
1356
120k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
120k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
120k
            i++;
1362
1363
120k
            if (dd)
1364
4.62k
                break;
1365
116k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
807
                dd = i < nd;
1368
807
                break;
1369
807
            }
1370
115k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
542
                dd = -1;
1373
542
                break;
1374
542
            }
1375
115k
        }
1376
5.97k
    }
1377
6.82k
    Bfree(b);
1378
6.82k
    Bfree(d);
1379
6.82k
    if (dd > 0 || (dd == 0 && odd))
1380
1.55k
        dval(rv) += sulp(rv, bc);
1381
6.82k
    return 0;
1382
6.82k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
678k
{
1388
678k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
678k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
678k
    const char *s, *s0, *s1;
1391
678k
    double aadj, aadj1;
1392
678k
    U aadj2, adj, rv, rv0;
1393
678k
    ULong y, z, abs_exp;
1394
678k
    Long L;
1395
678k
    BCinfo bc;
1396
678k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
678k
    size_t ndigits, fraclen;
1398
678k
    double result;
1399
1400
678k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
678k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
678k
    sign = 0;
1407
678k
    switch (c) {
1408
552k
    case '-':
1409
552k
        sign = 1;
1410
552k
        _Py_FALLTHROUGH;
1411
552k
    case '+':
1412
552k
        c = *++s;
1413
678k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
678k
    s1 = s;
1417
700k
    while (c == '0')
1418
21.1k
        c = *++s;
1419
678k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
678k
    s0 = s1 = s;
1426
4.17M
    while ('0' <= c && c <= '9')
1427
3.49M
        c = *++s;
1428
678k
    ndigits = s - s1;
1429
678k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
678k
    if (c == '.') {
1433
60.8k
        c = *++s;
1434
60.8k
        if (!ndigits) {
1435
20.4k
            s1 = s;
1436
1.10M
            while (c == '0')
1437
1.08M
                c = *++s;
1438
20.4k
            lz = lz || s != s1;
1439
20.4k
            fraclen += (s - s1);
1440
20.4k
            s0 = s;
1441
20.4k
        }
1442
60.8k
        s1 = s;
1443
16.9M
        while ('0' <= c && c <= '9')
1444
16.8M
            c = *++s;
1445
60.8k
        ndigits += s - s1;
1446
60.8k
        fraclen += s - s1;
1447
60.8k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
678k
    if (!ndigits && !lz) {
1453
23
        if (se)
1454
23
            *se = (char *)s00;
1455
23
        goto parse_error;
1456
23
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
678k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
678k
    nd = (int)ndigits;
1466
678k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
678k
    e = 0;
1470
678k
    if (c == 'e' || c == 'E') {
1471
614k
        s00 = s;
1472
614k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
614k
        esign = 0;
1476
614k
        switch (c) {
1477
27.0k
        case '-':
1478
27.0k
            esign = 1;
1479
27.0k
            _Py_FALLTHROUGH;
1480
39.3k
        case '+':
1481
39.3k
            c = *++s;
1482
614k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
614k
        s1 = s;
1486
626k
        while (c == '0')
1487
11.3k
            c = *++s;
1488
614k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
614k
        s1 = s;
1492
614k
        abs_exp = 0;
1493
2.60M
        while ('0' <= c && c <= '9') {
1494
1.99M
            abs_exp = 10*abs_exp + (c - '0');
1495
1.99M
            c = *++s;
1496
1.99M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
614k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
6.46k
            e = (int)MAX_ABS_EXP;
1503
608k
        else
1504
608k
            e = (int)abs_exp;
1505
614k
        if (esign)
1506
27.0k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
614k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
614k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
678k
    e -= nd - nd0;
1515
678k
    if (nd0 <= 0)
1516
24.4k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
678k
    if (se)
1520
678k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
678k
    if (!nd)
1525
10.5k
        goto ret;
1526
3.85M
    for (i = nd; i > 0; ) {
1527
3.85M
        --i;
1528
3.85M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
668k
            ++i;
1530
668k
            break;
1531
668k
        }
1532
3.85M
    }
1533
668k
    e += nd - i;
1534
668k
    nd = i;
1535
668k
    if (nd0 > nd)
1536
9.19k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
668k
    bc.e0 = e1 = e;
1575
668k
    y = z = 0;
1576
1.90M
    for (i = 0; i < nd; i++) {
1577
1.25M
        if (i < 9)
1578
1.03M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
226k
        else if (i < DBL_DIG+1)
1580
206k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
20.6k
        else
1582
20.6k
            break;
1583
1.25M
    }
1584
1585
668k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
668k
    dval(&rv) = y;
1587
668k
    if (k > 9) {
1588
35.6k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
35.6k
    }
1590
668k
    if (nd <= DBL_DIG
1591
668k
        && Flt_Rounds == 1
1592
668k
        ) {
1593
640k
        if (!e)
1594
12.5k
            goto ret;
1595
628k
        if (e > 0) {
1596
585k
            if (e <= Ten_pmax) {
1597
24.3k
                dval(&rv) *= tens[e];
1598
24.3k
                goto ret;
1599
24.3k
            }
1600
561k
            i = DBL_DIG - nd;
1601
561k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
3.05k
                e -= i;
1606
3.05k
                dval(&rv) *= tens[i];
1607
3.05k
                dval(&rv) *= tens[e];
1608
3.05k
                goto ret;
1609
3.05k
            }
1610
561k
        }
1611
42.8k
        else if (e >= -Ten_pmax) {
1612
24.1k
            dval(&rv) /= tens[-e];
1613
24.1k
            goto ret;
1614
24.1k
        }
1615
628k
    }
1616
604k
    e1 += nd - k;
1617
1618
604k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
604k
    if (e1 > 0) {
1623
570k
        if ((i = e1 & 15))
1624
556k
            dval(&rv) *= tens[i];
1625
570k
        if (e1 &= ~15) {
1626
563k
            if (e1 > DBL_MAX_10_EXP)
1627
534k
                goto ovfl;
1628
28.8k
            e1 >>= 4;
1629
80.1k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
51.3k
                if (e1 & 1)
1631
23.1k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
28.8k
            word0(&rv) -= P*Exp_msk1;
1634
28.8k
            dval(&rv) *= bigtens[j];
1635
28.8k
            if ((z = word0(&rv) & Exp_mask)
1636
28.8k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
504
                goto ovfl;
1638
28.2k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
598
                word0(&rv) = Big0;
1642
598
                word1(&rv) = Big1;
1643
598
            }
1644
27.7k
            else
1645
27.7k
                word0(&rv) += P*Exp_msk1;
1646
28.2k
        }
1647
570k
    }
1648
34.0k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
30.7k
        e1 = -e1;
1660
30.7k
        if ((i = e1 & 15))
1661
27.0k
            dval(&rv) /= tens[i];
1662
30.7k
        if (e1 >>= 4) {
1663
23.8k
            if (e1 >= 1 << n_bigtens)
1664
932
                goto undfl;
1665
22.9k
            if (e1 & Scale_Bit)
1666
18.1k
                bc.scale = 2*P;
1667
120k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
97.9k
                if (e1 & 1)
1669
57.2k
                    dval(&rv) *= tinytens[j];
1670
22.9k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
18.1k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
16.8k
                if (j >= 32) {
1674
10.1k
                    word1(&rv) = 0;
1675
10.1k
                    if (j >= 53)
1676
5.30k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.81k
                    else
1678
4.81k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
10.1k
                }
1680
6.68k
                else
1681
6.68k
                    word1(&rv) &= 0xffffffff << j;
1682
16.8k
            }
1683
22.9k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
22.9k
        }
1686
30.7k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
68.0k
    bc.nd = nd;
1693
68.0k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
68.0k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
64.6k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
64.6k
            --i;
1708
64.6k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
9.66k
                ++i;
1710
9.66k
                break;
1711
9.66k
            }
1712
64.6k
        }
1713
9.66k
        e += nd - i;
1714
9.66k
        nd = i;
1715
9.66k
        if (nd0 > nd)
1716
6.61k
            nd0 = nd;
1717
9.66k
        if (nd < 9) { /* must recompute y */
1718
4.14k
            y = 0;
1719
20.6k
            for(i = 0; i < nd0; ++i)
1720
16.5k
                y = 10*y + s0[i] - '0';
1721
12.6k
            for(; i < nd; ++i)
1722
8.50k
                y = 10*y + s0[i+1] - '0';
1723
4.14k
        }
1724
9.66k
    }
1725
68.0k
    bd0 = s2b(s0, nd0, nd, y);
1726
68.0k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
88.4k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
88.4k
        bd = Balloc(bd0->k);
1758
88.4k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
88.4k
        Bcopy(bd, bd0);
1762
88.4k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
88.4k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
88.4k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
88.4k
        bs = i2b(1);
1772
88.4k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
88.4k
        if (e >= 0) {
1777
39.7k
            bb2 = bb5 = 0;
1778
39.7k
            bd2 = bd5 = e;
1779
39.7k
        }
1780
48.7k
        else {
1781
48.7k
            bb2 = bb5 = -e;
1782
48.7k
            bd2 = bd5 = 0;
1783
48.7k
        }
1784
88.4k
        if (bbe >= 0)
1785
41.3k
            bb2 += bbe;
1786
47.0k
        else
1787
47.0k
            bd2 -= bbe;
1788
88.4k
        bs2 = bb2;
1789
88.4k
        bb2++;
1790
88.4k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
88.4k
        i = bb2 < bd2 ? bb2 : bd2;
1811
88.4k
        if (i > bs2)
1812
46.9k
            i = bs2;
1813
88.4k
        if (i > 0) {
1814
87.6k
            bb2 -= i;
1815
87.6k
            bd2 -= i;
1816
87.6k
            bs2 -= i;
1817
87.6k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
88.4k
        if (bb5 > 0) {
1821
48.7k
            bs = pow5mult(bs, bb5);
1822
48.7k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
48.7k
            Bigint *bb1 = mult(bs, bb);
1826
48.7k
            Bfree(bb);
1827
48.7k
            bb = bb1;
1828
48.7k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
48.7k
        }
1832
88.4k
        if (bb2 > 0) {
1833
88.4k
            bb = lshift(bb, bb2);
1834
88.4k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
88.4k
        }
1838
88.4k
        if (bd5 > 0) {
1839
34.0k
            bd = pow5mult(bd, bd5);
1840
34.0k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
34.0k
        }
1844
88.4k
        if (bd2 > 0) {
1845
46.9k
            bd = lshift(bd, bd2);
1846
46.9k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
46.9k
        }
1850
88.4k
        if (bs2 > 0) {
1851
38.1k
            bs = lshift(bs, bs2);
1852
38.1k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
38.1k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
88.4k
        delta = diff(bb, bd);
1862
88.4k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
88.4k
        dsign = delta->sign;
1866
88.4k
        delta->sign = 0;
1867
88.4k
        i = cmp(delta, bs);
1868
88.4k
        if (bc.nd > nd && i <= 0) {
1869
9.66k
            if (dsign)
1870
6.01k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
3.64k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.20k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.20k
                if (j - bc.scale >= 2) {
1890
810
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
810
                    break; /* Use bigcomp. */
1892
810
                }
1893
1.20k
            }
1894
1895
2.83k
            {
1896
2.83k
                bc.nd = nd;
1897
2.83k
                i = -1; /* Discarded digits make delta smaller. */
1898
2.83k
            }
1899
2.83k
        }
1900
1901
81.6k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
42.3k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
42.3k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
42.3k
                ) {
1908
38.9k
                break;
1909
38.9k
            }
1910
3.34k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
429
                break;
1913
429
            }
1914
2.91k
            delta = lshift(delta,Log2P);
1915
2.91k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.91k
            if (cmp(delta, bs) > 0)
1919
997
                goto drop_down;
1920
1.91k
            break;
1921
2.91k
        }
1922
39.3k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.74k
            if (dsign) {
1925
1.92k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
1.92k
                    &&  word1(&rv) == (
1927
1.03k
                        (bc.scale &&
1928
1.03k
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
1.03k
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
497
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
497
                        + Exp_msk1
1934
497
                        ;
1935
497
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
497
                    break;
1938
497
                }
1939
1.92k
            }
1940
1.82k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
997
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
997
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
997
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
997
                word0(&rv) = L | Bndry_mask1;
1958
997
                word1(&rv) = 0xffffffff;
1959
997
                break;
1960
997
            }
1961
3.24k
            if (!odd)
1962
2.67k
                break;
1963
570
            if (dsign)
1964
345
                dval(&rv) += sulp(&rv, &bc);
1965
225
            else {
1966
225
                dval(&rv) -= sulp(&rv, &bc);
1967
225
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
225
            }
1973
            /* dsign = 1 - dsign; */
1974
570
            break;
1975
570
        }
1976
35.5k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
26.1k
            if (dsign)
1978
11.5k
                aadj = aadj1 = 1.;
1979
14.5k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.88k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.88k
                aadj = 1.;
1986
9.88k
                aadj1 = -1.;
1987
9.88k
            }
1988
4.68k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
4.68k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
4.68k
                else
1995
4.68k
                    aadj *= 0.5;
1996
4.68k
                aadj1 = -aadj;
1997
4.68k
            }
1998
26.1k
        }
1999
9.46k
        else {
2000
9.46k
            aadj *= 0.5;
2001
9.46k
            aadj1 = dsign ? aadj : -aadj;
2002
9.46k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
9.46k
        }
2005
35.5k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
35.5k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.91k
            dval(&rv0) = dval(&rv);
2011
1.91k
            word0(&rv) -= P*Exp_msk1;
2012
1.91k
            adj.d = aadj1 * ulp(&rv);
2013
1.91k
            dval(&rv) += adj.d;
2014
1.91k
            if ((word0(&rv) & Exp_mask) >=
2015
1.91k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.37k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
986
                    goto ovfl;
2018
986
                }
2019
388
                word0(&rv) = Big0;
2020
388
                word1(&rv) = Big1;
2021
388
                goto cont;
2022
1.37k
            }
2023
543
            else
2024
543
                word0(&rv) += P*Exp_msk1;
2025
1.91k
        }
2026
33.6k
        else {
2027
33.6k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
14.0k
                if (aadj <= 0x7fffffff) {
2029
14.0k
                    if ((z = (ULong)aadj) <= 0)
2030
875
                        z = 1;
2031
14.0k
                    aadj = z;
2032
14.0k
                    aadj1 = dsign ? aadj : -aadj;
2033
14.0k
                }
2034
14.0k
                dval(&aadj2) = aadj1;
2035
14.0k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
14.0k
                aadj1 = dval(&aadj2);
2037
14.0k
            }
2038
33.6k
            adj.d = aadj1 * ulp(&rv);
2039
33.6k
            dval(&rv) += adj.d;
2040
33.6k
        }
2041
34.1k
        z = word0(&rv) & Exp_mask;
2042
34.1k
        if (bc.nd == nd) {
2043
30.2k
            if (!bc.scale)
2044
16.2k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
14.7k
                    L = (Long)aadj;
2047
14.7k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
14.7k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
14.7k
                        if (aadj < .4999999 || aadj > .5000001)
2051
14.1k
                            break;
2052
14.7k
                    }
2053
3
                    else if (aadj < .4999999/FLT_RADIX)
2054
3
                        break;
2055
14.7k
                }
2056
30.2k
        }
2057
20.4k
      cont:
2058
20.4k
        Bfree(bb); bb = NULL;
2059
20.4k
        Bfree(bd); bd = NULL;
2060
20.4k
        Bfree(bs); bs = NULL;
2061
20.4k
        Bfree(delta); delta = NULL;
2062
20.4k
    }
2063
67.0k
    if (bc.nd > nd) {
2064
6.82k
        error = bigcomp(&rv, s0, &bc);
2065
6.82k
        if (error)
2066
0
            goto failed_malloc;
2067
6.82k
    }
2068
2069
67.0k
    if (bc.scale) {
2070
18.1k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
18.1k
        word1(&rv0) = 0;
2072
18.1k
        dval(&rv) *= dval(&rv0);
2073
18.1k
    }
2074
2075
141k
  ret:
2076
141k
    result = sign ? -dval(&rv) : dval(&rv);
2077
141k
    goto done;
2078
2079
23
  parse_error:
2080
23
    result = 0.0;
2081
23
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
932
  undfl:
2089
932
    result = sign ? -0.0 : 0.0;
2090
932
    goto done;
2091
2092
536k
  ovfl:
2093
536k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
536k
    word0(&rv) = Exp_mask;
2096
536k
    word1(&rv) = 0;
2097
536k
    result = sign ? -dval(&rv) : dval(&rv);
2098
536k
    goto done;
2099
2100
678k
  done:
2101
678k
    Bfree(bb);
2102
678k
    Bfree(bd);
2103
678k
    Bfree(bs);
2104
678k
    Bfree(bd0);
2105
678k
    Bfree(delta);
2106
678k
    return result;
2107
2108
67.0k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
50.1k
{
2113
50.1k
    int j, k, *r;
2114
2115
50.1k
    j = sizeof(ULong);
2116
50.1k
    for(k = 0;
2117
50.1k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
50.1k
        j <<= 1)
2119
0
        k++;
2120
50.1k
    r = (int*)Balloc(k);
2121
50.1k
    if (r == NULL)
2122
0
        return NULL;
2123
50.1k
    *r = k;
2124
50.1k
    return (char *)(r+1);
2125
50.1k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
5.84k
{
2130
5.84k
    char *rv, *t;
2131
2132
5.84k
    rv = rv_alloc(n);
2133
5.84k
    if (rv == NULL)
2134
0
        return NULL;
2135
5.84k
    t = rv;
2136
16.8k
    while((*t = *s++)) t++;
2137
5.84k
    if (rve)
2138
5.84k
        *rve = t;
2139
5.84k
    return rv;
2140
5.84k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
50.1k
{
2151
50.1k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
50.1k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
50.1k
    Bfree(b);
2154
50.1k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
50.1k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
50.1k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
50.1k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
50.1k
        spec_case, try_quick;
2235
50.1k
    Long L;
2236
50.1k
    int denorm;
2237
50.1k
    ULong x;
2238
50.1k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
50.1k
    U d2, eps, u;
2240
50.1k
    double ds;
2241
50.1k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
50.1k
    mlo = mhi = S = 0;
2246
50.1k
    s0 = 0;
2247
2248
50.1k
    u.d = dd;
2249
50.1k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
14.1k
        *sign = 1;
2252
14.1k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
14.1k
    }
2254
36.0k
    else
2255
36.0k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
50.1k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
741
    {
2260
        /* Infinity or NaN */
2261
741
        *decpt = 9999;
2262
741
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
741
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
741
    }
2266
49.3k
    if (!dval(&u)) {
2267
5.10k
        *decpt = 1;
2268
5.10k
        return nrv_alloc("0", rve, 1);
2269
5.10k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
44.2k
    b = d2b(&u, &be, &bbits);
2274
44.2k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
44.2k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
39.9k
        dval(&d2) = dval(&u);
2278
39.9k
        word0(&d2) &= Frac_mask1;
2279
39.9k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
39.9k
        i -= Bias;
2304
39.9k
        denorm = 0;
2305
39.9k
    }
2306
4.36k
    else {
2307
        /* d is denormalized */
2308
2309
4.36k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.36k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.36k
            : word1(&u) << (32 - i);
2312
4.36k
        dval(&d2) = x;
2313
4.36k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.36k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.36k
        denorm = 1;
2316
4.36k
    }
2317
44.2k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
44.2k
        i*0.301029995663981;
2319
44.2k
    k = (int)ds;
2320
44.2k
    if (ds < 0. && ds != k)
2321
12.4k
        k--;    /* want k = floor(ds) */
2322
44.2k
    k_check = 1;
2323
44.2k
    if (k >= 0 && k <= Ten_pmax) {
2324
20.6k
        if (dval(&u) < tens[k])
2325
2.18k
            k--;
2326
20.6k
        k_check = 0;
2327
20.6k
    }
2328
44.2k
    j = bbits - i - 1;
2329
44.2k
    if (j >= 0) {
2330
19.0k
        b2 = 0;
2331
19.0k
        s2 = j;
2332
19.0k
    }
2333
25.2k
    else {
2334
25.2k
        b2 = -j;
2335
25.2k
        s2 = 0;
2336
25.2k
    }
2337
44.2k
    if (k >= 0) {
2338
31.2k
        b5 = 0;
2339
31.2k
        s5 = k;
2340
31.2k
        s2 += k;
2341
31.2k
    }
2342
12.9k
    else {
2343
12.9k
        b2 -= k;
2344
12.9k
        b5 = -k;
2345
12.9k
        s5 = 0;
2346
12.9k
    }
2347
44.2k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
44.2k
    try_quick = 1;
2351
2352
44.2k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
44.2k
    leftright = 1;
2357
44.2k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
44.2k
    switch(mode) {
2360
44.2k
    case 0:
2361
44.2k
    case 1:
2362
44.2k
        i = 18;
2363
44.2k
        ndigits = 0;
2364
44.2k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
44.2k
    }
2383
44.2k
    s0 = rv_alloc(i);
2384
44.2k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
44.2k
    s = s0;
2387
2388
2389
44.2k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
44.2k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
12.3k
        ds = tens[k];
2492
12.3k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
18.4k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
18.4k
            L = (Long)(dval(&u) / ds);
2500
18.4k
            dval(&u) -= L*ds;
2501
18.4k
            *s++ = '0' + (int)L;
2502
18.4k
            if (!dval(&u)) {
2503
12.3k
                break;
2504
12.3k
            }
2505
6.13k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
6.13k
        }
2528
12.3k
        goto ret1;
2529
12.3k
    }
2530
2531
31.9k
    m2 = b2;
2532
31.9k
    m5 = b5;
2533
31.9k
    if (leftright) {
2534
31.9k
        i =
2535
31.9k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
31.9k
            1 + P - bbits;
2537
31.9k
        b2 += i;
2538
31.9k
        s2 += i;
2539
31.9k
        mhi = i2b(1);
2540
31.9k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
31.9k
    }
2543
31.9k
    if (m2 > 0 && s2 > 0) {
2544
27.7k
        i = m2 < s2 ? m2 : s2;
2545
27.7k
        b2 -= i;
2546
27.7k
        m2 -= i;
2547
27.7k
        s2 -= i;
2548
27.7k
    }
2549
31.9k
    if (b5 > 0) {
2550
12.9k
        if (leftright) {
2551
12.9k
            if (m5 > 0) {
2552
12.9k
                mhi = pow5mult(mhi, m5);
2553
12.9k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
12.9k
                b1 = mult(mhi, b);
2556
12.9k
                Bfree(b);
2557
12.9k
                b = b1;
2558
12.9k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
12.9k
            }
2561
12.9k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
12.9k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
12.9k
    }
2573
31.9k
    S = i2b(1);
2574
31.9k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
31.9k
    if (s5 > 0) {
2577
16.4k
        S = pow5mult(S, s5);
2578
16.4k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
16.4k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
31.9k
    spec_case = 0;
2585
31.9k
    if ((mode < 2 || leftright)
2586
31.9k
        ) {
2587
31.9k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
31.9k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
31.9k
            ) {
2590
            /* The special case */
2591
1.03k
            b2 += Log2P;
2592
1.03k
            s2 += Log2P;
2593
1.03k
            spec_case = 1;
2594
1.03k
        }
2595
31.9k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
31.9k
#define iInc 28
2605
31.9k
    i = dshift(S, s2);
2606
31.9k
    b2 += i;
2607
31.9k
    m2 += i;
2608
31.9k
    s2 += i;
2609
31.9k
    if (b2 > 0) {
2610
31.9k
        b = lshift(b, b2);
2611
31.9k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
31.9k
    }
2614
31.9k
    if (s2 > 0) {
2615
31.2k
        S = lshift(S, s2);
2616
31.2k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
31.2k
    }
2619
31.9k
    if (k_check) {
2620
23.6k
        if (cmp(b,S) < 0) {
2621
2.55k
            k--;
2622
2.55k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.55k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.55k
            if (leftright) {
2626
2.55k
                mhi = multadd(mhi, 10, 0);
2627
2.55k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.55k
            }
2630
2.55k
            ilim = ilim1;
2631
2.55k
        }
2632
23.6k
    }
2633
31.9k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
31.9k
    if (leftright) {
2653
31.9k
        if (m2 > 0) {
2654
30.9k
            mhi = lshift(mhi, m2);
2655
30.9k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
30.9k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
31.9k
        mlo = mhi;
2664
31.9k
        if (spec_case) {
2665
1.03k
            mhi = Balloc(mhi->k);
2666
1.03k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.03k
            Bcopy(mhi, mlo);
2669
1.03k
            mhi = lshift(mhi, Log2P);
2670
1.03k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.03k
        }
2673
2674
122k
        for(i = 1;;i++) {
2675
122k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
122k
            j = cmp(b, mlo);
2680
122k
            delta = diff(S, mhi);
2681
122k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
122k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
122k
            Bfree(delta);
2685
122k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
122k
                ) {
2687
1.96k
                if (dig == '9')
2688
397
                    goto round_9_up;
2689
1.56k
                if (j > 0)
2690
781
                    dig++;
2691
1.56k
                *s++ = dig;
2692
1.56k
                goto ret;
2693
1.96k
            }
2694
120k
            if (j < 0 || (j == 0 && mode != 1
2695
102k
                          && !(word1(&u) & 1)
2696
102k
                    )) {
2697
18.8k
                if (!b->x[0] && b->wds <= 1) {
2698
2.77k
                    goto accept_dig;
2699
2.77k
                }
2700
16.0k
                if (j1 > 0) {
2701
3.40k
                    b = lshift(b, 1);
2702
3.40k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.40k
                    j1 = cmp(b, S);
2705
3.40k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
3.40k
                        && dig++ == '9')
2707
522
                        goto round_9_up;
2708
3.40k
                }
2709
18.3k
              accept_dig:
2710
18.3k
                *s++ = dig;
2711
18.3k
                goto ret;
2712
16.0k
            }
2713
101k
            if (j1 > 0) {
2714
11.0k
                if (dig == '9') { /* possible if i == 1 */
2715
2.49k
                  round_9_up:
2716
2.49k
                    *s++ = '9';
2717
2.49k
                    goto roundoff;
2718
1.57k
                }
2719
9.51k
                *s++ = dig + 1;
2720
9.51k
                goto ret;
2721
11.0k
            }
2722
90.8k
            *s++ = dig;
2723
90.8k
            if (i == ilim)
2724
0
                break;
2725
90.8k
            b = multadd(b, 10, 0);
2726
90.8k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
90.8k
            if (mlo == mhi) {
2729
87.9k
                mlo = mhi = multadd(mhi, 10, 0);
2730
87.9k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
87.9k
            }
2733
2.87k
            else {
2734
2.87k
                mlo = multadd(mlo, 10, 0);
2735
2.87k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.87k
                mhi = multadd(mhi, 10, 0);
2738
2.87k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.87k
            }
2741
90.8k
        }
2742
31.9k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.49k
      roundoff:
2764
2.49k
        while(*--s == '9')
2765
2.49k
            if (s == s0) {
2766
2.49k
                k++;
2767
2.49k
                *s++ = '1';
2768
2.49k
                goto ret;
2769
2.49k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
31.9k
  ret:
2777
31.9k
    Bfree(S);
2778
31.9k
    if (mhi) {
2779
31.9k
        if (mlo && mlo != mhi)
2780
1.03k
            Bfree(mlo);
2781
31.9k
        Bfree(mhi);
2782
31.9k
    }
2783
44.2k
  ret1:
2784
44.2k
    Bfree(b);
2785
44.2k
    *s = 0;
2786
44.2k
    *decpt = k + 1;
2787
44.2k
    if (rve)
2788
44.2k
        *rve = s;
2789
44.2k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
31.9k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
16
{
2809
16
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
16
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
16
    Bigint *p5 = i2b(625);
2814
16
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
16
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
128
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
112
        p5 = mult(p5, p5);
2822
112
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
112
        p5s[i] = p5;
2826
112
    }
2827
2828
16
#endif
2829
16
    return PyStatus_Ok();
2830
16
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
0
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}