Coverage Report

Created: 2025-08-26 06:26

/src/cpython/Python/gc.c
Line
Count
Source (jump to first uncovered line)
1
//  This implements the reference cycle garbage collector.
2
//  The Python module interface to the collector is in gcmodule.c.
3
//  See InternalDocs/garbage_collector.md for more infromation.
4
5
#include "Python.h"
6
#include "pycore_ceval.h"         // _Py_set_eval_breaker_bit()
7
#include "pycore_dict.h"          // _PyInlineValuesSize()
8
#include "pycore_initconfig.h"    // _PyStatus_OK()
9
#include "pycore_interp.h"        // PyInterpreterState.gc
10
#include "pycore_interpframe.h"   // _PyFrame_GetLocalsArray()
11
#include "pycore_object_alloc.h"  // _PyObject_MallocWithType()
12
#include "pycore_pystate.h"       // _PyThreadState_GET()
13
#include "pycore_tuple.h"         // _PyTuple_MaybeUntrack()
14
#include "pycore_weakref.h"       // _PyWeakref_ClearRef()
15
16
#include "pydtrace.h"
17
18
19
#ifndef Py_GIL_DISABLED
20
21
typedef struct _gc_runtime_state GCState;
22
23
#ifdef Py_DEBUG
24
#  define GC_DEBUG
25
#endif
26
27
// Define this when debugging the GC
28
// #define GC_EXTRA_DEBUG
29
30
31
541M
#define GC_NEXT _PyGCHead_NEXT
32
191M
#define GC_PREV _PyGCHead_PREV
33
34
// update_refs() set this bit for all objects in current generation.
35
// subtract_refs() and move_unreachable() uses this to distinguish
36
// visited object is in GCing or not.
37
//
38
// move_unreachable() removes this flag from reachable objects.
39
// Only unreachable objects have this flag.
40
//
41
// No objects in interpreter have this flag after GC ends.
42
216M
#define PREV_MASK_COLLECTING   _PyGC_PREV_MASK_COLLECTING
43
44
// Lowest bit of _gc_next is used for UNREACHABLE flag.
45
//
46
// This flag represents the object is in unreachable list in move_unreachable()
47
//
48
// Although this flag is used only in move_unreachable(), move_unreachable()
49
// doesn't clear this flag to skip unnecessary iteration.
50
// move_legacy_finalizers() removes this flag instead.
51
// Between them, unreachable list is not normal list and we can not use
52
// most gc_list_* functions for it.
53
39.1M
#define NEXT_MASK_UNREACHABLE  2
54
55
1.62G
#define AS_GC(op) _Py_AS_GC(op)
56
401M
#define FROM_GC(gc) _Py_FROM_GC(gc)
57
58
// Automatically choose the generation that needs collecting.
59
#define GENERATION_AUTO (-1)
60
61
static inline int
62
gc_is_collecting(PyGC_Head *g)
63
127M
{
64
127M
    return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
65
127M
}
66
67
static inline void
68
gc_clear_collecting(PyGC_Head *g)
69
44.3M
{
70
44.3M
    g->_gc_prev &= ~PREV_MASK_COLLECTING;
71
44.3M
}
72
73
static inline Py_ssize_t
74
gc_get_refs(PyGC_Head *g)
75
110M
{
76
110M
    return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
77
110M
}
78
79
static inline void
80
gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
81
30.6M
{
82
30.6M
    g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
83
30.6M
        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
84
30.6M
}
85
86
static inline void
87
gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
88
44.9M
{
89
44.9M
    g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
90
44.9M
        | PREV_MASK_COLLECTING
91
44.9M
        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
92
44.9M
}
93
94
static inline void
95
gc_decref(PyGC_Head *g)
96
36.0M
{
97
36.0M
    _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
98
36.0M
                              gc_get_refs(g) > 0,
99
36.0M
                              "refcount is too small");
100
36.0M
    g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
101
36.0M
}
102
103
static inline int
104
gc_old_space(PyGC_Head *g)
105
167M
{
106
167M
    return g->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1;
107
167M
}
108
109
static inline int
110
other_space(int space)
111
4.43k
{
112
4.43k
    assert(space == 0 || space == 1);
113
4.43k
    return space ^ _PyGC_NEXT_MASK_OLD_SPACE_1;
114
4.43k
}
115
116
static inline void
117
gc_flip_old_space(PyGC_Head *g)
118
89.2M
{
119
89.2M
    g->_gc_next ^= _PyGC_NEXT_MASK_OLD_SPACE_1;
120
89.2M
}
121
122
static inline void
123
gc_set_old_space(PyGC_Head *g, int space)
124
41.0M
{
125
41.0M
    assert(space == 0 || space == _PyGC_NEXT_MASK_OLD_SPACE_1);
126
41.0M
    g->_gc_next &= ~_PyGC_NEXT_MASK_OLD_SPACE_1;
127
41.0M
    g->_gc_next |= space;
128
41.0M
}
129
130
static PyGC_Head *
131
GEN_HEAD(GCState *gcstate, int n)
132
0
{
133
0
    assert((gcstate->visited_space & (~1)) == 0);
134
0
    switch(n) {
135
0
        case 0:
136
0
            return &gcstate->young.head;
137
0
        case 1:
138
0
            return &gcstate->old[gcstate->visited_space].head;
139
0
        case 2:
140
0
            return &gcstate->old[gcstate->visited_space^1].head;
141
0
        default:
142
0
            Py_UNREACHABLE();
143
0
    }
144
0
}
145
146
static GCState *
147
get_gc_state(void)
148
428M
{
149
428M
    PyInterpreterState *interp = _PyInterpreterState_GET();
150
428M
    return &interp->gc;
151
428M
}
152
153
154
void
155
_PyGC_InitState(GCState *gcstate)
156
16
{
157
16
#define INIT_HEAD(GEN) \
158
64
    do { \
159
64
        GEN.head._gc_next = (uintptr_t)&GEN.head; \
160
64
        GEN.head._gc_prev = (uintptr_t)&GEN.head; \
161
64
    } while (0)
162
163
16
    assert(gcstate->young.count == 0);
164
16
    assert(gcstate->old[0].count == 0);
165
16
    assert(gcstate->old[1].count == 0);
166
16
    INIT_HEAD(gcstate->young);
167
16
    INIT_HEAD(gcstate->old[0]);
168
16
    INIT_HEAD(gcstate->old[1]);
169
16
    INIT_HEAD(gcstate->permanent_generation);
170
171
16
#undef INIT_HEAD
172
16
}
173
174
175
PyStatus
176
_PyGC_Init(PyInterpreterState *interp)
177
16
{
178
16
    GCState *gcstate = &interp->gc;
179
180
16
    gcstate->garbage = PyList_New(0);
181
16
    if (gcstate->garbage == NULL) {
182
0
        return _PyStatus_NO_MEMORY();
183
0
    }
184
185
16
    gcstate->callbacks = PyList_New(0);
186
16
    if (gcstate->callbacks == NULL) {
187
0
        return _PyStatus_NO_MEMORY();
188
0
    }
189
16
    gcstate->heap_size = 0;
190
191
16
    return _PyStatus_OK();
192
16
}
193
194
195
/*
196
_gc_prev values
197
---------------
198
199
Between collections, _gc_prev is used for doubly linked list.
200
201
Lowest two bits of _gc_prev are used for flags.
202
PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
203
or _PyObject_GC_UNTRACK() is called.
204
205
During a collection, _gc_prev is temporary used for gc_refs, and the gc list
206
is singly linked until _gc_prev is restored.
207
208
gc_refs
209
    At the start of a collection, update_refs() copies the true refcount
210
    to gc_refs, for each object in the generation being collected.
211
    subtract_refs() then adjusts gc_refs so that it equals the number of
212
    times an object is referenced directly from outside the generation
213
    being collected.
214
215
PREV_MASK_COLLECTING
216
    Objects in generation being collected are marked PREV_MASK_COLLECTING in
217
    update_refs().
218
219
220
_gc_next values
221
---------------
222
223
_gc_next takes these values:
224
225
0
226
    The object is not tracked
227
228
!= 0
229
    Pointer to the next object in the GC list.
230
    Additionally, lowest bit is used temporary for
231
    NEXT_MASK_UNREACHABLE flag described below.
232
233
NEXT_MASK_UNREACHABLE
234
    move_unreachable() then moves objects not reachable (whether directly or
235
    indirectly) from outside the generation into an "unreachable" set and
236
    set this flag.
237
238
    Objects that are found to be reachable have gc_refs set to 1.
239
    When this flag is set for the reachable object, the object must be in
240
    "unreachable" set.
241
    The flag is unset and the object is moved back to "reachable" set.
242
243
    move_legacy_finalizers() will remove this flag from "unreachable" set.
244
*/
245
246
/*** list functions ***/
247
248
static inline void
249
gc_list_init(PyGC_Head *list)
250
763k
{
251
    // List header must not have flags.
252
    // We can assign pointer by simple cast.
253
763k
    list->_gc_prev = (uintptr_t)list;
254
763k
    list->_gc_next = (uintptr_t)list;
255
763k
}
256
257
static inline int
258
gc_list_is_empty(PyGC_Head *list)
259
90.4M
{
260
90.4M
    return (list->_gc_next == (uintptr_t)list);
261
90.4M
}
262
263
/* Append `node` to `list`. */
264
static inline void
265
gc_list_append(PyGC_Head *node, PyGC_Head *list)
266
4.82M
{
267
4.82M
    assert((list->_gc_prev & ~_PyGC_PREV_MASK) == 0);
268
4.82M
    PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
269
270
    // last <-> node
271
4.82M
    _PyGCHead_SET_PREV(node, last);
272
4.82M
    _PyGCHead_SET_NEXT(last, node);
273
274
    // node <-> list
275
4.82M
    _PyGCHead_SET_NEXT(node, list);
276
4.82M
    list->_gc_prev = (uintptr_t)node;
277
4.82M
}
278
279
/* Remove `node` from the gc list it's currently in. */
280
static inline void
281
gc_list_remove(PyGC_Head *node)
282
0
{
283
0
    PyGC_Head *prev = GC_PREV(node);
284
0
    PyGC_Head *next = GC_NEXT(node);
285
286
0
    _PyGCHead_SET_NEXT(prev, next);
287
0
    _PyGCHead_SET_PREV(next, prev);
288
289
0
    node->_gc_next = 0; /* object is not currently tracked */
290
0
}
291
292
/* Move `node` from the gc list it's currently in (which is not explicitly
293
 * named here) to the end of `list`.  This is semantically the same as
294
 * gc_list_remove(node) followed by gc_list_append(node, list).
295
 */
296
static void
297
gc_list_move(PyGC_Head *node, PyGC_Head *list)
298
178M
{
299
    /* Unlink from current list. */
300
178M
    PyGC_Head *from_prev = GC_PREV(node);
301
178M
    PyGC_Head *from_next = GC_NEXT(node);
302
178M
    _PyGCHead_SET_NEXT(from_prev, from_next);
303
178M
    _PyGCHead_SET_PREV(from_next, from_prev);
304
305
    /* Relink at end of new list. */
306
    // list must not have flags.  So we can skip macros.
307
178M
    PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
308
178M
    _PyGCHead_SET_PREV(node, to_prev);
309
178M
    _PyGCHead_SET_NEXT(to_prev, node);
310
178M
    list->_gc_prev = (uintptr_t)node;
311
178M
    _PyGCHead_SET_NEXT(node, list);
312
178M
}
313
314
/* append list `from` onto list `to`; `from` becomes an empty list */
315
static void
316
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
317
323k
{
318
323k
    assert(from != to);
319
323k
    if (!gc_list_is_empty(from)) {
320
103k
        PyGC_Head *to_tail = GC_PREV(to);
321
103k
        PyGC_Head *from_head = GC_NEXT(from);
322
103k
        PyGC_Head *from_tail = GC_PREV(from);
323
103k
        assert(from_head != from);
324
103k
        assert(from_tail != from);
325
103k
        assert(gc_list_is_empty(to) ||
326
103k
            gc_old_space(to_tail) == gc_old_space(from_tail));
327
328
103k
        _PyGCHead_SET_NEXT(to_tail, from_head);
329
103k
        _PyGCHead_SET_PREV(from_head, to_tail);
330
331
103k
        _PyGCHead_SET_NEXT(from_tail, to);
332
103k
        _PyGCHead_SET_PREV(to, from_tail);
333
103k
    }
334
323k
    gc_list_init(from);
335
323k
}
336
337
static Py_ssize_t
338
gc_list_size(PyGC_Head *list)
339
107k
{
340
107k
    PyGC_Head *gc;
341
107k
    Py_ssize_t n = 0;
342
41.2M
    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
343
41.1M
        n++;
344
41.1M
    }
345
107k
    return n;
346
107k
}
347
348
/* Walk the list and mark all objects as non-collecting */
349
static inline void
350
gc_list_clear_collecting(PyGC_Head *collectable)
351
53.9k
{
352
53.9k
    PyGC_Head *gc;
353
1.29M
    for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
354
1.24M
        gc_clear_collecting(gc);
355
1.24M
    }
356
53.9k
}
357
358
/* Append objects in a GC list to a Python list.
359
 * Return 0 if all OK, < 0 if error (out of memory for list)
360
 */
361
static int
362
append_objects(PyObject *py_list, PyGC_Head *gc_list)
363
0
{
364
0
    PyGC_Head *gc;
365
0
    for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
366
0
        PyObject *op = FROM_GC(gc);
367
0
        if (op != py_list) {
368
0
            if (PyList_Append(py_list, op)) {
369
0
                return -1; /* exception */
370
0
            }
371
0
        }
372
0
    }
373
0
    return 0;
374
0
}
375
376
// Constants for validate_list's flags argument.
377
enum flagstates {collecting_clear_unreachable_clear,
378
                 collecting_clear_unreachable_set,
379
                 collecting_set_unreachable_clear,
380
                 collecting_set_unreachable_set};
381
382
#ifdef GC_DEBUG
383
// validate_list checks list consistency.  And it works as document
384
// describing when flags are expected to be set / unset.
385
// `head` must be a doubly-linked gc list, although it's fine (expected!) if
386
// the prev and next pointers are "polluted" with flags.
387
// What's checked:
388
// - The `head` pointers are not polluted.
389
// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
390
//   `set or clear, as specified by the 'flags' argument.
391
// - The prev and next pointers are mutually consistent.
392
static void
393
validate_list(PyGC_Head *head, enum flagstates flags)
394
{
395
    assert((head->_gc_prev & ~_PyGC_PREV_MASK) == 0);
396
    assert((head->_gc_next & ~_PyGC_PREV_MASK) == 0);
397
    uintptr_t prev_value = 0, next_value = 0;
398
    switch (flags) {
399
        case collecting_clear_unreachable_clear:
400
            break;
401
        case collecting_set_unreachable_clear:
402
            prev_value = PREV_MASK_COLLECTING;
403
            break;
404
        case collecting_clear_unreachable_set:
405
            next_value = NEXT_MASK_UNREACHABLE;
406
            break;
407
        case collecting_set_unreachable_set:
408
            prev_value = PREV_MASK_COLLECTING;
409
            next_value = NEXT_MASK_UNREACHABLE;
410
            break;
411
        default:
412
            assert(! "bad internal flags argument");
413
    }
414
    PyGC_Head *prev = head;
415
    PyGC_Head *gc = GC_NEXT(head);
416
    while (gc != head) {
417
        PyGC_Head *trueprev = GC_PREV(gc);
418
        PyGC_Head *truenext = GC_NEXT(gc);
419
        assert(truenext != NULL);
420
        assert(trueprev == prev);
421
        assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
422
        assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
423
        prev = gc;
424
        gc = truenext;
425
    }
426
    assert(prev == GC_PREV(head));
427
}
428
429
#else
430
700k
#define validate_list(x, y) do{}while(0)
431
#endif
432
433
#ifdef GC_EXTRA_DEBUG
434
435
436
static void
437
gc_list_validate_space(PyGC_Head *head, int space) {
438
    PyGC_Head *gc = GC_NEXT(head);
439
    while (gc != head) {
440
        assert(gc_old_space(gc) == space);
441
        gc = GC_NEXT(gc);
442
    }
443
}
444
445
static void
446
validate_spaces(GCState *gcstate)
447
{
448
    int visited = gcstate->visited_space;
449
    int not_visited = other_space(visited);
450
    gc_list_validate_space(&gcstate->young.head, not_visited);
451
    for (int space = 0; space < 2; space++) {
452
        gc_list_validate_space(&gcstate->old[space].head, space);
453
    }
454
    gc_list_validate_space(&gcstate->permanent_generation.head, visited);
455
}
456
457
static void
458
validate_consistent_old_space(PyGC_Head *head)
459
{
460
    PyGC_Head *gc = GC_NEXT(head);
461
    if (gc == head) {
462
        return;
463
    }
464
    int old_space = gc_old_space(gc);
465
    while (gc != head) {
466
        PyGC_Head *truenext = GC_NEXT(gc);
467
        assert(truenext != NULL);
468
        assert(gc_old_space(gc) == old_space);
469
        gc = truenext;
470
    }
471
}
472
473
474
#else
475
121k
#define validate_spaces(g) do{}while(0)
476
269k
#define validate_consistent_old_space(l) do{}while(0)
477
278k
#define gc_list_validate_space(l, s) do{}while(0)
478
#endif
479
480
/*** end of list stuff ***/
481
482
483
/* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 and
484
 * PREV_MASK_COLLECTING bit is set for all objects in containers.
485
 */
486
static void
487
update_refs(PyGC_Head *containers)
488
107k
{
489
107k
    PyGC_Head *next;
490
107k
    PyGC_Head *gc = GC_NEXT(containers);
491
492
45.0M
    while (gc != containers) {
493
44.9M
        next = GC_NEXT(gc);
494
44.9M
        PyObject *op = FROM_GC(gc);
495
44.9M
        if (_Py_IsImmortal(op)) {
496
0
            assert(!_Py_IsStaticImmortal(op));
497
0
            _PyObject_GC_UNTRACK(op);
498
0
           gc = next;
499
0
           continue;
500
0
        }
501
44.9M
        gc_reset_refs(gc, Py_REFCNT(op));
502
        /* Python's cyclic gc should never see an incoming refcount
503
         * of 0:  if something decref'ed to 0, it should have been
504
         * deallocated immediately at that time.
505
         * Possible cause (if the assert triggers):  a tp_dealloc
506
         * routine left a gc-aware object tracked during its teardown
507
         * phase, and did something-- or allowed something to happen --
508
         * that called back into Python.  gc can trigger then, and may
509
         * see the still-tracked dying object.  Before this assert
510
         * was added, such mistakes went on to allow gc to try to
511
         * delete the object again.  In a debug build, that caused
512
         * a mysterious segfault, when _Py_ForgetReference tried
513
         * to remove the object from the doubly-linked list of all
514
         * objects a second time.  In a release build, an actual
515
         * double deallocation occurred, which leads to corruption
516
         * of the allocator's internal bookkeeping pointers.  That's
517
         * so serious that maybe this should be a release-build
518
         * check instead of an assert?
519
         */
520
44.9M
        _PyObject_ASSERT(op, gc_get_refs(gc) != 0);
521
44.9M
        gc = next;
522
44.9M
    }
523
107k
}
524
525
/* A traversal callback for subtract_refs. */
526
static int
527
visit_decref(PyObject *op, void *parent)
528
162M
{
529
162M
    OBJECT_STAT_INC(object_visits);
530
162M
    _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
531
532
162M
    if (_PyObject_IS_GC(op)) {
533
66.6M
        PyGC_Head *gc = AS_GC(op);
534
        /* We're only interested in gc_refs for objects in the
535
         * generation being collected, which can be recognized
536
         * because only they have positive gc_refs.
537
         */
538
66.6M
        if (gc_is_collecting(gc)) {
539
36.0M
            gc_decref(gc);
540
36.0M
        }
541
66.6M
    }
542
162M
    return 0;
543
162M
}
544
545
int
546
_PyGC_VisitStackRef(_PyStackRef *ref, visitproc visit, void *arg)
547
3.12M
{
548
    // This is a bit tricky! We want to ignore stackrefs with embedded
549
    // refcounts when computing the incoming references, but otherwise treat
550
    // them like normal.
551
3.12M
    assert(!PyStackRef_IsTaggedInt(*ref));
552
3.12M
    if (!PyStackRef_RefcountOnObject(*ref) && (visit == visit_decref)) {
553
19.5k
        return 0;
554
19.5k
    }
555
3.10M
    Py_VISIT(PyStackRef_AsPyObjectBorrow(*ref));
556
3.10M
    return 0;
557
3.10M
}
558
559
int
560
_PyGC_VisitFrameStack(_PyInterpreterFrame *frame, visitproc visit, void *arg)
561
575k
{
562
575k
    _PyStackRef *ref = _PyFrame_GetLocalsArray(frame);
563
    /* locals and stack */
564
3.71M
    for (; ref < frame->stackpointer; ref++) {
565
3.14M
        if (!PyStackRef_IsTaggedInt(*ref)) {
566
3.14M
            _Py_VISIT_STACKREF(*ref);
567
3.14M
        }
568
3.14M
    }
569
575k
    return 0;
570
575k
}
571
572
/* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
573
 * for all objects in containers. The ones with gc_refs > 0 are directly
574
 * reachable from outside containers, and so can't be collected.
575
 */
576
static void
577
subtract_refs(PyGC_Head *containers)
578
107k
{
579
107k
    traverseproc traverse;
580
107k
    PyGC_Head *gc = GC_NEXT(containers);
581
45.0M
    for (; gc != containers; gc = GC_NEXT(gc)) {
582
44.9M
        PyObject *op = FROM_GC(gc);
583
44.9M
        traverse = Py_TYPE(op)->tp_traverse;
584
44.9M
        (void) traverse(op,
585
44.9M
                        visit_decref,
586
44.9M
                        op);
587
44.9M
    }
588
107k
}
589
590
/* A traversal callback for move_unreachable. */
591
static int
592
visit_reachable(PyObject *op, void *arg)
593
153M
{
594
153M
    PyGC_Head *reachable = arg;
595
153M
    OBJECT_STAT_INC(object_visits);
596
153M
    if (!_PyObject_IS_GC(op)) {
597
93.3M
        return 0;
598
93.3M
    }
599
600
60.3M
    PyGC_Head *gc = AS_GC(op);
601
60.3M
    const Py_ssize_t gc_refs = gc_get_refs(gc);
602
603
    // Ignore objects in other generation.
604
    // This also skips objects "to the left" of the current position in
605
    // move_unreachable's scan of the 'young' list - they've already been
606
    // traversed, and no longer have the PREV_MASK_COLLECTING flag.
607
60.3M
    if (! gc_is_collecting(gc)) {
608
28.6M
        return 0;
609
28.6M
    }
610
    // It would be a logic error elsewhere if the collecting flag were set on
611
    // an untracked object.
612
31.7M
    _PyObject_ASSERT(op, gc->_gc_next != 0);
613
614
31.7M
    if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
615
        /* This had gc_refs = 0 when move_unreachable got
616
         * to it, but turns out it's reachable after all.
617
         * Move it back to move_unreachable's 'young' list,
618
         * and move_unreachable will eventually get to it
619
         * again.
620
         */
621
        // Manually unlink gc from unreachable list because the list functions
622
        // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
623
4.82M
        PyGC_Head *prev = GC_PREV(gc);
624
4.82M
        PyGC_Head *next = GC_NEXT(gc);
625
4.82M
        _PyObject_ASSERT(FROM_GC(prev),
626
4.82M
                         prev->_gc_next & NEXT_MASK_UNREACHABLE);
627
4.82M
        _PyObject_ASSERT(FROM_GC(next),
628
4.82M
                         next->_gc_next & NEXT_MASK_UNREACHABLE);
629
4.82M
        prev->_gc_next = gc->_gc_next;  // copy flag bits
630
4.82M
        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
631
4.82M
        _PyGCHead_SET_PREV(next, prev);
632
633
4.82M
        gc_list_append(gc, reachable);
634
4.82M
        gc_set_refs(gc, 1);
635
4.82M
    }
636
26.8M
    else if (gc_refs == 0) {
637
        /* This is in move_unreachable's 'young' list, but
638
         * the traversal hasn't yet gotten to it.  All
639
         * we need to do is tell move_unreachable that it's
640
         * reachable.
641
         */
642
25.8M
        gc_set_refs(gc, 1);
643
25.8M
    }
644
    /* Else there's nothing to do.
645
     * If gc_refs > 0, it must be in move_unreachable's 'young'
646
     * list, and move_unreachable will eventually get to it.
647
     */
648
1.01M
    else {
649
1.01M
        _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
650
1.01M
    }
651
31.7M
    return 0;
652
60.3M
}
653
654
/* Move the unreachable objects from young to unreachable.  After this,
655
 * all objects in young don't have PREV_MASK_COLLECTING flag and
656
 * unreachable have the flag.
657
 * All objects in young after this are directly or indirectly reachable
658
 * from outside the original young; and all objects in unreachable are
659
 * not.
660
 *
661
 * This function restores _gc_prev pointer.  young and unreachable are
662
 * doubly linked list after this function.
663
 * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
664
 * So we can not gc_list_* functions for unreachable until we remove the flag.
665
 */
666
static void
667
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
668
107k
{
669
    // previous elem in the young list, used for restore gc_prev.
670
107k
    PyGC_Head *prev = young;
671
107k
    PyGC_Head *gc = GC_NEXT(young);
672
673
    /* Invariants:  all objects "to the left" of us in young are reachable
674
     * (directly or indirectly) from outside the young list as it was at entry.
675
     *
676
     * All other objects from the original young "to the left" of us are in
677
     * unreachable now, and have NEXT_MASK_UNREACHABLE.  All objects to the
678
     * left of us in 'young' now have been scanned, and no objects here
679
     * or to the right have been scanned yet.
680
     */
681
682
107k
    validate_consistent_old_space(young);
683
    /* Record which old space we are in, and set NEXT_MASK_UNREACHABLE bit for convenience */
684
107k
    uintptr_t flags = NEXT_MASK_UNREACHABLE | (gc->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1);
685
49.8M
    while (gc != young) {
686
49.7M
        if (gc_get_refs(gc)) {
687
            /* gc is definitely reachable from outside the
688
             * original 'young'.  Mark it as such, and traverse
689
             * its pointers to find any other objects that may
690
             * be directly reachable from it.  Note that the
691
             * call to tp_traverse may append objects to young,
692
             * so we have to wait until it returns to determine
693
             * the next object to visit.
694
             */
695
42.4M
            PyObject *op = FROM_GC(gc);
696
42.4M
            traverseproc traverse = Py_TYPE(op)->tp_traverse;
697
42.4M
            _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
698
42.4M
                                      "refcount is too small");
699
            // NOTE: visit_reachable may change gc->_gc_next when
700
            // young->_gc_prev == gc.  Don't do gc = GC_NEXT(gc) before!
701
42.4M
            (void) traverse(op,
702
42.4M
                    visit_reachable,
703
42.4M
                    (void *)young);
704
            // relink gc_prev to prev element.
705
42.4M
            _PyGCHead_SET_PREV(gc, prev);
706
            // gc is not COLLECTING state after here.
707
42.4M
            gc_clear_collecting(gc);
708
42.4M
            prev = gc;
709
42.4M
        }
710
7.31M
        else {
711
            /* This *may* be unreachable.  To make progress,
712
             * assume it is.  gc isn't directly reachable from
713
             * any object we've already traversed, but may be
714
             * reachable from an object we haven't gotten to yet.
715
             * visit_reachable will eventually move gc back into
716
             * young if that's so, and we'll see it again.
717
             */
718
            // Move gc to unreachable.
719
            // No need to gc->next->prev = prev because it is single linked.
720
7.31M
            prev->_gc_next = gc->_gc_next;
721
722
            // We can't use gc_list_append() here because we use
723
            // NEXT_MASK_UNREACHABLE here.
724
7.31M
            PyGC_Head *last = GC_PREV(unreachable);
725
            // NOTE: Since all objects in unreachable set has
726
            // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
727
            // But this may pollute the unreachable list head's 'next' pointer
728
            // too. That's semantically senseless but expedient here - the
729
            // damage is repaired when this function ends.
730
7.31M
            last->_gc_next = flags | (uintptr_t)gc;
731
7.31M
            _PyGCHead_SET_PREV(gc, last);
732
7.31M
            gc->_gc_next = flags | (uintptr_t)unreachable;
733
7.31M
            unreachable->_gc_prev = (uintptr_t)gc;
734
7.31M
        }
735
49.7M
        gc = _PyGCHead_NEXT(prev);
736
49.7M
    }
737
    // young->_gc_prev must be last element remained in the list.
738
107k
    young->_gc_prev = (uintptr_t)prev;
739
107k
    young->_gc_next &= _PyGC_PREV_MASK;
740
    // don't let the pollution of the list head's next pointer leak
741
107k
    unreachable->_gc_next &= _PyGC_PREV_MASK;
742
107k
}
743
744
/* In theory, all tuples should be younger than the
745
* objects they refer to, as tuples are immortal.
746
* Therefore, untracking tuples in oldest-first order in the
747
* young generation before promoting them should have tracked
748
* all the tuples that can be untracked.
749
*
750
* Unfortunately, the C API allows tuples to be created
751
* and then filled in. So this won't untrack all tuples
752
* that can be untracked. It should untrack most of them
753
* and is much faster than a more complex approach that
754
* would untrack all relevant tuples.
755
*/
756
static void
757
untrack_tuples(PyGC_Head *head)
758
112k
{
759
112k
    PyGC_Head *gc = GC_NEXT(head);
760
172M
    while (gc != head) {
761
172M
        PyObject *op = FROM_GC(gc);
762
172M
        PyGC_Head *next = GC_NEXT(gc);
763
172M
        if (PyTuple_CheckExact(op)) {
764
70.6M
            _PyTuple_MaybeUntrack(op);
765
70.6M
        }
766
172M
        gc = next;
767
172M
    }
768
112k
}
769
770
/* Return true if object has a pre-PEP 442 finalization method. */
771
static int
772
has_legacy_finalizer(PyObject *op)
773
1.24M
{
774
1.24M
    return Py_TYPE(op)->tp_del != NULL;
775
1.24M
}
776
777
/* Move the objects in unreachable with tp_del slots into `finalizers`.
778
 *
779
 * This function also removes NEXT_MASK_UNREACHABLE flag
780
 * from _gc_next in unreachable.
781
 */
782
static void
783
move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
784
53.9k
{
785
53.9k
    PyGC_Head *gc, *next;
786
53.9k
    _PyObject_ASSERT(
787
53.9k
        FROM_GC(unreachable),
788
53.9k
        (unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
789
790
    /* March over unreachable.  Move objects with finalizers into
791
     * `finalizers`.
792
     */
793
1.29M
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
794
1.24M
        PyObject *op = FROM_GC(gc);
795
796
1.24M
        _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
797
1.24M
        next = GC_NEXT(gc);
798
1.24M
        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
799
800
1.24M
        if (has_legacy_finalizer(op)) {
801
0
            gc_clear_collecting(gc);
802
0
            gc_list_move(gc, finalizers);
803
0
        }
804
1.24M
    }
805
53.9k
}
806
807
static inline void
808
clear_unreachable_mask(PyGC_Head *unreachable)
809
53.9k
{
810
    /* Check that the list head does not have the unreachable bit set */
811
53.9k
    _PyObject_ASSERT(
812
53.9k
        FROM_GC(unreachable),
813
53.9k
        ((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
814
53.9k
    _PyObject_ASSERT(
815
53.9k
        FROM_GC(unreachable),
816
53.9k
        (unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
817
818
53.9k
    PyGC_Head *gc, *next;
819
1.29M
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
820
1.24M
        _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
821
1.24M
        next = GC_NEXT(gc);
822
1.24M
        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
823
1.24M
    }
824
53.9k
    validate_list(unreachable, collecting_set_unreachable_clear);
825
53.9k
}
826
827
/* A traversal callback for move_legacy_finalizer_reachable. */
828
static int
829
visit_move(PyObject *op, void *arg)
830
0
{
831
0
    PyGC_Head *tolist = arg;
832
0
    OBJECT_STAT_INC(object_visits);
833
0
    if (_PyObject_IS_GC(op)) {
834
0
        PyGC_Head *gc = AS_GC(op);
835
0
        if (gc_is_collecting(gc)) {
836
0
            gc_list_move(gc, tolist);
837
0
            gc_clear_collecting(gc);
838
0
        }
839
0
    }
840
0
    return 0;
841
0
}
842
843
/* Move objects that are reachable from finalizers, from the unreachable set
844
 * into finalizers set.
845
 */
846
static void
847
move_legacy_finalizer_reachable(PyGC_Head *finalizers)
848
53.9k
{
849
53.9k
    traverseproc traverse;
850
53.9k
    PyGC_Head *gc = GC_NEXT(finalizers);
851
53.9k
    for (; gc != finalizers; gc = GC_NEXT(gc)) {
852
        /* Note that the finalizers list may grow during this. */
853
0
        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
854
0
        (void) traverse(FROM_GC(gc),
855
0
                        visit_move,
856
0
                        (void *)finalizers);
857
0
    }
858
53.9k
}
859
860
/* Handle weakref callbacks.  Note that it's possible for such weakrefs to be
861
 * outside the unreachable set -- indeed, those are precisely the weakrefs
862
 * whose callbacks must be invoked.  See gc_weakref.txt for overview & some
863
 * details.
864
 *
865
 * The clearing of weakrefs is suble and must be done carefully, as there was
866
 * previous bugs related to this.  First, weakrefs to the unreachable set of
867
 * objects must be cleared before we start calling `tp_clear`.  If we don't,
868
 * those weakrefs can reveal unreachable objects to Python-level code and that
869
 * is not safe.  Many objects are not usable after `tp_clear` has been called
870
 * and could even cause crashes if accessed (see bpo-38006 and gh-91636 as
871
 * example bugs).
872
 *
873
 * Weakrefs with callbacks always need to be cleared before executing the
874
 * callback.  That's because sometimes a callback will call the ref object,
875
 * to check if the reference is actually dead (KeyedRef does this, for
876
 * example).  We want to indicate that it is dead, even though it is possible
877
 * a finalizer might resurrect it.  Clearing also prevents the callback from
878
 * executing more than once.
879
 *
880
 * Since Python 2.3, all weakrefs to cyclic garbage have been cleared *before*
881
 * calling finalizers.  However, since tp_subclasses started being necessary
882
 * to invalidate caches (e.g. by PyType_Modified), that clearing has created
883
 * a bug.  If the weakref to the subclass is cleared before a finalizer is
884
 * called, the cache may not be correctly invalidated.  That can lead to
885
 * segfaults since the caches can refer to deallocated objects (GH-135552
886
 * is an example).  Now, we delay the clear of weakrefs without callbacks
887
 * until *after* finalizers have been executed.  That means weakrefs without
888
 * callbacks are still usable while finalizers are being executed.
889
 *
890
 * The weakrefs that are inside the unreachable set must also be cleared.
891
 * The reason this is required is not immediately obvious.  If the weakref
892
 * refers to an object outside of the unreachable set, that object might go
893
 * away when we start clearing objects.  Normally, the object should also be
894
 * part of the unreachable set but that's not true in the case of incomplete
895
 * or missing `tp_traverse` methods.  When that object goes away, the callback
896
 * for weakref can be executed and that could reveal unreachable objects to
897
 * Python-level code.  See bpo-38006 as an example bug.
898
 */
899
static int
900
handle_weakref_callbacks(PyGC_Head *unreachable, PyGC_Head *old)
901
53.9k
{
902
53.9k
    PyGC_Head *gc;
903
53.9k
    PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
904
53.9k
    PyGC_Head *next;
905
53.9k
    int num_freed = 0;
906
907
53.9k
    gc_list_init(&wrcb_to_call);
908
909
    /* Find all weakrefs with callbacks and move into `wrcb_to_call` if the
910
     * callback needs to be invoked. We make another pass over wrcb_to_call,
911
     * invoking callbacks, after this pass completes.
912
     */
913
1.29M
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
914
1.24M
        PyWeakReference **wrlist;
915
916
1.24M
        PyObject *op = FROM_GC(gc);
917
1.24M
        next = GC_NEXT(gc);
918
919
1.24M
        if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
920
932k
            continue;
921
932k
        }
922
923
        /* It supports weakrefs.  Does it have any?
924
         *
925
         * This is never triggered for static types so we can avoid the
926
         * (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
927
         */
928
311k
        wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
929
930
        /* `op` may have some weakrefs.  March over the list and move the
931
         * weakrefs with callbacks that must be called into wrcb_to_call.
932
         */
933
311k
        PyWeakReference *next_wr;
934
621k
        for (PyWeakReference *wr = *wrlist; wr != NULL; wr = next_wr) {
935
            // Get the next list element to get iterator progress if we omit
936
            // clearing of the weakref (because _PyWeakref_ClearRef changes
937
            // next pointer in the wrlist).
938
310k
            next_wr = wr->wr_next;
939
940
310k
            if (wr->wr_callback == NULL) {
941
                /* no callback */
942
310k
                continue;
943
310k
            }
944
945
            // Clear the weakref.  See the comments above this function for
946
            // reasons why we need to clear weakrefs that have callbacks.
947
            // Note that _PyWeakref_ClearRef clears the weakref but leaves the
948
            // callback pointer intact.  Obscure: it also changes *wrlist.
949
0
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
950
0
            _PyWeakref_ClearRef(wr);
951
0
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
952
953
            /* Headache time.  `op` is going away, and is weakly referenced by
954
             * `wr`, which has a callback.  Should the callback be invoked?  If wr
955
             * is also trash, no:
956
             *
957
             * 1. There's no need to call it.  The object and the weakref are
958
             *    both going away, so it's legitimate to pretend the weakref is
959
             *    going away first.  The user has to ensure a weakref outlives its
960
             *    referent if they want a guarantee that the wr callback will get
961
             *    invoked.
962
             *
963
             * 2. It may be catastrophic to call it.  If the callback is also in
964
             *    cyclic trash (CT), then although the CT is unreachable from
965
             *    outside the current generation, CT may be reachable from the
966
             *    callback.  Then the callback could resurrect insane objects.
967
             *
968
             * Since the callback is never needed and may be unsafe in this
969
             * case, wr is simply left in the unreachable set.  Note that
970
             * clear_weakrefs() will ensure its callback will not trigger
971
             * inside delete_garbage().
972
             *
973
             * OTOH, if wr isn't part of CT, we should invoke the callback:  the
974
             * weakref outlived the trash.  Note that since wr isn't CT in this
975
             * case, its callback can't be CT either -- wr acted as an external
976
             * root to this generation, and therefore its callback did too.  So
977
             * nothing in CT is reachable from the callback either, so it's hard
978
             * to imagine how calling it later could create a problem for us.  wr
979
             * is moved to wrcb_to_call in this case.
980
             */
981
0
            if (gc_is_collecting(AS_GC((PyObject *)wr))) {
982
0
                continue;
983
0
            }
984
985
            /* Create a new reference so that wr can't go away
986
             * before we can process it again.
987
             */
988
0
            Py_INCREF(wr);
989
990
            /* Move wr to wrcb_to_call, for the next pass. */
991
0
            PyGC_Head *wrasgc = AS_GC((PyObject *)wr);
992
            // wrasgc is reachable, but next isn't, so they can't be the same
993
0
            _PyObject_ASSERT((PyObject *)wr, wrasgc != next);
994
0
            gc_list_move(wrasgc, &wrcb_to_call);
995
0
        }
996
311k
    }
997
998
    /* Invoke the callbacks we decided to honor.  It's safe to invoke them
999
     * because they can't reference unreachable objects.
1000
     */
1001
53.9k
    int visited_space = get_gc_state()->visited_space;
1002
53.9k
    while (! gc_list_is_empty(&wrcb_to_call)) {
1003
0
        PyObject *temp;
1004
0
        PyObject *callback;
1005
1006
0
        gc = (PyGC_Head*)wrcb_to_call._gc_next;
1007
0
        PyObject *op = FROM_GC(gc);
1008
0
        _PyObject_ASSERT(op, PyWeakref_Check(op));
1009
0
        PyWeakReference *wr = (PyWeakReference *)op;
1010
0
        callback = wr->wr_callback;
1011
0
        _PyObject_ASSERT(op, callback != NULL);
1012
1013
        /* copy-paste of weakrefobject.c's handle_callback() */
1014
0
        temp = PyObject_CallOneArg(callback, (PyObject *)wr);
1015
0
        if (temp == NULL) {
1016
0
            PyErr_FormatUnraisable("Exception ignored on "
1017
0
                                   "calling weakref callback %R", callback);
1018
0
        }
1019
0
        else {
1020
0
            Py_DECREF(temp);
1021
0
        }
1022
1023
        /* Give up the reference we created in the first pass.  When
1024
         * op's refcount hits 0 (which it may or may not do right now),
1025
         * op's tp_dealloc will decref op->wr_callback too.  Note
1026
         * that the refcount probably will hit 0 now, and because this
1027
         * weakref was reachable to begin with, gc didn't already
1028
         * add it to its count of freed objects.  Example:  a reachable
1029
         * weak value dict maps some key to this reachable weakref.
1030
         * The callback removes this key->weakref mapping from the
1031
         * dict, leaving no other references to the weakref (excepting
1032
         * ours).
1033
         */
1034
0
        Py_DECREF(op);
1035
0
        if (wrcb_to_call._gc_next == (uintptr_t)gc) {
1036
            /* object is still alive -- move it */
1037
0
            gc_set_old_space(gc, visited_space);
1038
0
            gc_list_move(gc, old);
1039
0
        }
1040
0
        else {
1041
0
            ++num_freed;
1042
0
        }
1043
0
    }
1044
1045
53.9k
    return num_freed;
1046
53.9k
}
1047
1048
/* Clear all weakrefs to unreachable objects.  When this returns, no object in
1049
 * `unreachable` is weakly referenced anymore.  See the comments above
1050
 * handle_weakref_callbacks() for why these weakrefs need to be cleared.
1051
 */
1052
static void
1053
clear_weakrefs(PyGC_Head *unreachable)
1054
53.9k
{
1055
53.9k
    PyGC_Head *gc;
1056
53.9k
    PyGC_Head *next;
1057
1058
1.29M
    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
1059
1.24M
        PyWeakReference **wrlist;
1060
1061
1.24M
        PyObject *op = FROM_GC(gc);
1062
1.24M
        next = GC_NEXT(gc);
1063
1064
1.24M
        if (PyWeakref_Check(op)) {
1065
            /* A weakref inside the unreachable set is always cleared. See
1066
             * the comments above handle_weakref_callbacks() for why these
1067
             * must be cleared.
1068
             */
1069
0
            _PyWeakref_ClearRef((PyWeakReference *)op);
1070
0
        }
1071
1072
1.24M
        if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
1073
932k
            continue;
1074
932k
        }
1075
1076
        /* It supports weakrefs.  Does it have any?
1077
         *
1078
         * This is never triggered for static types so we can avoid the
1079
         * (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
1080
         */
1081
311k
        wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
1082
1083
        /* `op` may have some weakrefs.  March over the list, clear
1084
         * all the weakrefs.
1085
         */
1086
621k
        for (PyWeakReference *wr = *wrlist; wr != NULL; wr = *wrlist) {
1087
            /* _PyWeakref_ClearRef clears the weakref but leaves
1088
             * the callback pointer intact.  Obscure:  it also
1089
             * changes *wrlist.
1090
             */
1091
310k
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
1092
310k
            _PyWeakref_ClearRef(wr);
1093
310k
            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
1094
310k
        }
1095
311k
    }
1096
53.9k
}
1097
1098
static void
1099
debug_cycle(const char *msg, PyObject *op)
1100
0
{
1101
0
    PySys_FormatStderr("gc: %s <%s %p>\n",
1102
0
                       msg, Py_TYPE(op)->tp_name, op);
1103
0
}
1104
1105
/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
1106
 * only from such cycles).
1107
 * If _PyGC_DEBUG_SAVEALL, all objects in finalizers are appended to the module
1108
 * garbage list (a Python list), else only the objects in finalizers with
1109
 * __del__ methods are appended to garbage.  All objects in finalizers are
1110
 * merged into the old list regardless.
1111
 */
1112
static void
1113
handle_legacy_finalizers(PyThreadState *tstate,
1114
                         GCState *gcstate,
1115
                         PyGC_Head *finalizers, PyGC_Head *old)
1116
53.9k
{
1117
53.9k
    assert(!_PyErr_Occurred(tstate));
1118
53.9k
    assert(gcstate->garbage != NULL);
1119
1120
53.9k
    PyGC_Head *gc = GC_NEXT(finalizers);
1121
53.9k
    for (; gc != finalizers; gc = GC_NEXT(gc)) {
1122
0
        PyObject *op = FROM_GC(gc);
1123
1124
0
        if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
1125
0
            if (PyList_Append(gcstate->garbage, op) < 0) {
1126
0
                _PyErr_Clear(tstate);
1127
0
                break;
1128
0
            }
1129
0
        }
1130
0
    }
1131
1132
53.9k
    gc_list_merge(finalizers, old);
1133
53.9k
}
1134
1135
/* Run first-time finalizers (if any) on all the objects in collectable.
1136
 * Note that this may remove some (or even all) of the objects from the
1137
 * list, due to refcounts falling to 0.
1138
 */
1139
static void
1140
finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
1141
53.9k
{
1142
53.9k
    destructor finalize;
1143
53.9k
    PyGC_Head seen;
1144
1145
    /* While we're going through the loop, `finalize(op)` may cause op, or
1146
     * other objects, to be reclaimed via refcounts falling to zero.  So
1147
     * there's little we can rely on about the structure of the input
1148
     * `collectable` list across iterations.  For safety, we always take the
1149
     * first object in that list and move it to a temporary `seen` list.
1150
     * If objects vanish from the `collectable` and `seen` lists we don't
1151
     * care.
1152
     */
1153
53.9k
    gc_list_init(&seen);
1154
1155
1.29M
    while (!gc_list_is_empty(collectable)) {
1156
1.24M
        PyGC_Head *gc = GC_NEXT(collectable);
1157
1.24M
        PyObject *op = FROM_GC(gc);
1158
1.24M
        gc_list_move(gc, &seen);
1159
1.24M
        if (!_PyGC_FINALIZED(op) &&
1160
1.24M
            (finalize = Py_TYPE(op)->tp_finalize) != NULL)
1161
0
        {
1162
0
            _PyGC_SET_FINALIZED(op);
1163
0
            Py_INCREF(op);
1164
0
            finalize(op);
1165
0
            assert(!_PyErr_Occurred(tstate));
1166
0
            Py_DECREF(op);
1167
0
        }
1168
1.24M
    }
1169
53.9k
    gc_list_merge(&seen, collectable);
1170
53.9k
}
1171
1172
/* Break reference cycles by clearing the containers involved.  This is
1173
 * tricky business as the lists can be changing and we don't know which
1174
 * objects may be freed.  It is possible I screwed something up here.
1175
 */
1176
static void
1177
delete_garbage(PyThreadState *tstate, GCState *gcstate,
1178
               PyGC_Head *collectable, PyGC_Head *old)
1179
53.9k
{
1180
53.9k
    assert(!_PyErr_Occurred(tstate));
1181
1182
967k
    while (!gc_list_is_empty(collectable)) {
1183
913k
        PyGC_Head *gc = GC_NEXT(collectable);
1184
913k
        PyObject *op = FROM_GC(gc);
1185
1186
913k
        _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
1187
913k
                                  "refcount is too small");
1188
1189
913k
        if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
1190
0
            assert(gcstate->garbage != NULL);
1191
0
            if (PyList_Append(gcstate->garbage, op) < 0) {
1192
0
                _PyErr_Clear(tstate);
1193
0
            }
1194
0
        }
1195
913k
        else {
1196
913k
            inquiry clear;
1197
913k
            if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
1198
612k
                Py_INCREF(op);
1199
612k
                (void) clear(op);
1200
612k
                if (_PyErr_Occurred(tstate)) {
1201
0
                    PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
1202
0
                                           Py_TYPE(op)->tp_name);
1203
0
                }
1204
612k
                Py_DECREF(op);
1205
612k
            }
1206
913k
        }
1207
913k
        if (GC_NEXT(collectable) == gc) {
1208
            /* object is still alive, move it, it may die later */
1209
603k
            gc_clear_collecting(gc);
1210
603k
            gc_list_move(gc, old);
1211
603k
        }
1212
913k
    }
1213
53.9k
}
1214
1215
1216
/* Deduce which objects among "base" are unreachable from outside the list
1217
   and move them to 'unreachable'. The process consist in the following steps:
1218
1219
1. Copy all reference counts to a different field (gc_prev is used to hold
1220
   this copy to save memory).
1221
2. Traverse all objects in "base" and visit all referred objects using
1222
   "tp_traverse" and for every visited object, subtract 1 to the reference
1223
   count (the one that we copied in the previous step). After this step, all
1224
   objects that can be reached directly from outside must have strictly positive
1225
   reference count, while all unreachable objects must have a count of exactly 0.
1226
3. Identify all unreachable objects (the ones with 0 reference count) and move
1227
   them to the "unreachable" list. This step also needs to move back to "base" all
1228
   objects that were initially marked as unreachable but are referred transitively
1229
   by the reachable objects (the ones with strictly positive reference count).
1230
1231
Contracts:
1232
1233
    * The "base" has to be a valid list with no mask set.
1234
1235
    * The "unreachable" list must be uninitialized (this function calls
1236
      gc_list_init over 'unreachable').
1237
1238
IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
1239
flag set but it does not clear it to skip unnecessary iteration. Before the
1240
flag is cleared (for example, by using 'clear_unreachable_mask' function or
1241
by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
1242
list and we can not use most gc_list_* functions for it. */
1243
static inline void
1244
107k
deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
1245
107k
    validate_list(base, collecting_clear_unreachable_clear);
1246
    /* Using ob_refcnt and gc_refs, calculate which objects in the
1247
     * container set are reachable from outside the set (i.e., have a
1248
     * refcount greater than 0 when all the references within the
1249
     * set are taken into account).
1250
     */
1251
107k
    update_refs(base);  // gc_prev is used for gc_refs
1252
107k
    subtract_refs(base);
1253
1254
    /* Leave everything reachable from outside base in base, and move
1255
     * everything else (in base) to unreachable.
1256
     *
1257
     * NOTE:  This used to move the reachable objects into a reachable
1258
     * set instead.  But most things usually turn out to be reachable,
1259
     * so it's more efficient to move the unreachable things.  It "sounds slick"
1260
     * to move the unreachable objects, until you think about it - the reason it
1261
     * pays isn't actually obvious.
1262
     *
1263
     * Suppose we create objects A, B, C in that order.  They appear in the young
1264
     * generation in the same order.  If B points to A, and C to B, and C is
1265
     * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
1266
     * respectively.
1267
     *
1268
     * When move_unreachable finds A, A is moved to the unreachable list.  The
1269
     * same for B when it's first encountered.  Then C is traversed, B is moved
1270
     * _back_ to the reachable list.  B is eventually traversed, and then A is
1271
     * moved back to the reachable list.
1272
     *
1273
     * So instead of not moving at all, the reachable objects B and A are moved
1274
     * twice each.  Why is this a win?  A straightforward algorithm to move the
1275
     * reachable objects instead would move A, B, and C once each.
1276
     *
1277
     * The key is that this dance leaves the objects in order C, B, A - it's
1278
     * reversed from the original order.  On all _subsequent_ scans, none of
1279
     * them will move.  Since most objects aren't in cycles, this can save an
1280
     * unbounded number of moves across an unbounded number of later collections.
1281
     * It can cost more only the first time the chain is scanned.
1282
     *
1283
     * Drawback:  move_unreachable is also used to find out what's still trash
1284
     * after finalizers may resurrect objects.  In _that_ case most unreachable
1285
     * objects will remain unreachable, so it would be more efficient to move
1286
     * the reachable objects instead.  But this is a one-time cost, probably not
1287
     * worth complicating the code to speed just a little.
1288
     */
1289
107k
    move_unreachable(base, unreachable);  // gc_prev is pointer again
1290
107k
    validate_list(base, collecting_clear_unreachable_clear);
1291
107k
    validate_list(unreachable, collecting_set_unreachable_set);
1292
107k
}
1293
1294
/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
1295
   them to 'old_generation' and placing the rest on 'still_unreachable'.
1296
1297
   Contracts:
1298
       * After this function 'unreachable' must not be used anymore and 'still_unreachable'
1299
         will contain the objects that did not resurrect.
1300
1301
       * The "still_unreachable" list must be uninitialized (this function calls
1302
         gc_list_init over 'still_unreachable').
1303
1304
IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
1305
PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
1306
we can skip the expense of clearing the flag to avoid extra iteration. */
1307
static inline void
1308
handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
1309
                           PyGC_Head *old_generation)
1310
53.9k
{
1311
    // Remove the PREV_MASK_COLLECTING from unreachable
1312
    // to prepare it for a new call to 'deduce_unreachable'
1313
53.9k
    gc_list_clear_collecting(unreachable);
1314
1315
    // After the call to deduce_unreachable, the 'still_unreachable' set will
1316
    // have the PREV_MARK_COLLECTING set, but the objects are going to be
1317
    // removed so we can skip the expense of clearing the flag.
1318
53.9k
    PyGC_Head* resurrected = unreachable;
1319
53.9k
    deduce_unreachable(resurrected, still_unreachable);
1320
53.9k
    clear_unreachable_mask(still_unreachable);
1321
1322
    // Move the resurrected objects to the old generation for future collection.
1323
53.9k
    gc_list_merge(resurrected, old_generation);
1324
53.9k
}
1325
1326
static void
1327
gc_collect_region(PyThreadState *tstate,
1328
                  PyGC_Head *from,
1329
                  PyGC_Head *to,
1330
                  struct gc_collection_stats *stats);
1331
1332
static inline Py_ssize_t
1333
gc_list_set_space(PyGC_Head *list, int space)
1334
58.3k
{
1335
58.3k
    Py_ssize_t size = 0;
1336
58.3k
    PyGC_Head *gc;
1337
39.9M
    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
1338
39.9M
        gc_set_old_space(gc, space);
1339
39.9M
        size++;
1340
39.9M
    }
1341
58.3k
    return size;
1342
58.3k
}
1343
1344
/* Making progress in the incremental collector
1345
 * In order to eventually collect all cycles
1346
 * the incremental collector must progress through the old
1347
 * space faster than objects are added to the old space.
1348
 *
1349
 * Each young or incremental collection adds a number of
1350
 * objects, S (for survivors) to the old space, and
1351
 * incremental collectors scan I objects from the old space.
1352
 * I > S must be true. We also want I > S * N to be where
1353
 * N > 1. Higher values of N mean that the old space is
1354
 * scanned more rapidly.
1355
 * The default incremental threshold of 10 translates to
1356
 * N == 1.4 (1 + 4/threshold)
1357
 */
1358
1359
/* Divide by 10, so that the default incremental threshold of 10
1360
 * scans objects at 1% of the heap size */
1361
112k
#define SCAN_RATE_DIVISOR 10
1362
1363
static void
1364
add_stats(GCState *gcstate, int gen, struct gc_collection_stats *stats)
1365
53.9k
{
1366
53.9k
    gcstate->generation_stats[gen].collected += stats->collected;
1367
53.9k
    gcstate->generation_stats[gen].uncollectable += stats->uncollectable;
1368
53.9k
    gcstate->generation_stats[gen].collections += 1;
1369
53.9k
}
1370
1371
static void
1372
gc_collect_young(PyThreadState *tstate,
1373
                 struct gc_collection_stats *stats)
1374
0
{
1375
0
    GCState *gcstate = &tstate->interp->gc;
1376
0
    validate_spaces(gcstate);
1377
0
    PyGC_Head *young = &gcstate->young.head;
1378
0
    PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
1379
0
    untrack_tuples(young);
1380
0
    GC_STAT_ADD(0, collections, 1);
1381
1382
0
    PyGC_Head survivors;
1383
0
    gc_list_init(&survivors);
1384
0
    gc_list_set_space(young, gcstate->visited_space);
1385
0
    gc_collect_region(tstate, young, &survivors, stats);
1386
0
    gc_list_merge(&survivors, visited);
1387
0
    validate_spaces(gcstate);
1388
0
    gcstate->young.count = 0;
1389
0
    gcstate->old[gcstate->visited_space].count++;
1390
0
    add_stats(gcstate, 0, stats);
1391
0
    validate_spaces(gcstate);
1392
0
}
1393
1394
#ifndef NDEBUG
1395
static inline int
1396
IS_IN_VISITED(PyGC_Head *gc, int visited_space)
1397
{
1398
    assert(visited_space == 0 || other_space(visited_space) == 0);
1399
    return gc_old_space(gc) == visited_space;
1400
}
1401
#endif
1402
1403
struct container_and_flag {
1404
    PyGC_Head *container;
1405
    int visited_space;
1406
    intptr_t size;
1407
};
1408
1409
/* A traversal callback for adding to container) */
1410
static int
1411
visit_add_to_container(PyObject *op, void *arg)
1412
944M
{
1413
944M
    OBJECT_STAT_INC(object_visits);
1414
944M
    struct container_and_flag *cf = (struct container_and_flag *)arg;
1415
944M
    int visited = cf->visited_space;
1416
944M
    assert(visited == get_gc_state()->visited_space);
1417
944M
    if (!_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
1418
637M
        PyGC_Head *gc = AS_GC(op);
1419
637M
        if (_PyObject_GC_IS_TRACKED(op) &&
1420
637M
            gc_old_space(gc) != visited) {
1421
87.1M
            gc_flip_old_space(gc);
1422
87.1M
            gc_list_move(gc, cf->container);
1423
87.1M
            cf->size++;
1424
87.1M
        }
1425
637M
    }
1426
944M
    return 0;
1427
944M
}
1428
1429
static intptr_t
1430
expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCState *gcstate)
1431
1.13M
{
1432
1.13M
    struct container_and_flag arg = {
1433
1.13M
        .container = container,
1434
1.13M
        .visited_space = gcstate->visited_space,
1435
1.13M
        .size = 0
1436
1.13M
    };
1437
1.13M
    assert(GC_NEXT(gc) == container);
1438
4.94M
    while (gc != container) {
1439
        /* Survivors will be moved to visited space, so they should
1440
         * have been marked as visited */
1441
3.81M
        assert(IS_IN_VISITED(gc, gcstate->visited_space));
1442
3.81M
        PyObject *op = FROM_GC(gc);
1443
3.81M
        assert(_PyObject_GC_IS_TRACKED(op));
1444
3.81M
        if (_Py_IsImmortal(op)) {
1445
0
            PyGC_Head *next = GC_NEXT(gc);
1446
0
            gc_list_move(gc, &gcstate->permanent_generation.head);
1447
0
            gc = next;
1448
0
            continue;
1449
0
        }
1450
3.81M
        traverseproc traverse = Py_TYPE(op)->tp_traverse;
1451
3.81M
        (void) traverse(op,
1452
3.81M
                        visit_add_to_container,
1453
3.81M
                        &arg);
1454
3.81M
        gc = GC_NEXT(gc);
1455
3.81M
    }
1456
1.13M
    return arg.size;
1457
1.13M
}
1458
1459
/* Do bookkeeping for a completed GC cycle */
1460
static void
1461
completed_scavenge(GCState *gcstate)
1462
4.43k
{
1463
    /* We must observe two invariants:
1464
    * 1. Members of the permanent generation must be marked visited.
1465
    * 2. We cannot touch members of the permanent generation. */
1466
4.43k
    int visited;
1467
4.43k
    if (gc_list_is_empty(&gcstate->permanent_generation.head)) {
1468
        /* Permanent generation is empty so we can flip spaces bit */
1469
4.43k
        int not_visited = gcstate->visited_space;
1470
4.43k
        visited = other_space(not_visited);
1471
4.43k
        gcstate->visited_space = visited;
1472
        /* Make sure all objects have visited bit set correctly */
1473
4.43k
        gc_list_set_space(&gcstate->young.head, not_visited);
1474
4.43k
    }
1475
0
    else {
1476
         /* We must move the objects from visited to pending space. */
1477
0
        visited = gcstate->visited_space;
1478
0
        int not_visited = other_space(visited);
1479
0
        assert(gc_list_is_empty(&gcstate->old[not_visited].head));
1480
0
        gc_list_merge(&gcstate->old[visited].head, &gcstate->old[not_visited].head);
1481
0
        gc_list_set_space(&gcstate->old[not_visited].head, not_visited);
1482
0
    }
1483
4.43k
    assert(gc_list_is_empty(&gcstate->old[visited].head));
1484
4.43k
    gcstate->work_to_do = 0;
1485
4.43k
    gcstate->phase = GC_PHASE_MARK;
1486
4.43k
}
1487
1488
static intptr_t
1489
move_to_reachable(PyObject *op, PyGC_Head *reachable, int visited_space)
1490
3.52M
{
1491
3.52M
    if (op != NULL && !_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
1492
1.90M
        PyGC_Head *gc = AS_GC(op);
1493
1.90M
        if (_PyObject_GC_IS_TRACKED(op) &&
1494
1.90M
            gc_old_space(gc) != visited_space) {
1495
1.09M
            gc_flip_old_space(gc);
1496
1.09M
            gc_list_move(gc, reachable);
1497
1.09M
            return 1;
1498
1.09M
        }
1499
1.90M
    }
1500
2.43M
    return 0;
1501
3.52M
}
1502
1503
static intptr_t
1504
mark_all_reachable(PyGC_Head *reachable, PyGC_Head *visited, int visited_space)
1505
62.8k
{
1506
    // Transitively traverse all objects from reachable, until empty
1507
62.8k
    struct container_and_flag arg = {
1508
62.8k
        .container = reachable,
1509
62.8k
        .visited_space = visited_space,
1510
62.8k
        .size = 0
1511
62.8k
    };
1512
86.6M
    while (!gc_list_is_empty(reachable)) {
1513
86.5M
        PyGC_Head *gc = _PyGCHead_NEXT(reachable);
1514
86.5M
        assert(gc_old_space(gc) == visited_space);
1515
86.5M
        gc_list_move(gc, visited);
1516
86.5M
        PyObject *op = FROM_GC(gc);
1517
86.5M
        traverseproc traverse = Py_TYPE(op)->tp_traverse;
1518
86.5M
        (void) traverse(op,
1519
86.5M
                        visit_add_to_container,
1520
86.5M
                        &arg);
1521
86.5M
    }
1522
62.8k
    gc_list_validate_space(visited, visited_space);
1523
62.8k
    return arg.size;
1524
62.8k
}
1525
1526
static intptr_t
1527
mark_stacks(PyInterpreterState *interp, PyGC_Head *visited, int visited_space, bool start)
1528
58.3k
{
1529
58.3k
    PyGC_Head reachable;
1530
58.3k
    gc_list_init(&reachable);
1531
58.3k
    Py_ssize_t objects_marked = 0;
1532
    // Move all objects on stacks to reachable
1533
58.3k
    _PyRuntimeState *runtime = &_PyRuntime;
1534
58.3k
    HEAD_LOCK(runtime);
1535
58.3k
    PyThreadState* ts = PyInterpreterState_ThreadHead(interp);
1536
58.3k
    HEAD_UNLOCK(runtime);
1537
116k
    while (ts) {
1538
58.3k
        _PyInterpreterFrame *frame = ts->current_frame;
1539
887k
        while (frame) {
1540
881k
            if (frame->owner >= FRAME_OWNED_BY_INTERPRETER) {
1541
60.6k
                frame = frame->previous;
1542
60.6k
                continue;
1543
60.6k
            }
1544
820k
            _PyStackRef *locals = frame->localsplus;
1545
820k
            _PyStackRef *sp = frame->stackpointer;
1546
820k
            objects_marked += move_to_reachable(frame->f_locals, &reachable, visited_space);
1547
820k
            PyObject *func = PyStackRef_AsPyObjectBorrow(frame->f_funcobj);
1548
820k
            objects_marked += move_to_reachable(func, &reachable, visited_space);
1549
4.81M
            while (sp > locals) {
1550
3.99M
                sp--;
1551
3.99M
                if (PyStackRef_IsNullOrInt(*sp)) {
1552
1.07M
                    continue;
1553
1.07M
                }
1554
2.92M
                PyObject *op = PyStackRef_AsPyObjectBorrow(*sp);
1555
2.92M
                if (_Py_IsImmortal(op)) {
1556
279k
                    continue;
1557
279k
                }
1558
2.64M
                if (_PyObject_IS_GC(op)) {
1559
1.82M
                    PyGC_Head *gc = AS_GC(op);
1560
1.82M
                    if (_PyObject_GC_IS_TRACKED(op) &&
1561
1.82M
                        gc_old_space(gc) != visited_space) {
1562
972k
                        gc_flip_old_space(gc);
1563
972k
                        objects_marked++;
1564
972k
                        gc_list_move(gc, &reachable);
1565
972k
                    }
1566
1.82M
                }
1567
2.64M
            }
1568
820k
            if (!start && frame->visited) {
1569
                // If this frame has already been visited, then the lower frames
1570
                // will have already been visited and will not have changed
1571
52.5k
                break;
1572
52.5k
            }
1573
768k
            frame->visited = 1;
1574
768k
            frame = frame->previous;
1575
768k
        }
1576
58.3k
        HEAD_LOCK(runtime);
1577
58.3k
        ts = PyThreadState_Next(ts);
1578
58.3k
        HEAD_UNLOCK(runtime);
1579
58.3k
    }
1580
58.3k
    objects_marked += mark_all_reachable(&reachable, visited, visited_space);
1581
58.3k
    assert(gc_list_is_empty(&reachable));
1582
58.3k
    return objects_marked;
1583
58.3k
}
1584
1585
static intptr_t
1586
mark_global_roots(PyInterpreterState *interp, PyGC_Head *visited, int visited_space)
1587
4.44k
{
1588
4.44k
    PyGC_Head reachable;
1589
4.44k
    gc_list_init(&reachable);
1590
4.44k
    Py_ssize_t objects_marked = 0;
1591
4.44k
    objects_marked += move_to_reachable(interp->sysdict, &reachable, visited_space);
1592
4.44k
    objects_marked += move_to_reachable(interp->builtins, &reachable, visited_space);
1593
4.44k
    objects_marked += move_to_reachable(interp->dict, &reachable, visited_space);
1594
4.44k
    struct types_state *types = &interp->types;
1595
893k
    for (int i = 0; i < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; i++) {
1596
889k
        objects_marked += move_to_reachable(types->builtins.initialized[i].tp_dict, &reachable, visited_space);
1597
889k
        objects_marked += move_to_reachable(types->builtins.initialized[i].tp_subclasses, &reachable, visited_space);
1598
889k
    }
1599
48.9k
    for (int i = 0; i < _Py_MAX_MANAGED_STATIC_EXT_TYPES; i++) {
1600
44.4k
        objects_marked += move_to_reachable(types->for_extensions.initialized[i].tp_dict, &reachable, visited_space);
1601
44.4k
        objects_marked += move_to_reachable(types->for_extensions.initialized[i].tp_subclasses, &reachable, visited_space);
1602
44.4k
    }
1603
4.44k
    objects_marked += mark_all_reachable(&reachable, visited, visited_space);
1604
4.44k
    assert(gc_list_is_empty(&reachable));
1605
4.44k
    return objects_marked;
1606
4.44k
}
1607
1608
static intptr_t
1609
mark_at_start(PyThreadState *tstate)
1610
4.44k
{
1611
    // TO DO -- Make this incremental
1612
4.44k
    GCState *gcstate = &tstate->interp->gc;
1613
4.44k
    PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
1614
4.44k
    Py_ssize_t objects_marked = mark_global_roots(tstate->interp, visited, gcstate->visited_space);
1615
4.44k
    objects_marked += mark_stacks(tstate->interp, visited, gcstate->visited_space, true);
1616
4.44k
    gcstate->work_to_do -= objects_marked;
1617
4.44k
    gcstate->phase = GC_PHASE_COLLECT;
1618
4.44k
    validate_spaces(gcstate);
1619
4.44k
    return objects_marked;
1620
4.44k
}
1621
1622
static intptr_t
1623
assess_work_to_do(GCState *gcstate)
1624
58.3k
{
1625
    /* The amount of work we want to do depends on three things.
1626
     * 1. The number of new objects created
1627
     * 2. The growth in heap size since the last collection
1628
     * 3. The heap size (up to the number of new objects, to avoid quadratic effects)
1629
     *
1630
     * For a steady state heap, the amount of work to do is three times the number
1631
     * of new objects added to the heap. This ensures that we stay ahead in the
1632
     * worst case of all new objects being garbage.
1633
     *
1634
     * This could be improved by tracking survival rates, but it is still a
1635
     * large improvement on the non-marking approach.
1636
     */
1637
58.3k
    intptr_t scale_factor = gcstate->old[0].threshold;
1638
58.3k
    if (scale_factor < 2) {
1639
0
        scale_factor = 2;
1640
0
    }
1641
58.3k
    intptr_t new_objects = gcstate->young.count;
1642
58.3k
    intptr_t max_heap_fraction = new_objects*3/2;
1643
58.3k
    intptr_t heap_fraction = gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
1644
58.3k
    if (heap_fraction > max_heap_fraction) {
1645
1.93k
        heap_fraction = max_heap_fraction;
1646
1.93k
    }
1647
58.3k
    gcstate->young.count = 0;
1648
58.3k
    return new_objects + heap_fraction;
1649
58.3k
}
1650
1651
static void
1652
gc_collect_increment(PyThreadState *tstate, struct gc_collection_stats *stats)
1653
58.3k
{
1654
58.3k
    GC_STAT_ADD(1, collections, 1);
1655
58.3k
    GCState *gcstate = &tstate->interp->gc;
1656
58.3k
    gcstate->work_to_do += assess_work_to_do(gcstate);
1657
58.3k
    untrack_tuples(&gcstate->young.head);
1658
58.3k
    if (gcstate->phase == GC_PHASE_MARK) {
1659
4.44k
        Py_ssize_t objects_marked = mark_at_start(tstate);
1660
4.44k
        GC_STAT_ADD(1, objects_transitively_reachable, objects_marked);
1661
4.44k
        gcstate->work_to_do -= objects_marked;
1662
4.44k
        validate_spaces(gcstate);
1663
4.44k
        return;
1664
4.44k
    }
1665
53.9k
    PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
1666
53.9k
    PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
1667
53.9k
    PyGC_Head increment;
1668
53.9k
    gc_list_init(&increment);
1669
53.9k
    int scale_factor = gcstate->old[0].threshold;
1670
53.9k
    if (scale_factor < 2) {
1671
0
        scale_factor = 2;
1672
0
    }
1673
53.9k
    intptr_t objects_marked = mark_stacks(tstate->interp, visited, gcstate->visited_space, false);
1674
53.9k
    GC_STAT_ADD(1, objects_transitively_reachable, objects_marked);
1675
53.9k
    gcstate->work_to_do -= objects_marked;
1676
53.9k
    gc_list_set_space(&gcstate->young.head, gcstate->visited_space);
1677
53.9k
    gc_list_merge(&gcstate->young.head, &increment);
1678
53.9k
    gc_list_validate_space(&increment, gcstate->visited_space);
1679
53.9k
    Py_ssize_t increment_size = gc_list_size(&increment);
1680
1.18M
    while (increment_size < gcstate->work_to_do) {
1681
1.13M
        if (gc_list_is_empty(not_visited)) {
1682
4.41k
            break;
1683
4.41k
        }
1684
1.13M
        PyGC_Head *gc = _PyGCHead_NEXT(not_visited);
1685
1.13M
        gc_list_move(gc, &increment);
1686
1.13M
        increment_size++;
1687
1.13M
        assert(!_Py_IsImmortal(FROM_GC(gc)));
1688
1.13M
        gc_set_old_space(gc, gcstate->visited_space);
1689
1.13M
        increment_size += expand_region_transitively_reachable(&increment, gc, gcstate);
1690
1.13M
    }
1691
53.9k
    GC_STAT_ADD(1, objects_not_transitively_reachable, increment_size);
1692
53.9k
    validate_list(&increment, collecting_clear_unreachable_clear);
1693
53.9k
    gc_list_validate_space(&increment, gcstate->visited_space);
1694
53.9k
    PyGC_Head survivors;
1695
53.9k
    gc_list_init(&survivors);
1696
53.9k
    gc_collect_region(tstate, &increment, &survivors, stats);
1697
53.9k
    gc_list_merge(&survivors, visited);
1698
53.9k
    assert(gc_list_is_empty(&increment));
1699
53.9k
    gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
1700
53.9k
    gcstate->work_to_do -= increment_size;
1701
1702
53.9k
    add_stats(gcstate, 1, stats);
1703
53.9k
    if (gc_list_is_empty(not_visited)) {
1704
4.43k
        completed_scavenge(gcstate);
1705
4.43k
    }
1706
53.9k
    validate_spaces(gcstate);
1707
53.9k
}
1708
1709
static void
1710
gc_collect_full(PyThreadState *tstate,
1711
                struct gc_collection_stats *stats)
1712
0
{
1713
0
    GC_STAT_ADD(2, collections, 1);
1714
0
    GCState *gcstate = &tstate->interp->gc;
1715
0
    validate_spaces(gcstate);
1716
0
    PyGC_Head *young = &gcstate->young.head;
1717
0
    PyGC_Head *pending = &gcstate->old[gcstate->visited_space^1].head;
1718
0
    PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
1719
0
    untrack_tuples(young);
1720
    /* merge all generations into visited */
1721
0
    gc_list_merge(young, pending);
1722
0
    gc_list_validate_space(pending, 1-gcstate->visited_space);
1723
0
    gc_list_set_space(pending, gcstate->visited_space);
1724
0
    gcstate->young.count = 0;
1725
0
    gc_list_merge(pending, visited);
1726
0
    validate_spaces(gcstate);
1727
1728
0
    gc_collect_region(tstate, visited, visited,
1729
0
                      stats);
1730
0
    validate_spaces(gcstate);
1731
0
    gcstate->young.count = 0;
1732
0
    gcstate->old[0].count = 0;
1733
0
    gcstate->old[1].count = 0;
1734
0
    completed_scavenge(gcstate);
1735
0
    _PyGC_ClearAllFreeLists(tstate->interp);
1736
0
    validate_spaces(gcstate);
1737
0
    add_stats(gcstate, 2, stats);
1738
0
}
1739
1740
/* This is the main function. Read this to understand how the
1741
 * collection process works. */
1742
static void
1743
gc_collect_region(PyThreadState *tstate,
1744
                  PyGC_Head *from,
1745
                  PyGC_Head *to,
1746
                  struct gc_collection_stats *stats)
1747
53.9k
{
1748
53.9k
    PyGC_Head unreachable; /* non-problematic unreachable trash */
1749
53.9k
    PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
1750
53.9k
    PyGC_Head *gc; /* initialize to prevent a compiler warning */
1751
53.9k
    GCState *gcstate = &tstate->interp->gc;
1752
1753
53.9k
    assert(gcstate->garbage != NULL);
1754
53.9k
    assert(!_PyErr_Occurred(tstate));
1755
1756
53.9k
    gc_list_init(&unreachable);
1757
53.9k
    deduce_unreachable(from, &unreachable);
1758
53.9k
    validate_consistent_old_space(from);
1759
53.9k
    untrack_tuples(from);
1760
1761
  /* Move reachable objects to next generation. */
1762
53.9k
    validate_consistent_old_space(to);
1763
53.9k
    if (from != to) {
1764
53.9k
        gc_list_merge(from, to);
1765
53.9k
    }
1766
53.9k
    validate_consistent_old_space(to);
1767
1768
    /* All objects in unreachable are trash, but objects reachable from
1769
     * legacy finalizers (e.g. tp_del) can't safely be deleted.
1770
     */
1771
53.9k
    gc_list_init(&finalizers);
1772
    // NEXT_MASK_UNREACHABLE is cleared here.
1773
    // After move_legacy_finalizers(), unreachable is normal list.
1774
53.9k
    move_legacy_finalizers(&unreachable, &finalizers);
1775
    /* finalizers contains the unreachable objects with a legacy finalizer;
1776
     * unreachable objects reachable *from* those are also uncollectable,
1777
     * and we move those into the finalizers list too.
1778
     */
1779
53.9k
    move_legacy_finalizer_reachable(&finalizers);
1780
53.9k
    validate_list(&finalizers, collecting_clear_unreachable_clear);
1781
53.9k
    validate_list(&unreachable, collecting_set_unreachable_clear);
1782
    /* Print debugging information. */
1783
53.9k
    if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE) {
1784
0
        for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
1785
0
            debug_cycle("collectable", FROM_GC(gc));
1786
0
        }
1787
0
    }
1788
1789
    /* Invoke weakref callbacks as necessary. */
1790
53.9k
    stats->collected += handle_weakref_callbacks(&unreachable, to);
1791
53.9k
    gc_list_validate_space(to, gcstate->visited_space);
1792
53.9k
    validate_list(to, collecting_clear_unreachable_clear);
1793
53.9k
    validate_list(&unreachable, collecting_set_unreachable_clear);
1794
1795
    /* Call tp_finalize on objects which have one. */
1796
53.9k
    finalize_garbage(tstate, &unreachable);
1797
    /* Handle any objects that may have resurrected after the call
1798
     * to 'finalize_garbage' and continue the collection with the
1799
     * objects that are still unreachable */
1800
53.9k
    PyGC_Head final_unreachable;
1801
53.9k
    gc_list_init(&final_unreachable);
1802
53.9k
    handle_resurrected_objects(&unreachable, &final_unreachable, to);
1803
1804
    /* Clear weakrefs to objects in the unreachable set.  See the comments
1805
     * above handle_weakref_callbacks() for details.
1806
     */
1807
53.9k
    clear_weakrefs(&final_unreachable);
1808
1809
    /* Call tp_clear on objects in the final_unreachable set.  This will cause
1810
    * the reference cycles to be broken.  It may also cause some objects
1811
    * in finalizers to be freed.
1812
    */
1813
53.9k
    stats->collected += gc_list_size(&final_unreachable);
1814
53.9k
    delete_garbage(tstate, gcstate, &final_unreachable, to);
1815
1816
    /* Collect statistics on uncollectable objects found and print
1817
     * debugging information. */
1818
53.9k
    Py_ssize_t n = 0;
1819
53.9k
    for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
1820
0
        n++;
1821
0
        if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE)
1822
0
            debug_cycle("uncollectable", FROM_GC(gc));
1823
0
    }
1824
53.9k
    stats->uncollectable = n;
1825
    /* Append instances in the uncollectable set to a Python
1826
     * reachable list of garbage.  The programmer has to deal with
1827
     * this if they insist on creating this type of structure.
1828
     */
1829
53.9k
    handle_legacy_finalizers(tstate, gcstate, &finalizers, to);
1830
53.9k
    gc_list_validate_space(to, gcstate->visited_space);
1831
53.9k
    validate_list(to, collecting_clear_unreachable_clear);
1832
53.9k
}
1833
1834
/* Invoke progress callbacks to notify clients that garbage collection
1835
 * is starting or stopping
1836
 */
1837
static void
1838
do_gc_callback(GCState *gcstate, const char *phase,
1839
                   int generation, struct gc_collection_stats *stats)
1840
116k
{
1841
116k
    assert(!PyErr_Occurred());
1842
1843
    /* The local variable cannot be rebound, check it for sanity */
1844
116k
    assert(PyList_CheckExact(gcstate->callbacks));
1845
116k
    PyObject *info = NULL;
1846
116k
    if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
1847
0
        info = Py_BuildValue("{sisnsn}",
1848
0
            "generation", generation,
1849
0
            "collected", stats->collected,
1850
0
            "uncollectable", stats->uncollectable);
1851
0
        if (info == NULL) {
1852
0
            PyErr_FormatUnraisable("Exception ignored while invoking gc callbacks");
1853
0
            return;
1854
0
        }
1855
0
    }
1856
1857
116k
    PyObject *phase_obj = PyUnicode_FromString(phase);
1858
116k
    if (phase_obj == NULL) {
1859
0
        Py_XDECREF(info);
1860
0
        PyErr_FormatUnraisable("Exception ignored while invoking gc callbacks");
1861
0
        return;
1862
0
    }
1863
1864
116k
    PyObject *stack[] = {phase_obj, info};
1865
116k
    for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
1866
0
        PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
1867
0
        Py_INCREF(cb); /* make sure cb doesn't go away */
1868
0
        r = PyObject_Vectorcall(cb, stack, 2, NULL);
1869
0
        if (r == NULL) {
1870
0
            PyErr_FormatUnraisable("Exception ignored while "
1871
0
                                   "calling GC callback %R", cb);
1872
0
        }
1873
0
        else {
1874
0
            Py_DECREF(r);
1875
0
        }
1876
0
        Py_DECREF(cb);
1877
0
    }
1878
116k
    Py_DECREF(phase_obj);
1879
116k
    Py_XDECREF(info);
1880
116k
    assert(!PyErr_Occurred());
1881
116k
}
1882
1883
static void
1884
invoke_gc_callback(GCState *gcstate, const char *phase,
1885
                   int generation, struct gc_collection_stats *stats)
1886
116k
{
1887
116k
    if (gcstate->callbacks == NULL) {
1888
0
        return;
1889
0
    }
1890
116k
    do_gc_callback(gcstate, phase, generation, stats);
1891
116k
}
1892
1893
static int
1894
referrersvisit(PyObject* obj, void *arg)
1895
0
{
1896
0
    PyObject *objs = arg;
1897
0
    Py_ssize_t i;
1898
0
    for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
1899
0
        if (PyTuple_GET_ITEM(objs, i) == obj) {
1900
0
            return 1;
1901
0
        }
1902
0
    }
1903
0
    return 0;
1904
0
}
1905
1906
static int
1907
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1908
0
{
1909
0
    PyGC_Head *gc;
1910
0
    PyObject *obj;
1911
0
    traverseproc traverse;
1912
0
    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
1913
0
        obj = FROM_GC(gc);
1914
0
        traverse = Py_TYPE(obj)->tp_traverse;
1915
0
        if (obj == objs || obj == resultlist) {
1916
0
            continue;
1917
0
        }
1918
0
        if (traverse(obj, referrersvisit, objs)) {
1919
0
            if (PyList_Append(resultlist, obj) < 0) {
1920
0
                return 0; /* error */
1921
0
            }
1922
0
        }
1923
0
    }
1924
0
    return 1; /* no error */
1925
0
}
1926
1927
PyObject *
1928
_PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
1929
0
{
1930
0
    PyObject *result = PyList_New(0);
1931
0
    if (!result) {
1932
0
        return NULL;
1933
0
    }
1934
1935
0
    GCState *gcstate = &interp->gc;
1936
0
    for (int i = 0; i < NUM_GENERATIONS; i++) {
1937
0
        if (!(gc_referrers_for(objs, GEN_HEAD(gcstate, i), result))) {
1938
0
            Py_DECREF(result);
1939
0
            return NULL;
1940
0
        }
1941
0
    }
1942
0
    return result;
1943
0
}
1944
1945
PyObject *
1946
_PyGC_GetObjects(PyInterpreterState *interp, int generation)
1947
0
{
1948
0
    assert(generation >= -1 && generation < NUM_GENERATIONS);
1949
0
    GCState *gcstate = &interp->gc;
1950
1951
0
    PyObject *result = PyList_New(0);
1952
    /* Generation:
1953
     * -1: Return all objects
1954
     * 0: All young objects
1955
     * 1: No objects
1956
     * 2: All old objects
1957
     */
1958
0
    if (result == NULL || generation == 1) {
1959
0
        return result;
1960
0
    }
1961
0
    if (generation <= 0) {
1962
0
        if (append_objects(result, &gcstate->young.head)) {
1963
0
            goto error;
1964
0
        }
1965
0
    }
1966
0
    if (generation != 0) {
1967
0
        if (append_objects(result, &gcstate->old[0].head)) {
1968
0
            goto error;
1969
0
        }
1970
0
        if (append_objects(result, &gcstate->old[1].head)) {
1971
0
            goto error;
1972
0
        }
1973
0
    }
1974
1975
0
    return result;
1976
0
error:
1977
0
    Py_DECREF(result);
1978
0
    return NULL;
1979
0
}
1980
1981
void
1982
_PyGC_Freeze(PyInterpreterState *interp)
1983
0
{
1984
0
    GCState *gcstate = &interp->gc;
1985
    /* The permanent_generation must be visited */
1986
0
    gc_list_set_space(&gcstate->young.head, gcstate->visited_space);
1987
0
    gc_list_merge(&gcstate->young.head, &gcstate->permanent_generation.head);
1988
0
    gcstate->young.count = 0;
1989
0
    PyGC_Head*old0 = &gcstate->old[0].head;
1990
0
    PyGC_Head*old1 = &gcstate->old[1].head;
1991
0
    if (gcstate->visited_space) {
1992
0
        gc_list_set_space(old0, 1);
1993
0
    }
1994
0
    else {
1995
0
        gc_list_set_space(old1, 0);
1996
0
    }
1997
0
    gc_list_merge(old0, &gcstate->permanent_generation.head);
1998
0
    gcstate->old[0].count = 0;
1999
0
    gc_list_merge(old1, &gcstate->permanent_generation.head);
2000
0
    gcstate->old[1].count = 0;
2001
0
    validate_spaces(gcstate);
2002
0
}
2003
2004
void
2005
_PyGC_Unfreeze(PyInterpreterState *interp)
2006
0
{
2007
0
    GCState *gcstate = &interp->gc;
2008
0
    gc_list_merge(&gcstate->permanent_generation.head,
2009
0
                  &gcstate->old[gcstate->visited_space].head);
2010
0
    validate_spaces(gcstate);
2011
0
}
2012
2013
Py_ssize_t
2014
_PyGC_GetFreezeCount(PyInterpreterState *interp)
2015
0
{
2016
0
    GCState *gcstate = &interp->gc;
2017
0
    return gc_list_size(&gcstate->permanent_generation.head);
2018
0
}
2019
2020
/* C API for controlling the state of the garbage collector */
2021
int
2022
PyGC_Enable(void)
2023
0
{
2024
0
    GCState *gcstate = get_gc_state();
2025
0
    int old_state = gcstate->enabled;
2026
0
    gcstate->enabled = 1;
2027
0
    return old_state;
2028
0
}
2029
2030
int
2031
PyGC_Disable(void)
2032
0
{
2033
0
    GCState *gcstate = get_gc_state();
2034
0
    int old_state = gcstate->enabled;
2035
0
    gcstate->enabled = 0;
2036
0
    return old_state;
2037
0
}
2038
2039
int
2040
PyGC_IsEnabled(void)
2041
0
{
2042
0
    GCState *gcstate = get_gc_state();
2043
0
    return gcstate->enabled;
2044
0
}
2045
2046
// Show stats for objects in each generations
2047
static void
2048
show_stats_each_generations(GCState *gcstate)
2049
0
{
2050
0
    char buf[100];
2051
0
    size_t pos = 0;
2052
2053
0
    for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
2054
0
        pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
2055
0
                             " %zd",
2056
0
                             gc_list_size(GEN_HEAD(gcstate, i)));
2057
0
    }
2058
0
    PySys_FormatStderr(
2059
0
        "gc: objects in each generation:%s\n"
2060
0
        "gc: objects in permanent generation: %zd\n",
2061
0
        buf, gc_list_size(&gcstate->permanent_generation.head));
2062
0
}
2063
2064
Py_ssize_t
2065
_PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
2066
58.3k
{
2067
58.3k
    GCState *gcstate = &tstate->interp->gc;
2068
58.3k
    assert(tstate->current_frame == NULL || tstate->current_frame->stackpointer != NULL);
2069
2070
58.3k
    int expected = 0;
2071
58.3k
    if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
2072
        // Don't start a garbage collection if one is already in progress.
2073
0
        return 0;
2074
0
    }
2075
2076
58.3k
    struct gc_collection_stats stats = { 0 };
2077
58.3k
    if (reason != _Py_GC_REASON_SHUTDOWN) {
2078
58.3k
        invoke_gc_callback(gcstate, "start", generation, &stats);
2079
58.3k
    }
2080
58.3k
    if (gcstate->debug & _PyGC_DEBUG_STATS) {
2081
0
        PySys_WriteStderr("gc: collecting generation %d...\n", generation);
2082
0
        show_stats_each_generations(gcstate);
2083
0
    }
2084
58.3k
    if (PyDTrace_GC_START_ENABLED()) {
2085
0
        PyDTrace_GC_START(generation);
2086
0
    }
2087
58.3k
    PyObject *exc = _PyErr_GetRaisedException(tstate);
2088
58.3k
    switch(generation) {
2089
0
        case 0:
2090
0
            gc_collect_young(tstate, &stats);
2091
0
            break;
2092
58.3k
        case 1:
2093
58.3k
            gc_collect_increment(tstate, &stats);
2094
58.3k
            break;
2095
0
        case 2:
2096
0
            gc_collect_full(tstate, &stats);
2097
0
            break;
2098
0
        default:
2099
0
            Py_UNREACHABLE();
2100
58.3k
    }
2101
58.3k
    if (PyDTrace_GC_DONE_ENABLED()) {
2102
0
        PyDTrace_GC_DONE(stats.uncollectable + stats.collected);
2103
0
    }
2104
58.3k
    if (reason != _Py_GC_REASON_SHUTDOWN) {
2105
58.3k
        invoke_gc_callback(gcstate, "stop", generation, &stats);
2106
58.3k
    }
2107
58.3k
    _PyErr_SetRaisedException(tstate, exc);
2108
58.3k
    GC_STAT_ADD(generation, objects_collected, stats.collected);
2109
#ifdef Py_STATS
2110
    if (_Py_stats) {
2111
        GC_STAT_ADD(generation, object_visits,
2112
            _Py_stats->object_stats.object_visits);
2113
        _Py_stats->object_stats.object_visits = 0;
2114
    }
2115
#endif
2116
58.3k
    validate_spaces(gcstate);
2117
58.3k
    _Py_atomic_store_int(&gcstate->collecting, 0);
2118
58.3k
    return stats.uncollectable + stats.collected;
2119
58.3k
}
2120
2121
/* Public API to invoke gc.collect() from C */
2122
Py_ssize_t
2123
PyGC_Collect(void)
2124
0
{
2125
0
    return _PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_MANUAL);
2126
0
}
2127
2128
void
2129
_PyGC_CollectNoFail(PyThreadState *tstate)
2130
0
{
2131
    /* Ideally, this function is only called on interpreter shutdown,
2132
       and therefore not recursively.  Unfortunately, when there are daemon
2133
       threads, a daemon thread can start a cyclic garbage collection
2134
       during interpreter shutdown (and then never finish it).
2135
       See http://bugs.python.org/issue8713#msg195178 for an example.
2136
       */
2137
0
    _PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_SHUTDOWN);
2138
0
}
2139
2140
void
2141
_PyGC_DumpShutdownStats(PyInterpreterState *interp)
2142
0
{
2143
0
    GCState *gcstate = &interp->gc;
2144
0
    if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
2145
0
        && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
2146
0
        const char *message;
2147
0
        if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
2148
0
            message = "gc: %zd uncollectable objects at shutdown";
2149
0
        }
2150
0
        else {
2151
0
            message = "gc: %zd uncollectable objects at shutdown; " \
2152
0
                "use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
2153
0
        }
2154
        /* PyErr_WarnFormat does too many things and we are at shutdown,
2155
           the warnings module's dependencies (e.g. linecache) may be gone
2156
           already. */
2157
0
        if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2158
0
                                     "gc", NULL, message,
2159
0
                                     PyList_GET_SIZE(gcstate->garbage)))
2160
0
        {
2161
0
            PyErr_FormatUnraisable("Exception ignored in GC shutdown");
2162
0
        }
2163
0
        if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
2164
0
            PyObject *repr = NULL, *bytes = NULL;
2165
0
            repr = PyObject_Repr(gcstate->garbage);
2166
0
            if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
2167
0
                PyErr_FormatUnraisable("Exception ignored in GC shutdown "
2168
0
                                       "while formatting garbage");
2169
0
            }
2170
0
            else {
2171
0
                PySys_WriteStderr(
2172
0
                    "      %s\n",
2173
0
                    PyBytes_AS_STRING(bytes)
2174
0
                    );
2175
0
            }
2176
0
            Py_XDECREF(repr);
2177
0
            Py_XDECREF(bytes);
2178
0
        }
2179
0
    }
2180
0
}
2181
2182
static void
2183
0
finalize_unlink_gc_head(PyGC_Head *gc) {
2184
0
    PyGC_Head *prev = GC_PREV(gc);
2185
0
    PyGC_Head *next = GC_NEXT(gc);
2186
0
    _PyGCHead_SET_NEXT(prev, next);
2187
0
    _PyGCHead_SET_PREV(next, prev);
2188
0
}
2189
2190
void
2191
_PyGC_Fini(PyInterpreterState *interp)
2192
0
{
2193
0
    GCState *gcstate = &interp->gc;
2194
0
    Py_CLEAR(gcstate->garbage);
2195
0
    Py_CLEAR(gcstate->callbacks);
2196
2197
    /* Prevent a subtle bug that affects sub-interpreters that use basic
2198
     * single-phase init extensions (m_size == -1).  Those extensions cause objects
2199
     * to be shared between interpreters, via the PyDict_Update(mdict, m_copy) call
2200
     * in import_find_extension().
2201
     *
2202
     * If they are GC objects, their GC head next or prev links could refer to
2203
     * the interpreter _gc_runtime_state PyGC_Head nodes.  Those nodes go away
2204
     * when the interpreter structure is freed and so pointers to them become
2205
     * invalid.  If those objects are still used by another interpreter and
2206
     * UNTRACK is called on them, a crash will happen.  We untrack the nodes
2207
     * here to avoid that.
2208
     *
2209
     * This bug was originally fixed when reported as gh-90228.  The bug was
2210
     * re-introduced in gh-94673.
2211
     */
2212
0
    finalize_unlink_gc_head(&gcstate->young.head);
2213
0
    finalize_unlink_gc_head(&gcstate->old[0].head);
2214
0
    finalize_unlink_gc_head(&gcstate->old[1].head);
2215
0
    finalize_unlink_gc_head(&gcstate->permanent_generation.head);
2216
0
}
2217
2218
/* for debugging */
2219
void
2220
_PyGC_Dump(PyGC_Head *g)
2221
0
{
2222
0
    _PyObject_Dump(FROM_GC(g));
2223
0
}
2224
2225
2226
#ifdef Py_DEBUG
2227
static int
2228
visit_validate(PyObject *op, void *parent_raw)
2229
{
2230
    PyObject *parent = _PyObject_CAST(parent_raw);
2231
    if (_PyObject_IsFreed(op)) {
2232
        _PyObject_ASSERT_FAILED_MSG(parent,
2233
                                    "PyObject_GC_Track() object is not valid");
2234
    }
2235
    return 0;
2236
}
2237
#endif
2238
2239
2240
/* extension modules might be compiled with GC support so these
2241
   functions must always be available */
2242
2243
void
2244
PyObject_GC_Track(void *op_raw)
2245
149M
{
2246
149M
    PyObject *op = _PyObject_CAST(op_raw);
2247
149M
    if (_PyObject_GC_IS_TRACKED(op)) {
2248
0
        _PyObject_ASSERT_FAILED_MSG(op,
2249
0
                                    "object already tracked "
2250
0
                                    "by the garbage collector");
2251
0
    }
2252
149M
    _PyObject_GC_TRACK(op);
2253
2254
#ifdef Py_DEBUG
2255
    /* Check that the object is valid: validate objects traversed
2256
       by tp_traverse() */
2257
    traverseproc traverse = Py_TYPE(op)->tp_traverse;
2258
    (void)traverse(op, visit_validate, op);
2259
#endif
2260
149M
}
2261
2262
void
2263
PyObject_GC_UnTrack(void *op_raw)
2264
1.57G
{
2265
1.57G
    PyObject *op = _PyObject_CAST(op_raw);
2266
    /* The code for some objects, such as tuples, is a bit
2267
     * sloppy about when the object is tracked and untracked. */
2268
1.57G
    if (_PyObject_GC_IS_TRACKED(op)) {
2269
1.50G
        _PyObject_GC_UNTRACK(op);
2270
1.50G
    }
2271
1.57G
}
2272
2273
int
2274
PyObject_IS_GC(PyObject *obj)
2275
138M
{
2276
138M
    return _PyObject_IS_GC(obj);
2277
138M
}
2278
2279
void
2280
_Py_ScheduleGC(PyThreadState *tstate)
2281
5.57M
{
2282
5.57M
    if (!_Py_eval_breaker_bit_is_set(tstate, _PY_GC_SCHEDULED_BIT))
2283
58.3k
    {
2284
58.3k
        _Py_set_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
2285
58.3k
    }
2286
5.57M
}
2287
2288
void
2289
_PyObject_GC_Link(PyObject *op)
2290
428M
{
2291
428M
    PyGC_Head *gc = AS_GC(op);
2292
    // gc must be correctly aligned
2293
428M
    _PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
2294
2295
428M
    PyThreadState *tstate = _PyThreadState_GET();
2296
428M
    GCState *gcstate = &tstate->interp->gc;
2297
428M
    gc->_gc_next = 0;
2298
428M
    gc->_gc_prev = 0;
2299
428M
    gcstate->young.count++; /* number of allocated GC objects */
2300
428M
    gcstate->heap_size++;
2301
428M
    if (gcstate->young.count > gcstate->young.threshold &&
2302
428M
        gcstate->enabled &&
2303
428M
        gcstate->young.threshold &&
2304
428M
        !_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
2305
428M
        !_PyErr_Occurred(tstate))
2306
5.57M
    {
2307
5.57M
        _Py_ScheduleGC(tstate);
2308
5.57M
    }
2309
428M
}
2310
2311
void
2312
_Py_RunGC(PyThreadState *tstate)
2313
58.3k
{
2314
58.3k
    if (tstate->interp->gc.enabled) {
2315
58.3k
        _PyGC_Collect(tstate, 1, _Py_GC_REASON_HEAP);
2316
58.3k
    }
2317
58.3k
}
2318
2319
static PyObject *
2320
gc_alloc(PyTypeObject *tp, size_t basicsize, size_t presize)
2321
339M
{
2322
339M
    PyThreadState *tstate = _PyThreadState_GET();
2323
339M
    if (basicsize > PY_SSIZE_T_MAX - presize) {
2324
0
        return _PyErr_NoMemory(tstate);
2325
0
    }
2326
339M
    size_t size = presize + basicsize;
2327
339M
    char *mem = _PyObject_MallocWithType(tp, size);
2328
339M
    if (mem == NULL) {
2329
0
        return _PyErr_NoMemory(tstate);
2330
0
    }
2331
339M
    ((PyObject **)mem)[0] = NULL;
2332
339M
    ((PyObject **)mem)[1] = NULL;
2333
339M
    PyObject *op = (PyObject *)(mem + presize);
2334
339M
    _PyObject_GC_Link(op);
2335
339M
    return op;
2336
339M
}
2337
2338
2339
PyObject *
2340
_PyObject_GC_New(PyTypeObject *tp)
2341
151M
{
2342
151M
    size_t presize = _PyType_PreHeaderSize(tp);
2343
151M
    size_t size = _PyObject_SIZE(tp);
2344
151M
    if (_PyType_HasFeature(tp, Py_TPFLAGS_INLINE_VALUES)) {
2345
0
        size += _PyInlineValuesSize(tp);
2346
0
    }
2347
151M
    PyObject *op = gc_alloc(tp, size, presize);
2348
151M
    if (op == NULL) {
2349
0
        return NULL;
2350
0
    }
2351
151M
    _PyObject_Init(op, tp);
2352
151M
    if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
2353
0
        _PyObject_InitInlineValues(op, tp);
2354
0
    }
2355
151M
    return op;
2356
151M
}
2357
2358
PyVarObject *
2359
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
2360
187M
{
2361
187M
    PyVarObject *op;
2362
2363
187M
    if (nitems < 0) {
2364
0
        PyErr_BadInternalCall();
2365
0
        return NULL;
2366
0
    }
2367
187M
    size_t presize = _PyType_PreHeaderSize(tp);
2368
187M
    size_t size = _PyObject_VAR_SIZE(tp, nitems);
2369
187M
    op = (PyVarObject *)gc_alloc(tp, size, presize);
2370
187M
    if (op == NULL) {
2371
0
        return NULL;
2372
0
    }
2373
187M
    _PyObject_InitVar(op, tp, nitems);
2374
187M
    return op;
2375
187M
}
2376
2377
PyObject *
2378
PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
2379
0
{
2380
0
    size_t presize = _PyType_PreHeaderSize(tp);
2381
0
    size_t size = _PyObject_SIZE(tp) + extra_size;
2382
0
    PyObject *op = gc_alloc(tp, size, presize);
2383
0
    if (op == NULL) {
2384
0
        return NULL;
2385
0
    }
2386
0
    memset((char *)op + sizeof(PyObject), 0, size - sizeof(PyObject));
2387
0
    _PyObject_Init(op, tp);
2388
0
    return op;
2389
0
}
2390
2391
PyVarObject *
2392
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
2393
16
{
2394
16
    const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
2395
16
    const size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
2396
16
    _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
2397
16
    if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
2398
0
        return (PyVarObject *)PyErr_NoMemory();
2399
0
    }
2400
16
    char *mem = (char *)op - presize;
2401
16
    mem = (char *)_PyObject_ReallocWithType(Py_TYPE(op), mem, presize + basicsize);
2402
16
    if (mem == NULL) {
2403
0
        return (PyVarObject *)PyErr_NoMemory();
2404
0
    }
2405
16
    op = (PyVarObject *) (mem + presize);
2406
16
    Py_SET_SIZE(op, nitems);
2407
16
    return op;
2408
16
}
2409
2410
void
2411
PyObject_GC_Del(void *op)
2412
428M
{
2413
428M
    size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
2414
428M
    PyGC_Head *g = AS_GC(op);
2415
428M
    if (_PyObject_GC_IS_TRACKED(op)) {
2416
0
        gc_list_remove(g);
2417
#ifdef Py_DEBUG
2418
        PyObject *exc = PyErr_GetRaisedException();
2419
        if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2420
                                     "gc", NULL,
2421
                                     "Object of type %s is not untracked "
2422
                                     "before destruction",
2423
                                     Py_TYPE(op)->tp_name))
2424
        {
2425
            PyErr_FormatUnraisable("Exception ignored on object deallocation");
2426
        }
2427
        PyErr_SetRaisedException(exc);
2428
#endif
2429
0
    }
2430
428M
    GCState *gcstate = get_gc_state();
2431
428M
    if (gcstate->young.count > 0) {
2432
307M
        gcstate->young.count--;
2433
307M
    }
2434
428M
    gcstate->heap_size--;
2435
428M
    PyObject_Free(((char *)op)-presize);
2436
428M
}
2437
2438
int
2439
PyObject_GC_IsTracked(PyObject* obj)
2440
0
{
2441
0
    if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
2442
0
        return 1;
2443
0
    }
2444
0
    return 0;
2445
0
}
2446
2447
int
2448
PyObject_GC_IsFinalized(PyObject *obj)
2449
0
{
2450
0
    if (_PyObject_IS_GC(obj) && _PyGC_FINALIZED(obj)) {
2451
0
         return 1;
2452
0
    }
2453
0
    return 0;
2454
0
}
2455
2456
static int
2457
visit_generation(gcvisitobjects_t callback, void *arg, struct gc_generation *gen)
2458
0
{
2459
0
    PyGC_Head *gc_list, *gc;
2460
0
    gc_list = &gen->head;
2461
0
    for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
2462
0
        PyObject *op = FROM_GC(gc);
2463
0
        Py_INCREF(op);
2464
0
        int res = callback(op, arg);
2465
0
        Py_DECREF(op);
2466
0
        if (!res) {
2467
0
            return -1;
2468
0
        }
2469
0
    }
2470
0
    return 0;
2471
0
}
2472
2473
void
2474
PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
2475
0
{
2476
0
    GCState *gcstate = get_gc_state();
2477
0
    int original_state = gcstate->enabled;
2478
0
    gcstate->enabled = 0;
2479
0
    if (visit_generation(callback, arg, &gcstate->young) < 0) {
2480
0
        goto done;
2481
0
    }
2482
0
    if (visit_generation(callback, arg, &gcstate->old[0]) < 0) {
2483
0
        goto done;
2484
0
    }
2485
0
    if (visit_generation(callback, arg, &gcstate->old[1]) < 0) {
2486
0
        goto done;
2487
0
    }
2488
0
    visit_generation(callback, arg, &gcstate->permanent_generation);
2489
0
done:
2490
0
    gcstate->enabled = original_state;
2491
0
}
2492
2493
#endif  // Py_GIL_DISABLED