Coverage Report

Created: 2025-08-29 06:15

/src/cpython/Objects/stringlib/fastsearch.h
Line
Count
Source (jump to first uncovered line)
1
/* stringlib: fastsearch implementation */
2
3
#define STRINGLIB_FASTSEARCH_H
4
5
/* fast search/count implementation, based on a mix between boyer-
6
   moore and horspool, with a few more bells and whistles on the top.
7
   for some more background, see:
8
   https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
9
10
/* note: fastsearch may access s[n], which isn't a problem when using
11
   Python's ordinary string types, but may cause problems if you're
12
   using this code in other contexts.  also, the count mode returns -1
13
   if there cannot possibly be a match in the target string, and 0 if
14
   it has actually checked for matches, but didn't find any.  callers
15
   beware! */
16
17
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
18
   algorithm, which has worst-case O(n) runtime and best-case O(n/k).
19
   Also compute a table of shifts to achieve O(n/k) in more cases,
20
   and often (data dependent) deduce larger shifts than pure C&P can
21
   deduce. See stringlib_find_two_way_notes.txt in this folder for a
22
   detailed explanation. */
23
24
656M
#define FAST_COUNT 0
25
474M
#define FAST_SEARCH 1
26
80.3M
#define FAST_RSEARCH 2
27
28
#if LONG_BIT >= 128
29
#define STRINGLIB_BLOOM_WIDTH 128
30
#elif LONG_BIT >= 64
31
6.06G
#define STRINGLIB_BLOOM_WIDTH 64
32
#elif LONG_BIT >= 32
33
#define STRINGLIB_BLOOM_WIDTH 32
34
#else
35
#error "LONG_BIT is smaller than 32"
36
#endif
37
38
#define STRINGLIB_BLOOM_ADD(mask, ch) \
39
33.0M
    ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
40
#define STRINGLIB_BLOOM(mask, ch)     \
41
6.03G
    ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
42
43
#ifdef STRINGLIB_FAST_MEMCHR
44
233M
#  define MEMCHR_CUT_OFF 15
45
#else
46
77.6M
#  define MEMCHR_CUT_OFF 40
47
#endif
48
49
Py_LOCAL_INLINE(Py_ssize_t)
50
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
51
310M
{
52
310M
    const STRINGLIB_CHAR *p, *e;
53
54
310M
    p = s;
55
310M
    e = s + n;
56
310M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
138M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
138M
        if (p != NULL)
60
136M
            return (p - s);
61
1.62M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
67.1M
        if (needle != 0) {
71
66.6M
            do {
72
66.6M
                void *candidate = memchr(p, needle,
73
66.6M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
66.6M
                if (candidate == NULL)
75
606k
                    return -1;
76
66.0M
                s1 = p;
77
66.0M
                p = (const STRINGLIB_CHAR *)
78
66.0M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
66.0M
                if (*p == ch)
80
65.9M
                    return (p - s);
81
                /* False positive */
82
123k
                p++;
83
123k
                if (p - s1 > MEMCHR_CUT_OFF)
84
58.5k
                    continue;
85
64.5k
                if (e - p <= MEMCHR_CUT_OFF)
86
4.17k
                    break;
87
60.4k
                e1 = p + MEMCHR_CUT_OFF;
88
1.80M
                while (p != e1) {
89
1.76M
                    if (*p == ch)
90
26.6k
                        return (p - s);
91
1.74M
                    p++;
92
1.74M
                }
93
60.4k
            }
94
66.5M
            while (e - p > MEMCHR_CUT_OFF);
95
66.5M
        }
96
#endif
97
205M
    }
98
443M
    while (p < e) {
99
355M
        if (*p == ch)
100
17.3M
            return (p - s);
101
338M
        p++;
102
338M
    }
103
88.0M
    return -1;
104
105M
}
Unexecuted instantiation: bytesobject.c:stringlib_find_char
unicodeobject.c:ucs1lib_find_char
Line
Count
Source
51
107M
{
52
107M
    const STRINGLIB_CHAR *p, *e;
53
54
107M
    p = s;
55
107M
    e = s + n;
56
107M
    if (n > MEMCHR_CUT_OFF) {
57
18.5M
#ifdef STRINGLIB_FAST_MEMCHR
58
18.5M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
18.5M
        if (p != NULL)
60
17.5M
            return (p - s);
61
965k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
18.5M
    }
98
254M
    while (p < e) {
99
169M
        if (*p == ch)
100
4.68M
            return (p - s);
101
164M
        p++;
102
164M
    }
103
84.7M
    return -1;
104
89.4M
}
unicodeobject.c:ucs2lib_find_char
Line
Count
Source
51
77.3M
{
52
77.3M
    const STRINGLIB_CHAR *p, *e;
53
54
77.3M
    p = s;
55
77.3M
    e = s + n;
56
77.3M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
        if (p != NULL)
60
            return (p - s);
61
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
67.1M
        const STRINGLIB_CHAR *s1, *e1;
66
67.1M
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
67.1M
        if (needle != 0) {
71
66.6M
            do {
72
66.6M
                void *candidate = memchr(p, needle,
73
66.6M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
66.6M
                if (candidate == NULL)
75
606k
                    return -1;
76
66.0M
                s1 = p;
77
66.0M
                p = (const STRINGLIB_CHAR *)
78
66.0M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
66.0M
                if (*p == ch)
80
65.9M
                    return (p - s);
81
                /* False positive */
82
123k
                p++;
83
123k
                if (p - s1 > MEMCHR_CUT_OFF)
84
58.5k
                    continue;
85
64.5k
                if (e - p <= MEMCHR_CUT_OFF)
86
4.17k
                    break;
87
60.4k
                e1 = p + MEMCHR_CUT_OFF;
88
1.80M
                while (p != e1) {
89
1.76M
                    if (*p == ch)
90
26.6k
                        return (p - s);
91
1.74M
                    p++;
92
1.74M
                }
93
60.4k
            }
94
66.5M
            while (e - p > MEMCHR_CUT_OFF);
95
66.5M
        }
96
67.1M
#endif
97
67.1M
    }
98
175M
    while (p < e) {
99
171M
        if (*p == ch)
100
7.55M
            return (p - s);
101
164M
        p++;
102
164M
    }
103
3.20M
    return -1;
104
10.7M
}
unicodeobject.c:ucs4lib_find_char
Line
Count
Source
51
100M
{
52
100M
    const STRINGLIB_CHAR *p, *e;
53
54
100M
    p = s;
55
100M
    e = s + n;
56
100M
    if (n > MEMCHR_CUT_OFF) {
57
100M
#ifdef STRINGLIB_FAST_MEMCHR
58
100M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
100M
        if (p != NULL)
60
100M
            return (p - s);
61
29.7k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
100M
    }
98
262k
    while (p < e) {
99
231k
        if (*p == ch)
100
33.7k
            return (p - s);
101
197k
        p++;
102
197k
    }
103
31.1k
    return -1;
104
64.9k
}
unicodeobject.c:asciilib_find_char
Line
Count
Source
51
24.9M
{
52
24.9M
    const STRINGLIB_CHAR *p, *e;
53
54
24.9M
    p = s;
55
24.9M
    e = s + n;
56
24.9M
    if (n > MEMCHR_CUT_OFF) {
57
19.7M
#ifdef STRINGLIB_FAST_MEMCHR
58
19.7M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
19.7M
        if (p != NULL)
60
19.1M
            return (p - s);
61
629k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
19.7M
    }
98
14.4M
    while (p < e) {
99
14.3M
        if (*p == ch)
100
5.08M
            return (p - s);
101
9.30M
        p++;
102
9.30M
    }
103
42.5k
    return -1;
104
5.12M
}
bytes_methods.c:stringlib_find_char
Line
Count
Source
51
1.71k
{
52
1.71k
    const STRINGLIB_CHAR *p, *e;
53
54
1.71k
    p = s;
55
1.71k
    e = s + n;
56
1.71k
    if (n > MEMCHR_CUT_OFF) {
57
1.71k
#ifdef STRINGLIB_FAST_MEMCHR
58
1.71k
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
1.71k
        if (p != NULL)
60
1.45k
            return (p - s);
61
258
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
1.71k
    }
98
0
    while (p < e) {
99
0
        if (*p == ch)
100
0
            return (p - s);
101
0
        p++;
102
0
    }
103
0
    return -1;
104
0
}
Unexecuted instantiation: bytearrayobject.c:stringlib_find_char
105
106
#undef MEMCHR_CUT_OFF
107
108
#if STRINGLIB_SIZEOF_CHAR == 1
109
37.4k
#  define MEMRCHR_CUT_OFF 15
110
#else
111
166k
#  define MEMRCHR_CUT_OFF 40
112
#endif
113
114
115
Py_LOCAL_INLINE(Py_ssize_t)
116
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
117
183k
{
118
183k
    const STRINGLIB_CHAR *p;
119
183k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
183k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
11.0k
        if (p != NULL)
129
7.26k
            return (p - s);
130
3.75k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
83.7k
        if (needle != 0) {
141
88.6k
            do {
142
88.6k
                void *candidate = memrchr(s, needle,
143
88.6k
                                          n * sizeof(STRINGLIB_CHAR));
144
88.6k
                if (candidate == NULL)
145
645
                    return -1;
146
87.9k
                n1 = n;
147
87.9k
                p = (const STRINGLIB_CHAR *)
148
87.9k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
87.9k
                n = p - s;
150
87.9k
                if (*p == ch)
151
80.7k
                    return n;
152
                /* False positive */
153
7.26k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
3.40k
                    continue;
155
3.86k
                if (n <= MEMRCHR_CUT_OFF)
156
812
                    break;
157
3.05k
                s1 = p - MEMRCHR_CUT_OFF;
158
112k
                while (p > s1) {
159
110k
                    p--;
160
110k
                    if (*p == ch)
161
519
                        return (p - s);
162
110k
                }
163
2.53k
                n = p - s;
164
2.53k
            }
165
83.7k
            while (n > MEMRCHR_CUT_OFF);
166
83.7k
        }
167
#endif
168
94.7k
    }
169
90.7k
#endif  /* HAVE_MEMRCHR */
170
90.7k
    p = s + n;
171
736k
    while (p > s) {
172
718k
        p--;
173
718k
        if (*p == ch)
174
73.3k
            return (p - s);
175
718k
    }
176
17.3k
    return -1;
177
90.7k
}
Unexecuted instantiation: bytesobject.c:stringlib_rfind_char
unicodeobject.c:ucs1lib_rfind_char
Line
Count
Source
117
7.75k
{
118
7.75k
    const STRINGLIB_CHAR *p;
119
7.75k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
7.75k
    if (n > MEMRCHR_CUT_OFF) {
126
4.28k
#if STRINGLIB_SIZEOF_CHAR == 1
127
4.28k
        p = memrchr(s, ch, n);
128
4.28k
        if (p != NULL)
129
3.30k
            return (p - s);
130
977
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
4.28k
    }
169
3.47k
#endif  /* HAVE_MEMRCHR */
170
3.47k
    p = s + n;
171
9.99k
    while (p > s) {
172
9.23k
        p--;
173
9.23k
        if (*p == ch)
174
2.71k
            return (p - s);
175
9.23k
    }
176
765
    return -1;
177
3.47k
}
unicodeobject.c:ucs2lib_rfind_char
Line
Count
Source
117
35.0k
{
118
35.0k
    const STRINGLIB_CHAR *p;
119
35.0k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
35.0k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
15.3k
        const STRINGLIB_CHAR *s1;
135
15.3k
        Py_ssize_t n1;
136
15.3k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
15.3k
        if (needle != 0) {
141
18.3k
            do {
142
18.3k
                void *candidate = memrchr(s, needle,
143
18.3k
                                          n * sizeof(STRINGLIB_CHAR));
144
18.3k
                if (candidate == NULL)
145
384
                    return -1;
146
18.0k
                n1 = n;
147
18.0k
                p = (const STRINGLIB_CHAR *)
148
18.0k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
18.0k
                n = p - s;
150
18.0k
                if (*p == ch)
151
14.0k
                    return n;
152
                /* False positive */
153
3.96k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
1.50k
                    continue;
155
2.46k
                if (n <= MEMRCHR_CUT_OFF)
156
418
                    break;
157
2.04k
                s1 = p - MEMRCHR_CUT_OFF;
158
78.4k
                while (p > s1) {
159
76.6k
                    p--;
160
76.6k
                    if (*p == ch)
161
216
                        return (p - s);
162
76.6k
                }
163
1.82k
                n = p - s;
164
1.82k
            }
165
15.3k
            while (n > MEMRCHR_CUT_OFF);
166
15.3k
        }
167
15.3k
#endif
168
15.3k
    }
169
20.3k
#endif  /* HAVE_MEMRCHR */
170
20.3k
    p = s + n;
171
185k
    while (p > s) {
172
184k
        p--;
173
184k
        if (*p == ch)
174
18.6k
            return (p - s);
175
184k
    }
176
1.72k
    return -1;
177
20.3k
}
unicodeobject.c:ucs4lib_rfind_char
Line
Count
Source
117
111k
{
118
111k
    const STRINGLIB_CHAR *p;
119
111k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
111k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
68.3k
        const STRINGLIB_CHAR *s1;
135
68.3k
        Py_ssize_t n1;
136
68.3k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
68.3k
        if (needle != 0) {
141
70.2k
            do {
142
70.2k
                void *candidate = memrchr(s, needle,
143
70.2k
                                          n * sizeof(STRINGLIB_CHAR));
144
70.2k
                if (candidate == NULL)
145
261
                    return -1;
146
69.9k
                n1 = n;
147
69.9k
                p = (const STRINGLIB_CHAR *)
148
69.9k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
69.9k
                n = p - s;
150
69.9k
                if (*p == ch)
151
66.6k
                    return n;
152
                /* False positive */
153
3.30k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
1.90k
                    continue;
155
1.40k
                if (n <= MEMRCHR_CUT_OFF)
156
394
                    break;
157
1.01k
                s1 = p - MEMRCHR_CUT_OFF;
158
34.4k
                while (p > s1) {
159
33.7k
                    p--;
160
33.7k
                    if (*p == ch)
161
303
                        return (p - s);
162
33.7k
                }
163
711
                n = p - s;
164
711
            }
165
68.3k
            while (n > MEMRCHR_CUT_OFF);
166
68.3k
        }
167
68.3k
#endif
168
68.3k
    }
169
43.9k
#endif  /* HAVE_MEMRCHR */
170
43.9k
    p = s + n;
171
418k
    while (p > s) {
172
417k
        p--;
173
417k
        if (*p == ch)
174
42.6k
            return (p - s);
175
417k
    }
176
1.28k
    return -1;
177
43.9k
}
unicodeobject.c:asciilib_rfind_char
Line
Count
Source
117
9.76k
{
118
9.76k
    const STRINGLIB_CHAR *p;
119
9.76k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
9.76k
    if (n > MEMRCHR_CUT_OFF) {
126
3.22k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.22k
        p = memrchr(s, ch, n);
128
3.22k
        if (p != NULL)
129
3.13k
            return (p - s);
130
86
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.22k
    }
169
6.54k
#endif  /* HAVE_MEMRCHR */
170
6.54k
    p = s + n;
171
36.5k
    while (p > s) {
172
34.4k
        p--;
173
34.4k
        if (*p == ch)
174
4.44k
            return (p - s);
175
34.4k
    }
176
2.10k
    return -1;
177
6.54k
}
bytes_methods.c:stringlib_rfind_char
Line
Count
Source
117
19.8k
{
118
19.8k
    const STRINGLIB_CHAR *p;
119
19.8k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
19.8k
    if (n > MEMRCHR_CUT_OFF) {
126
3.51k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.51k
        p = memrchr(s, ch, n);
128
3.51k
        if (p != NULL)
129
826
            return (p - s);
130
2.69k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.51k
    }
169
16.3k
#endif  /* HAVE_MEMRCHR */
170
16.3k
    p = s + n;
171
85.4k
    while (p > s) {
172
73.9k
        p--;
173
73.9k
        if (*p == ch)
174
4.86k
            return (p - s);
175
73.9k
    }
176
11.5k
    return -1;
177
16.3k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_rfind_char
178
179
#undef MEMRCHR_CUT_OFF
180
181
/* Change to a 1 to see logging comments walk through the algorithm. */
182
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
183
# define LOG(...) printf(__VA_ARGS__)
184
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
185
# define LOG_LINEUP() do {                                         \
186
    LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> ");    \
187
    LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
188
    LOG_STRING(needle, len_needle); LOG("\n");                     \
189
} while(0)
190
#else
191
# define LOG(...)
192
# define LOG_STRING(s, n)
193
# define LOG_LINEUP()
194
#endif
195
196
Py_LOCAL_INLINE(Py_ssize_t)
197
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
198
                       Py_ssize_t *return_period, int invert_alphabet)
199
40
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
40
    Py_ssize_t max_suffix = 0;
204
40
    Py_ssize_t candidate = 1;
205
40
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
40
    Py_ssize_t period = 1;
208
209
400
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
360
        STRINGLIB_CHAR a = needle[candidate + k];
212
360
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
360
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
260
            candidate += k + 1;
219
260
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
260
            period = candidate - max_suffix;
223
260
        }
224
100
        else if (a == b) {
225
20
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
20
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
20
                candidate += period;
233
20
                k = 0;
234
20
            }
235
20
        }
236
80
        else {
237
            // Did better than max_suffix, so replace it.
238
80
            max_suffix = candidate;
239
80
            candidate++;
240
80
            k = 0;
241
80
            period = 1;
242
80
        }
243
360
    }
244
40
    *return_period = period;
245
40
    return max_suffix;
246
40
}
Unexecuted instantiation: bytesobject.c:stringlib__lex_search
Unexecuted instantiation: unicodeobject.c:asciilib__lex_search
unicodeobject.c:ucs1lib__lex_search
Line
Count
Source
199
40
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
40
    Py_ssize_t max_suffix = 0;
204
40
    Py_ssize_t candidate = 1;
205
40
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
40
    Py_ssize_t period = 1;
208
209
400
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
360
        STRINGLIB_CHAR a = needle[candidate + k];
212
360
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
360
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
260
            candidate += k + 1;
219
260
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
260
            period = candidate - max_suffix;
223
260
        }
224
100
        else if (a == b) {
225
20
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
20
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
20
                candidate += period;
233
20
                k = 0;
234
20
            }
235
20
        }
236
80
        else {
237
            // Did better than max_suffix, so replace it.
238
80
            max_suffix = candidate;
239
80
            candidate++;
240
80
            k = 0;
241
80
            period = 1;
242
80
        }
243
360
    }
244
40
    *return_period = period;
245
40
    return max_suffix;
246
40
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__lex_search
Unexecuted instantiation: unicodeobject.c:ucs4lib__lex_search
Unexecuted instantiation: bytes_methods.c:stringlib__lex_search
Unexecuted instantiation: bytearrayobject.c:stringlib__lex_search
247
248
Py_LOCAL_INLINE(Py_ssize_t)
249
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
250
                      Py_ssize_t len_needle,
251
                      Py_ssize_t *return_period)
252
20
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
20
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
20
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
20
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
20
    if (cut1 > cut2) {
291
20
        period = period1;
292
20
        cut = cut1;
293
20
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
20
    LOG("split: "); LOG_STRING(needle, cut);
300
20
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
20
    LOG("\n");
302
303
20
    *return_period = period;
304
20
    return cut;
305
20
}
Unexecuted instantiation: bytesobject.c:stringlib__factorize
Unexecuted instantiation: unicodeobject.c:asciilib__factorize
unicodeobject.c:ucs1lib__factorize
Line
Count
Source
252
20
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
20
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
20
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
20
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
20
    if (cut1 > cut2) {
291
20
        period = period1;
292
20
        cut = cut1;
293
20
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
20
    LOG("split: "); LOG_STRING(needle, cut);
300
20
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
20
    LOG("\n");
302
303
20
    *return_period = period;
304
20
    return cut;
305
20
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__factorize
Unexecuted instantiation: unicodeobject.c:ucs4lib__factorize
Unexecuted instantiation: bytes_methods.c:stringlib__factorize
Unexecuted instantiation: bytearrayobject.c:stringlib__factorize
306
307
308
220
#define SHIFT_TYPE uint8_t
309
#define MAX_SHIFT UINT8_MAX
310
311
69.2k
#define TABLE_SIZE_BITS 6u
312
69.2k
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
313
67.9k
#define TABLE_MASK (TABLE_SIZE - 1U)
314
315
typedef struct STRINGLIB(_pre) {
316
    const STRINGLIB_CHAR *needle;
317
    Py_ssize_t len_needle;
318
    Py_ssize_t cut;
319
    Py_ssize_t period;
320
    Py_ssize_t gap;
321
    int is_periodic;
322
    SHIFT_TYPE table[TABLE_SIZE];
323
} STRINGLIB(prework);
324
325
326
static void
327
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
328
                       STRINGLIB(prework) *p)
329
20
{
330
20
    p->needle = needle;
331
20
    p->len_needle = len_needle;
332
20
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
20
    assert(p->period + p->cut <= len_needle);
334
20
    p->is_periodic = (0 == memcmp(needle,
335
20
                                  needle + p->period,
336
20
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
20
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
20
    else {
342
        // A lower bound on the period
343
20
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
20
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
20
    p->gap = len_needle;
348
20
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
140
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
140
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
140
        if (x == last) {
352
20
            p->gap = len_needle - 1 - i;
353
20
            break;
354
20
        }
355
140
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
20
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.30k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.28k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.28k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.28k
    }
362
220
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
200
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
200
                                            Py_ssize_t, SHIFT_TYPE);
365
200
        p->table[needle[i] & TABLE_MASK] = shift;
366
200
    }
367
20
}
Unexecuted instantiation: bytesobject.c:stringlib__preprocess
Unexecuted instantiation: unicodeobject.c:asciilib__preprocess
unicodeobject.c:ucs1lib__preprocess
Line
Count
Source
329
20
{
330
20
    p->needle = needle;
331
20
    p->len_needle = len_needle;
332
20
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
20
    assert(p->period + p->cut <= len_needle);
334
20
    p->is_periodic = (0 == memcmp(needle,
335
20
                                  needle + p->period,
336
20
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
20
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
20
    else {
342
        // A lower bound on the period
343
20
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
20
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
20
    p->gap = len_needle;
348
20
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
140
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
140
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
140
        if (x == last) {
352
20
            p->gap = len_needle - 1 - i;
353
20
            break;
354
20
        }
355
140
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
20
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.30k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.28k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.28k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.28k
    }
362
220
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
200
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
200
                                            Py_ssize_t, SHIFT_TYPE);
365
200
        p->table[needle[i] & TABLE_MASK] = shift;
366
200
    }
367
20
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__preprocess
Unexecuted instantiation: unicodeobject.c:ucs4lib__preprocess
Unexecuted instantiation: bytes_methods.c:stringlib__preprocess
Unexecuted instantiation: bytearrayobject.c:stringlib__preprocess
368
369
static Py_ssize_t
370
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
371
                    STRINGLIB(prework) *p)
372
20
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
20
    const Py_ssize_t len_needle = p->len_needle;
376
20
    const Py_ssize_t cut = p->cut;
377
20
    Py_ssize_t period = p->period;
378
20
    const STRINGLIB_CHAR *const needle = p->needle;
379
20
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
20
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
20
    SHIFT_TYPE *table = p->table;
382
20
    const STRINGLIB_CHAR *window;
383
20
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
20
    Py_ssize_t gap = p->gap;
386
20
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
20
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
20
    else {
454
20
        period = Py_MAX(gap, period);
455
20
        LOG("Needle is not periodic.\n");
456
12.3k
      windowloop:
457
12.3k
        while (window_last < haystack_end) {
458
67.5k
            for (;;) {
459
67.5k
                LOG_LINEUP();
460
67.5k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
67.5k
                window_last += shift;
462
67.5k
                if (shift == 0) {
463
12.3k
                    break;
464
12.3k
                }
465
55.2k
                if (window_last >= haystack_end) {
466
17
                    return -1;
467
17
                }
468
55.2k
                LOG("Horspool skip\n");
469
55.2k
            }
470
12.3k
            window = window_last - len_needle + 1;
471
12.3k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
12.3k
                   (needle[len_needle - 1] & TABLE_MASK));
473
12.3k
            Py_ssize_t i = cut;
474
12.5k
            for (; i < len_needle; i++) {
475
12.4k
                if (needle[i] != window[i]) {
476
12.2k
                    if (i < gap_jump_end) {
477
12.2k
                        LOG("Early right half mismatch: jump by gap.\n");
478
12.2k
                        assert(gap >= i - cut + 1);
479
12.2k
                        window_last += gap;
480
12.2k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
12.2k
                    goto windowloop;
487
12.2k
                }
488
12.4k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
12.3k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
20
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way
Unexecuted instantiation: unicodeobject.c:asciilib__two_way
unicodeobject.c:ucs1lib__two_way
Line
Count
Source
372
20
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
20
    const Py_ssize_t len_needle = p->len_needle;
376
20
    const Py_ssize_t cut = p->cut;
377
20
    Py_ssize_t period = p->period;
378
20
    const STRINGLIB_CHAR *const needle = p->needle;
379
20
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
20
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
20
    SHIFT_TYPE *table = p->table;
382
20
    const STRINGLIB_CHAR *window;
383
20
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
20
    Py_ssize_t gap = p->gap;
386
20
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
20
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
20
    else {
454
20
        period = Py_MAX(gap, period);
455
20
        LOG("Needle is not periodic.\n");
456
12.3k
      windowloop:
457
12.3k
        while (window_last < haystack_end) {
458
67.5k
            for (;;) {
459
67.5k
                LOG_LINEUP();
460
67.5k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
67.5k
                window_last += shift;
462
67.5k
                if (shift == 0) {
463
12.3k
                    break;
464
12.3k
                }
465
55.2k
                if (window_last >= haystack_end) {
466
17
                    return -1;
467
17
                }
468
55.2k
                LOG("Horspool skip\n");
469
55.2k
            }
470
12.3k
            window = window_last - len_needle + 1;
471
12.3k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
12.3k
                   (needle[len_needle - 1] & TABLE_MASK));
473
12.3k
            Py_ssize_t i = cut;
474
12.5k
            for (; i < len_needle; i++) {
475
12.4k
                if (needle[i] != window[i]) {
476
12.2k
                    if (i < gap_jump_end) {
477
12.2k
                        LOG("Early right half mismatch: jump by gap.\n");
478
12.2k
                        assert(gap >= i - cut + 1);
479
12.2k
                        window_last += gap;
480
12.2k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
12.2k
                    goto windowloop;
487
12.2k
                }
488
12.4k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
12.3k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
20
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way
Unexecuted instantiation: bytes_methods.c:stringlib__two_way
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way
503
504
505
static Py_ssize_t
506
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
507
                         Py_ssize_t len_haystack,
508
                         const STRINGLIB_CHAR *needle,
509
                         Py_ssize_t len_needle)
510
20
{
511
20
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
20
    STRINGLIB(prework) p;
513
20
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
20
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
20
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_find
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_find
unicodeobject.c:ucs1lib__two_way_find
Line
Count
Source
510
20
{
511
20
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
20
    STRINGLIB(prework) p;
513
20
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
20
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
20
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_find
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_find
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_find
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_find
516
517
518
static Py_ssize_t
519
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
520
                          Py_ssize_t len_haystack,
521
                          const STRINGLIB_CHAR *needle,
522
                          Py_ssize_t len_needle,
523
                          Py_ssize_t maxcount)
524
0
{
525
0
    LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
526
0
    STRINGLIB(prework) p;
527
0
    STRINGLIB(_preprocess)(needle, len_needle, &p);
528
0
    Py_ssize_t index = 0, count = 0;
529
0
    while (1) {
530
0
        Py_ssize_t result;
531
0
        result = STRINGLIB(_two_way)(haystack + index,
532
0
                                     len_haystack - index, &p);
533
0
        if (result == -1) {
534
0
            return count;
535
0
        }
536
0
        count++;
537
0
        if (count == maxcount) {
538
0
            return maxcount;
539
0
        }
540
0
        index += result + len_needle;
541
0
    }
542
0
    return count;
543
0
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_count
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs1lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_count
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_count
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_count
544
545
#undef SHIFT_TYPE
546
#undef NOT_FOUND
547
#undef SHIFT_OVERFLOW
548
#undef TABLE_SIZE_BITS
549
#undef TABLE_SIZE
550
#undef TABLE_MASK
551
552
#undef LOG
553
#undef LOG_STRING
554
#undef LOG_LINEUP
555
556
static inline Py_ssize_t
557
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
558
                        const STRINGLIB_CHAR* p, Py_ssize_t m,
559
                        Py_ssize_t maxcount, int mode)
560
16.4M
{
561
16.4M
    const Py_ssize_t w = n - m;
562
16.4M
    Py_ssize_t mlast = m - 1, count = 0;
563
16.4M
    Py_ssize_t gap = mlast;
564
16.4M
    const STRINGLIB_CHAR last = p[mlast];
565
16.4M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
16.4M
    unsigned long mask = 0;
568
33.0M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
16.5M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
16.5M
        if (p[i] == last) {
571
360k
            gap = mlast - i - 1;
572
360k
        }
573
16.5M
    }
574
16.4M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
6.06G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
6.05G
        if (ss[i] == last) {
578
            /* candidate match */
579
66.4M
            Py_ssize_t j;
580
89.4M
            for (j = 0; j < mlast; j++) {
581
66.4M
                if (s[i+j] != p[j]) {
582
43.4M
                    break;
583
43.4M
                }
584
66.4M
            }
585
66.4M
            if (j == mlast) {
586
                /* got a match! */
587
22.9M
                if (mode != FAST_COUNT) {
588
11.5M
                    return i;
589
11.5M
                }
590
11.4M
                count++;
591
11.4M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
11.4M
                i = i + mlast;
595
11.4M
                continue;
596
11.4M
            }
597
            /* miss: check if next character is part of pattern */
598
43.4M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
8.75M
                i = i + m;
600
8.75M
            }
601
34.6M
            else {
602
34.6M
                i = i + gap;
603
34.6M
            }
604
43.4M
        }
605
5.99G
        else {
606
            /* skip: check if next character is part of pattern */
607
5.99G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
5.94G
                i = i + m;
609
5.94G
            }
610
5.99G
        }
611
6.05G
    }
612
4.91M
    return mode == FAST_COUNT ? count : -1;
613
16.4M
}
Unexecuted instantiation: bytesobject.c:stringlib_default_find
unicodeobject.c:asciilib_default_find
Line
Count
Source
560
1.76M
{
561
1.76M
    const Py_ssize_t w = n - m;
562
1.76M
    Py_ssize_t mlast = m - 1, count = 0;
563
1.76M
    Py_ssize_t gap = mlast;
564
1.76M
    const STRINGLIB_CHAR last = p[mlast];
565
1.76M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
1.76M
    unsigned long mask = 0;
568
3.53M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
1.76M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
1.76M
        if (p[i] == last) {
571
17.5k
            gap = mlast - i - 1;
572
17.5k
        }
573
1.76M
    }
574
1.76M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
165M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
165M
        if (ss[i] == last) {
578
            /* candidate match */
579
3.39M
            Py_ssize_t j;
580
5.13M
            for (j = 0; j < mlast; j++) {
581
3.40M
                if (s[i+j] != p[j]) {
582
1.65M
                    break;
583
1.65M
                }
584
3.40M
            }
585
3.39M
            if (j == mlast) {
586
                /* got a match! */
587
1.73M
                if (mode != FAST_COUNT) {
588
1.73M
                    return i;
589
1.73M
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
1.65M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
29.1k
                i = i + m;
600
29.1k
            }
601
1.62M
            else {
602
1.62M
                i = i + gap;
603
1.62M
            }
604
1.65M
        }
605
162M
        else {
606
            /* skip: check if next character is part of pattern */
607
162M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
157M
                i = i + m;
609
157M
            }
610
162M
        }
611
165M
    }
612
23.6k
    return mode == FAST_COUNT ? count : -1;
613
1.76M
}
unicodeobject.c:ucs1lib_default_find
Line
Count
Source
560
6.45M
{
561
6.45M
    const Py_ssize_t w = n - m;
562
6.45M
    Py_ssize_t mlast = m - 1, count = 0;
563
6.45M
    Py_ssize_t gap = mlast;
564
6.45M
    const STRINGLIB_CHAR last = p[mlast];
565
6.45M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
6.45M
    unsigned long mask = 0;
568
12.9M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
6.51M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
6.51M
        if (p[i] == last) {
571
276k
            gap = mlast - i - 1;
572
276k
        }
573
6.51M
    }
574
6.45M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
3.14G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
3.13G
        if (ss[i] == last) {
578
            /* candidate match */
579
28.2M
            Py_ssize_t j;
580
33.4M
            for (j = 0; j < mlast; j++) {
581
28.2M
                if (s[i+j] != p[j]) {
582
23.0M
                    break;
583
23.0M
                }
584
28.2M
            }
585
28.2M
            if (j == mlast) {
586
                /* got a match! */
587
5.20M
                if (mode != FAST_COUNT) {
588
1.73M
                    return i;
589
1.73M
                }
590
3.46M
                count++;
591
3.46M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.46M
                i = i + mlast;
595
3.46M
                continue;
596
3.46M
            }
597
            /* miss: check if next character is part of pattern */
598
23.0M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
5.24M
                i = i + m;
600
5.24M
            }
601
17.8M
            else {
602
17.8M
                i = i + gap;
603
17.8M
            }
604
23.0M
        }
605
3.10G
        else {
606
            /* skip: check if next character is part of pattern */
607
3.10G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
3.09G
                i = i + m;
609
3.09G
            }
610
3.10G
        }
611
3.13G
    }
612
4.71M
    return mode == FAST_COUNT ? count : -1;
613
6.45M
}
unicodeobject.c:ucs2lib_default_find
Line
Count
Source
560
3.20M
{
561
3.20M
    const Py_ssize_t w = n - m;
562
3.20M
    Py_ssize_t mlast = m - 1, count = 0;
563
3.20M
    Py_ssize_t gap = mlast;
564
3.20M
    const STRINGLIB_CHAR last = p[mlast];
565
3.20M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.20M
    unsigned long mask = 0;
568
6.42M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
3.22M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
3.22M
        if (p[i] == last) {
571
38.6k
            gap = mlast - i - 1;
572
38.6k
        }
573
3.22M
    }
574
3.20M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.06G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.06G
        if (ss[i] == last) {
578
            /* candidate match */
579
11.5M
            Py_ssize_t j;
580
17.6M
            for (j = 0; j < mlast; j++) {
581
11.5M
                if (s[i+j] != p[j]) {
582
5.41M
                    break;
583
5.41M
                }
584
11.5M
            }
585
11.5M
            if (j == mlast) {
586
                /* got a match! */
587
6.13M
                if (mode != FAST_COUNT) {
588
3.10M
                    return i;
589
3.10M
                }
590
3.02M
                count++;
591
3.02M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.02M
                i = i + mlast;
595
3.02M
                continue;
596
3.02M
            }
597
            /* miss: check if next character is part of pattern */
598
5.41M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.27M
                i = i + m;
600
1.27M
            }
601
4.14M
            else {
602
4.14M
                i = i + gap;
603
4.14M
            }
604
5.41M
        }
605
1.05G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.05G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.04G
                i = i + m;
609
1.04G
            }
610
1.05G
        }
611
1.06G
    }
612
101k
    return mode == FAST_COUNT ? count : -1;
613
3.20M
}
unicodeobject.c:ucs4lib_default_find
Line
Count
Source
560
5.03M
{
561
5.03M
    const Py_ssize_t w = n - m;
562
5.03M
    Py_ssize_t mlast = m - 1, count = 0;
563
5.03M
    Py_ssize_t gap = mlast;
564
5.03M
    const STRINGLIB_CHAR last = p[mlast];
565
5.03M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
5.03M
    unsigned long mask = 0;
568
10.0M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
5.04M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
5.04M
        if (p[i] == last) {
571
24.6k
            gap = mlast - i - 1;
572
24.6k
        }
573
5.04M
    }
574
5.03M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.68G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.68G
        if (ss[i] == last) {
578
            /* candidate match */
579
23.1M
            Py_ssize_t j;
580
33.0M
            for (j = 0; j < mlast; j++) {
581
23.2M
                if (s[i+j] != p[j]) {
582
13.2M
                    break;
583
13.2M
                }
584
23.2M
            }
585
23.1M
            if (j == mlast) {
586
                /* got a match! */
587
9.89M
                if (mode != FAST_COUNT) {
588
4.95M
                    return i;
589
4.95M
                }
590
4.93M
                count++;
591
4.93M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
4.93M
                i = i + mlast;
595
4.93M
                continue;
596
4.93M
            }
597
            /* miss: check if next character is part of pattern */
598
13.2M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
2.20M
                i = i + m;
600
2.20M
            }
601
11.0M
            else {
602
11.0M
                i = i + gap;
603
11.0M
            }
604
13.2M
        }
605
1.66G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.66G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.64G
                i = i + m;
609
1.64G
            }
610
1.66G
        }
611
1.68G
    }
612
71.4k
    return mode == FAST_COUNT ? count : -1;
613
5.03M
}
bytes_methods.c:stringlib_default_find
Line
Count
Source
560
3.13k
{
561
3.13k
    const Py_ssize_t w = n - m;
562
3.13k
    Py_ssize_t mlast = m - 1, count = 0;
563
3.13k
    Py_ssize_t gap = mlast;
564
3.13k
    const STRINGLIB_CHAR last = p[mlast];
565
3.13k
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.13k
    unsigned long mask = 0;
568
12.5k
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
9.41k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
9.41k
        if (p[i] == last) {
571
3.13k
            gap = mlast - i - 1;
572
3.13k
        }
573
9.41k
    }
574
3.13k
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.26M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.26M
        if (ss[i] == last) {
578
            /* candidate match */
579
9.00k
            Py_ssize_t j;
580
17.9k
            for (j = 0; j < mlast; j++) {
581
15.0k
                if (s[i+j] != p[j]) {
582
6.10k
                    break;
583
6.10k
                }
584
15.0k
            }
585
9.00k
            if (j == mlast) {
586
                /* got a match! */
587
2.89k
                if (mode != FAST_COUNT) {
588
2.89k
                    return i;
589
2.89k
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
6.10k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
621
                i = i + m;
600
621
            }
601
5.48k
            else {
602
5.48k
                i = i + gap;
603
5.48k
            }
604
6.10k
        }
605
1.25M
        else {
606
            /* skip: check if next character is part of pattern */
607
1.25M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
48.7k
                i = i + m;
609
48.7k
            }
610
1.25M
        }
611
1.26M
    }
612
245
    return mode == FAST_COUNT ? count : -1;
613
3.13k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_find
614
615
616
static Py_ssize_t
617
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
618
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
619
                         Py_ssize_t maxcount, int mode)
620
0
{
621
0
    const Py_ssize_t w = n - m;
622
0
    Py_ssize_t mlast = m - 1, count = 0;
623
0
    Py_ssize_t gap = mlast;
624
0
    Py_ssize_t hits = 0, res;
625
0
    const STRINGLIB_CHAR last = p[mlast];
626
0
    const STRINGLIB_CHAR *const ss = &s[mlast];
627
628
0
    unsigned long mask = 0;
629
0
    for (Py_ssize_t i = 0; i < mlast; i++) {
630
0
        STRINGLIB_BLOOM_ADD(mask, p[i]);
631
0
        if (p[i] == last) {
632
0
            gap = mlast - i - 1;
633
0
        }
634
0
    }
635
0
    STRINGLIB_BLOOM_ADD(mask, last);
636
637
0
    for (Py_ssize_t i = 0; i <= w; i++) {
638
0
        if (ss[i] == last) {
639
            /* candidate match */
640
0
            Py_ssize_t j;
641
0
            for (j = 0; j < mlast; j++) {
642
0
                if (s[i+j] != p[j]) {
643
0
                    break;
644
0
                }
645
0
            }
646
0
            if (j == mlast) {
647
                /* got a match! */
648
0
                if (mode != FAST_COUNT) {
649
0
                    return i;
650
0
                }
651
0
                count++;
652
0
                if (count == maxcount) {
653
0
                    return maxcount;
654
0
                }
655
0
                i = i + mlast;
656
0
                continue;
657
0
            }
658
0
            hits += j + 1;
659
0
            if (hits > m / 4 && w - i > 2000) {
660
0
                if (mode == FAST_SEARCH) {
661
0
                    res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
662
0
                    return res == -1 ? -1 : res + i;
663
0
                }
664
0
                else {
665
0
                    res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
666
0
                                                    maxcount - count);
667
0
                    return res + count;
668
0
                }
669
0
            }
670
            /* miss: check if next character is part of pattern */
671
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
672
0
                i = i + m;
673
0
            }
674
0
            else {
675
0
                i = i + gap;
676
0
            }
677
0
        }
678
0
        else {
679
            /* skip: check if next character is part of pattern */
680
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
681
0
                i = i + m;
682
0
            }
683
0
        }
684
0
    }
685
0
    return mode == FAST_COUNT ? count : -1;
686
0
}
Unexecuted instantiation: bytesobject.c:stringlib_adaptive_find
Unexecuted instantiation: unicodeobject.c:asciilib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs1lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs2lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs4lib_adaptive_find
Unexecuted instantiation: bytes_methods.c:stringlib_adaptive_find
Unexecuted instantiation: bytearrayobject.c:stringlib_adaptive_find
687
688
689
static Py_ssize_t
690
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
691
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
692
                         Py_ssize_t maxcount, int mode)
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytesobject.c:stringlib_default_rfind
Unexecuted instantiation: unicodeobject.c:asciilib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs1lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs2lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs4lib_default_rfind
bytes_methods.c:stringlib_default_rfind
Line
Count
Source
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_rfind
737
738
739
static inline Py_ssize_t
740
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
741
                      const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
742
0
{
743
0
    Py_ssize_t i, count = 0;
744
0
    for (i = 0; i < n; i++) {
745
0
        if (s[i] == p0) {
746
0
            count++;
747
0
            if (count == maxcount) {
748
0
                return maxcount;
749
0
            }
750
0
        }
751
0
    }
752
0
    return count;
753
0
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char
Unexecuted instantiation: unicodeobject.c:asciilib_count_char
Unexecuted instantiation: unicodeobject.c:ucs1lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs2lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs4lib_count_char
Unexecuted instantiation: bytes_methods.c:stringlib_count_char
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char
754
755
756
static inline Py_ssize_t
757
STRINGLIB(count_char_no_maxcount)(const STRINGLIB_CHAR *s, Py_ssize_t n,
758
                                  const STRINGLIB_CHAR p0)
759
/* A specialized function of count_char that does not cut off at a maximum.
760
   As a result, the compiler is able to vectorize the loop. */
761
63.8M
{
762
63.8M
    Py_ssize_t count = 0;
763
14.5G
    for (Py_ssize_t i = 0; i < n; i++) {
764
14.4G
        if (s[i] == p0) {
765
301M
            count++;
766
301M
        }
767
14.4G
    }
768
63.8M
    return count;
769
63.8M
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: unicodeobject.c:asciilib_count_char_no_maxcount
unicodeobject.c:ucs1lib_count_char_no_maxcount
Line
Count
Source
761
53.2M
{
762
53.2M
    Py_ssize_t count = 0;
763
9.55G
    for (Py_ssize_t i = 0; i < n; i++) {
764
9.50G
        if (s[i] == p0) {
765
81.3M
            count++;
766
81.3M
        }
767
9.50G
    }
768
53.2M
    return count;
769
53.2M
}
unicodeobject.c:ucs2lib_count_char_no_maxcount
Line
Count
Source
761
9.80M
{
762
9.80M
    Py_ssize_t count = 0;
763
2.34G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.33G
        if (s[i] == p0) {
765
84.6M
            count++;
766
84.6M
        }
767
2.33G
    }
768
9.80M
    return count;
769
9.80M
}
unicodeobject.c:ucs4lib_count_char_no_maxcount
Line
Count
Source
761
732k
{
762
732k
    Py_ssize_t count = 0;
763
2.66G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.66G
        if (s[i] == p0) {
765
135M
            count++;
766
135M
        }
767
2.66G
    }
768
732k
    return count;
769
732k
}
Unexecuted instantiation: bytes_methods.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char_no_maxcount
770
771
772
Py_LOCAL_INLINE(Py_ssize_t)
773
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
774
           const STRINGLIB_CHAR* p, Py_ssize_t m,
775
           Py_ssize_t maxcount, int mode)
776
279M
{
777
279M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
15.7k
        return -1;
779
15.7k
    }
780
781
    /* look for special cases */
782
279M
    if (m <= 1) {
783
263M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
263M
        if (mode == FAST_SEARCH)
788
199M
            return STRINGLIB(find_char)(s, n, p[0]);
789
63.8M
        else if (mode == FAST_RSEARCH)
790
9.76k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
63.8M
        else {
792
63.8M
            if (maxcount == PY_SSIZE_T_MAX) {
793
63.8M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
63.8M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
63.8M
        }
797
263M
    }
798
799
16.4M
    if (mode != FAST_RSEARCH) {
800
16.4M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
16.4M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
16.4M
        }
803
20
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
20
            if (mode == FAST_SEARCH) {
810
20
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
20
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
20
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
16.4M
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
16.4M
}
Unexecuted instantiation: bytesobject.c:fastsearch
unicodeobject.c:asciilib_fastsearch
Line
Count
Source
776
26.6M
{
777
26.6M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
26.6M
    if (m <= 1) {
783
24.9M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
24.9M
        if (mode == FAST_SEARCH)
788
24.9M
            return STRINGLIB(find_char)(s, n, p[0]);
789
9.76k
        else if (mode == FAST_RSEARCH)
790
9.76k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
24.9M
    }
798
799
1.76M
    if (mode != FAST_RSEARCH) {
800
1.76M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
1.76M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
1.76M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
1.76M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
1.76M
}
unicodeobject.c:ucs1lib_fastsearch
Line
Count
Source
776
65.9M
{
777
65.9M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
65.9M
    if (m <= 1) {
783
59.4M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
59.4M
        if (mode == FAST_SEARCH)
788
6.19M
            return STRINGLIB(find_char)(s, n, p[0]);
789
53.2M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
53.2M
        else {
792
53.2M
            if (maxcount == PY_SSIZE_T_MAX) {
793
53.2M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
53.2M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
53.2M
        }
797
59.4M
    }
798
799
6.45M
    if (mode != FAST_RSEARCH) {
800
6.45M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
6.45M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
6.45M
        }
803
20
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
20
            if (mode == FAST_SEARCH) {
810
20
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
20
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
20
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
6.45M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
6.45M
}
unicodeobject.c:ucs2lib_fastsearch
Line
Count
Source
776
81.8M
{
777
81.8M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
15.7k
        return -1;
779
15.7k
    }
780
781
    /* look for special cases */
782
81.8M
    if (m <= 1) {
783
78.6M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
78.6M
        if (mode == FAST_SEARCH)
788
68.8M
            return STRINGLIB(find_char)(s, n, p[0]);
789
9.80M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
9.80M
        else {
792
9.80M
            if (maxcount == PY_SSIZE_T_MAX) {
793
9.80M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
9.80M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
9.80M
        }
797
78.6M
    }
798
799
3.20M
    if (mode != FAST_RSEARCH) {
800
3.20M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.20M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.20M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.20M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
3.20M
}
unicodeobject.c:ucs4lib_fastsearch
Line
Count
Source
776
105M
{
777
105M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
105M
    if (m <= 1) {
783
100M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
100M
        if (mode == FAST_SEARCH)
788
99.4M
            return STRINGLIB(find_char)(s, n, p[0]);
789
732k
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
732k
        else {
792
732k
            if (maxcount == PY_SSIZE_T_MAX) {
793
732k
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
732k
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
732k
        }
797
100M
    }
798
799
5.03M
    if (mode != FAST_RSEARCH) {
800
5.03M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
5.03M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
5.03M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
5.03M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
5.03M
}
bytes_methods.c:fastsearch
Line
Count
Source
776
3.15k
{
777
3.15k
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
10
        return -1;
779
10
    }
780
781
    /* look for special cases */
782
3.14k
    if (m <= 1) {
783
0
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
0
        if (mode == FAST_SEARCH)
788
0
            return STRINGLIB(find_char)(s, n, p[0]);
789
0
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
0
    }
798
799
3.14k
    if (mode != FAST_RSEARCH) {
800
3.13k
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.13k
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.13k
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.13k
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
3.14k
}
Unexecuted instantiation: bytearrayobject.c:fastsearch
830