Coverage Report

Created: 2025-08-29 06:15

/src/cpython/Python/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
35
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.35M
#define word0(x) (x)->L[1]
181
889k
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
3.43M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
64.8k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
479k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
1.62M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
151k
#define Exp_shift  20
235
82.1k
#define Exp_shift1 20
236
401k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
790k
#define Exp_mask  0x7ff00000
239
351k
#define P 53
240
#define Nbits 53
241
181k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
264k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
85.2k
#define Exp_1  0x3ff00000
246
36.8k
#define Exp_11 0x3ff00000
247
171k
#define Ebits 11
248
132k
#define Frac_mask  0xfffff
249
39.0k
#define Frac_mask1 0xfffff
250
951k
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
58.4k
#define Bndry_mask  0xfffff
253
6.77k
#define Bndry_mask1 0xfffff
254
57.0k
#define Sign_bit 0x80000000
255
6.00k
#define Log2P 1
256
#define Tiny0 0
257
19.0k
#define Tiny1 1
258
41.0k
#define Quick_max 14
259
24.8k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
514k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.57k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.25k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
13.7M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.25M
#define freelist interp->dtoa.freelist
336
207
#define private_mem interp->dtoa.preallocated
337
551
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.31M
{
344
1.31M
    int x;
345
1.31M
    Bigint *rv;
346
1.31M
    unsigned int len;
347
1.31M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.31M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.31M
        freelist[k] = rv->next;
351
207
    else {
352
207
        x = 1 << k;
353
207
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
207
            /sizeof(double);
355
207
        if (k <= Bigint_Kmax &&
356
207
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
207
        ) {
358
172
            rv = (Bigint*)pmem_next;
359
172
            pmem_next += len;
360
172
        }
361
35
        else {
362
35
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
35
            if (rv == NULL)
364
0
                return NULL;
365
35
        }
366
207
        rv->k = k;
367
207
        rv->maxwds = x;
368
207
    }
369
1.31M
    rv->sign = rv->wds = 0;
370
1.31M
    return rv;
371
1.31M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
3.70M
{
378
3.70M
    if (v) {
379
1.31M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.31M
        else {
382
1.31M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.31M
            v->next = freelist[v->k];
384
1.31M
            freelist[v->k] = v;
385
1.31M
        }
386
1.31M
    }
387
3.70M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
86.7k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
86.7k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
605k
{
445
605k
    int i, wds;
446
605k
    ULong *x;
447
605k
    ULLong carry, y;
448
605k
    Bigint *b1;
449
450
605k
    wds = b->wds;
451
605k
    x = b->x;
452
605k
    i = 0;
453
605k
    carry = a;
454
2.03M
    do {
455
2.03M
        y = *x * (ULLong)m + carry;
456
2.03M
        carry = y >> 32;
457
2.03M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.03M
    }
459
2.03M
    while(++i < wds);
460
605k
    if (carry) {
461
39.6k
        if (wds >= b->maxwds) {
462
1.51k
            b1 = Balloc(b->k+1);
463
1.51k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.51k
            Bcopy(b1, b);
468
1.51k
            Bfree(b);
469
1.51k
            b = b1;
470
1.51k
        }
471
39.6k
        b->x[wds++] = (ULong)carry;
472
39.6k
        b->wds = wds;
473
39.6k
    }
474
605k
    return b;
475
605k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
64.8k
{
486
64.8k
    Bigint *b;
487
64.8k
    int i, k;
488
64.8k
    Long x, y;
489
490
64.8k
    x = (nd + 8) / 9;
491
95.1k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
64.8k
    b = Balloc(k);
493
64.8k
    if (b == NULL)
494
0
        return NULL;
495
64.8k
    b->x[0] = y9;
496
64.8k
    b->wds = 1;
497
498
64.8k
    if (nd <= 9)
499
40.6k
      return b;
500
501
24.2k
    s += 9;
502
189k
    for (i = 9; i < nd0; i++) {
503
165k
        b = multadd(b, 10, *s++ - '0');
504
165k
        if (b == NULL)
505
0
            return NULL;
506
165k
    }
507
24.2k
    s++;
508
80.5k
    for(; i < nd; i++) {
509
56.2k
        b = multadd(b, 10, *s++ - '0');
510
56.2k
        if (b == NULL)
511
0
            return NULL;
512
56.2k
    }
513
24.2k
    return b;
514
24.2k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
109k
{
521
109k
    int k = 0;
522
523
109k
    if (!(x & 0xffff0000)) {
524
65.1k
        k = 16;
525
65.1k
        x <<= 16;
526
65.1k
    }
527
109k
    if (!(x & 0xff000000)) {
528
68.7k
        k += 8;
529
68.7k
        x <<= 8;
530
68.7k
    }
531
109k
    if (!(x & 0xf0000000)) {
532
65.9k
        k += 4;
533
65.9k
        x <<= 4;
534
65.9k
    }
535
109k
    if (!(x & 0xc0000000)) {
536
62.4k
        k += 2;
537
62.4k
        x <<= 2;
538
62.4k
    }
539
109k
    if (!(x & 0x80000000)) {
540
64.2k
        k++;
541
64.2k
        if (!(x & 0x40000000))
542
0
            return 32;
543
64.2k
    }
544
109k
    return k;
545
109k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
41.0k
{
553
41.0k
    int k;
554
41.0k
    ULong x = *y;
555
556
41.0k
    if (x & 7) {
557
23.5k
        if (x & 1)
558
12.3k
            return 0;
559
11.2k
        if (x & 2) {
560
7.03k
            *y = x >> 1;
561
7.03k
            return 1;
562
7.03k
        }
563
4.25k
        *y = x >> 2;
564
4.25k
        return 2;
565
11.2k
    }
566
17.4k
    k = 0;
567
17.4k
    if (!(x & 0xffff)) {
568
7.59k
        k = 16;
569
7.59k
        x >>= 16;
570
7.59k
    }
571
17.4k
    if (!(x & 0xff)) {
572
3.78k
        k += 8;
573
3.78k
        x >>= 8;
574
3.78k
    }
575
17.4k
    if (!(x & 0xf)) {
576
9.17k
        k += 4;
577
9.17k
        x >>= 4;
578
9.17k
    }
579
17.4k
    if (!(x & 0x3)) {
580
9.28k
        k += 2;
581
9.28k
        x >>= 2;
582
9.28k
    }
583
17.4k
    if (!(x & 1)) {
584
11.6k
        k++;
585
11.6k
        x >>= 1;
586
11.6k
        if (!x)
587
0
            return 32;
588
11.6k
    }
589
17.4k
    *y = x;
590
17.4k
    return k;
591
17.4k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
150k
{
598
150k
    Bigint *b;
599
600
150k
    b = Balloc(1);
601
150k
    if (b == NULL)
602
0
        return NULL;
603
150k
    b->x[0] = i;
604
150k
    b->wds = 1;
605
150k
    return b;
606
150k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
357k
{
614
357k
    Bigint *c;
615
357k
    int k, wa, wb, wc;
616
357k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
357k
    ULong y;
618
357k
    ULLong carry, z;
619
620
357k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
3.90k
        c = Balloc(0);
622
3.90k
        if (c == NULL)
623
0
            return NULL;
624
3.90k
        c->wds = 1;
625
3.90k
        c->x[0] = 0;
626
3.90k
        return c;
627
3.90k
    }
628
629
353k
    if (a->wds < b->wds) {
630
168k
        c = a;
631
168k
        a = b;
632
168k
        b = c;
633
168k
    }
634
353k
    k = a->k;
635
353k
    wa = a->wds;
636
353k
    wb = b->wds;
637
353k
    wc = wa + wb;
638
353k
    if (wc > a->maxwds)
639
149k
        k++;
640
353k
    c = Balloc(k);
641
353k
    if (c == NULL)
642
0
        return NULL;
643
3.37M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.02M
        *x = 0;
645
353k
    xa = a->x;
646
353k
    xae = xa + wa;
647
353k
    xb = b->x;
648
353k
    xbe = xb + wb;
649
353k
    xc0 = c->x;
650
1.11M
    for(; xb < xbe; xc0++) {
651
760k
        if ((y = *xb++)) {
652
755k
            x = xa;
653
755k
            xc = xc0;
654
755k
            carry = 0;
655
7.66M
            do {
656
7.66M
                z = *x++ * (ULLong)y + *xc + carry;
657
7.66M
                carry = z >> 32;
658
7.66M
                *xc++ = (ULong)(z & FFFFFFFF);
659
7.66M
            }
660
7.66M
            while(x < xae);
661
755k
            *xc = (ULong)carry;
662
755k
        }
663
760k
    }
664
606k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
353k
    c->wds = wc;
666
353k
    return c;
667
353k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
111k
{
678
111k
    Bigint *b1, *p5, **p5s;
679
111k
    int i;
680
111k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
111k
    assert(0 <= k && k < 1024);
688
689
111k
    if ((i = k & 3)) {
690
75.9k
        b = multadd(b, p05[i-1], 0);
691
75.9k
        if (b == NULL)
692
0
            return NULL;
693
75.9k
    }
694
695
111k
    if (!(k >>= 2))
696
9.61k
        return b;
697
102k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
102k
    p5s = interp->dtoa.p5s;
699
511k
    for(;;) {
700
511k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
511k
        p5 = *p5s;
702
511k
        p5s++;
703
511k
        if (k & 1) {
704
298k
            b1 = mult(b, p5);
705
298k
            Bfree(b);
706
298k
            b = b1;
707
298k
            if (b == NULL)
708
0
                return NULL;
709
298k
        }
710
511k
        if (!(k >>= 1))
711
102k
            break;
712
511k
    }
713
102k
    return b;
714
102k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
279k
{
775
279k
    int i, k1, n, n1;
776
279k
    Bigint *b1;
777
279k
    ULong *x, *x1, *xe, z;
778
779
279k
    if (!k || (!b->x[0] && b->wds == 1))
780
4.35k
        return b;
781
782
275k
    n = k >> 5;
783
275k
    k1 = b->k;
784
275k
    n1 = n + b->wds + 1;
785
672k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
397k
        k1++;
787
275k
    b1 = Balloc(k1);
788
275k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
275k
    x1 = b1->x;
793
1.59M
    for(i = 0; i < n; i++)
794
1.31M
        *x1++ = 0;
795
275k
    x = b->x;
796
275k
    xe = x + b->wds;
797
275k
    if (k &= 0x1f) {
798
273k
        k1 = 32 - k;
799
273k
        z = 0;
800
1.40M
        do {
801
1.40M
            *x1++ = *x << k | z;
802
1.40M
            z = *x++ >> k1;
803
1.40M
        }
804
1.40M
        while(x < xe);
805
273k
        if ((*x1 = z))
806
41.4k
            ++n1;
807
273k
    }
808
1.82k
    else do
809
4.29k
             *x1++ = *x++;
810
4.29k
        while(x < xe);
811
275k
    b1->wds = n1 - 1;
812
275k
    Bfree(b);
813
275k
    return b1;
814
275k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
788k
{
822
788k
    ULong *xa, *xa0, *xb, *xb0;
823
788k
    int i, j;
824
825
788k
    i = a->wds;
826
788k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
788k
    if (i -= j)
834
167k
        return i;
835
621k
    xa0 = a->x;
836
621k
    xa = xa0 + j;
837
621k
    xb0 = b->x;
838
621k
    xb = xb0 + j;
839
752k
    for(;;) {
840
752k
        if (*--xa != *--xb)
841
604k
            return *xa < *xb ? -1 : 1;
842
147k
        if (xa <= xa0)
843
16.6k
            break;
844
147k
    }
845
16.6k
    return 0;
846
621k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
201k
{
855
201k
    Bigint *c;
856
201k
    int i, wa, wb;
857
201k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
201k
    ULLong borrow, y;
859
860
201k
    i = cmp(a,b);
861
201k
    if (!i) {
862
2.87k
        c = Balloc(0);
863
2.87k
        if (c == NULL)
864
0
            return NULL;
865
2.87k
        c->wds = 1;
866
2.87k
        c->x[0] = 0;
867
2.87k
        return c;
868
2.87k
    }
869
199k
    if (i < 0) {
870
39.1k
        c = a;
871
39.1k
        a = b;
872
39.1k
        b = c;
873
39.1k
        i = 1;
874
39.1k
    }
875
159k
    else
876
159k
        i = 0;
877
199k
    c = Balloc(a->k);
878
199k
    if (c == NULL)
879
0
        return NULL;
880
199k
    c->sign = i;
881
199k
    wa = a->wds;
882
199k
    xa = a->x;
883
199k
    xae = xa + wa;
884
199k
    wb = b->wds;
885
199k
    xb = b->x;
886
199k
    xbe = xb + wb;
887
199k
    xc = c->x;
888
199k
    borrow = 0;
889
1.50M
    do {
890
1.50M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.50M
        borrow = y >> 32 & (ULong)1;
892
1.50M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.50M
    }
894
1.50M
    while(xb < xbe);
895
390k
    while(xa < xae) {
896
191k
        y = *xa++ - borrow;
897
191k
        borrow = y >> 32 & (ULong)1;
898
191k
        *xc++ = (ULong)(y & FFFFFFFF);
899
191k
    }
900
300k
    while(!*--xc)
901
101k
        wa--;
902
199k
    c->wds = wa;
903
199k
    return c;
904
199k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
36.8k
{
912
36.8k
    Long L;
913
36.8k
    U u;
914
915
36.8k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
36.8k
    word0(&u) = L;
917
36.8k
    word1(&u) = 0;
918
36.8k
    return dval(&u);
919
36.8k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
68.2k
{
926
68.2k
    ULong *xa, *xa0, w, y, z;
927
68.2k
    int k;
928
68.2k
    U d;
929
930
68.2k
    xa0 = a->x;
931
68.2k
    xa = xa0 + a->wds;
932
68.2k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
68.2k
    k = hi0bits(y);
937
68.2k
    *e = 32 - k;
938
68.2k
    if (k < Ebits) {
939
17.3k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
17.3k
        w = xa > xa0 ? *--xa : 0;
941
17.3k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
17.3k
        goto ret_d;
943
17.3k
    }
944
50.9k
    z = xa > xa0 ? *--xa : 0;
945
50.9k
    if (k -= Ebits) {
946
47.3k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
47.3k
        y = xa > xa0 ? *--xa : 0;
948
47.3k
        word1(&d) = z << k | y >> (32 - k);
949
47.3k
    }
950
3.54k
    else {
951
3.54k
        word0(&d) = Exp_1 | y;
952
3.54k
        word1(&d) = z;
953
3.54k
    }
954
68.2k
  ret_d:
955
68.2k
    return dval(&d);
956
50.9k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
91.2k
{
982
91.2k
    Bigint *b;
983
984
91.2k
    b = Balloc(1);
985
91.2k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
91.2k
    b->wds = 2;
990
91.2k
    b->x[0] = word1(d);
991
91.2k
    b->x[1] = word0(d) & Frac_mask;
992
91.2k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
91.2k
    if (*e < Etiny)
994
4.35k
        *e = Etiny;
995
86.8k
    else
996
86.8k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
91.2k
    if (scale && (b->x[0] || b->x[1])) {
1000
27.8k
        *e -= scale;
1001
27.8k
        if (*e < Etiny) {
1002
24.7k
            scale = Etiny - *e;
1003
24.7k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
24.7k
            assert(0 < scale && scale <= P - 1);
1006
24.7k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
12.2k
                assert(b->x[0] == 0);
1009
12.2k
                b->x[0] = b->x[1];
1010
12.2k
                b->x[1] = 0;
1011
12.2k
                scale -= 32;
1012
12.2k
            }
1013
24.7k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
23.1k
                assert(b->x[0] << (32 - scale) == 0);
1016
23.1k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
23.1k
                b->x[1] >>= scale;
1018
23.1k
            }
1019
24.7k
        }
1020
27.8k
    }
1021
    /* Ensure b is normalized. */
1022
91.2k
    if (!b->x[1])
1023
20.2k
        b->wds = 1;
1024
1025
91.2k
    return b;
1026
91.2k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
41.0k
{
1040
41.0k
    Bigint *b;
1041
41.0k
    int de, k;
1042
41.0k
    ULong *x, y, z;
1043
41.0k
    int i;
1044
1045
41.0k
    b = Balloc(1);
1046
41.0k
    if (b == NULL)
1047
0
        return NULL;
1048
41.0k
    x = b->x;
1049
1050
41.0k
    z = word0(d) & Frac_mask;
1051
41.0k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
41.0k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
36.8k
        z |= Exp_msk1;
1054
41.0k
    if ((y = word1(d))) {
1055
29.2k
        if ((k = lo0bits(&y))) {
1056
17.5k
            x[0] = y | z << (32 - k);
1057
17.5k
            z >>= k;
1058
17.5k
        }
1059
11.6k
        else
1060
11.6k
            x[0] = y;
1061
29.2k
        i =
1062
29.2k
            b->wds = (x[1] = z) ? 2 : 1;
1063
29.2k
    }
1064
11.8k
    else {
1065
11.8k
        k = lo0bits(&z);
1066
11.8k
        x[0] = z;
1067
11.8k
        i =
1068
11.8k
            b->wds = 1;
1069
11.8k
        k += 32;
1070
11.8k
    }
1071
41.0k
    if (de) {
1072
36.8k
        *e = de - Bias - (P-1) + k;
1073
36.8k
        *bits = P - k;
1074
36.8k
    }
1075
4.23k
    else {
1076
4.23k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.23k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.23k
    }
1079
41.0k
    return b;
1080
41.0k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
34.1k
{
1088
34.1k
    U da, db;
1089
34.1k
    int k, ka, kb;
1090
1091
34.1k
    dval(&da) = b2d(a, &ka);
1092
34.1k
    dval(&db) = b2d(b, &kb);
1093
34.1k
    k = ka - kb + 32*(a->wds - b->wds);
1094
34.1k
    if (k > 0)
1095
20.9k
        word0(&da) += k*Exp_msk1;
1096
13.1k
    else {
1097
13.1k
        k = -k;
1098
13.1k
        word0(&db) += k*Exp_msk1;
1099
13.1k
    }
1100
34.1k
    return dval(&da) / dval(&db);
1101
34.1k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
21.9k
#define Scale_Bit 0x10
1119
22.8k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
36.6k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
36.6k
{
1129
36.6k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
36.6k
    if (p2 > 0)
1131
22.7k
        rv -= p2;
1132
36.6k
    return rv & kmask;
1133
36.6k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
242k
{
1142
242k
    int n;
1143
242k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
242k
    ULLong borrow, carry, y, ys;
1145
1146
242k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
242k
    if (b->wds < n)
1152
7.81k
        return 0;
1153
234k
    sx = S->x;
1154
234k
    sxe = sx + --n;
1155
234k
    bx = b->x;
1156
234k
    bxe = bx + n;
1157
234k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
234k
    if (q) {
1163
185k
        borrow = 0;
1164
185k
        carry = 0;
1165
1.07M
        do {
1166
1.07M
            ys = *sx++ * (ULLong)q + carry;
1167
1.07M
            carry = ys >> 32;
1168
1.07M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.07M
            borrow = y >> 32 & (ULong)1;
1170
1.07M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.07M
        }
1172
1.07M
        while(sx <= sxe);
1173
185k
        if (!*bxe) {
1174
861
            bx = b->x;
1175
861
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
861
            b->wds = n;
1178
861
        }
1179
185k
    }
1180
234k
    if (cmp(b, S) >= 0) {
1181
17.5k
        q++;
1182
17.5k
        borrow = 0;
1183
17.5k
        carry = 0;
1184
17.5k
        bx = b->x;
1185
17.5k
        sx = S->x;
1186
107k
        do {
1187
107k
            ys = *sx++ + carry;
1188
107k
            carry = ys >> 32;
1189
107k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
107k
            borrow = y >> 32 & (ULong)1;
1191
107k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
107k
        }
1193
107k
        while(sx <= sxe);
1194
17.5k
        bx = b->x;
1195
17.5k
        bxe = bx + n;
1196
17.5k
        if (!*bxe) {
1197
18.3k
            while(--bxe > bx && !*bxe)
1198
1.57k
                --n;
1199
16.7k
            b->wds = n;
1200
16.7k
        }
1201
17.5k
    }
1202
234k
    return q;
1203
242k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.09k
{
1214
3.09k
    U u;
1215
1216
3.09k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
398
        word0(&u) = (P+2)*Exp_msk1;
1219
398
        word1(&u) = 0;
1220
398
        return u.d;
1221
398
    }
1222
2.69k
    else {
1223
2.69k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.69k
        return ulp(x);
1225
2.69k
    }
1226
3.09k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
7.04k
{
1277
7.04k
    Bigint *b, *d;
1278
7.04k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
7.04k
    nd = bc->nd;
1281
7.04k
    nd0 = bc->nd0;
1282
7.04k
    p5 = nd + bc->e0;
1283
7.04k
    b = sd2b(rv, bc->scale, &p2);
1284
7.04k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
7.04k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
7.04k
    b = lshift(b, 1);
1294
7.04k
    if (b == NULL)
1295
0
        return -1;
1296
7.04k
    b->x[0] |= 1;
1297
7.04k
    p2--;
1298
1299
7.04k
    p2 -= p5;
1300
7.04k
    d = i2b(1);
1301
7.04k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
7.04k
    if (p5 > 0) {
1309
4.70k
        d = pow5mult(d, p5);
1310
4.70k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
4.70k
    }
1315
2.34k
    else if (p5 < 0) {
1316
1.56k
        b = pow5mult(b, -p5);
1317
1.56k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.56k
    }
1322
7.04k
    if (p2 > 0) {
1323
3.55k
        b2 = p2;
1324
3.55k
        d2 = 0;
1325
3.55k
    }
1326
3.49k
    else {
1327
3.49k
        b2 = 0;
1328
3.49k
        d2 = -p2;
1329
3.49k
    }
1330
7.04k
    i = dshift(d, d2);
1331
7.04k
    if ((b2 += i) > 0) {
1332
6.78k
        b = lshift(b, b2);
1333
6.78k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
6.78k
    }
1338
7.04k
    if ((d2 += i) > 0) {
1339
6.43k
        d = lshift(d, d2);
1340
6.43k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
6.43k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
7.04k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
855
        dd = -1;
1352
6.19k
    else {
1353
6.19k
        i = 0;
1354
124k
        for(;;) {
1355
124k
            b = multadd(b, 10, 0);
1356
124k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
124k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
124k
            i++;
1362
1363
124k
            if (dd)
1364
4.86k
                break;
1365
119k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
800
                dd = i < nd;
1368
800
                break;
1369
800
            }
1370
118k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
525
                dd = -1;
1373
525
                break;
1374
525
            }
1375
118k
        }
1376
6.19k
    }
1377
7.04k
    Bfree(b);
1378
7.04k
    Bfree(d);
1379
7.04k
    if (dd > 0 || (dd == 0 && odd))
1380
1.61k
        dval(rv) += sulp(rv, bc);
1381
7.04k
    return 0;
1382
7.04k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
542k
{
1388
542k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
542k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
542k
    const char *s, *s0, *s1;
1391
542k
    double aadj, aadj1;
1392
542k
    U aadj2, adj, rv, rv0;
1393
542k
    ULong y, z, abs_exp;
1394
542k
    Long L;
1395
542k
    BCinfo bc;
1396
542k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
542k
    size_t ndigits, fraclen;
1398
542k
    double result;
1399
1400
542k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
542k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
542k
    sign = 0;
1407
542k
    switch (c) {
1408
418k
    case '-':
1409
418k
        sign = 1;
1410
418k
        _Py_FALLTHROUGH;
1411
418k
    case '+':
1412
418k
        c = *++s;
1413
542k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
542k
    s1 = s;
1417
563k
    while (c == '0')
1418
21.1k
        c = *++s;
1419
542k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
542k
    s0 = s1 = s;
1426
3.89M
    while ('0' <= c && c <= '9')
1427
3.35M
        c = *++s;
1428
542k
    ndigits = s - s1;
1429
542k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
542k
    if (c == '.') {
1433
59.3k
        c = *++s;
1434
59.3k
        if (!ndigits) {
1435
18.8k
            s1 = s;
1436
1.25M
            while (c == '0')
1437
1.23M
                c = *++s;
1438
18.8k
            lz = lz || s != s1;
1439
18.8k
            fraclen += (s - s1);
1440
18.8k
            s0 = s;
1441
18.8k
        }
1442
59.3k
        s1 = s;
1443
15.5M
        while ('0' <= c && c <= '9')
1444
15.5M
            c = *++s;
1445
59.3k
        ndigits += s - s1;
1446
59.3k
        fraclen += s - s1;
1447
59.3k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
542k
    if (!ndigits && !lz) {
1453
22
        if (se)
1454
22
            *se = (char *)s00;
1455
22
        goto parse_error;
1456
22
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
542k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
542k
    nd = (int)ndigits;
1466
542k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
542k
    e = 0;
1470
542k
    if (c == 'e' || c == 'E') {
1471
479k
        s00 = s;
1472
479k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
479k
        esign = 0;
1476
479k
        switch (c) {
1477
24.9k
        case '-':
1478
24.9k
            esign = 1;
1479
24.9k
            _Py_FALLTHROUGH;
1480
35.8k
        case '+':
1481
35.8k
            c = *++s;
1482
479k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
479k
        s1 = s;
1486
491k
        while (c == '0')
1487
11.5k
            c = *++s;
1488
479k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
479k
        s1 = s;
1492
479k
        abs_exp = 0;
1493
2.04M
        while ('0' <= c && c <= '9') {
1494
1.56M
            abs_exp = 10*abs_exp + (c - '0');
1495
1.56M
            c = *++s;
1496
1.56M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
479k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
7.41k
            e = (int)MAX_ABS_EXP;
1503
472k
        else
1504
472k
            e = (int)abs_exp;
1505
479k
        if (esign)
1506
24.9k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
479k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
479k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
542k
    e -= nd - nd0;
1515
542k
    if (nd0 <= 0)
1516
22.7k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
542k
    if (se)
1520
542k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
542k
    if (!nd)
1525
9.59k
        goto ret;
1526
2.81M
    for (i = nd; i > 0; ) {
1527
2.81M
        --i;
1528
2.81M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
532k
            ++i;
1530
532k
            break;
1531
532k
        }
1532
2.81M
    }
1533
532k
    e += nd - i;
1534
532k
    nd = i;
1535
532k
    if (nd0 > nd)
1536
8.20k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
532k
    bc.e0 = e1 = e;
1575
532k
    y = z = 0;
1576
1.62M
    for (i = 0; i < nd; i++) {
1577
1.11M
        if (i < 9)
1578
885k
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
227k
        else if (i < DBL_DIG+1)
1580
206k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
21.2k
        else
1582
21.2k
            break;
1583
1.11M
    }
1584
1585
532k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
532k
    dval(&rv) = y;
1587
532k
    if (k > 9) {
1588
34.7k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
34.7k
    }
1590
532k
    if (nd <= DBL_DIG
1591
532k
        && Flt_Rounds == 1
1592
532k
        ) {
1593
504k
        if (!e)
1594
12.5k
            goto ret;
1595
492k
        if (e > 0) {
1596
451k
            if (e <= Ten_pmax) {
1597
22.4k
                dval(&rv) *= tens[e];
1598
22.4k
                goto ret;
1599
22.4k
            }
1600
429k
            i = DBL_DIG - nd;
1601
429k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
2.96k
                e -= i;
1606
2.96k
                dval(&rv) *= tens[i];
1607
2.96k
                dval(&rv) *= tens[e];
1608
2.96k
                goto ret;
1609
2.96k
            }
1610
429k
        }
1611
40.4k
        else if (e >= -Ten_pmax) {
1612
22.9k
            dval(&rv) /= tens[-e];
1613
22.9k
            goto ret;
1614
22.9k
        }
1615
492k
    }
1616
471k
    e1 += nd - k;
1617
1618
471k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
471k
    if (e1 > 0) {
1623
438k
        if ((i = e1 & 15))
1624
425k
            dval(&rv) *= tens[i];
1625
438k
        if (e1 &= ~15) {
1626
432k
            if (e1 > DBL_MAX_10_EXP)
1627
405k
                goto ovfl;
1628
26.7k
            e1 >>= 4;
1629
75.1k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
48.4k
                if (e1 & 1)
1631
22.7k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
26.7k
            word0(&rv) -= P*Exp_msk1;
1634
26.7k
            dval(&rv) *= bigtens[j];
1635
26.7k
            if ((z = word0(&rv) & Exp_mask)
1636
26.7k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
490
                goto ovfl;
1638
26.2k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
544
                word0(&rv) = Big0;
1642
544
                word1(&rv) = Big1;
1643
544
            }
1644
25.6k
            else
1645
25.6k
                word0(&rv) += P*Exp_msk1;
1646
26.2k
        }
1647
438k
    }
1648
33.3k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
30.0k
        e1 = -e1;
1660
30.0k
        if ((i = e1 & 15))
1661
26.1k
            dval(&rv) /= tens[i];
1662
30.0k
        if (e1 >>= 4) {
1663
22.8k
            if (e1 >= 1 << n_bigtens)
1664
914
                goto undfl;
1665
21.9k
            if (e1 & Scale_Bit)
1666
17.0k
                bc.scale = 2*P;
1667
114k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
92.6k
                if (e1 & 1)
1669
53.6k
                    dval(&rv) *= tinytens[j];
1670
21.9k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
17.0k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
15.7k
                if (j >= 32) {
1674
9.09k
                    word1(&rv) = 0;
1675
9.09k
                    if (j >= 53)
1676
4.51k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.58k
                    else
1678
4.58k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
9.09k
                }
1680
6.65k
                else
1681
6.65k
                    word1(&rv) &= 0xffffffff << j;
1682
15.7k
            }
1683
21.9k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
21.9k
        }
1686
30.0k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
64.8k
    bc.nd = nd;
1693
64.8k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
64.8k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
66.6k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
66.6k
            --i;
1708
66.6k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
10.0k
                ++i;
1710
10.0k
                break;
1711
10.0k
            }
1712
66.6k
        }
1713
10.0k
        e += nd - i;
1714
10.0k
        nd = i;
1715
10.0k
        if (nd0 > nd)
1716
6.83k
            nd0 = nd;
1717
10.0k
        if (nd < 9) { /* must recompute y */
1718
4.31k
            y = 0;
1719
22.2k
            for(i = 0; i < nd0; ++i)
1720
17.9k
                y = 10*y + s0[i] - '0';
1721
12.8k
            for(; i < nd; ++i)
1722
8.51k
                y = 10*y + s0[i+1] - '0';
1723
4.31k
        }
1724
10.0k
    }
1725
64.8k
    bd0 = s2b(s0, nd0, nd, y);
1726
64.8k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
84.1k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
84.1k
        bd = Balloc(bd0->k);
1758
84.1k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
84.1k
        Bcopy(bd, bd0);
1762
84.1k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
84.1k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
84.1k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
84.1k
        bs = i2b(1);
1772
84.1k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
84.1k
        if (e >= 0) {
1777
37.2k
            bb2 = bb5 = 0;
1778
37.2k
            bd2 = bd5 = e;
1779
37.2k
        }
1780
46.9k
        else {
1781
46.9k
            bb2 = bb5 = -e;
1782
46.9k
            bd2 = bd5 = 0;
1783
46.9k
        }
1784
84.1k
        if (bbe >= 0)
1785
39.0k
            bb2 += bbe;
1786
45.1k
        else
1787
45.1k
            bd2 -= bbe;
1788
84.1k
        bs2 = bb2;
1789
84.1k
        bb2++;
1790
84.1k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
84.1k
        i = bb2 < bd2 ? bb2 : bd2;
1811
84.1k
        if (i > bs2)
1812
45.0k
            i = bs2;
1813
84.1k
        if (i > 0) {
1814
83.3k
            bb2 -= i;
1815
83.3k
            bd2 -= i;
1816
83.3k
            bs2 -= i;
1817
83.3k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
84.1k
        if (bb5 > 0) {
1821
46.9k
            bs = pow5mult(bs, bb5);
1822
46.9k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
46.9k
            Bigint *bb1 = mult(bs, bb);
1826
46.9k
            Bfree(bb);
1827
46.9k
            bb = bb1;
1828
46.9k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
46.9k
        }
1832
84.1k
        if (bb2 > 0) {
1833
84.1k
            bb = lshift(bb, bb2);
1834
84.1k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
84.1k
        }
1838
84.1k
        if (bd5 > 0) {
1839
31.5k
            bd = pow5mult(bd, bd5);
1840
31.5k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
31.5k
        }
1844
84.1k
        if (bd2 > 0) {
1845
45.0k
            bd = lshift(bd, bd2);
1846
45.0k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
45.0k
        }
1850
84.1k
        if (bs2 > 0) {
1851
35.7k
            bs = lshift(bs, bs2);
1852
35.7k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
35.7k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
84.1k
        delta = diff(bb, bd);
1862
84.1k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
84.1k
        dsign = delta->sign;
1866
84.1k
        delta->sign = 0;
1867
84.1k
        i = cmp(delta, bs);
1868
84.1k
        if (bc.nd > nd && i <= 0) {
1869
10.0k
            if (dsign)
1870
6.14k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
3.89k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.29k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.29k
                if (j - bc.scale >= 2) {
1890
901
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
901
                    break; /* Use bigcomp. */
1892
901
                }
1893
1.29k
            }
1894
1895
2.99k
            {
1896
2.99k
                bc.nd = nd;
1897
2.99k
                i = -1; /* Discarded digits make delta smaller. */
1898
2.99k
            }
1899
2.99k
        }
1900
1901
77.1k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
39.5k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
39.5k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
39.5k
                ) {
1908
36.1k
                break;
1909
36.1k
            }
1910
3.38k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
429
                break;
1913
429
            }
1914
2.95k
            delta = lshift(delta,Log2P);
1915
2.95k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.95k
            if (cmp(delta, bs) > 0)
1919
1.03k
                goto drop_down;
1920
1.92k
            break;
1921
2.95k
        }
1922
37.5k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.43k
            if (dsign) {
1925
1.91k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
1.91k
                    &&  word1(&rv) == (
1927
1.04k
                        (bc.scale &&
1928
1.04k
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
1.04k
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
496
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
496
                        + Exp_msk1
1934
496
                        ;
1935
496
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
496
                    break;
1938
496
                }
1939
1.91k
            }
1940
1.52k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
1.03k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
1.03k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
1.03k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
1.03k
                word0(&rv) = L | Bndry_mask1;
1958
1.03k
                word1(&rv) = 0xffffffff;
1959
1.03k
                break;
1960
1.03k
            }
1961
2.94k
            if (!odd)
1962
2.36k
                break;
1963
573
            if (dsign)
1964
345
                dval(&rv) += sulp(&rv, &bc);
1965
228
            else {
1966
228
                dval(&rv) -= sulp(&rv, &bc);
1967
228
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
228
            }
1973
            /* dsign = 1 - dsign; */
1974
573
            break;
1975
573
        }
1976
34.1k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
24.7k
            if (dsign)
1978
11.2k
                aadj = aadj1 = 1.;
1979
13.4k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.54k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.54k
                aadj = 1.;
1986
9.54k
                aadj1 = -1.;
1987
9.54k
            }
1988
3.90k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
3.90k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
3.90k
                else
1995
3.90k
                    aadj *= 0.5;
1996
3.90k
                aadj1 = -aadj;
1997
3.90k
            }
1998
24.7k
        }
1999
9.42k
        else {
2000
9.42k
            aadj *= 0.5;
2001
9.42k
            aadj1 = dsign ? aadj : -aadj;
2002
9.42k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
9.42k
        }
2005
34.1k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
34.1k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.86k
            dval(&rv0) = dval(&rv);
2011
1.86k
            word0(&rv) -= P*Exp_msk1;
2012
1.86k
            adj.d = aadj1 * ulp(&rv);
2013
1.86k
            dval(&rv) += adj.d;
2014
1.86k
            if ((word0(&rv) & Exp_mask) >=
2015
1.86k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.32k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
932
                    goto ovfl;
2018
932
                }
2019
388
                word0(&rv) = Big0;
2020
388
                word1(&rv) = Big1;
2021
388
                goto cont;
2022
1.32k
            }
2023
545
            else
2024
545
                word0(&rv) += P*Exp_msk1;
2025
1.86k
        }
2026
32.2k
        else {
2027
32.2k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
12.9k
                if (aadj <= 0x7fffffff) {
2029
12.9k
                    if ((z = (ULong)aadj) <= 0)
2030
851
                        z = 1;
2031
12.9k
                    aadj = z;
2032
12.9k
                    aadj1 = dsign ? aadj : -aadj;
2033
12.9k
                }
2034
12.9k
                dval(&aadj2) = aadj1;
2035
12.9k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
12.9k
                aadj1 = dval(&aadj2);
2037
12.9k
            }
2038
32.2k
            adj.d = aadj1 * ulp(&rv);
2039
32.2k
            dval(&rv) += adj.d;
2040
32.2k
        }
2041
32.8k
        z = word0(&rv) & Exp_mask;
2042
32.8k
        if (bc.nd == nd) {
2043
28.8k
            if (!bc.scale)
2044
16.0k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
14.4k
                    L = (Long)aadj;
2047
14.4k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
14.4k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
14.4k
                        if (aadj < .4999999 || aadj > .5000001)
2051
13.8k
                            break;
2052
14.4k
                    }
2053
3
                    else if (aadj < .4999999/FLT_RADIX)
2054
3
                        break;
2055
14.4k
                }
2056
28.8k
        }
2057
19.3k
      cont:
2058
19.3k
        Bfree(bb); bb = NULL;
2059
19.3k
        Bfree(bd); bd = NULL;
2060
19.3k
        Bfree(bs); bs = NULL;
2061
19.3k
        Bfree(delta); delta = NULL;
2062
19.3k
    }
2063
63.9k
    if (bc.nd > nd) {
2064
7.04k
        error = bigcomp(&rv, s0, &bc);
2065
7.04k
        if (error)
2066
0
            goto failed_malloc;
2067
7.04k
    }
2068
2069
63.9k
    if (bc.scale) {
2070
17.0k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
17.0k
        word1(&rv0) = 0;
2072
17.0k
        dval(&rv) *= dval(&rv0);
2073
17.0k
    }
2074
2075
134k
  ret:
2076
134k
    result = sign ? -dval(&rv) : dval(&rv);
2077
134k
    goto done;
2078
2079
22
  parse_error:
2080
22
    result = 0.0;
2081
22
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
914
  undfl:
2089
914
    result = sign ? -0.0 : 0.0;
2090
914
    goto done;
2091
2092
406k
  ovfl:
2093
406k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
406k
    word0(&rv) = Exp_mask;
2096
406k
    word1(&rv) = 0;
2097
406k
    result = sign ? -dval(&rv) : dval(&rv);
2098
406k
    goto done;
2099
2100
542k
  done:
2101
542k
    Bfree(bb);
2102
542k
    Bfree(bd);
2103
542k
    Bfree(bs);
2104
542k
    Bfree(bd0);
2105
542k
    Bfree(delta);
2106
542k
    return result;
2107
2108
63.9k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
45.9k
{
2113
45.9k
    int j, k, *r;
2114
2115
45.9k
    j = sizeof(ULong);
2116
45.9k
    for(k = 0;
2117
45.9k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
45.9k
        j <<= 1)
2119
0
        k++;
2120
45.9k
    r = (int*)Balloc(k);
2121
45.9k
    if (r == NULL)
2122
0
        return NULL;
2123
45.9k
    *r = k;
2124
45.9k
    return (char *)(r+1);
2125
45.9k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
4.89k
{
2130
4.89k
    char *rv, *t;
2131
2132
4.89k
    rv = rv_alloc(n);
2133
4.89k
    if (rv == NULL)
2134
0
        return NULL;
2135
4.89k
    t = rv;
2136
14.7k
    while((*t = *s++)) t++;
2137
4.89k
    if (rve)
2138
4.89k
        *rve = t;
2139
4.89k
    return rv;
2140
4.89k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
45.9k
{
2151
45.9k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
45.9k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
45.9k
    Bfree(b);
2154
45.9k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
45.9k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
45.9k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
45.9k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
45.9k
        spec_case, try_quick;
2235
45.9k
    Long L;
2236
45.9k
    int denorm;
2237
45.9k
    ULong x;
2238
45.9k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
45.9k
    U d2, eps, u;
2240
45.9k
    double ds;
2241
45.9k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
45.9k
    mlo = mhi = S = 0;
2246
45.9k
    s0 = 0;
2247
2248
45.9k
    u.d = dd;
2249
45.9k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
11.0k
        *sign = 1;
2252
11.0k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
11.0k
    }
2254
34.8k
    else
2255
34.8k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
45.9k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
707
    {
2260
        /* Infinity or NaN */
2261
707
        *decpt = 9999;
2262
707
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
707
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
707
    }
2266
45.2k
    if (!dval(&u)) {
2267
4.18k
        *decpt = 1;
2268
4.18k
        return nrv_alloc("0", rve, 1);
2269
4.18k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
41.0k
    b = d2b(&u, &be, &bbits);
2274
41.0k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
41.0k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
36.8k
        dval(&d2) = dval(&u);
2278
36.8k
        word0(&d2) &= Frac_mask1;
2279
36.8k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
36.8k
        i -= Bias;
2304
36.8k
        denorm = 0;
2305
36.8k
    }
2306
4.23k
    else {
2307
        /* d is denormalized */
2308
2309
4.23k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.23k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.23k
            : word1(&u) << (32 - i);
2312
4.23k
        dval(&d2) = x;
2313
4.23k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.23k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.23k
        denorm = 1;
2316
4.23k
    }
2317
41.0k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
41.0k
        i*0.301029995663981;
2319
41.0k
    k = (int)ds;
2320
41.0k
    if (ds < 0. && ds != k)
2321
11.3k
        k--;    /* want k = floor(ds) */
2322
41.0k
    k_check = 1;
2323
41.0k
    if (k >= 0 && k <= Ten_pmax) {
2324
19.7k
        if (dval(&u) < tens[k])
2325
2.17k
            k--;
2326
19.7k
        k_check = 0;
2327
19.7k
    }
2328
41.0k
    j = bbits - i - 1;
2329
41.0k
    if (j >= 0) {
2330
18.0k
        b2 = 0;
2331
18.0k
        s2 = j;
2332
18.0k
    }
2333
23.0k
    else {
2334
23.0k
        b2 = -j;
2335
23.0k
        s2 = 0;
2336
23.0k
    }
2337
41.0k
    if (k >= 0) {
2338
29.1k
        b5 = 0;
2339
29.1k
        s5 = k;
2340
29.1k
        s2 += k;
2341
29.1k
    }
2342
11.8k
    else {
2343
11.8k
        b2 -= k;
2344
11.8k
        b5 = -k;
2345
11.8k
        s5 = 0;
2346
11.8k
    }
2347
41.0k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
41.0k
    try_quick = 1;
2351
2352
41.0k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
41.0k
    leftright = 1;
2357
41.0k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
41.0k
    switch(mode) {
2360
41.0k
    case 0:
2361
41.0k
    case 1:
2362
41.0k
        i = 18;
2363
41.0k
        ndigits = 0;
2364
41.0k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
41.0k
    }
2383
41.0k
    s0 = rv_alloc(i);
2384
41.0k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
41.0k
    s = s0;
2387
2388
2389
41.0k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
41.0k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
11.4k
        ds = tens[k];
2492
11.4k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
17.2k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
17.2k
            L = (Long)(dval(&u) / ds);
2500
17.2k
            dval(&u) -= L*ds;
2501
17.2k
            *s++ = '0' + (int)L;
2502
17.2k
            if (!dval(&u)) {
2503
11.4k
                break;
2504
11.4k
            }
2505
5.82k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
5.82k
        }
2528
11.4k
        goto ret1;
2529
11.4k
    }
2530
2531
29.6k
    m2 = b2;
2532
29.6k
    m5 = b5;
2533
29.6k
    if (leftright) {
2534
29.6k
        i =
2535
29.6k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
29.6k
            1 + P - bbits;
2537
29.6k
        b2 += i;
2538
29.6k
        s2 += i;
2539
29.6k
        mhi = i2b(1);
2540
29.6k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
29.6k
    }
2543
29.6k
    if (m2 > 0 && s2 > 0) {
2544
25.3k
        i = m2 < s2 ? m2 : s2;
2545
25.3k
        b2 -= i;
2546
25.3k
        m2 -= i;
2547
25.3k
        s2 -= i;
2548
25.3k
    }
2549
29.6k
    if (b5 > 0) {
2550
11.8k
        if (leftright) {
2551
11.8k
            if (m5 > 0) {
2552
11.8k
                mhi = pow5mult(mhi, m5);
2553
11.8k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
11.8k
                b1 = mult(mhi, b);
2556
11.8k
                Bfree(b);
2557
11.8k
                b = b1;
2558
11.8k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
11.8k
            }
2561
11.8k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
11.8k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
11.8k
    }
2573
29.6k
    S = i2b(1);
2574
29.6k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
29.6k
    if (s5 > 0) {
2577
15.1k
        S = pow5mult(S, s5);
2578
15.1k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
15.1k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
29.6k
    spec_case = 0;
2585
29.6k
    if ((mode < 2 || leftright)
2586
29.6k
        ) {
2587
29.6k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
29.6k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
29.6k
            ) {
2590
            /* The special case */
2591
1.01k
            b2 += Log2P;
2592
1.01k
            s2 += Log2P;
2593
1.01k
            spec_case = 1;
2594
1.01k
        }
2595
29.6k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
29.6k
#define iInc 28
2605
29.6k
    i = dshift(S, s2);
2606
29.6k
    b2 += i;
2607
29.6k
    m2 += i;
2608
29.6k
    s2 += i;
2609
29.6k
    if (b2 > 0) {
2610
29.6k
        b = lshift(b, b2);
2611
29.6k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
29.6k
    }
2614
29.6k
    if (s2 > 0) {
2615
28.9k
        S = lshift(S, s2);
2616
28.9k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
28.9k
    }
2619
29.6k
    if (k_check) {
2620
21.2k
        if (cmp(b,S) < 0) {
2621
2.33k
            k--;
2622
2.33k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.33k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.33k
            if (leftright) {
2626
2.33k
                mhi = multadd(mhi, 10, 0);
2627
2.33k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.33k
            }
2630
2.33k
            ilim = ilim1;
2631
2.33k
        }
2632
21.2k
    }
2633
29.6k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
29.6k
    if (leftright) {
2653
29.6k
        if (m2 > 0) {
2654
28.6k
            mhi = lshift(mhi, m2);
2655
28.6k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
28.6k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
29.6k
        mlo = mhi;
2664
29.6k
        if (spec_case) {
2665
1.01k
            mhi = Balloc(mhi->k);
2666
1.01k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.01k
            Bcopy(mhi, mlo);
2669
1.01k
            mhi = lshift(mhi, Log2P);
2670
1.01k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.01k
        }
2673
2674
117k
        for(i = 1;;i++) {
2675
117k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
117k
            j = cmp(b, mlo);
2680
117k
            delta = diff(S, mhi);
2681
117k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
117k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
117k
            Bfree(delta);
2685
117k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
117k
                ) {
2687
1.96k
                if (dig == '9')
2688
397
                    goto round_9_up;
2689
1.56k
                if (j > 0)
2690
779
                    dig++;
2691
1.56k
                *s++ = dig;
2692
1.56k
                goto ret;
2693
1.96k
            }
2694
115k
            if (j < 0 || (j == 0 && mode != 1
2695
98.9k
                          && !(word1(&u) & 1)
2696
98.9k
                    )) {
2697
17.6k
                if (!b->x[0] && b->wds <= 1) {
2698
2.78k
                    goto accept_dig;
2699
2.78k
                }
2700
14.9k
                if (j1 > 0) {
2701
3.27k
                    b = lshift(b, 1);
2702
3.27k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.27k
                    j1 = cmp(b, S);
2705
3.27k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
3.27k
                        && dig++ == '9')
2707
395
                        goto round_9_up;
2708
3.27k
                }
2709
17.3k
              accept_dig:
2710
17.3k
                *s++ = dig;
2711
17.3k
                goto ret;
2712
14.9k
            }
2713
98.0k
            if (j1 > 0) {
2714
9.96k
                if (dig == '9') { /* possible if i == 1 */
2715
2.27k
                  round_9_up:
2716
2.27k
                    *s++ = '9';
2717
2.27k
                    goto roundoff;
2718
1.48k
                }
2719
8.47k
                *s++ = dig + 1;
2720
8.47k
                goto ret;
2721
9.96k
            }
2722
88.1k
            *s++ = dig;
2723
88.1k
            if (i == ilim)
2724
0
                break;
2725
88.1k
            b = multadd(b, 10, 0);
2726
88.1k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
88.1k
            if (mlo == mhi) {
2729
85.3k
                mlo = mhi = multadd(mhi, 10, 0);
2730
85.3k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
85.3k
            }
2733
2.82k
            else {
2734
2.82k
                mlo = multadd(mlo, 10, 0);
2735
2.82k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.82k
                mhi = multadd(mhi, 10, 0);
2738
2.82k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.82k
            }
2741
88.1k
        }
2742
29.6k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.27k
      roundoff:
2764
2.27k
        while(*--s == '9')
2765
2.27k
            if (s == s0) {
2766
2.27k
                k++;
2767
2.27k
                *s++ = '1';
2768
2.27k
                goto ret;
2769
2.27k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
29.6k
  ret:
2777
29.6k
    Bfree(S);
2778
29.6k
    if (mhi) {
2779
29.6k
        if (mlo && mlo != mhi)
2780
1.01k
            Bfree(mlo);
2781
29.6k
        Bfree(mhi);
2782
29.6k
    }
2783
41.0k
  ret1:
2784
41.0k
    Bfree(b);
2785
41.0k
    *s = 0;
2786
41.0k
    *decpt = k + 1;
2787
41.0k
    if (rve)
2788
41.0k
        *rve = s;
2789
41.0k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
29.6k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
16
{
2809
16
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
16
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
16
    Bigint *p5 = i2b(625);
2814
16
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
16
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
128
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
112
        p5 = mult(p5, p5);
2822
112
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
112
        p5s[i] = p5;
2826
112
    }
2827
2828
16
#endif
2829
16
    return PyStatus_Ok();
2830
16
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
0
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}