Coverage Report

Created: 2025-09-04 06:25

/src/cpython/Objects/stringlib/fastsearch.h
Line
Count
Source (jump to first uncovered line)
1
/* stringlib: fastsearch implementation */
2
3
#define STRINGLIB_FASTSEARCH_H
4
5
/* fast search/count implementation, based on a mix between boyer-
6
   moore and horspool, with a few more bells and whistles on the top.
7
   for some more background, see:
8
   https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
9
10
/* note: fastsearch may access s[n], which isn't a problem when using
11
   Python's ordinary string types, but may cause problems if you're
12
   using this code in other contexts.  also, the count mode returns -1
13
   if there cannot possibly be a match in the target string, and 0 if
14
   it has actually checked for matches, but didn't find any.  callers
15
   beware! */
16
17
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
18
   algorithm, which has worst-case O(n) runtime and best-case O(n/k).
19
   Also compute a table of shifts to achieve O(n/k) in more cases,
20
   and often (data dependent) deduce larger shifts than pure C&P can
21
   deduce. See stringlib_find_two_way_notes.txt in this folder for a
22
   detailed explanation. */
23
24
618M
#define FAST_COUNT 0
25
441M
#define FAST_SEARCH 1
26
78.0M
#define FAST_RSEARCH 2
27
28
#if LONG_BIT >= 128
29
#define STRINGLIB_BLOOM_WIDTH 128
30
#elif LONG_BIT >= 64
31
5.97G
#define STRINGLIB_BLOOM_WIDTH 64
32
#elif LONG_BIT >= 32
33
#define STRINGLIB_BLOOM_WIDTH 32
34
#else
35
#error "LONG_BIT is smaller than 32"
36
#endif
37
38
#define STRINGLIB_BLOOM_ADD(mask, ch) \
39
32.3M
    ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
40
#define STRINGLIB_BLOOM(mask, ch)     \
41
5.94G
    ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
42
43
#ifdef STRINGLIB_FAST_MEMCHR
44
210M
#  define MEMCHR_CUT_OFF 15
45
#else
46
81.1M
#  define MEMCHR_CUT_OFF 40
47
#endif
48
49
Py_LOCAL_INLINE(Py_ssize_t)
50
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
51
290M
{
52
290M
    const STRINGLIB_CHAR *p, *e;
53
54
290M
    p = s;
55
290M
    e = s + n;
56
290M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
118M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
118M
        if (p != NULL)
60
116M
            return (p - s);
61
1.66M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
72.0M
        if (needle != 0) {
71
71.6M
            do {
72
71.6M
                void *candidate = memchr(p, needle,
73
71.6M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
71.6M
                if (candidate == NULL)
75
552k
                    return -1;
76
71.0M
                s1 = p;
77
71.0M
                p = (const STRINGLIB_CHAR *)
78
71.0M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
71.0M
                if (*p == ch)
80
70.9M
                    return (p - s);
81
                /* False positive */
82
97.7k
                p++;
83
97.7k
                if (p - s1 > MEMCHR_CUT_OFF)
84
44.9k
                    continue;
85
52.7k
                if (e - p <= MEMCHR_CUT_OFF)
86
4.11k
                    break;
87
48.6k
                e1 = p + MEMCHR_CUT_OFF;
88
1.50M
                while (p != e1) {
89
1.47M
                    if (*p == ch)
90
18.5k
                        return (p - s);
91
1.46M
                    p++;
92
1.46M
                }
93
48.6k
            }
94
71.5M
            while (e - p > MEMCHR_CUT_OFF);
95
71.5M
        }
96
#endif
97
190M
    }
98
421M
    while (p < e) {
99
336M
        if (*p == ch)
100
15.7M
            return (p - s);
101
320M
        p++;
102
320M
    }
103
85.1M
    return -1;
104
100M
}
Unexecuted instantiation: bytesobject.c:stringlib_find_char
unicodeobject.c:ucs1lib_find_char
Line
Count
Source
51
103M
{
52
103M
    const STRINGLIB_CHAR *p, *e;
53
54
103M
    p = s;
55
103M
    e = s + n;
56
103M
    if (n > MEMCHR_CUT_OFF) {
57
17.4M
#ifdef STRINGLIB_FAST_MEMCHR
58
17.4M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
17.4M
        if (p != NULL)
60
16.5M
            return (p - s);
61
942k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
17.4M
    }
98
245M
    while (p < e) {
99
163M
        if (*p == ch)
100
4.21M
            return (p - s);
101
159M
        p++;
102
159M
    }
103
82.2M
    return -1;
104
86.4M
}
unicodeobject.c:ucs2lib_find_char
Line
Count
Source
51
80.9M
{
52
80.9M
    const STRINGLIB_CHAR *p, *e;
53
54
80.9M
    p = s;
55
80.9M
    e = s + n;
56
80.9M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
        if (p != NULL)
60
            return (p - s);
61
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
72.0M
        const STRINGLIB_CHAR *s1, *e1;
66
72.0M
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
72.0M
        if (needle != 0) {
71
71.6M
            do {
72
71.6M
                void *candidate = memchr(p, needle,
73
71.6M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
71.6M
                if (candidate == NULL)
75
552k
                    return -1;
76
71.0M
                s1 = p;
77
71.0M
                p = (const STRINGLIB_CHAR *)
78
71.0M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
71.0M
                if (*p == ch)
80
70.9M
                    return (p - s);
81
                /* False positive */
82
97.7k
                p++;
83
97.7k
                if (p - s1 > MEMCHR_CUT_OFF)
84
44.9k
                    continue;
85
52.7k
                if (e - p <= MEMCHR_CUT_OFF)
86
4.11k
                    break;
87
48.6k
                e1 = p + MEMCHR_CUT_OFF;
88
1.50M
                while (p != e1) {
89
1.47M
                    if (*p == ch)
90
18.5k
                        return (p - s);
91
1.46M
                    p++;
92
1.46M
                }
93
48.6k
            }
94
71.5M
            while (e - p > MEMCHR_CUT_OFF);
95
71.5M
        }
96
72.0M
#endif
97
72.0M
    }
98
161M
    while (p < e) {
99
158M
        if (*p == ch)
100
6.53M
            return (p - s);
101
152M
        p++;
102
152M
    }
103
2.84M
    return -1;
104
9.37M
}
unicodeobject.c:ucs4lib_find_char
Line
Count
Source
51
84.2M
{
52
84.2M
    const STRINGLIB_CHAR *p, *e;
53
54
84.2M
    p = s;
55
84.2M
    e = s + n;
56
84.2M
    if (n > MEMCHR_CUT_OFF) {
57
84.1M
#ifdef STRINGLIB_FAST_MEMCHR
58
84.1M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
84.1M
        if (p != NULL)
60
84.1M
            return (p - s);
61
33.1k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
84.1M
    }
98
302k
    while (p < e) {
99
256k
        if (*p == ch)
100
36.1k
            return (p - s);
101
220k
        p++;
102
220k
    }
103
46.7k
    return -1;
104
82.8k
}
unicodeobject.c:asciilib_find_char
Line
Count
Source
51
21.8M
{
52
21.8M
    const STRINGLIB_CHAR *p, *e;
53
54
21.8M
    p = s;
55
21.8M
    e = s + n;
56
21.8M
    if (n > MEMCHR_CUT_OFF) {
57
16.7M
#ifdef STRINGLIB_FAST_MEMCHR
58
16.7M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
16.7M
        if (p != NULL)
60
16.1M
            return (p - s);
61
683k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
16.7M
    }
98
14.1M
    while (p < e) {
99
14.0M
        if (*p == ch)
100
5.00M
            return (p - s);
101
9.07M
        p++;
102
9.07M
    }
103
46.7k
    return -1;
104
5.05M
}
bytes_methods.c:stringlib_find_char
Line
Count
Source
51
1.71k
{
52
1.71k
    const STRINGLIB_CHAR *p, *e;
53
54
1.71k
    p = s;
55
1.71k
    e = s + n;
56
1.71k
    if (n > MEMCHR_CUT_OFF) {
57
1.71k
#ifdef STRINGLIB_FAST_MEMCHR
58
1.71k
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
1.71k
        if (p != NULL)
60
1.45k
            return (p - s);
61
258
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
1.71k
    }
98
0
    while (p < e) {
99
0
        if (*p == ch)
100
0
            return (p - s);
101
0
        p++;
102
0
    }
103
0
    return -1;
104
0
}
Unexecuted instantiation: bytearrayobject.c:stringlib_find_char
105
106
#undef MEMCHR_CUT_OFF
107
108
#if STRINGLIB_SIZEOF_CHAR == 1
109
37.0k
#  define MEMRCHR_CUT_OFF 15
110
#else
111
164k
#  define MEMRCHR_CUT_OFF 40
112
#endif
113
114
115
Py_LOCAL_INLINE(Py_ssize_t)
116
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
117
181k
{
118
181k
    const STRINGLIB_CHAR *p;
119
181k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
181k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
10.6k
        if (p != NULL)
129
7.24k
            return (p - s);
130
3.37k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
83.2k
        if (needle != 0) {
141
87.8k
            do {
142
87.8k
                void *candidate = memrchr(s, needle,
143
87.8k
                                          n * sizeof(STRINGLIB_CHAR));
144
87.8k
                if (candidate == NULL)
145
649
                    return -1;
146
87.2k
                n1 = n;
147
87.2k
                p = (const STRINGLIB_CHAR *)
148
87.2k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
87.2k
                n = p - s;
150
87.2k
                if (*p == ch)
151
79.9k
                    return n;
152
                /* False positive */
153
7.26k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
3.54k
                    continue;
155
3.72k
                if (n <= MEMRCHR_CUT_OFF)
156
832
                    break;
157
2.88k
                s1 = p - MEMRCHR_CUT_OFF;
158
106k
                while (p > s1) {
159
103k
                    p--;
160
103k
                    if (*p == ch)
161
519
                        return (p - s);
162
103k
                }
163
2.36k
                n = p - s;
164
2.36k
            }
165
83.2k
            while (n > MEMRCHR_CUT_OFF);
166
83.2k
        }
167
#endif
168
93.8k
    }
169
89.6k
#endif  /* HAVE_MEMRCHR */
170
89.6k
    p = s + n;
171
696k
    while (p > s) {
172
679k
        p--;
173
679k
        if (*p == ch)
174
72.1k
            return (p - s);
175
679k
    }
176
17.5k
    return -1;
177
89.6k
}
Unexecuted instantiation: bytesobject.c:stringlib_rfind_char
unicodeobject.c:ucs1lib_rfind_char
Line
Count
Source
117
7.95k
{
118
7.95k
    const STRINGLIB_CHAR *p;
119
7.95k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
7.95k
    if (n > MEMRCHR_CUT_OFF) {
126
4.40k
#if STRINGLIB_SIZEOF_CHAR == 1
127
4.40k
        p = memrchr(s, ch, n);
128
4.40k
        if (p != NULL)
129
3.39k
            return (p - s);
130
1.00k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
4.40k
    }
169
3.55k
#endif  /* HAVE_MEMRCHR */
170
3.55k
    p = s + n;
171
10.3k
    while (p > s) {
172
9.54k
        p--;
173
9.54k
        if (*p == ch)
174
2.80k
            return (p - s);
175
9.54k
    }
176
754
    return -1;
177
3.55k
}
unicodeobject.c:ucs2lib_rfind_char
Line
Count
Source
117
33.6k
{
118
33.6k
    const STRINGLIB_CHAR *p;
119
33.6k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
33.6k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
15.0k
        const STRINGLIB_CHAR *s1;
135
15.0k
        Py_ssize_t n1;
136
15.0k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
15.0k
        if (needle != 0) {
141
17.7k
            do {
142
17.7k
                void *candidate = memrchr(s, needle,
143
17.7k
                                          n * sizeof(STRINGLIB_CHAR));
144
17.7k
                if (candidate == NULL)
145
383
                    return -1;
146
17.4k
                n1 = n;
147
17.4k
                p = (const STRINGLIB_CHAR *)
148
17.4k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
17.4k
                n = p - s;
150
17.4k
                if (*p == ch)
151
13.7k
                    return n;
152
                /* False positive */
153
3.68k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
1.42k
                    continue;
155
2.25k
                if (n <= MEMRCHR_CUT_OFF)
156
418
                    break;
157
1.83k
                s1 = p - MEMRCHR_CUT_OFF;
158
70.0k
                while (p > s1) {
159
68.4k
                    p--;
160
68.4k
                    if (*p == ch)
161
217
                        return (p - s);
162
68.4k
                }
163
1.62k
                n = p - s;
164
1.62k
            }
165
15.0k
            while (n > MEMRCHR_CUT_OFF);
166
15.0k
        }
167
15.0k
#endif
168
15.0k
    }
169
19.3k
#endif  /* HAVE_MEMRCHR */
170
19.3k
    p = s + n;
171
173k
    while (p > s) {
172
171k
        p--;
173
171k
        if (*p == ch)
174
17.5k
            return (p - s);
175
171k
    }
176
1.74k
    return -1;
177
19.3k
}
unicodeobject.c:ucs4lib_rfind_char
Line
Count
Source
117
110k
{
118
110k
    const STRINGLIB_CHAR *p;
119
110k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
110k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
68.1k
        const STRINGLIB_CHAR *s1;
135
68.1k
        Py_ssize_t n1;
136
68.1k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
68.1k
        if (needle != 0) {
141
70.1k
            do {
142
70.1k
                void *candidate = memrchr(s, needle,
143
70.1k
                                          n * sizeof(STRINGLIB_CHAR));
144
70.1k
                if (candidate == NULL)
145
266
                    return -1;
146
69.8k
                n1 = n;
147
69.8k
                p = (const STRINGLIB_CHAR *)
148
69.8k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
69.8k
                n = p - s;
150
69.8k
                if (*p == ch)
151
66.2k
                    return n;
152
                /* False positive */
153
3.58k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
2.12k
                    continue;
155
1.46k
                if (n <= MEMRCHR_CUT_OFF)
156
414
                    break;
157
1.04k
                s1 = p - MEMRCHR_CUT_OFF;
158
35.9k
                while (p > s1) {
159
35.2k
                    p--;
160
35.2k
                    if (*p == ch)
161
302
                        return (p - s);
162
35.2k
                }
163
747
                n = p - s;
164
747
            }
165
68.1k
            while (n > MEMRCHR_CUT_OFF);
166
68.1k
        }
167
68.1k
#endif
168
68.1k
    }
169
43.9k
#endif  /* HAVE_MEMRCHR */
170
43.9k
    p = s + n;
171
392k
    while (p > s) {
172
390k
        p--;
173
390k
        if (*p == ch)
174
42.5k
            return (p - s);
175
390k
    }
176
1.34k
    return -1;
177
43.9k
}
unicodeobject.c:asciilib_rfind_char
Line
Count
Source
117
9.60k
{
118
9.60k
    const STRINGLIB_CHAR *p;
119
9.60k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
9.60k
    if (n > MEMRCHR_CUT_OFF) {
126
3.15k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.15k
        p = memrchr(s, ch, n);
128
3.15k
        if (p != NULL)
129
3.07k
            return (p - s);
130
86
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.15k
    }
169
6.45k
#endif  /* HAVE_MEMRCHR */
170
6.45k
    p = s + n;
171
36.1k
    while (p > s) {
172
34.0k
        p--;
173
34.0k
        if (*p == ch)
174
4.35k
            return (p - s);
175
34.0k
    }
176
2.10k
    return -1;
177
6.45k
}
bytes_methods.c:stringlib_rfind_char
Line
Count
Source
117
19.5k
{
118
19.5k
    const STRINGLIB_CHAR *p;
119
19.5k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
19.5k
    if (n > MEMRCHR_CUT_OFF) {
126
3.06k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.06k
        p = memrchr(s, ch, n);
128
3.06k
        if (p != NULL)
129
778
            return (p - s);
130
2.28k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.06k
    }
169
16.4k
#endif  /* HAVE_MEMRCHR */
170
16.4k
    p = s + n;
171
84.8k
    while (p > s) {
172
73.2k
        p--;
173
73.2k
        if (*p == ch)
174
4.88k
            return (p - s);
175
73.2k
    }
176
11.5k
    return -1;
177
16.4k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_rfind_char
178
179
#undef MEMRCHR_CUT_OFF
180
181
/* Change to a 1 to see logging comments walk through the algorithm. */
182
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
183
# define LOG(...) printf(__VA_ARGS__)
184
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
185
# define LOG_LINEUP() do {                                         \
186
    LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> ");    \
187
    LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
188
    LOG_STRING(needle, len_needle); LOG("\n");                     \
189
} while(0)
190
#else
191
# define LOG(...)
192
# define LOG_STRING(s, n)
193
# define LOG_LINEUP()
194
#endif
195
196
Py_LOCAL_INLINE(Py_ssize_t)
197
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
198
                       Py_ssize_t *return_period, int invert_alphabet)
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: bytesobject.c:stringlib__lex_search
Unexecuted instantiation: unicodeobject.c:asciilib__lex_search
unicodeobject.c:ucs1lib__lex_search
Line
Count
Source
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__lex_search
Unexecuted instantiation: unicodeobject.c:ucs4lib__lex_search
Unexecuted instantiation: bytes_methods.c:stringlib__lex_search
Unexecuted instantiation: bytearrayobject.c:stringlib__lex_search
247
248
Py_LOCAL_INLINE(Py_ssize_t)
249
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
250
                      Py_ssize_t len_needle,
251
                      Py_ssize_t *return_period)
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: bytesobject.c:stringlib__factorize
Unexecuted instantiation: unicodeobject.c:asciilib__factorize
unicodeobject.c:ucs1lib__factorize
Line
Count
Source
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__factorize
Unexecuted instantiation: unicodeobject.c:ucs4lib__factorize
Unexecuted instantiation: bytes_methods.c:stringlib__factorize
Unexecuted instantiation: bytearrayobject.c:stringlib__factorize
306
307
308
231
#define SHIFT_TYPE uint8_t
309
#define MAX_SHIFT UINT8_MAX
310
311
73.2k
#define TABLE_SIZE_BITS 6u
312
73.2k
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
313
71.8k
#define TABLE_MASK (TABLE_SIZE - 1U)
314
315
typedef struct STRINGLIB(_pre) {
316
    const STRINGLIB_CHAR *needle;
317
    Py_ssize_t len_needle;
318
    Py_ssize_t cut;
319
    Py_ssize_t period;
320
    Py_ssize_t gap;
321
    int is_periodic;
322
    SHIFT_TYPE table[TABLE_SIZE];
323
} STRINGLIB(prework);
324
325
326
static void
327
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
328
                       STRINGLIB(prework) *p)
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: bytesobject.c:stringlib__preprocess
Unexecuted instantiation: unicodeobject.c:asciilib__preprocess
unicodeobject.c:ucs1lib__preprocess
Line
Count
Source
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__preprocess
Unexecuted instantiation: unicodeobject.c:ucs4lib__preprocess
Unexecuted instantiation: bytes_methods.c:stringlib__preprocess
Unexecuted instantiation: bytearrayobject.c:stringlib__preprocess
368
369
static Py_ssize_t
370
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
371
                    STRINGLIB(prework) *p)
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.4k
                LOG("Horspool skip\n");
469
57.4k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way
Unexecuted instantiation: unicodeobject.c:asciilib__two_way
unicodeobject.c:ucs1lib__two_way
Line
Count
Source
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.4k
                LOG("Horspool skip\n");
469
57.4k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way
Unexecuted instantiation: bytes_methods.c:stringlib__two_way
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way
503
504
505
static Py_ssize_t
506
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
507
                         Py_ssize_t len_haystack,
508
                         const STRINGLIB_CHAR *needle,
509
                         Py_ssize_t len_needle)
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_find
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_find
unicodeobject.c:ucs1lib__two_way_find
Line
Count
Source
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_find
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_find
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_find
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_find
516
517
518
static Py_ssize_t
519
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
520
                          Py_ssize_t len_haystack,
521
                          const STRINGLIB_CHAR *needle,
522
                          Py_ssize_t len_needle,
523
                          Py_ssize_t maxcount)
524
0
{
525
0
    LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
526
0
    STRINGLIB(prework) p;
527
0
    STRINGLIB(_preprocess)(needle, len_needle, &p);
528
0
    Py_ssize_t index = 0, count = 0;
529
0
    while (1) {
530
0
        Py_ssize_t result;
531
0
        result = STRINGLIB(_two_way)(haystack + index,
532
0
                                     len_haystack - index, &p);
533
0
        if (result == -1) {
534
0
            return count;
535
0
        }
536
0
        count++;
537
0
        if (count == maxcount) {
538
0
            return maxcount;
539
0
        }
540
0
        index += result + len_needle;
541
0
    }
542
0
    return count;
543
0
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_count
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs1lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_count
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_count
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_count
544
545
#undef SHIFT_TYPE
546
#undef NOT_FOUND
547
#undef SHIFT_OVERFLOW
548
#undef TABLE_SIZE_BITS
549
#undef TABLE_SIZE
550
#undef TABLE_MASK
551
552
#undef LOG
553
#undef LOG_STRING
554
#undef LOG_LINEUP
555
556
static inline Py_ssize_t
557
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
558
                        const STRINGLIB_CHAR* p, Py_ssize_t m,
559
                        Py_ssize_t maxcount, int mode)
560
16.1M
{
561
16.1M
    const Py_ssize_t w = n - m;
562
16.1M
    Py_ssize_t mlast = m - 1, count = 0;
563
16.1M
    Py_ssize_t gap = mlast;
564
16.1M
    const STRINGLIB_CHAR last = p[mlast];
565
16.1M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
16.1M
    unsigned long mask = 0;
568
32.3M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
16.2M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
16.2M
        if (p[i] == last) {
571
369k
            gap = mlast - i - 1;
572
369k
        }
573
16.2M
    }
574
16.1M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
5.96G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
5.96G
        if (ss[i] == last) {
578
            /* candidate match */
579
62.5M
            Py_ssize_t j;
580
84.6M
            for (j = 0; j < mlast; j++) {
581
62.6M
                if (s[i+j] != p[j]) {
582
40.5M
                    break;
583
40.5M
                }
584
62.6M
            }
585
62.5M
            if (j == mlast) {
586
                /* got a match! */
587
22.0M
                if (mode != FAST_COUNT) {
588
11.0M
                    return i;
589
11.0M
                }
590
10.9M
                count++;
591
10.9M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
10.9M
                i = i + mlast;
595
10.9M
                continue;
596
10.9M
            }
597
            /* miss: check if next character is part of pattern */
598
40.5M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
8.56M
                i = i + m;
600
8.56M
            }
601
31.9M
            else {
602
31.9M
                i = i + gap;
603
31.9M
            }
604
40.5M
        }
605
5.90G
        else {
606
            /* skip: check if next character is part of pattern */
607
5.90G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
5.85G
                i = i + m;
609
5.85G
            }
610
5.90G
        }
611
5.96G
    }
612
5.04M
    return mode == FAST_COUNT ? count : -1;
613
16.1M
}
Unexecuted instantiation: bytesobject.c:stringlib_default_find
unicodeobject.c:asciilib_default_find
Line
Count
Source
560
1.74M
{
561
1.74M
    const Py_ssize_t w = n - m;
562
1.74M
    Py_ssize_t mlast = m - 1, count = 0;
563
1.74M
    Py_ssize_t gap = mlast;
564
1.74M
    const STRINGLIB_CHAR last = p[mlast];
565
1.74M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
1.74M
    unsigned long mask = 0;
568
3.49M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
1.74M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
1.74M
        if (p[i] == last) {
571
25.2k
            gap = mlast - i - 1;
572
25.2k
        }
573
1.74M
    }
574
1.74M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
169M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
169M
        if (ss[i] == last) {
578
            /* candidate match */
579
3.37M
            Py_ssize_t j;
580
5.09M
            for (j = 0; j < mlast; j++) {
581
3.38M
                if (s[i+j] != p[j]) {
582
1.65M
                    break;
583
1.65M
                }
584
3.38M
            }
585
3.37M
            if (j == mlast) {
586
                /* got a match! */
587
1.71M
                if (mode != FAST_COUNT) {
588
1.71M
                    return i;
589
1.71M
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
1.65M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
28.2k
                i = i + m;
600
28.2k
            }
601
1.62M
            else {
602
1.62M
                i = i + gap;
603
1.62M
            }
604
1.65M
        }
605
166M
        else {
606
            /* skip: check if next character is part of pattern */
607
166M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
161M
                i = i + m;
609
161M
            }
610
166M
        }
611
169M
    }
612
24.3k
    return mode == FAST_COUNT ? count : -1;
613
1.74M
}
unicodeobject.c:ucs1lib_default_find
Line
Count
Source
560
6.49M
{
561
6.49M
    const Py_ssize_t w = n - m;
562
6.49M
    Py_ssize_t mlast = m - 1, count = 0;
563
6.49M
    Py_ssize_t gap = mlast;
564
6.49M
    const STRINGLIB_CHAR last = p[mlast];
565
6.49M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
6.49M
    unsigned long mask = 0;
568
13.0M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
6.55M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
6.55M
        if (p[i] == last) {
571
281k
            gap = mlast - i - 1;
572
281k
        }
573
6.55M
    }
574
6.49M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
3.27G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
3.26G
        if (ss[i] == last) {
578
            /* candidate match */
579
24.5M
            Py_ssize_t j;
580
29.5M
            for (j = 0; j < mlast; j++) {
581
24.5M
                if (s[i+j] != p[j]) {
582
19.5M
                    break;
583
19.5M
                }
584
24.5M
            }
585
24.5M
            if (j == mlast) {
586
                /* got a match! */
587
5.02M
                if (mode != FAST_COUNT) {
588
1.65M
                    return i;
589
1.65M
                }
590
3.36M
                count++;
591
3.36M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.36M
                i = i + mlast;
595
3.36M
                continue;
596
3.36M
            }
597
            /* miss: check if next character is part of pattern */
598
19.5M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
5.36M
                i = i + m;
600
5.36M
            }
601
14.1M
            else {
602
14.1M
                i = i + gap;
603
14.1M
            }
604
19.5M
        }
605
3.24G
        else {
606
            /* skip: check if next character is part of pattern */
607
3.24G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
3.22G
                i = i + m;
609
3.22G
            }
610
3.24G
        }
611
3.26G
    }
612
4.83M
    return mode == FAST_COUNT ? count : -1;
613
6.49M
}
unicodeobject.c:ucs2lib_default_find
Line
Count
Source
560
3.06M
{
561
3.06M
    const Py_ssize_t w = n - m;
562
3.06M
    Py_ssize_t mlast = m - 1, count = 0;
563
3.06M
    Py_ssize_t gap = mlast;
564
3.06M
    const STRINGLIB_CHAR last = p[mlast];
565
3.06M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.06M
    unsigned long mask = 0;
568
6.15M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
3.09M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
3.09M
        if (p[i] == last) {
571
37.2k
            gap = mlast - i - 1;
572
37.2k
        }
573
3.09M
    }
574
3.06M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
989M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
989M
        if (ss[i] == last) {
578
            /* candidate match */
579
11.2M
            Py_ssize_t j;
580
17.0M
            for (j = 0; j < mlast; j++) {
581
11.2M
                if (s[i+j] != p[j]) {
582
5.38M
                    break;
583
5.38M
                }
584
11.2M
            }
585
11.2M
            if (j == mlast) {
586
                /* got a match! */
587
5.84M
                if (mode != FAST_COUNT) {
588
2.96M
                    return i;
589
2.96M
                }
590
2.87M
                count++;
591
2.87M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
2.87M
                i = i + mlast;
595
2.87M
                continue;
596
2.87M
            }
597
            /* miss: check if next character is part of pattern */
598
5.38M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.25M
                i = i + m;
600
1.25M
            }
601
4.13M
            else {
602
4.13M
                i = i + gap;
603
4.13M
            }
604
5.38M
        }
605
978M
        else {
606
            /* skip: check if next character is part of pattern */
607
978M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
968M
                i = i + m;
609
968M
            }
610
978M
        }
611
989M
    }
612
96.9k
    return mode == FAST_COUNT ? count : -1;
613
3.06M
}
unicodeobject.c:ucs4lib_default_find
Line
Count
Source
560
4.81M
{
561
4.81M
    const Py_ssize_t w = n - m;
562
4.81M
    Py_ssize_t mlast = m - 1, count = 0;
563
4.81M
    Py_ssize_t gap = mlast;
564
4.81M
    const STRINGLIB_CHAR last = p[mlast];
565
4.81M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
4.81M
    unsigned long mask = 0;
568
9.63M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
4.82M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
4.82M
        if (p[i] == last) {
571
22.9k
            gap = mlast - i - 1;
572
22.9k
        }
573
4.82M
    }
574
4.81M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.53G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.53G
        if (ss[i] == last) {
578
            /* candidate match */
579
23.4M
            Py_ssize_t j;
580
32.8M
            for (j = 0; j < mlast; j++) {
581
23.4M
                if (s[i+j] != p[j]) {
582
13.9M
                    break;
583
13.9M
                }
584
23.4M
            }
585
23.4M
            if (j == mlast) {
586
                /* got a match! */
587
9.44M
                if (mode != FAST_COUNT) {
588
4.73M
                    return i;
589
4.73M
                }
590
4.71M
                count++;
591
4.71M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
4.71M
                i = i + mlast;
595
4.71M
                continue;
596
4.71M
            }
597
            /* miss: check if next character is part of pattern */
598
13.9M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.91M
                i = i + m;
600
1.91M
            }
601
12.0M
            else {
602
12.0M
                i = i + gap;
603
12.0M
            }
604
13.9M
        }
605
1.51G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.51G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.50G
                i = i + m;
609
1.50G
            }
610
1.51G
        }
611
1.53G
    }
612
78.9k
    return mode == FAST_COUNT ? count : -1;
613
4.81M
}
bytes_methods.c:stringlib_default_find
Line
Count
Source
560
3.11k
{
561
3.11k
    const Py_ssize_t w = n - m;
562
3.11k
    Py_ssize_t mlast = m - 1, count = 0;
563
3.11k
    Py_ssize_t gap = mlast;
564
3.11k
    const STRINGLIB_CHAR last = p[mlast];
565
3.11k
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.11k
    unsigned long mask = 0;
568
12.4k
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
9.33k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
9.33k
        if (p[i] == last) {
571
3.11k
            gap = mlast - i - 1;
572
3.11k
        }
573
9.33k
    }
574
3.11k
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
2.06M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
2.06M
        if (ss[i] == last) {
578
            /* candidate match */
579
9.75k
            Py_ssize_t j;
580
18.6k
            for (j = 0; j < mlast; j++) {
581
15.7k
                if (s[i+j] != p[j]) {
582
6.89k
                    break;
583
6.89k
                }
584
15.7k
            }
585
9.75k
            if (j == mlast) {
586
                /* got a match! */
587
2.86k
                if (mode != FAST_COUNT) {
588
2.86k
                    return i;
589
2.86k
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
6.89k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
629
                i = i + m;
600
629
            }
601
6.26k
            else {
602
6.26k
                i = i + gap;
603
6.26k
            }
604
6.89k
        }
605
2.05M
        else {
606
            /* skip: check if next character is part of pattern */
607
2.05M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
49.2k
                i = i + m;
609
49.2k
            }
610
2.05M
        }
611
2.06M
    }
612
244
    return mode == FAST_COUNT ? count : -1;
613
3.11k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_find
614
615
616
static Py_ssize_t
617
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
618
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
619
                         Py_ssize_t maxcount, int mode)
620
0
{
621
0
    const Py_ssize_t w = n - m;
622
0
    Py_ssize_t mlast = m - 1, count = 0;
623
0
    Py_ssize_t gap = mlast;
624
0
    Py_ssize_t hits = 0, res;
625
0
    const STRINGLIB_CHAR last = p[mlast];
626
0
    const STRINGLIB_CHAR *const ss = &s[mlast];
627
628
0
    unsigned long mask = 0;
629
0
    for (Py_ssize_t i = 0; i < mlast; i++) {
630
0
        STRINGLIB_BLOOM_ADD(mask, p[i]);
631
0
        if (p[i] == last) {
632
0
            gap = mlast - i - 1;
633
0
        }
634
0
    }
635
0
    STRINGLIB_BLOOM_ADD(mask, last);
636
637
0
    for (Py_ssize_t i = 0; i <= w; i++) {
638
0
        if (ss[i] == last) {
639
            /* candidate match */
640
0
            Py_ssize_t j;
641
0
            for (j = 0; j < mlast; j++) {
642
0
                if (s[i+j] != p[j]) {
643
0
                    break;
644
0
                }
645
0
            }
646
0
            if (j == mlast) {
647
                /* got a match! */
648
0
                if (mode != FAST_COUNT) {
649
0
                    return i;
650
0
                }
651
0
                count++;
652
0
                if (count == maxcount) {
653
0
                    return maxcount;
654
0
                }
655
0
                i = i + mlast;
656
0
                continue;
657
0
            }
658
0
            hits += j + 1;
659
0
            if (hits > m / 4 && w - i > 2000) {
660
0
                if (mode == FAST_SEARCH) {
661
0
                    res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
662
0
                    return res == -1 ? -1 : res + i;
663
0
                }
664
0
                else {
665
0
                    res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
666
0
                                                    maxcount - count);
667
0
                    return res + count;
668
0
                }
669
0
            }
670
            /* miss: check if next character is part of pattern */
671
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
672
0
                i = i + m;
673
0
            }
674
0
            else {
675
0
                i = i + gap;
676
0
            }
677
0
        }
678
0
        else {
679
            /* skip: check if next character is part of pattern */
680
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
681
0
                i = i + m;
682
0
            }
683
0
        }
684
0
    }
685
0
    return mode == FAST_COUNT ? count : -1;
686
0
}
Unexecuted instantiation: bytesobject.c:stringlib_adaptive_find
Unexecuted instantiation: unicodeobject.c:asciilib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs1lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs2lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs4lib_adaptive_find
Unexecuted instantiation: bytes_methods.c:stringlib_adaptive_find
Unexecuted instantiation: bytearrayobject.c:stringlib_adaptive_find
687
688
689
static Py_ssize_t
690
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
691
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
692
                         Py_ssize_t maxcount, int mode)
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytesobject.c:stringlib_default_rfind
Unexecuted instantiation: unicodeobject.c:asciilib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs1lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs2lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs4lib_default_rfind
bytes_methods.c:stringlib_default_rfind
Line
Count
Source
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_rfind
737
738
739
static inline Py_ssize_t
740
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
741
                      const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
742
0
{
743
0
    Py_ssize_t i, count = 0;
744
0
    for (i = 0; i < n; i++) {
745
0
        if (s[i] == p0) {
746
0
            count++;
747
0
            if (count == maxcount) {
748
0
                return maxcount;
749
0
            }
750
0
        }
751
0
    }
752
0
    return count;
753
0
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char
Unexecuted instantiation: unicodeobject.c:asciilib_count_char
Unexecuted instantiation: unicodeobject.c:ucs1lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs2lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs4lib_count_char
Unexecuted instantiation: bytes_methods.c:stringlib_count_char
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char
754
755
756
static inline Py_ssize_t
757
STRINGLIB(count_char_no_maxcount)(const STRINGLIB_CHAR *s, Py_ssize_t n,
758
                                  const STRINGLIB_CHAR p0)
759
/* A specialized function of count_char that does not cut off at a maximum.
760
   As a result, the compiler is able to vectorize the loop. */
761
61.9M
{
762
61.9M
    Py_ssize_t count = 0;
763
14.5G
    for (Py_ssize_t i = 0; i < n; i++) {
764
14.5G
        if (s[i] == p0) {
765
283M
            count++;
766
283M
        }
767
14.5G
    }
768
61.9M
    return count;
769
61.9M
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: unicodeobject.c:asciilib_count_char_no_maxcount
unicodeobject.c:ucs1lib_count_char_no_maxcount
Line
Count
Source
761
51.8M
{
762
51.8M
    Py_ssize_t count = 0;
763
9.90G
    for (Py_ssize_t i = 0; i < n; i++) {
764
9.85G
        if (s[i] == p0) {
765
69.9M
            count++;
766
69.9M
        }
767
9.85G
    }
768
51.8M
    return count;
769
51.8M
}
unicodeobject.c:ucs2lib_count_char_no_maxcount
Line
Count
Source
761
9.26M
{
762
9.26M
    Py_ssize_t count = 0;
763
2.17G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.16G
        if (s[i] == p0) {
765
87.1M
            count++;
766
87.1M
        }
767
2.16G
    }
768
9.26M
    return count;
769
9.26M
}
unicodeobject.c:ucs4lib_count_char_no_maxcount
Line
Count
Source
761
816k
{
762
816k
    Py_ssize_t count = 0;
763
2.49G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.49G
        if (s[i] == p0) {
765
126M
            count++;
766
126M
        }
767
2.49G
    }
768
816k
    return count;
769
816k
}
Unexecuted instantiation: bytes_methods.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char_no_maxcount
770
771
772
Py_LOCAL_INLINE(Py_ssize_t)
773
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
774
           const STRINGLIB_CHAR* p, Py_ssize_t m,
775
           Py_ssize_t maxcount, int mode)
776
262M
{
777
262M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
13.7k
        return -1;
779
13.7k
    }
780
781
    /* look for special cases */
782
262M
    if (m <= 1) {
783
246M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
246M
        if (mode == FAST_SEARCH)
788
184M
            return STRINGLIB(find_char)(s, n, p[0]);
789
61.9M
        else if (mode == FAST_RSEARCH)
790
9.60k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
61.9M
        else {
792
61.9M
            if (maxcount == PY_SSIZE_T_MAX) {
793
61.9M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
61.9M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
61.9M
        }
797
246M
    }
798
799
16.1M
    if (mode != FAST_RSEARCH) {
800
16.1M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
16.1M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
16.1M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
16.1M
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
16.1M
}
Unexecuted instantiation: bytesobject.c:fastsearch
unicodeobject.c:asciilib_fastsearch
Line
Count
Source
776
23.6M
{
777
23.6M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
23.6M
    if (m <= 1) {
783
21.8M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
21.8M
        if (mode == FAST_SEARCH)
788
21.8M
            return STRINGLIB(find_char)(s, n, p[0]);
789
9.60k
        else if (mode == FAST_RSEARCH)
790
9.60k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
21.8M
    }
798
799
1.74M
    if (mode != FAST_RSEARCH) {
800
1.74M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
1.74M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
1.74M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
1.74M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
1.74M
}
unicodeobject.c:ucs1lib_fastsearch
Line
Count
Source
776
64.3M
{
777
64.3M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
64.3M
    if (m <= 1) {
783
57.8M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
57.8M
        if (mode == FAST_SEARCH)
788
5.96M
            return STRINGLIB(find_char)(s, n, p[0]);
789
51.8M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
51.8M
        else {
792
51.8M
            if (maxcount == PY_SSIZE_T_MAX) {
793
51.8M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
51.8M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
51.8M
        }
797
57.8M
    }
798
799
6.49M
    if (mode != FAST_RSEARCH) {
800
6.49M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
6.49M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
6.49M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
6.49M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
6.49M
}
unicodeobject.c:ucs2lib_fastsearch
Line
Count
Source
776
85.3M
{
777
85.3M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
13.7k
        return -1;
779
13.7k
    }
780
781
    /* look for special cases */
782
85.3M
    if (m <= 1) {
783
82.2M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
82.2M
        if (mode == FAST_SEARCH)
788
72.9M
            return STRINGLIB(find_char)(s, n, p[0]);
789
9.26M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
9.26M
        else {
792
9.26M
            if (maxcount == PY_SSIZE_T_MAX) {
793
9.26M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
9.26M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
9.26M
        }
797
82.2M
    }
798
799
3.06M
    if (mode != FAST_RSEARCH) {
800
3.06M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.06M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.06M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.06M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
3.06M
}
unicodeobject.c:ucs4lib_fastsearch
Line
Count
Source
776
89.2M
{
777
89.2M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
89.2M
    if (m <= 1) {
783
84.3M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
84.3M
        if (mode == FAST_SEARCH)
788
83.5M
            return STRINGLIB(find_char)(s, n, p[0]);
789
816k
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
816k
        else {
792
816k
            if (maxcount == PY_SSIZE_T_MAX) {
793
816k
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
816k
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
816k
        }
797
84.3M
    }
798
799
4.81M
    if (mode != FAST_RSEARCH) {
800
4.81M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
4.81M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
4.81M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
4.81M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
4.81M
}
bytes_methods.c:fastsearch
Line
Count
Source
776
3.12k
{
777
3.12k
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
9
        return -1;
779
9
    }
780
781
    /* look for special cases */
782
3.11k
    if (m <= 1) {
783
0
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
0
        if (mode == FAST_SEARCH)
788
0
            return STRINGLIB(find_char)(s, n, p[0]);
789
0
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
0
    }
798
799
3.11k
    if (mode != FAST_RSEARCH) {
800
3.11k
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.11k
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.11k
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.11k
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
3.11k
}
Unexecuted instantiation: bytearrayobject.c:fastsearch
830