Coverage Report

Created: 2025-09-04 06:25

/src/cpython/Python/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
34
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.78M
#define word0(x) (x)->L[1]
181
1.23M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
5.07M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
74.8k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
779k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
2.54M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
173k
#define Exp_shift  20
235
94.2k
#define Exp_shift1 20
236
468k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
1.13M
#define Exp_mask  0x7ff00000
239
412k
#define P 53
240
#define Nbits 53
241
212k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
300k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
94.9k
#define Exp_1  0x3ff00000
246
42.7k
#define Exp_11 0x3ff00000
247
193k
#define Ebits 11
248
152k
#define Frac_mask  0xfffff
249
45.0k
#define Frac_mask1 0xfffff
250
1.54M
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
67.4k
#define Bndry_mask  0xfffff
253
7.82k
#define Bndry_mask1 0xfffff
254
69.7k
#define Sign_bit 0x80000000
255
5.83k
#define Log2P 1
256
#define Tiny0 0
257
19.9k
#define Tiny1 1
258
47.1k
#define Quick_max 14
259
28.7k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
817k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.60k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.27k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
15.8M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.99M
#define freelist interp->dtoa.freelist
336
207
#define private_mem interp->dtoa.preallocated
337
553
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.49M
{
344
1.49M
    int x;
345
1.49M
    Bigint *rv;
346
1.49M
    unsigned int len;
347
1.49M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.49M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.49M
        freelist[k] = rv->next;
351
207
    else {
352
207
        x = 1 << k;
353
207
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
207
            /sizeof(double);
355
207
        if (k <= Bigint_Kmax &&
356
207
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
207
        ) {
358
173
            rv = (Bigint*)pmem_next;
359
173
            pmem_next += len;
360
173
        }
361
34
        else {
362
34
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
34
            if (rv == NULL)
364
0
                return NULL;
365
34
        }
366
207
        rv->k = k;
367
207
        rv->maxwds = x;
368
207
    }
369
1.49M
    rv->sign = rv->wds = 0;
370
1.49M
    return rv;
371
1.49M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
5.36M
{
378
5.36M
    if (v) {
379
1.49M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.49M
        else {
382
1.49M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.49M
            v->next = freelist[v->k];
384
1.49M
            freelist[v->k] = v;
385
1.49M
        }
386
1.49M
    }
387
5.36M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
99.9k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
99.9k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
675k
{
445
675k
    int i, wds;
446
675k
    ULong *x;
447
675k
    ULLong carry, y;
448
675k
    Bigint *b1;
449
450
675k
    wds = b->wds;
451
675k
    x = b->x;
452
675k
    i = 0;
453
675k
    carry = a;
454
2.27M
    do {
455
2.27M
        y = *x * (ULLong)m + carry;
456
2.27M
        carry = y >> 32;
457
2.27M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.27M
    }
459
2.27M
    while(++i < wds);
460
675k
    if (carry) {
461
44.0k
        if (wds >= b->maxwds) {
462
1.89k
            b1 = Balloc(b->k+1);
463
1.89k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.89k
            Bcopy(b1, b);
468
1.89k
            Bfree(b);
469
1.89k
            b = b1;
470
1.89k
        }
471
44.0k
        b->x[wds++] = (ULong)carry;
472
44.0k
        b->wds = wds;
473
44.0k
    }
474
675k
    return b;
475
675k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
74.8k
{
486
74.8k
    Bigint *b;
487
74.8k
    int i, k;
488
74.8k
    Long x, y;
489
490
74.8k
    x = (nd + 8) / 9;
491
109k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
74.8k
    b = Balloc(k);
493
74.8k
    if (b == NULL)
494
0
        return NULL;
495
74.8k
    b->x[0] = y9;
496
74.8k
    b->wds = 1;
497
498
74.8k
    if (nd <= 9)
499
47.1k
      return b;
500
501
27.6k
    s += 9;
502
216k
    for (i = 9; i < nd0; i++) {
503
188k
        b = multadd(b, 10, *s++ - '0');
504
188k
        if (b == NULL)
505
0
            return NULL;
506
188k
    }
507
27.6k
    s++;
508
86.6k
    for(; i < nd; i++) {
509
59.0k
        b = multadd(b, 10, *s++ - '0');
510
59.0k
        if (b == NULL)
511
0
            return NULL;
512
59.0k
    }
513
27.6k
    return b;
514
27.6k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
122k
{
521
122k
    int k = 0;
522
523
122k
    if (!(x & 0xffff0000)) {
524
73.7k
        k = 16;
525
73.7k
        x <<= 16;
526
73.7k
    }
527
122k
    if (!(x & 0xff000000)) {
528
74.2k
        k += 8;
529
74.2k
        x <<= 8;
530
74.2k
    }
531
122k
    if (!(x & 0xf0000000)) {
532
73.9k
        k += 4;
533
73.9k
        x <<= 4;
534
73.9k
    }
535
122k
    if (!(x & 0xc0000000)) {
536
68.0k
        k += 2;
537
68.0k
        x <<= 2;
538
68.0k
    }
539
122k
    if (!(x & 0x80000000)) {
540
71.3k
        k++;
541
71.3k
        if (!(x & 0x40000000))
542
0
            return 32;
543
71.3k
    }
544
122k
    return k;
545
122k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
47.1k
{
553
47.1k
    int k;
554
47.1k
    ULong x = *y;
555
556
47.1k
    if (x & 7) {
557
25.7k
        if (x & 1)
558
14.5k
            return 0;
559
11.1k
        if (x & 2) {
560
7.09k
            *y = x >> 1;
561
7.09k
            return 1;
562
7.09k
        }
563
4.07k
        *y = x >> 2;
564
4.07k
        return 2;
565
11.1k
    }
566
21.4k
    k = 0;
567
21.4k
    if (!(x & 0xffff)) {
568
7.70k
        k = 16;
569
7.70k
        x >>= 16;
570
7.70k
    }
571
21.4k
    if (!(x & 0xff)) {
572
4.13k
        k += 8;
573
4.13k
        x >>= 8;
574
4.13k
    }
575
21.4k
    if (!(x & 0xf)) {
576
10.8k
        k += 4;
577
10.8k
        x >>= 4;
578
10.8k
    }
579
21.4k
    if (!(x & 0x3)) {
580
11.6k
        k += 2;
581
11.6k
        x >>= 2;
582
11.6k
    }
583
21.4k
    if (!(x & 1)) {
584
15.4k
        k++;
585
15.4k
        x >>= 1;
586
15.4k
        if (!x)
587
0
            return 32;
588
15.4k
    }
589
21.4k
    *y = x;
590
21.4k
    return k;
591
21.4k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
172k
{
598
172k
    Bigint *b;
599
600
172k
    b = Balloc(1);
601
172k
    if (b == NULL)
602
0
        return NULL;
603
172k
    b->x[0] = i;
604
172k
    b->wds = 1;
605
172k
    return b;
606
172k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
412k
{
614
412k
    Bigint *c;
615
412k
    int k, wa, wb, wc;
616
412k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
412k
    ULong y;
618
412k
    ULLong carry, z;
619
620
412k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
5.48k
        c = Balloc(0);
622
5.48k
        if (c == NULL)
623
0
            return NULL;
624
5.48k
        c->wds = 1;
625
5.48k
        c->x[0] = 0;
626
5.48k
        return c;
627
5.48k
    }
628
629
407k
    if (a->wds < b->wds) {
630
187k
        c = a;
631
187k
        a = b;
632
187k
        b = c;
633
187k
    }
634
407k
    k = a->k;
635
407k
    wa = a->wds;
636
407k
    wb = b->wds;
637
407k
    wc = wa + wb;
638
407k
    if (wc > a->maxwds)
639
176k
        k++;
640
407k
    c = Balloc(k);
641
407k
    if (c == NULL)
642
0
        return NULL;
643
3.84M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.43M
        *x = 0;
645
407k
    xa = a->x;
646
407k
    xae = xa + wa;
647
407k
    xb = b->x;
648
407k
    xbe = xb + wb;
649
407k
    xc0 = c->x;
650
1.30M
    for(; xb < xbe; xc0++) {
651
900k
        if ((y = *xb++)) {
652
894k
            x = xa;
653
894k
            xc = xc0;
654
894k
            carry = 0;
655
9.05M
            do {
656
9.05M
                z = *x++ * (ULLong)y + *xc + carry;
657
9.05M
                carry = z >> 32;
658
9.05M
                *xc++ = (ULong)(z & FFFFFFFF);
659
9.05M
            }
660
9.05M
            while(x < xae);
661
894k
            *xc = (ULong)carry;
662
894k
        }
663
900k
    }
664
695k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
407k
    c->wds = wc;
666
407k
    return c;
667
407k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
129k
{
678
129k
    Bigint *b1, *p5, **p5s;
679
129k
    int i;
680
129k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
129k
    assert(0 <= k && k < 1024);
688
689
129k
    if ((i = k & 3)) {
690
88.2k
        b = multadd(b, p05[i-1], 0);
691
88.2k
        if (b == NULL)
692
0
            return NULL;
693
88.2k
    }
694
695
129k
    if (!(k >>= 2))
696
9.99k
        return b;
697
119k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
119k
    p5s = interp->dtoa.p5s;
699
587k
    for(;;) {
700
587k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
587k
        p5 = *p5s;
702
587k
        p5s++;
703
587k
        if (k & 1) {
704
348k
            b1 = mult(b, p5);
705
348k
            Bfree(b);
706
348k
            b = b1;
707
348k
            if (b == NULL)
708
0
                return NULL;
709
348k
        }
710
587k
        if (!(k >>= 1))
711
119k
            break;
712
587k
    }
713
119k
    return b;
714
119k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
320k
{
775
320k
    int i, k1, n, n1;
776
320k
    Bigint *b1;
777
320k
    ULong *x, *x1, *xe, z;
778
779
320k
    if (!k || (!b->x[0] && b->wds == 1))
780
5.93k
        return b;
781
782
314k
    n = k >> 5;
783
314k
    k1 = b->k;
784
314k
    n1 = n + b->wds + 1;
785
770k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
455k
        k1++;
787
314k
    b1 = Balloc(k1);
788
314k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
314k
    x1 = b1->x;
793
1.77M
    for(i = 0; i < n; i++)
794
1.46M
        *x1++ = 0;
795
314k
    x = b->x;
796
314k
    xe = x + b->wds;
797
314k
    if (k &= 0x1f) {
798
312k
        k1 = 32 - k;
799
312k
        z = 0;
800
1.54M
        do {
801
1.54M
            *x1++ = *x << k | z;
802
1.54M
            z = *x++ >> k1;
803
1.54M
        }
804
1.54M
        while(x < xe);
805
312k
        if ((*x1 = z))
806
51.4k
            ++n1;
807
312k
    }
808
1.98k
    else do
809
4.56k
             *x1++ = *x++;
810
4.56k
        while(x < xe);
811
314k
    b1->wds = n1 - 1;
812
314k
    Bfree(b);
813
314k
    return b1;
814
314k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
864k
{
822
864k
    ULong *xa, *xa0, *xb, *xb0;
823
864k
    int i, j;
824
825
864k
    i = a->wds;
826
864k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
864k
    if (i -= j)
834
182k
        return i;
835
682k
    xa0 = a->x;
836
682k
    xa = xa0 + j;
837
682k
    xb0 = b->x;
838
682k
    xb = xb0 + j;
839
833k
    for(;;) {
840
833k
        if (*--xa != *--xb)
841
666k
            return *xa < *xb ? -1 : 1;
842
167k
        if (xa <= xa0)
843
16.4k
            break;
844
167k
    }
845
16.4k
    return 0;
846
682k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
218k
{
855
218k
    Bigint *c;
856
218k
    int i, wa, wb;
857
218k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
218k
    ULLong borrow, y;
859
860
218k
    i = cmp(a,b);
861
218k
    if (!i) {
862
2.73k
        c = Balloc(0);
863
2.73k
        if (c == NULL)
864
0
            return NULL;
865
2.73k
        c->wds = 1;
866
2.73k
        c->x[0] = 0;
867
2.73k
        return c;
868
2.73k
    }
869
215k
    if (i < 0) {
870
44.6k
        c = a;
871
44.6k
        a = b;
872
44.6k
        b = c;
873
44.6k
        i = 1;
874
44.6k
    }
875
171k
    else
876
171k
        i = 0;
877
215k
    c = Balloc(a->k);
878
215k
    if (c == NULL)
879
0
        return NULL;
880
215k
    c->sign = i;
881
215k
    wa = a->wds;
882
215k
    xa = a->x;
883
215k
    xae = xa + wa;
884
215k
    wb = b->wds;
885
215k
    xb = b->x;
886
215k
    xbe = xb + wb;
887
215k
    xc = c->x;
888
215k
    borrow = 0;
889
1.62M
    do {
890
1.62M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.62M
        borrow = y >> 32 & (ULong)1;
892
1.62M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.62M
    }
894
1.62M
    while(xb < xbe);
895
463k
    while(xa < xae) {
896
248k
        y = *xa++ - borrow;
897
248k
        borrow = y >> 32 & (ULong)1;
898
248k
        *xc++ = (ULong)(y & FFFFFFFF);
899
248k
    }
900
334k
    while(!*--xc)
901
118k
        wa--;
902
215k
    c->wds = wa;
903
215k
    return c;
904
215k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
40.7k
{
912
40.7k
    Long L;
913
40.7k
    U u;
914
915
40.7k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
40.7k
    word0(&u) = L;
917
40.7k
    word1(&u) = 0;
918
40.7k
    return dval(&u);
919
40.7k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
75.8k
{
926
75.8k
    ULong *xa, *xa0, w, y, z;
927
75.8k
    int k;
928
75.8k
    U d;
929
930
75.8k
    xa0 = a->x;
931
75.8k
    xa = xa0 + a->wds;
932
75.8k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
75.8k
    k = hi0bits(y);
937
75.8k
    *e = 32 - k;
938
75.8k
    if (k < Ebits) {
939
20.7k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
20.7k
        w = xa > xa0 ? *--xa : 0;
941
20.7k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
20.7k
        goto ret_d;
943
20.7k
    }
944
55.1k
    z = xa > xa0 ? *--xa : 0;
945
55.1k
    if (k -= Ebits) {
946
51.5k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
51.5k
        y = xa > xa0 ? *--xa : 0;
948
51.5k
        word1(&d) = z << k | y >> (32 - k);
949
51.5k
    }
950
3.55k
    else {
951
3.55k
        word0(&d) = Exp_1 | y;
952
3.55k
        word1(&d) = z;
953
3.55k
    }
954
75.8k
  ret_d:
955
75.8k
    return dval(&d);
956
55.1k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
105k
{
982
105k
    Bigint *b;
983
984
105k
    b = Balloc(1);
985
105k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
105k
    b->wds = 2;
990
105k
    b->x[0] = word1(d);
991
105k
    b->x[1] = word0(d) & Frac_mask;
992
105k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
105k
    if (*e < Etiny)
994
5.93k
        *e = Etiny;
995
99.5k
    else
996
99.5k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
105k
    if (scale && (b->x[0] || b->x[1])) {
1000
30.0k
        *e -= scale;
1001
30.0k
        if (*e < Etiny) {
1002
26.9k
            scale = Etiny - *e;
1003
26.9k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
26.9k
            assert(0 < scale && scale <= P - 1);
1006
26.9k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
14.2k
                assert(b->x[0] == 0);
1009
14.2k
                b->x[0] = b->x[1];
1010
14.2k
                b->x[1] = 0;
1011
14.2k
                scale -= 32;
1012
14.2k
            }
1013
26.9k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
25.2k
                assert(b->x[0] << (32 - scale) == 0);
1016
25.2k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
25.2k
                b->x[1] >>= scale;
1018
25.2k
            }
1019
26.9k
        }
1020
30.0k
    }
1021
    /* Ensure b is normalized. */
1022
105k
    if (!b->x[1])
1023
23.9k
        b->wds = 1;
1024
1025
105k
    return b;
1026
105k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
47.1k
{
1040
47.1k
    Bigint *b;
1041
47.1k
    int de, k;
1042
47.1k
    ULong *x, y, z;
1043
47.1k
    int i;
1044
1045
47.1k
    b = Balloc(1);
1046
47.1k
    if (b == NULL)
1047
0
        return NULL;
1048
47.1k
    x = b->x;
1049
1050
47.1k
    z = word0(d) & Frac_mask;
1051
47.1k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
47.1k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
42.7k
        z |= Exp_msk1;
1054
47.1k
    if ((y = word1(d))) {
1055
33.1k
        if ((k = lo0bits(&y))) {
1056
19.2k
            x[0] = y | z << (32 - k);
1057
19.2k
            z >>= k;
1058
19.2k
        }
1059
13.9k
        else
1060
13.9k
            x[0] = y;
1061
33.1k
        i =
1062
33.1k
            b->wds = (x[1] = z) ? 2 : 1;
1063
33.1k
    }
1064
13.9k
    else {
1065
13.9k
        k = lo0bits(&z);
1066
13.9k
        x[0] = z;
1067
13.9k
        i =
1068
13.9k
            b->wds = 1;
1069
13.9k
        k += 32;
1070
13.9k
    }
1071
47.1k
    if (de) {
1072
42.7k
        *e = de - Bias - (P-1) + k;
1073
42.7k
        *bits = P - k;
1074
42.7k
    }
1075
4.38k
    else {
1076
4.38k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.38k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.38k
    }
1079
47.1k
    return b;
1080
47.1k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
37.9k
{
1088
37.9k
    U da, db;
1089
37.9k
    int k, ka, kb;
1090
1091
37.9k
    dval(&da) = b2d(a, &ka);
1092
37.9k
    dval(&db) = b2d(b, &kb);
1093
37.9k
    k = ka - kb + 32*(a->wds - b->wds);
1094
37.9k
    if (k > 0)
1095
24.1k
        word0(&da) += k*Exp_msk1;
1096
13.7k
    else {
1097
13.7k
        k = -k;
1098
13.7k
        word0(&db) += k*Exp_msk1;
1099
13.7k
    }
1100
37.9k
    return dval(&da) / dval(&db);
1101
37.9k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
23.7k
#define Scale_Bit 0x10
1119
24.7k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
41.9k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
41.9k
{
1129
41.9k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
41.9k
    if (p2 > 0)
1131
24.6k
        rv -= p2;
1132
41.9k
    return rv & kmask;
1133
41.9k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
277k
{
1142
277k
    int n;
1143
277k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
277k
    ULLong borrow, carry, y, ys;
1145
1146
277k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
277k
    if (b->wds < n)
1152
8.53k
        return 0;
1153
268k
    sx = S->x;
1154
268k
    sxe = sx + --n;
1155
268k
    bx = b->x;
1156
268k
    bxe = bx + n;
1157
268k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
268k
    if (q) {
1163
217k
        borrow = 0;
1164
217k
        carry = 0;
1165
1.23M
        do {
1166
1.23M
            ys = *sx++ * (ULLong)q + carry;
1167
1.23M
            carry = ys >> 32;
1168
1.23M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.23M
            borrow = y >> 32 & (ULong)1;
1170
1.23M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.23M
        }
1172
1.23M
        while(sx <= sxe);
1173
217k
        if (!*bxe) {
1174
902
            bx = b->x;
1175
902
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
902
            b->wds = n;
1178
902
        }
1179
217k
    }
1180
268k
    if (cmp(b, S) >= 0) {
1181
19.7k
        q++;
1182
19.7k
        borrow = 0;
1183
19.7k
        carry = 0;
1184
19.7k
        bx = b->x;
1185
19.7k
        sx = S->x;
1186
117k
        do {
1187
117k
            ys = *sx++ + carry;
1188
117k
            carry = ys >> 32;
1189
117k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
117k
            borrow = y >> 32 & (ULong)1;
1191
117k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
117k
        }
1193
117k
        while(sx <= sxe);
1194
19.7k
        bx = b->x;
1195
19.7k
        bxe = bx + n;
1196
19.7k
        if (!*bxe) {
1197
20.4k
            while(--bxe > bx && !*bxe)
1198
1.58k
                --n;
1199
18.8k
            b->wds = n;
1200
18.8k
        }
1201
19.7k
    }
1202
268k
    return q;
1203
277k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.19k
{
1214
3.19k
    U u;
1215
1216
3.19k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
402
        word0(&u) = (P+2)*Exp_msk1;
1219
402
        word1(&u) = 0;
1220
402
        return u.d;
1221
402
    }
1222
2.79k
    else {
1223
2.79k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.79k
        return ulp(x);
1225
2.79k
    }
1226
3.19k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
8.34k
{
1277
8.34k
    Bigint *b, *d;
1278
8.34k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
8.34k
    nd = bc->nd;
1281
8.34k
    nd0 = bc->nd0;
1282
8.34k
    p5 = nd + bc->e0;
1283
8.34k
    b = sd2b(rv, bc->scale, &p2);
1284
8.34k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
8.34k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
8.34k
    b = lshift(b, 1);
1294
8.34k
    if (b == NULL)
1295
0
        return -1;
1296
8.34k
    b->x[0] |= 1;
1297
8.34k
    p2--;
1298
1299
8.34k
    p2 -= p5;
1300
8.34k
    d = i2b(1);
1301
8.34k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
8.34k
    if (p5 > 0) {
1309
6.13k
        d = pow5mult(d, p5);
1310
6.13k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
6.13k
    }
1315
2.21k
    else if (p5 < 0) {
1316
1.55k
        b = pow5mult(b, -p5);
1317
1.55k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.55k
    }
1322
8.34k
    if (p2 > 0) {
1323
4.82k
        b2 = p2;
1324
4.82k
        d2 = 0;
1325
4.82k
    }
1326
3.52k
    else {
1327
3.52k
        b2 = 0;
1328
3.52k
        d2 = -p2;
1329
3.52k
    }
1330
8.34k
    i = dshift(d, d2);
1331
8.34k
    if ((b2 += i) > 0) {
1332
8.08k
        b = lshift(b, b2);
1333
8.08k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
8.08k
    }
1338
8.34k
    if ((d2 += i) > 0) {
1339
7.59k
        d = lshift(d, d2);
1340
7.59k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
7.59k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
8.34k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
902
        dd = -1;
1352
7.44k
    else {
1353
7.44k
        i = 0;
1354
155k
        for(;;) {
1355
155k
            b = multadd(b, 10, 0);
1356
155k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
155k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
155k
            i++;
1362
1363
155k
            if (dd)
1364
5.64k
                break;
1365
150k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
808
                dd = i < nd;
1368
808
                break;
1369
808
            }
1370
149k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
989
                dd = -1;
1373
989
                break;
1374
989
            }
1375
149k
        }
1376
7.44k
    }
1377
8.34k
    Bfree(b);
1378
8.34k
    Bfree(d);
1379
8.34k
    if (dd > 0 || (dd == 0 && odd))
1380
1.69k
        dval(rv) += sulp(rv, bc);
1381
8.34k
    return 0;
1382
8.34k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
848k
{
1388
848k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
848k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
848k
    const char *s, *s0, *s1;
1391
848k
    double aadj, aadj1;
1392
848k
    U aadj2, adj, rv, rv0;
1393
848k
    ULong y, z, abs_exp;
1394
848k
    Long L;
1395
848k
    BCinfo bc;
1396
848k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
848k
    size_t ndigits, fraclen;
1398
848k
    double result;
1399
1400
848k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
848k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
848k
    sign = 0;
1407
848k
    switch (c) {
1408
711k
    case '-':
1409
711k
        sign = 1;
1410
711k
        _Py_FALLTHROUGH;
1411
711k
    case '+':
1412
711k
        c = *++s;
1413
848k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
848k
    s1 = s;
1417
871k
    while (c == '0')
1418
22.8k
        c = *++s;
1419
848k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
848k
    s0 = s1 = s;
1426
3.68M
    while ('0' <= c && c <= '9')
1427
2.83M
        c = *++s;
1428
848k
    ndigits = s - s1;
1429
848k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
848k
    if (c == '.') {
1433
65.7k
        c = *++s;
1434
65.7k
        if (!ndigits) {
1435
21.7k
            s1 = s;
1436
1.09M
            while (c == '0')
1437
1.07M
                c = *++s;
1438
21.7k
            lz = lz || s != s1;
1439
21.7k
            fraclen += (s - s1);
1440
21.7k
            s0 = s;
1441
21.7k
        }
1442
65.7k
        s1 = s;
1443
14.2M
        while ('0' <= c && c <= '9')
1444
14.1M
            c = *++s;
1445
65.7k
        ndigits += s - s1;
1446
65.7k
        fraclen += s - s1;
1447
65.7k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
848k
    if (!ndigits && !lz) {
1453
22
        if (se)
1454
22
            *se = (char *)s00;
1455
22
        goto parse_error;
1456
22
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
848k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
848k
    nd = (int)ndigits;
1466
848k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
848k
    e = 0;
1470
848k
    if (c == 'e' || c == 'E') {
1471
779k
        s00 = s;
1472
779k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
779k
        esign = 0;
1476
779k
        switch (c) {
1477
29.1k
        case '-':
1478
29.1k
            esign = 1;
1479
29.1k
            _Py_FALLTHROUGH;
1480
42.4k
        case '+':
1481
42.4k
            c = *++s;
1482
779k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
779k
        s1 = s;
1486
791k
        while (c == '0')
1487
11.9k
            c = *++s;
1488
779k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
779k
        s1 = s;
1492
779k
        abs_exp = 0;
1493
3.47M
        while ('0' <= c && c <= '9') {
1494
2.69M
            abs_exp = 10*abs_exp + (c - '0');
1495
2.69M
            c = *++s;
1496
2.69M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
779k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
6.62k
            e = (int)MAX_ABS_EXP;
1503
773k
        else
1504
773k
            e = (int)abs_exp;
1505
779k
        if (esign)
1506
29.1k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
779k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
779k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
848k
    e -= nd - nd0;
1515
848k
    if (nd0 <= 0)
1516
25.6k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
848k
    if (se)
1520
848k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
848k
    if (!nd)
1525
10.9k
        goto ret;
1526
3.14M
    for (i = nd; i > 0; ) {
1527
3.14M
        --i;
1528
3.14M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
837k
            ++i;
1530
837k
            break;
1531
837k
        }
1532
3.14M
    }
1533
837k
    e += nd - i;
1534
837k
    nd = i;
1535
837k
    if (nd0 > nd)
1536
10.5k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
837k
    bc.e0 = e1 = e;
1575
837k
    y = z = 0;
1576
2.33M
    for (i = 0; i < nd; i++) {
1577
1.52M
        if (i < 9)
1578
1.26M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
258k
        else if (i < DBL_DIG+1)
1580
234k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
24.0k
        else
1582
24.0k
            break;
1583
1.52M
    }
1584
1585
837k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
837k
    dval(&rv) = y;
1587
837k
    if (k > 9) {
1588
42.2k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
42.2k
    }
1590
837k
    if (nd <= DBL_DIG
1591
837k
        && Flt_Rounds == 1
1592
837k
        ) {
1593
806k
        if (!e)
1594
12.5k
            goto ret;
1595
794k
        if (e > 0) {
1596
747k
            if (e <= Ten_pmax) {
1597
27.7k
                dval(&rv) *= tens[e];
1598
27.7k
                goto ret;
1599
27.7k
            }
1600
719k
            i = DBL_DIG - nd;
1601
719k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
2.90k
                e -= i;
1606
2.90k
                dval(&rv) *= tens[i];
1607
2.90k
                dval(&rv) *= tens[e];
1608
2.90k
                goto ret;
1609
2.90k
            }
1610
719k
        }
1611
47.1k
        else if (e >= -Ten_pmax) {
1612
27.4k
            dval(&rv) /= tens[-e];
1613
27.4k
            goto ret;
1614
27.4k
        }
1615
794k
    }
1616
766k
    e1 += nd - k;
1617
1618
766k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
766k
    if (e1 > 0) {
1623
731k
        if ((i = e1 & 15))
1624
715k
            dval(&rv) *= tens[i];
1625
731k
        if (e1 &= ~15) {
1626
724k
            if (e1 > DBL_MAX_10_EXP)
1627
690k
                goto ovfl;
1628
34.0k
            e1 >>= 4;
1629
90.5k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
56.4k
                if (e1 & 1)
1631
24.8k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
34.0k
            word0(&rv) -= P*Exp_msk1;
1634
34.0k
            dval(&rv) *= bigtens[j];
1635
34.0k
            if ((z = word0(&rv) & Exp_mask)
1636
34.0k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
485
                goto ovfl;
1638
33.6k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
553
                word0(&rv) = Big0;
1642
553
                word1(&rv) = Big1;
1643
553
            }
1644
33.0k
            else
1645
33.0k
                word0(&rv) += P*Exp_msk1;
1646
33.6k
        }
1647
731k
    }
1648
35.2k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
32.1k
        e1 = -e1;
1660
32.1k
        if ((i = e1 & 15))
1661
28.3k
            dval(&rv) /= tens[i];
1662
32.1k
        if (e1 >>= 4) {
1663
24.7k
            if (e1 >= 1 << n_bigtens)
1664
976
                goto undfl;
1665
23.7k
            if (e1 & Scale_Bit)
1666
19.1k
                bc.scale = 2*P;
1667
126k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
102k
                if (e1 & 1)
1669
60.8k
                    dval(&rv) *= tinytens[j];
1670
23.7k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
19.1k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
17.8k
                if (j >= 32) {
1674
11.1k
                    word1(&rv) = 0;
1675
11.1k
                    if (j >= 53)
1676
6.12k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.97k
                    else
1678
4.97k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
11.1k
                }
1680
6.73k
                else
1681
6.73k
                    word1(&rv) &= 0xffffffff << j;
1682
17.8k
            }
1683
23.7k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
23.7k
        }
1686
32.1k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
74.8k
    bc.nd = nd;
1693
74.8k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
74.8k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
72.2k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
72.2k
            --i;
1708
72.2k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
11.8k
                ++i;
1710
11.8k
                break;
1711
11.8k
            }
1712
72.2k
        }
1713
11.8k
        e += nd - i;
1714
11.8k
        nd = i;
1715
11.8k
        if (nd0 > nd)
1716
8.57k
            nd0 = nd;
1717
11.8k
        if (nd < 9) { /* must recompute y */
1718
4.57k
            y = 0;
1719
23.3k
            for(i = 0; i < nd0; ++i)
1720
18.7k
                y = 10*y + s0[i] - '0';
1721
13.0k
            for(; i < nd; ++i)
1722
8.49k
                y = 10*y + s0[i+1] - '0';
1723
4.57k
        }
1724
11.8k
    }
1725
74.8k
    bd0 = s2b(s0, nd0, nd, y);
1726
74.8k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
97.1k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
97.1k
        bd = Balloc(bd0->k);
1758
97.1k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
97.1k
        Bcopy(bd, bd0);
1762
97.1k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
97.1k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
97.1k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
97.1k
        bs = i2b(1);
1772
97.1k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
97.1k
        if (e >= 0) {
1777
46.6k
            bb2 = bb5 = 0;
1778
46.6k
            bd2 = bd5 = e;
1779
46.6k
        }
1780
50.4k
        else {
1781
50.4k
            bb2 = bb5 = -e;
1782
50.4k
            bd2 = bd5 = 0;
1783
50.4k
        }
1784
97.1k
        if (bbe >= 0)
1785
48.1k
            bb2 += bbe;
1786
48.9k
        else
1787
48.9k
            bd2 -= bbe;
1788
97.1k
        bs2 = bb2;
1789
97.1k
        bb2++;
1790
97.1k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
97.1k
        i = bb2 < bd2 ? bb2 : bd2;
1811
97.1k
        if (i > bs2)
1812
48.7k
            i = bs2;
1813
97.1k
        if (i > 0) {
1814
96.0k
            bb2 -= i;
1815
96.0k
            bd2 -= i;
1816
96.0k
            bs2 -= i;
1817
96.0k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
97.1k
        if (bb5 > 0) {
1821
50.4k
            bs = pow5mult(bs, bb5);
1822
50.4k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
50.4k
            Bigint *bb1 = mult(bs, bb);
1826
50.4k
            Bfree(bb);
1827
50.4k
            bb = bb1;
1828
50.4k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
50.4k
        }
1832
97.1k
        if (bb2 > 0) {
1833
97.1k
            bb = lshift(bb, bb2);
1834
97.1k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
97.1k
        }
1838
97.1k
        if (bd5 > 0) {
1839
40.3k
            bd = pow5mult(bd, bd5);
1840
40.3k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
40.3k
        }
1844
97.1k
        if (bd2 > 0) {
1845
48.7k
            bd = lshift(bd, bd2);
1846
48.7k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
48.7k
        }
1850
97.1k
        if (bs2 > 0) {
1851
44.4k
            bs = lshift(bs, bs2);
1852
44.4k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
44.4k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
97.1k
        delta = diff(bb, bd);
1862
97.1k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
97.1k
        dsign = delta->sign;
1866
97.1k
        delta->sign = 0;
1867
97.1k
        i = cmp(delta, bs);
1868
97.1k
        if (bc.nd > nd && i <= 0) {
1869
11.8k
            if (dsign)
1870
7.43k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
4.39k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.30k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.30k
                if (j - bc.scale >= 2) {
1890
909
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
909
                    break; /* Use bigcomp. */
1892
909
                }
1893
1.30k
            }
1894
1895
3.49k
            {
1896
3.49k
                bc.nd = nd;
1897
3.49k
                i = -1; /* Discarded digits make delta smaller. */
1898
3.49k
            }
1899
3.49k
        }
1900
1901
88.7k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
47.0k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
47.0k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
47.0k
                ) {
1908
43.7k
                break;
1909
43.7k
            }
1910
3.29k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
444
                break;
1913
444
            }
1914
2.85k
            delta = lshift(delta,Log2P);
1915
2.85k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.85k
            if (cmp(delta, bs) > 0)
1919
959
                goto drop_down;
1920
1.89k
            break;
1921
2.85k
        }
1922
41.6k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.74k
            if (dsign) {
1925
2.28k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
2.28k
                    &&  word1(&rv) == (
1927
1.14k
                        (bc.scale &&
1928
1.14k
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
1.14k
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
597
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
597
                        + Exp_msk1
1934
597
                        ;
1935
597
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
597
                    break;
1938
597
                }
1939
2.28k
            }
1940
1.46k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
959
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
959
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
959
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
959
                word0(&rv) = L | Bndry_mask1;
1958
959
                word1(&rv) = 0xffffffff;
1959
959
                break;
1960
959
            }
1961
3.15k
            if (!odd)
1962
2.55k
                break;
1963
594
            if (dsign)
1964
369
                dval(&rv) += sulp(&rv, &bc);
1965
225
            else {
1966
225
                dval(&rv) -= sulp(&rv, &bc);
1967
225
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
225
            }
1973
            /* dsign = 1 - dsign; */
1974
594
            break;
1975
594
        }
1976
37.9k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
27.0k
            if (dsign)
1978
11.5k
                aadj = aadj1 = 1.;
1979
15.4k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.97k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.97k
                aadj = 1.;
1986
9.97k
                aadj1 = -1.;
1987
9.97k
            }
1988
5.48k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
5.48k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
5.48k
                else
1995
5.48k
                    aadj *= 0.5;
1996
5.48k
                aadj1 = -aadj;
1997
5.48k
            }
1998
27.0k
        }
1999
10.9k
        else {
2000
10.9k
            aadj *= 0.5;
2001
10.9k
            aadj1 = dsign ? aadj : -aadj;
2002
10.9k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
10.9k
        }
2005
37.9k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
37.9k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.87k
            dval(&rv0) = dval(&rv);
2011
1.87k
            word0(&rv) -= P*Exp_msk1;
2012
1.87k
            adj.d = aadj1 * ulp(&rv);
2013
1.87k
            dval(&rv) += adj.d;
2014
1.87k
            if ((word0(&rv) & Exp_mask) >=
2015
1.87k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.33k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
942
                    goto ovfl;
2018
942
                }
2019
389
                word0(&rv) = Big0;
2020
389
                word1(&rv) = Big1;
2021
389
                goto cont;
2022
1.33k
            }
2023
541
            else
2024
541
                word0(&rv) += P*Exp_msk1;
2025
1.87k
        }
2026
36.0k
        else {
2027
36.0k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
14.6k
                if (aadj <= 0x7fffffff) {
2029
14.6k
                    if ((z = (ULong)aadj) <= 0)
2030
836
                        z = 1;
2031
14.6k
                    aadj = z;
2032
14.6k
                    aadj1 = dsign ? aadj : -aadj;
2033
14.6k
                }
2034
14.6k
                dval(&aadj2) = aadj1;
2035
14.6k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
14.6k
                aadj1 = dval(&aadj2);
2037
14.6k
            }
2038
36.0k
            adj.d = aadj1 * ulp(&rv);
2039
36.0k
            dval(&rv) += adj.d;
2040
36.0k
        }
2041
36.5k
        z = word0(&rv) & Exp_mask;
2042
36.5k
        if (bc.nd == nd) {
2043
31.6k
            if (!bc.scale)
2044
17.0k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
15.4k
                    L = (Long)aadj;
2047
15.4k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
15.4k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
15.4k
                        if (aadj < .4999999 || aadj > .5000001)
2051
14.6k
                            break;
2052
15.4k
                    }
2053
3
                    else if (aadj < .4999999/FLT_RADIX)
2054
3
                        break;
2055
15.4k
                }
2056
31.6k
        }
2057
22.2k
      cont:
2058
22.2k
        Bfree(bb); bb = NULL;
2059
22.2k
        Bfree(bd); bd = NULL;
2060
22.2k
        Bfree(bs); bs = NULL;
2061
22.2k
        Bfree(delta); delta = NULL;
2062
22.2k
    }
2063
73.8k
    if (bc.nd > nd) {
2064
8.34k
        error = bigcomp(&rv, s0, &bc);
2065
8.34k
        if (error)
2066
0
            goto failed_malloc;
2067
8.34k
    }
2068
2069
73.8k
    if (bc.scale) {
2070
19.1k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
19.1k
        word1(&rv0) = 0;
2072
19.1k
        dval(&rv) *= dval(&rv0);
2073
19.1k
    }
2074
2075
155k
  ret:
2076
155k
    result = sign ? -dval(&rv) : dval(&rv);
2077
155k
    goto done;
2078
2079
22
  parse_error:
2080
22
    result = 0.0;
2081
22
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
976
  undfl:
2089
976
    result = sign ? -0.0 : 0.0;
2090
976
    goto done;
2091
2092
692k
  ovfl:
2093
692k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
692k
    word0(&rv) = Exp_mask;
2096
692k
    word1(&rv) = 0;
2097
692k
    result = sign ? -dval(&rv) : dval(&rv);
2098
692k
    goto done;
2099
2100
848k
  done:
2101
848k
    Bfree(bb);
2102
848k
    Bfree(bd);
2103
848k
    Bfree(bs);
2104
848k
    Bfree(bd0);
2105
848k
    Bfree(delta);
2106
848k
    return result;
2107
2108
73.8k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
53.3k
{
2113
53.3k
    int j, k, *r;
2114
2115
53.3k
    j = sizeof(ULong);
2116
53.3k
    for(k = 0;
2117
53.3k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
53.3k
        j <<= 1)
2119
0
        k++;
2120
53.3k
    r = (int*)Balloc(k);
2121
53.3k
    if (r == NULL)
2122
0
        return NULL;
2123
53.3k
    *r = k;
2124
53.3k
    return (char *)(r+1);
2125
53.3k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
6.20k
{
2130
6.20k
    char *rv, *t;
2131
2132
6.20k
    rv = rv_alloc(n);
2133
6.20k
    if (rv == NULL)
2134
0
        return NULL;
2135
6.20k
    t = rv;
2136
17.2k
    while((*t = *s++)) t++;
2137
6.20k
    if (rve)
2138
6.20k
        *rve = t;
2139
6.20k
    return rv;
2140
6.20k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
53.3k
{
2151
53.3k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
53.3k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
53.3k
    Bfree(b);
2154
53.3k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
53.3k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
53.3k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
53.3k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
53.3k
        spec_case, try_quick;
2235
53.3k
    Long L;
2236
53.3k
    int denorm;
2237
53.3k
    ULong x;
2238
53.3k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
53.3k
    U d2, eps, u;
2240
53.3k
    double ds;
2241
53.3k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
53.3k
    mlo = mhi = S = 0;
2246
53.3k
    s0 = 0;
2247
2248
53.3k
    u.d = dd;
2249
53.3k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
16.4k
        *sign = 1;
2252
16.4k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
16.4k
    }
2254
36.8k
    else
2255
36.8k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
53.3k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
690
    {
2260
        /* Infinity or NaN */
2261
690
        *decpt = 9999;
2262
690
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
690
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
690
    }
2266
52.6k
    if (!dval(&u)) {
2267
5.51k
        *decpt = 1;
2268
5.51k
        return nrv_alloc("0", rve, 1);
2269
5.51k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
47.1k
    b = d2b(&u, &be, &bbits);
2274
47.1k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
47.1k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
42.7k
        dval(&d2) = dval(&u);
2278
42.7k
        word0(&d2) &= Frac_mask1;
2279
42.7k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
42.7k
        i -= Bias;
2304
42.7k
        denorm = 0;
2305
42.7k
    }
2306
4.38k
    else {
2307
        /* d is denormalized */
2308
2309
4.38k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.38k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.38k
            : word1(&u) << (32 - i);
2312
4.38k
        dval(&d2) = x;
2313
4.38k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.38k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.38k
        denorm = 1;
2316
4.38k
    }
2317
47.1k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
47.1k
        i*0.301029995663981;
2319
47.1k
    k = (int)ds;
2320
47.1k
    if (ds < 0. && ds != k)
2321
13.3k
        k--;    /* want k = floor(ds) */
2322
47.1k
    k_check = 1;
2323
47.1k
    if (k >= 0 && k <= Ten_pmax) {
2324
21.7k
        if (dval(&u) < tens[k])
2325
2.32k
            k--;
2326
21.7k
        k_check = 0;
2327
21.7k
    }
2328
47.1k
    j = bbits - i - 1;
2329
47.1k
    if (j >= 0) {
2330
20.1k
        b2 = 0;
2331
20.1k
        s2 = j;
2332
20.1k
    }
2333
27.0k
    else {
2334
27.0k
        b2 = -j;
2335
27.0k
        s2 = 0;
2336
27.0k
    }
2337
47.1k
    if (k >= 0) {
2338
33.1k
        b5 = 0;
2339
33.1k
        s5 = k;
2340
33.1k
        s2 += k;
2341
33.1k
    }
2342
13.9k
    else {
2343
13.9k
        b2 -= k;
2344
13.9k
        b5 = -k;
2345
13.9k
        s5 = 0;
2346
13.9k
    }
2347
47.1k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
47.1k
    try_quick = 1;
2351
2352
47.1k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
47.1k
    leftright = 1;
2357
47.1k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
47.1k
    switch(mode) {
2360
47.1k
    case 0:
2361
47.1k
    case 1:
2362
47.1k
        i = 18;
2363
47.1k
        ndigits = 0;
2364
47.1k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
47.1k
    }
2383
47.1k
    s0 = rv_alloc(i);
2384
47.1k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
47.1k
    s = s0;
2387
2388
2389
47.1k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
47.1k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
13.5k
        ds = tens[k];
2492
13.5k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
19.5k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
19.5k
            L = (Long)(dval(&u) / ds);
2500
19.5k
            dval(&u) -= L*ds;
2501
19.5k
            *s++ = '0' + (int)L;
2502
19.5k
            if (!dval(&u)) {
2503
13.5k
                break;
2504
13.5k
            }
2505
6.01k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
6.01k
        }
2528
13.5k
        goto ret1;
2529
13.5k
    }
2530
2531
33.6k
    m2 = b2;
2532
33.6k
    m5 = b5;
2533
33.6k
    if (leftright) {
2534
33.6k
        i =
2535
33.6k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
33.6k
            1 + P - bbits;
2537
33.6k
        b2 += i;
2538
33.6k
        s2 += i;
2539
33.6k
        mhi = i2b(1);
2540
33.6k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
33.6k
    }
2543
33.6k
    if (m2 > 0 && s2 > 0) {
2544
29.1k
        i = m2 < s2 ? m2 : s2;
2545
29.1k
        b2 -= i;
2546
29.1k
        m2 -= i;
2547
29.1k
        s2 -= i;
2548
29.1k
    }
2549
33.6k
    if (b5 > 0) {
2550
13.9k
        if (leftright) {
2551
13.9k
            if (m5 > 0) {
2552
13.9k
                mhi = pow5mult(mhi, m5);
2553
13.9k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
13.9k
                b1 = mult(mhi, b);
2556
13.9k
                Bfree(b);
2557
13.9k
                b = b1;
2558
13.9k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
13.9k
            }
2561
13.9k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
13.9k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
13.9k
    }
2573
33.6k
    S = i2b(1);
2574
33.6k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
33.6k
    if (s5 > 0) {
2577
16.9k
        S = pow5mult(S, s5);
2578
16.9k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
16.9k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
33.6k
    spec_case = 0;
2585
33.6k
    if ((mode < 2 || leftright)
2586
33.6k
        ) {
2587
33.6k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
33.6k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
33.6k
            ) {
2590
            /* The special case */
2591
994
            b2 += Log2P;
2592
994
            s2 += Log2P;
2593
994
            spec_case = 1;
2594
994
        }
2595
33.6k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
33.6k
#define iInc 28
2605
33.6k
    i = dshift(S, s2);
2606
33.6k
    b2 += i;
2607
33.6k
    m2 += i;
2608
33.6k
    s2 += i;
2609
33.6k
    if (b2 > 0) {
2610
33.6k
        b = lshift(b, b2);
2611
33.6k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
33.6k
    }
2614
33.6k
    if (s2 > 0) {
2615
32.9k
        S = lshift(S, s2);
2616
32.9k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
32.9k
    }
2619
33.6k
    if (k_check) {
2620
25.3k
        if (cmp(b,S) < 0) {
2621
2.39k
            k--;
2622
2.39k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.39k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.39k
            if (leftright) {
2626
2.39k
                mhi = multadd(mhi, 10, 0);
2627
2.39k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.39k
            }
2630
2.39k
            ilim = ilim1;
2631
2.39k
        }
2632
25.3k
    }
2633
33.6k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
33.6k
    if (leftright) {
2653
33.6k
        if (m2 > 0) {
2654
32.6k
            mhi = lshift(mhi, m2);
2655
32.6k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
32.6k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
33.6k
        mlo = mhi;
2664
33.6k
        if (spec_case) {
2665
994
            mhi = Balloc(mhi->k);
2666
994
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
994
            Bcopy(mhi, mlo);
2669
994
            mhi = lshift(mhi, Log2P);
2670
994
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
994
        }
2673
2674
121k
        for(i = 1;;i++) {
2675
121k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
121k
            j = cmp(b, mlo);
2680
121k
            delta = diff(S, mhi);
2681
121k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
121k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
121k
            Bfree(delta);
2685
121k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
121k
                ) {
2687
1.78k
                if (dig == '9')
2688
411
                    goto round_9_up;
2689
1.37k
                if (j > 0)
2690
784
                    dig++;
2691
1.37k
                *s++ = dig;
2692
1.37k
                goto ret;
2693
1.78k
            }
2694
119k
            if (j < 0 || (j == 0 && mode != 1
2695
100k
                          && !(word1(&u) & 1)
2696
100k
                    )) {
2697
19.9k
                if (!b->x[0] && b->wds <= 1) {
2698
2.78k
                    goto accept_dig;
2699
2.78k
                }
2700
17.2k
                if (j1 > 0) {
2701
3.35k
                    b = lshift(b, 1);
2702
3.35k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.35k
                    j1 = cmp(b, S);
2705
3.35k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
3.35k
                        && dig++ == '9')
2707
401
                        goto round_9_up;
2708
3.35k
                }
2709
19.5k
              accept_dig:
2710
19.5k
                *s++ = dig;
2711
19.5k
                goto ret;
2712
17.2k
            }
2713
99.7k
            if (j1 > 0) {
2714
11.8k
                if (dig == '9') { /* possible if i == 1 */
2715
2.29k
                  round_9_up:
2716
2.29k
                    *s++ = '9';
2717
2.29k
                    goto roundoff;
2718
1.47k
                }
2719
10.3k
                *s++ = dig + 1;
2720
10.3k
                goto ret;
2721
11.8k
            }
2722
87.8k
            *s++ = dig;
2723
87.8k
            if (i == ilim)
2724
0
                break;
2725
87.8k
            b = multadd(b, 10, 0);
2726
87.8k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
87.8k
            if (mlo == mhi) {
2729
84.8k
                mlo = mhi = multadd(mhi, 10, 0);
2730
84.8k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
84.8k
            }
2733
3.00k
            else {
2734
3.00k
                mlo = multadd(mlo, 10, 0);
2735
3.00k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
3.00k
                mhi = multadd(mhi, 10, 0);
2738
3.00k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
3.00k
            }
2741
87.8k
        }
2742
33.6k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.29k
      roundoff:
2764
2.29k
        while(*--s == '9')
2765
2.29k
            if (s == s0) {
2766
2.29k
                k++;
2767
2.29k
                *s++ = '1';
2768
2.29k
                goto ret;
2769
2.29k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
33.6k
  ret:
2777
33.6k
    Bfree(S);
2778
33.6k
    if (mhi) {
2779
33.6k
        if (mlo && mlo != mhi)
2780
994
            Bfree(mlo);
2781
33.6k
        Bfree(mhi);
2782
33.6k
    }
2783
47.1k
  ret1:
2784
47.1k
    Bfree(b);
2785
47.1k
    *s = 0;
2786
47.1k
    *decpt = k + 1;
2787
47.1k
    if (rve)
2788
47.1k
        *rve = s;
2789
47.1k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
33.6k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
16
{
2809
16
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
16
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
16
    Bigint *p5 = i2b(625);
2814
16
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
16
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
128
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
112
        p5 = mult(p5, p5);
2822
112
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
112
        p5s[i] = p5;
2826
112
    }
2827
2828
16
#endif
2829
16
    return PyStatus_Ok();
2830
16
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
0
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}