/src/cpython/Objects/longobject.c
Line | Count | Source |
1 | | /* Long (arbitrary precision) integer object implementation */ |
2 | | |
3 | | /* XXX The functional organization of this file is terrible */ |
4 | | |
5 | | #include "Python.h" |
6 | | #include "pycore_bitutils.h" // _Py_popcount32() |
7 | | #include "pycore_initconfig.h" // _PyStatus_OK() |
8 | | #include "pycore_call.h" // _PyObject_MakeTpCall |
9 | | #include "pycore_freelist.h" // _Py_FREELIST_FREE, _Py_FREELIST_POP |
10 | | #include "pycore_long.h" // _Py_SmallInts |
11 | | #include "pycore_object.h" // _PyObject_Init() |
12 | | #include "pycore_runtime.h" // _PY_NSMALLPOSINTS |
13 | | #include "pycore_stackref.h" |
14 | | #include "pycore_structseq.h" // _PyStructSequence_FiniBuiltin() |
15 | | #include "pycore_unicodeobject.h" // _PyUnicode_Equal() |
16 | | |
17 | | #include <float.h> // DBL_MANT_DIG |
18 | | #include <stddef.h> // offsetof |
19 | | |
20 | | #include "clinic/longobject.c.h" |
21 | | /*[clinic input] |
22 | | class int "PyObject *" "&PyLong_Type" |
23 | | [clinic start generated code]*/ |
24 | | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/ |
25 | | |
26 | 1.95G | #define medium_value(x) ((stwodigits)_PyLong_CompactValue(x)) |
27 | | |
28 | 1.63G | #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS) |
29 | 2.40M | #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS) |
30 | | |
31 | 55 | #define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit" |
32 | 2 | #define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit" |
33 | | |
34 | | /* If defined, use algorithms from the _pylong.py module */ |
35 | | #define WITH_PYLONG_MODULE 1 |
36 | | |
37 | | // Forward declarations |
38 | | static PyLongObject* long_neg(PyLongObject *v); |
39 | | static PyLongObject *x_divrem(PyLongObject *, PyLongObject *, PyLongObject **); |
40 | | static PyObject* long_long(PyObject *v); |
41 | | static PyObject* long_lshift_int64(PyLongObject *a, int64_t shiftby); |
42 | | |
43 | | |
44 | | static inline void |
45 | | _Py_DECREF_INT(PyLongObject *op) |
46 | 14.9M | { |
47 | 14.9M | assert(PyLong_CheckExact(op)); |
48 | 14.9M | _Py_DECREF_SPECIALIZED((PyObject *)op, _PyLong_ExactDealloc); |
49 | 14.9M | } |
50 | | |
51 | | static inline int |
52 | | is_medium_int(stwodigits x) |
53 | 473M | { |
54 | | /* Take care that we are comparing unsigned values. */ |
55 | 473M | twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK; |
56 | 473M | return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE; |
57 | 473M | } |
58 | | |
59 | | static PyObject * |
60 | | get_small_int(sdigit ival) |
61 | 742M | { |
62 | 742M | assert(IS_SMALL_INT(ival)); |
63 | 742M | return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival]; |
64 | 742M | } |
65 | | |
66 | | static PyLongObject * |
67 | | maybe_small_long(PyLongObject *v) |
68 | 7.79M | { |
69 | 7.79M | if (v && _PyLong_IsCompact(v)) { |
70 | 7.48M | stwodigits ival = medium_value(v); |
71 | 7.48M | if (IS_SMALL_INT(ival)) { |
72 | 7.41M | _Py_DECREF_INT(v); |
73 | 7.41M | return (PyLongObject *)get_small_int((sdigit)ival); |
74 | 7.41M | } |
75 | 7.48M | } |
76 | 381k | return v; |
77 | 7.79M | } |
78 | | |
79 | | /* For int multiplication, use the O(N**2) school algorithm unless |
80 | | * both operands contain more than KARATSUBA_CUTOFF digits (this |
81 | | * being an internal Python int digit, in base BASE). |
82 | | */ |
83 | 262k | #define KARATSUBA_CUTOFF 70 |
84 | 12 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) |
85 | | |
86 | | /* For exponentiation, use the binary left-to-right algorithm unless the |
87 | | ^ exponent contains more than HUGE_EXP_CUTOFF bits. In that case, do |
88 | | * (no more than) EXP_WINDOW_SIZE bits at a time. The potential drawback is |
89 | | * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is |
90 | | * precomputed. |
91 | | */ |
92 | 0 | #define EXP_WINDOW_SIZE 5 |
93 | 0 | #define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1)) |
94 | | /* Suppose the exponent has bit length e. All ways of doing this |
95 | | * need e squarings. The binary method also needs a multiply for |
96 | | * each bit set. In a k-ary method with window width w, a multiply |
97 | | * for each non-zero window, so at worst (and likely!) |
98 | | * ceiling(e/w). The k-ary sliding window method has the same |
99 | | * worst case, but the window slides so it can sometimes skip |
100 | | * over an all-zero window that the fixed-window method can't |
101 | | * exploit. In addition, the windowing methods need multiplies |
102 | | * to precompute a table of small powers. |
103 | | * |
104 | | * For the sliding window method with width 5, 16 precomputation |
105 | | * multiplies are needed. Assuming about half the exponent bits |
106 | | * are set, then, the binary method needs about e/2 extra mults |
107 | | * and the window method about 16 + e/5. |
108 | | * |
109 | | * The latter is smaller for e > 53 1/3. We don't have direct |
110 | | * access to the bit length, though, so call it 60, which is a |
111 | | * multiple of a long digit's max bit length (15 or 30 so far). |
112 | | */ |
113 | 82 | #define HUGE_EXP_CUTOFF 60 |
114 | | |
115 | | #define SIGCHECK(PyTryBlock) \ |
116 | 7.61M | do { \ |
117 | 7.61M | if (PyErr_CheckSignals()) PyTryBlock \ |
118 | 7.61M | } while(0) |
119 | | |
120 | | /* Normalize (remove leading zeros from) an int object. |
121 | | Doesn't attempt to free the storage--in most cases, due to the nature |
122 | | of the algorithms used, this could save at most be one word anyway. */ |
123 | | |
124 | | static PyLongObject * |
125 | | long_normalize(PyLongObject *v) |
126 | 7.99M | { |
127 | 7.99M | Py_ssize_t j = _PyLong_DigitCount(v); |
128 | 7.99M | Py_ssize_t i = j; |
129 | | |
130 | 8.18M | while (i > 0 && v->long_value.ob_digit[i-1] == 0) |
131 | 187k | --i; |
132 | 7.99M | if (i != j) { |
133 | 186k | if (i == 0) { |
134 | 1.77k | _PyLong_SetSignAndDigitCount(v, 0, 0); |
135 | 1.77k | } |
136 | 184k | else { |
137 | 184k | _PyLong_SetDigitCount(v, i); |
138 | 184k | } |
139 | 186k | } |
140 | 7.99M | return v; |
141 | 7.99M | } |
142 | | |
143 | | /* Allocate a new int object with size digits. |
144 | | Return NULL and set exception if we run out of memory. */ |
145 | | |
146 | | #if SIZEOF_SIZE_T < 8 |
147 | | # define MAX_LONG_DIGITS \ |
148 | | ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit)) |
149 | | #else |
150 | | /* Guarantee that the number of bits fits in int64_t. |
151 | | This is more than an exbibyte, that is more than many of modern |
152 | | architectures support in principle. |
153 | | -1 is added to avoid overflow in _PyLong_Frexp(). */ |
154 | 25.4M | # define MAX_LONG_DIGITS ((INT64_MAX-1) / PyLong_SHIFT) |
155 | | #endif |
156 | | |
157 | | static PyLongObject * |
158 | | long_alloc(Py_ssize_t size) |
159 | 17.9M | { |
160 | 17.9M | assert(size >= 0); |
161 | 17.9M | PyLongObject *result = NULL; |
162 | 17.9M | if (size > (Py_ssize_t)MAX_LONG_DIGITS) { |
163 | 0 | PyErr_SetString(PyExc_OverflowError, |
164 | 0 | "too many digits in integer"); |
165 | 0 | return NULL; |
166 | 0 | } |
167 | | /* Fast operations for single digit integers (including zero) |
168 | | * assume that there is always at least one digit present. */ |
169 | 17.9M | Py_ssize_t ndigits = size ? size : 1; |
170 | | |
171 | 17.9M | if (ndigits == 1) { |
172 | 7.57M | result = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints); |
173 | 7.57M | } |
174 | 17.9M | if (result == NULL) { |
175 | | /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + |
176 | | sizeof(digit)*size. Previous incarnations of this code used |
177 | | sizeof() instead of the offsetof, but this risks being |
178 | | incorrect in the presence of padding between the header |
179 | | and the digits. */ |
180 | 10.3M | result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) + |
181 | 10.3M | ndigits*sizeof(digit)); |
182 | 10.3M | if (!result) { |
183 | 0 | PyErr_NoMemory(); |
184 | 0 | return NULL; |
185 | 0 | } |
186 | 10.3M | _PyObject_Init((PyObject*)result, &PyLong_Type); |
187 | 10.3M | } |
188 | 17.9M | _PyLong_SetSignAndDigitCount(result, size != 0, size); |
189 | | /* The digit has to be initialized explicitly to avoid |
190 | | * use-of-uninitialized-value. */ |
191 | 17.9M | result->long_value.ob_digit[0] = 0; |
192 | 17.9M | return result; |
193 | 17.9M | } |
194 | | |
195 | | PyLongObject * |
196 | | _PyLong_New(Py_ssize_t size) |
197 | 0 | { |
198 | 0 | return long_alloc(size); |
199 | 0 | } |
200 | | |
201 | | PyLongObject * |
202 | | _PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits) |
203 | 0 | { |
204 | 0 | assert(digit_count >= 0); |
205 | 0 | if (digit_count == 0) { |
206 | 0 | return (PyLongObject *)_PyLong_GetZero(); |
207 | 0 | } |
208 | 0 | PyLongObject *result = long_alloc(digit_count); |
209 | 0 | if (result == NULL) { |
210 | 0 | return NULL; |
211 | 0 | } |
212 | 0 | _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count); |
213 | 0 | memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit)); |
214 | 0 | return result; |
215 | 0 | } |
216 | | |
217 | | PyObject * |
218 | | _PyLong_Copy(PyLongObject *src) |
219 | 0 | { |
220 | 0 | assert(src != NULL); |
221 | 0 | int sign; |
222 | |
|
223 | 0 | if (_PyLong_IsCompact(src)) { |
224 | 0 | stwodigits ival = medium_value(src); |
225 | 0 | if (IS_SMALL_INT(ival)) { |
226 | 0 | return get_small_int((sdigit)ival); |
227 | 0 | } |
228 | 0 | sign = _PyLong_CompactSign(src); |
229 | 0 | } |
230 | 0 | else { |
231 | 0 | sign = _PyLong_NonCompactSign(src); |
232 | 0 | } |
233 | | |
234 | 0 | Py_ssize_t size = _PyLong_DigitCount(src); |
235 | 0 | PyLongObject *result = long_alloc(size); |
236 | |
|
237 | 0 | if (result == NULL) { |
238 | 0 | return NULL; |
239 | 0 | } |
240 | 0 | _PyLong_SetSignAndDigitCount(result, sign, size); |
241 | 0 | memcpy(result->long_value.ob_digit, src->long_value.ob_digit, |
242 | 0 | size * sizeof(digit)); |
243 | 0 | return (PyObject *)result; |
244 | 0 | } |
245 | | |
246 | | static PyObject * |
247 | | _PyLong_FromMedium(sdigit x) |
248 | 415M | { |
249 | 415M | assert(!IS_SMALL_INT(x)); |
250 | 415M | assert(is_medium_int(x)); |
251 | | |
252 | 415M | PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints); |
253 | 415M | if (v == NULL) { |
254 | 83.8M | v = PyObject_Malloc(sizeof(PyLongObject)); |
255 | 83.8M | if (v == NULL) { |
256 | 0 | PyErr_NoMemory(); |
257 | 0 | return NULL; |
258 | 0 | } |
259 | 83.8M | _PyObject_Init((PyObject*)v, &PyLong_Type); |
260 | 83.8M | } |
261 | 415M | digit abs_x = x < 0 ? -x : x; |
262 | 415M | _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1); |
263 | 415M | v->long_value.ob_digit[0] = abs_x; |
264 | 415M | return (PyObject*)v; |
265 | 415M | } |
266 | | |
267 | | static PyObject * |
268 | | _PyLong_FromLarge(stwodigits ival) |
269 | 836 | { |
270 | 836 | twodigits abs_ival; |
271 | 836 | int sign; |
272 | 836 | assert(!is_medium_int(ival)); |
273 | | |
274 | 836 | if (ival < 0) { |
275 | | /* negate: can't write this as abs_ival = -ival since that |
276 | | invokes undefined behaviour when ival is LONG_MIN */ |
277 | 0 | abs_ival = 0U-(twodigits)ival; |
278 | 0 | sign = -1; |
279 | 0 | } |
280 | 836 | else { |
281 | 836 | abs_ival = (twodigits)ival; |
282 | 836 | sign = 1; |
283 | 836 | } |
284 | | /* Must be at least two digits */ |
285 | 836 | assert(abs_ival >> PyLong_SHIFT != 0); |
286 | 836 | twodigits t = abs_ival >> (PyLong_SHIFT * 2); |
287 | 836 | Py_ssize_t ndigits = 2; |
288 | 836 | while (t) { |
289 | 0 | ++ndigits; |
290 | 0 | t >>= PyLong_SHIFT; |
291 | 0 | } |
292 | 836 | PyLongObject *v = long_alloc(ndigits); |
293 | 836 | if (v != NULL) { |
294 | 836 | digit *p = v->long_value.ob_digit; |
295 | 836 | _PyLong_SetSignAndDigitCount(v, sign, ndigits); |
296 | 836 | t = abs_ival; |
297 | 2.50k | while (t) { |
298 | 1.67k | *p++ = Py_SAFE_DOWNCAST( |
299 | 1.67k | t & PyLong_MASK, twodigits, digit); |
300 | 1.67k | t >>= PyLong_SHIFT; |
301 | 1.67k | } |
302 | 836 | } |
303 | 836 | return (PyObject *)v; |
304 | 836 | } |
305 | | |
306 | | /* Create a new int object from a C word-sized int */ |
307 | | static inline PyLongObject * |
308 | | _PyLong_FromSTwoDigits(stwodigits x) |
309 | 124k | { |
310 | 124k | if (IS_SMALL_INT(x)) { |
311 | 109k | return (PyLongObject*)get_small_int((sdigit)x); |
312 | 109k | } |
313 | 124k | assert(x != 0); |
314 | 14.9k | if (is_medium_int(x)) { |
315 | 14.1k | return (PyLongObject*)_PyLong_FromMedium((sdigit)x); |
316 | 14.1k | } |
317 | 836 | return (PyLongObject*)_PyLong_FromLarge(x); |
318 | 14.9k | } |
319 | | |
320 | | /* Create a new medium int object from a medium int. |
321 | | * Do not raise. Return NULL if not medium or can't allocate. */ |
322 | | static inline _PyStackRef |
323 | | medium_from_stwodigits(stwodigits x) |
324 | 972M | { |
325 | 972M | if (IS_SMALL_INT(x)) { |
326 | 498M | return PyStackRef_FromPyObjectBorrow(get_small_int((sdigit)x)); |
327 | 498M | } |
328 | 972M | assert(x != 0); |
329 | 473M | if(!is_medium_int(x)) { |
330 | 734 | return PyStackRef_NULL; |
331 | 734 | } |
332 | 473M | PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints); |
333 | 473M | if (v == NULL) { |
334 | 103k | v = PyObject_Malloc(sizeof(PyLongObject)); |
335 | 103k | if (v == NULL) { |
336 | 0 | return PyStackRef_NULL; |
337 | 0 | } |
338 | 103k | _PyObject_Init((PyObject*)v, &PyLong_Type); |
339 | 103k | } |
340 | 473M | digit abs_x = x < 0 ? (digit)(-x) : (digit)x; |
341 | 473M | _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1); |
342 | 473M | v->long_value.ob_digit[0] = abs_x; |
343 | 473M | return PyStackRef_FromPyObjectStealMortal((PyObject *)v); |
344 | 473M | } |
345 | | |
346 | | |
347 | | /* If a freshly-allocated int is already shared, it must |
348 | | be a small integer, so negating it must go to PyLong_FromLong */ |
349 | | Py_LOCAL_INLINE(void) |
350 | | _PyLong_Negate(PyLongObject **x_p) |
351 | 18 | { |
352 | 18 | PyLongObject *x; |
353 | | |
354 | 18 | x = (PyLongObject *)*x_p; |
355 | 18 | if (Py_REFCNT(x) == 1) { |
356 | 0 | _PyLong_FlipSign(x); |
357 | 0 | return; |
358 | 0 | } |
359 | | |
360 | 18 | *x_p = _PyLong_FromSTwoDigits(-medium_value(x)); |
361 | 18 | Py_DECREF(x); |
362 | 18 | } |
363 | | |
364 | | #define PYLONG_FROM_INT(UINT_TYPE, INT_TYPE, ival) \ |
365 | 651M | do { \ |
366 | 651M | /* Handle small and medium cases. */ \ |
367 | 651M | if (IS_SMALL_INT(ival)) { \ |
368 | 235M | return get_small_int((sdigit)(ival)); \ |
369 | 235M | } \ |
370 | 651M | if (-(INT_TYPE)PyLong_MASK <= (ival) && (ival) <= (INT_TYPE)PyLong_MASK) { \ |
371 | 415M | return _PyLong_FromMedium((sdigit)(ival)); \ |
372 | 415M | } \ |
373 | 415M | UINT_TYPE abs_ival = (ival) < 0 ? 0U-(UINT_TYPE)(ival) : (UINT_TYPE)(ival); \ |
374 | 35.5k | /* Do shift in two steps to avoid possible undefined behavior. */ \ |
375 | 35.5k | UINT_TYPE t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT; \ |
376 | 35.5k | /* Count digits (at least two - smaller cases were handled above). */ \ |
377 | 35.5k | Py_ssize_t ndigits = 2; \ |
378 | 51.7k | while (t) { \ |
379 | 16.2k | ++ndigits; \ |
380 | 16.2k | t >>= PyLong_SHIFT; \ |
381 | 16.2k | } \ |
382 | 35.5k | /* Construct output value. */ \ |
383 | 35.5k | PyLongObject *v = long_alloc(ndigits); \ |
384 | 35.5k | if (v == NULL) { \ |
385 | 0 | return NULL; \ |
386 | 0 | } \ |
387 | 35.5k | digit *p = v->long_value.ob_digit; \ |
388 | 35.5k | _PyLong_SetSignAndDigitCount(v, (ival) < 0 ? -1 : 1, ndigits); \ |
389 | 35.5k | t = abs_ival; \ |
390 | 122k | while (t) { \ |
391 | 87.2k | *p++ = (digit)(t & PyLong_MASK); \ |
392 | 87.2k | t >>= PyLong_SHIFT; \ |
393 | 87.2k | } \ |
394 | 35.5k | return (PyObject *)v; \ |
395 | 35.5k | } while(0) |
396 | | |
397 | | |
398 | | /* Create a new int object from a C long int */ |
399 | | |
400 | | PyObject * |
401 | | PyLong_FromLong(long ival) |
402 | 378M | { |
403 | 378M | PYLONG_FROM_INT(unsigned long, long, ival); |
404 | 378M | } |
405 | | |
406 | | #define PYLONG_FROM_UINT(INT_TYPE, ival) \ |
407 | 2.40M | do { \ |
408 | 2.40M | /* Handle small and medium cases. */ \ |
409 | 2.40M | if (IS_SMALL_UINT(ival)) { \ |
410 | 16.8k | return get_small_int((sdigit)(ival)); \ |
411 | 16.8k | } \ |
412 | 2.40M | if ((ival) <= PyLong_MASK) { \ |
413 | 10.8k | return _PyLong_FromMedium((sdigit)(ival)); \ |
414 | 10.8k | } \ |
415 | 2.38M | /* Do shift in two steps to avoid possible undefined behavior. */ \ |
416 | 2.38M | INT_TYPE t = (ival) >> PyLong_SHIFT >> PyLong_SHIFT; \ |
417 | 2.37M | /* Count digits (at least two - smaller cases were handled above). */ \ |
418 | 2.37M | Py_ssize_t ndigits = 2; \ |
419 | 2.37M | while (t) { \ |
420 | 0 | ++ndigits; \ |
421 | 0 | t >>= PyLong_SHIFT; \ |
422 | 0 | } \ |
423 | 2.37M | /* Construct output value. */ \ |
424 | 2.37M | PyLongObject *v = long_alloc(ndigits); \ |
425 | 2.37M | if (v == NULL) { \ |
426 | 0 | return NULL; \ |
427 | 0 | } \ |
428 | 2.37M | digit *p = v->long_value.ob_digit; \ |
429 | 7.11M | while ((ival)) { \ |
430 | 4.74M | *p++ = (digit)((ival) & PyLong_MASK); \ |
431 | 4.74M | (ival) >>= PyLong_SHIFT; \ |
432 | 4.74M | } \ |
433 | 2.37M | return (PyObject *)v; \ |
434 | 2.37M | } while(0) |
435 | | |
436 | | /* Create a new int object from a C unsigned long int */ |
437 | | |
438 | | PyObject * |
439 | | PyLong_FromUnsignedLong(unsigned long ival) |
440 | 2.37M | { |
441 | 2.37M | PYLONG_FROM_UINT(unsigned long, ival); |
442 | 2.37M | } |
443 | | |
444 | | /* Create a new int object from a C unsigned long long int. */ |
445 | | |
446 | | PyObject * |
447 | | PyLong_FromUnsignedLongLong(unsigned long long ival) |
448 | 22.5k | { |
449 | 22.5k | PYLONG_FROM_UINT(unsigned long long, ival); |
450 | 22.5k | } |
451 | | |
452 | | /* Create a new int object from a C size_t. */ |
453 | | |
454 | | PyObject * |
455 | | PyLong_FromSize_t(size_t ival) |
456 | 880 | { |
457 | 880 | PYLONG_FROM_UINT(size_t, ival); |
458 | 880 | } |
459 | | |
460 | | /* Create a new int object from a C double */ |
461 | | |
462 | | PyObject * |
463 | | PyLong_FromDouble(double dval) |
464 | 13.7k | { |
465 | | /* Try to get out cheap if this fits in a long. When a finite value of real |
466 | | * floating type is converted to an integer type, the value is truncated |
467 | | * toward zero. If the value of the integral part cannot be represented by |
468 | | * the integer type, the behavior is undefined. Thus, we must check that |
469 | | * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits |
470 | | * of precision than a double, casting LONG_MIN - 1 to double may yield an |
471 | | * approximation, but LONG_MAX + 1 is a power of two and can be represented |
472 | | * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity |
473 | | * check against [-(LONG_MAX + 1), LONG_MAX + 1). |
474 | | */ |
475 | 13.7k | const double int_max = (unsigned long)LONG_MAX + 1; |
476 | 13.7k | if (-int_max < dval && dval < int_max) { |
477 | 13.7k | return PyLong_FromLong((long)dval); |
478 | 13.7k | } |
479 | | |
480 | 0 | PyLongObject *v; |
481 | 0 | double frac; |
482 | 0 | int i, ndig, expo, neg; |
483 | 0 | neg = 0; |
484 | 0 | if (isinf(dval)) { |
485 | 0 | PyErr_SetString(PyExc_OverflowError, |
486 | 0 | "cannot convert float infinity to integer"); |
487 | 0 | return NULL; |
488 | 0 | } |
489 | 0 | if (isnan(dval)) { |
490 | 0 | PyErr_SetString(PyExc_ValueError, |
491 | 0 | "cannot convert float NaN to integer"); |
492 | 0 | return NULL; |
493 | 0 | } |
494 | 0 | if (dval < 0.0) { |
495 | 0 | neg = 1; |
496 | 0 | dval = -dval; |
497 | 0 | } |
498 | 0 | frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ |
499 | 0 | assert(expo > 0); |
500 | 0 | ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ |
501 | 0 | v = long_alloc(ndig); |
502 | 0 | if (v == NULL) |
503 | 0 | return NULL; |
504 | 0 | frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); |
505 | 0 | for (i = ndig; --i >= 0; ) { |
506 | 0 | digit bits = (digit)frac; |
507 | 0 | v->long_value.ob_digit[i] = bits; |
508 | 0 | frac = frac - (double)bits; |
509 | 0 | frac = ldexp(frac, PyLong_SHIFT); |
510 | 0 | } |
511 | 0 | if (neg) { |
512 | 0 | _PyLong_FlipSign(v); |
513 | 0 | } |
514 | 0 | return (PyObject *)v; |
515 | 0 | } |
516 | | |
517 | | /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define |
518 | | * anything about what happens when a signed integer operation overflows, |
519 | | * and some compilers think they're doing you a favor by being "clever" |
520 | | * then. The bit pattern for the largest positive signed long is |
521 | | * (unsigned long)LONG_MAX, and for the smallest negative signed long |
522 | | * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. |
523 | | * However, some other compilers warn about applying unary minus to an |
524 | | * unsigned operand. Hence the weird "0-". |
525 | | */ |
526 | 0 | #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) |
527 | 0 | #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) |
528 | | |
529 | | static inline unsigned long |
530 | | unroll_digits_ulong(PyLongObject *v, Py_ssize_t *iptr) |
531 | 538 | { |
532 | 538 | assert(ULONG_MAX >= ((1UL << PyLong_SHIFT) - 1)); |
533 | | |
534 | 538 | Py_ssize_t i = *iptr; |
535 | 538 | assert(i >= 2); |
536 | | |
537 | | /* unroll 1 digit */ |
538 | 538 | --i; |
539 | 538 | digit *digits = v->long_value.ob_digit; |
540 | 538 | unsigned long x = digits[i]; |
541 | | |
542 | 538 | #if (ULONG_MAX >> PyLong_SHIFT) >= ((1UL << PyLong_SHIFT) - 1) |
543 | | /* unroll another digit */ |
544 | 538 | x <<= PyLong_SHIFT; |
545 | 538 | --i; |
546 | 538 | x |= digits[i]; |
547 | 538 | #endif |
548 | | |
549 | 538 | *iptr = i; |
550 | 538 | return x; |
551 | 538 | } |
552 | | |
553 | | static inline size_t |
554 | | unroll_digits_size_t(PyLongObject *v, Py_ssize_t *iptr) |
555 | 961 | { |
556 | 961 | assert(SIZE_MAX >= ((1UL << PyLong_SHIFT) - 1)); |
557 | | |
558 | 961 | Py_ssize_t i = *iptr; |
559 | 961 | assert(i >= 2); |
560 | | |
561 | | /* unroll 1 digit */ |
562 | 961 | --i; |
563 | 961 | digit *digits = v->long_value.ob_digit; |
564 | 961 | size_t x = digits[i]; |
565 | | |
566 | 961 | #if (SIZE_MAX >> PyLong_SHIFT) >= ((1 << PyLong_SHIFT) - 1) |
567 | | /* unroll another digit */ |
568 | 961 | x <<= PyLong_SHIFT; |
569 | 961 | --i; |
570 | 961 | x |= digits[i]; |
571 | 961 | #endif |
572 | | |
573 | 961 | *iptr = i; |
574 | 961 | return x; |
575 | 961 | } |
576 | | |
577 | | /* Get a C long int from an int object or any object that has an __index__ |
578 | | method. |
579 | | |
580 | | On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of |
581 | | the result. Otherwise *overflow is 0. |
582 | | |
583 | | For other errors (e.g., TypeError), return -1 and set an error condition. |
584 | | In this case *overflow will be 0. |
585 | | */ |
586 | | long |
587 | | PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) |
588 | 60.0M | { |
589 | | /* This version originally by Tim Peters */ |
590 | 60.0M | PyLongObject *v; |
591 | 60.0M | long res; |
592 | 60.0M | Py_ssize_t i; |
593 | 60.0M | int sign; |
594 | 60.0M | int do_decref = 0; /* if PyNumber_Index was called */ |
595 | | |
596 | 60.0M | *overflow = 0; |
597 | 60.0M | if (vv == NULL) { |
598 | 0 | PyErr_BadInternalCall(); |
599 | 0 | return -1; |
600 | 0 | } |
601 | | |
602 | 60.0M | if (PyLong_Check(vv)) { |
603 | 60.0M | v = (PyLongObject *)vv; |
604 | 60.0M | } |
605 | 1.05k | else { |
606 | 1.05k | v = (PyLongObject *)_PyNumber_Index(vv); |
607 | 1.05k | if (v == NULL) |
608 | 1.05k | return -1; |
609 | 0 | do_decref = 1; |
610 | 0 | } |
611 | 60.0M | if (_PyLong_IsCompact(v)) { |
612 | | #if SIZEOF_LONG < SIZEOF_SIZE_T |
613 | | Py_ssize_t tmp = _PyLong_CompactValue(v); |
614 | | if (tmp < LONG_MIN) { |
615 | | *overflow = -1; |
616 | | res = -1; |
617 | | } |
618 | | else if (tmp > LONG_MAX) { |
619 | | *overflow = 1; |
620 | | res = -1; |
621 | | } |
622 | | else { |
623 | | res = (long)tmp; |
624 | | } |
625 | | #else |
626 | 60.0M | res = _PyLong_CompactValue(v); |
627 | 60.0M | #endif |
628 | 60.0M | } |
629 | 85 | else { |
630 | 85 | res = -1; |
631 | 85 | i = _PyLong_DigitCount(v); |
632 | 85 | sign = _PyLong_NonCompactSign(v); |
633 | | |
634 | 85 | unsigned long x = unroll_digits_ulong(v, &i); |
635 | 88 | while (--i >= 0) { |
636 | 50 | if (x > (ULONG_MAX >> PyLong_SHIFT)) { |
637 | 47 | *overflow = sign; |
638 | 47 | goto exit; |
639 | 47 | } |
640 | 3 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
641 | 3 | } |
642 | | /* Haven't lost any bits, but casting to long requires extra |
643 | | * care (see comment above). |
644 | | */ |
645 | 38 | if (x <= (unsigned long)LONG_MAX) { |
646 | 35 | res = (long)x * sign; |
647 | 35 | } |
648 | 3 | else if (sign < 0 && x == PY_ABS_LONG_MIN) { |
649 | 0 | res = LONG_MIN; |
650 | 0 | } |
651 | 3 | else { |
652 | 3 | *overflow = sign; |
653 | | /* res is already set to -1 */ |
654 | 3 | } |
655 | 38 | } |
656 | 60.0M | exit: |
657 | 60.0M | if (do_decref) { |
658 | 0 | Py_DECREF(v); |
659 | 0 | } |
660 | 60.0M | return res; |
661 | 60.0M | } |
662 | | |
663 | | /* Get a C long int from an int object or any object that has an __index__ |
664 | | method. Return -1 and set an error if overflow occurs. */ |
665 | | |
666 | | long |
667 | | PyLong_AsLong(PyObject *obj) |
668 | 25.9M | { |
669 | 25.9M | int overflow; |
670 | 25.9M | long result = PyLong_AsLongAndOverflow(obj, &overflow); |
671 | 25.9M | if (overflow) { |
672 | | /* XXX: could be cute and give a different |
673 | | message for overflow == -1 */ |
674 | 16 | PyErr_SetString(PyExc_OverflowError, |
675 | 16 | "Python int too large to convert to C long"); |
676 | 16 | } |
677 | 25.9M | return result; |
678 | 25.9M | } |
679 | | |
680 | | /* Get a C int from an int object or any object that has an __index__ |
681 | | method. Return -1 and set an error if overflow occurs. */ |
682 | | |
683 | | int |
684 | | PyLong_AsInt(PyObject *obj) |
685 | 6.86M | { |
686 | 6.86M | int overflow; |
687 | 6.86M | long result = PyLong_AsLongAndOverflow(obj, &overflow); |
688 | 6.86M | if (overflow || result > INT_MAX || result < INT_MIN) { |
689 | | /* XXX: could be cute and give a different |
690 | | message for overflow == -1 */ |
691 | 0 | PyErr_SetString(PyExc_OverflowError, |
692 | 0 | "Python int too large to convert to C int"); |
693 | 0 | return -1; |
694 | 0 | } |
695 | 6.86M | return (int)result; |
696 | 6.86M | } |
697 | | |
698 | | /* Get a Py_ssize_t from an int object. |
699 | | Returns -1 and sets an error condition if overflow occurs. */ |
700 | | |
701 | | Py_ssize_t |
702 | 435M | PyLong_AsSsize_t(PyObject *vv) { |
703 | 435M | PyLongObject *v; |
704 | 435M | Py_ssize_t i; |
705 | 435M | int sign; |
706 | | |
707 | 435M | if (vv == NULL) { |
708 | 0 | PyErr_BadInternalCall(); |
709 | 0 | return -1; |
710 | 0 | } |
711 | 435M | if (!PyLong_Check(vv)) { |
712 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
713 | 0 | return -1; |
714 | 0 | } |
715 | | |
716 | 435M | v = (PyLongObject *)vv; |
717 | 435M | if (_PyLong_IsCompact(v)) { |
718 | 435M | return _PyLong_CompactValue(v); |
719 | 435M | } |
720 | 961 | i = _PyLong_DigitCount(v); |
721 | 961 | sign = _PyLong_NonCompactSign(v); |
722 | | |
723 | 961 | size_t x = unroll_digits_size_t(v, &i); |
724 | 1.12k | while (--i >= 0) { |
725 | 282 | if (x > (SIZE_MAX >> PyLong_SHIFT)) { |
726 | 114 | goto overflow; |
727 | 114 | } |
728 | 168 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
729 | 168 | } |
730 | | /* Haven't lost any bits, but casting to a signed type requires |
731 | | * extra care (see comment above). |
732 | | */ |
733 | 847 | if (x <= (size_t)PY_SSIZE_T_MAX) { |
734 | 838 | return (Py_ssize_t)x * sign; |
735 | 838 | } |
736 | 9 | else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { |
737 | 0 | return PY_SSIZE_T_MIN; |
738 | 0 | } |
739 | | /* else overflow */ |
740 | | |
741 | 123 | overflow: |
742 | 123 | PyErr_SetString(PyExc_OverflowError, |
743 | 123 | "Python int too large to convert to C ssize_t"); |
744 | 123 | return -1; |
745 | 847 | } |
746 | | |
747 | | /* Get a C unsigned long int from an int object. |
748 | | Returns -1 and sets an error condition if overflow occurs. */ |
749 | | |
750 | | unsigned long |
751 | | PyLong_AsUnsignedLong(PyObject *vv) |
752 | 9.25k | { |
753 | 9.25k | PyLongObject *v; |
754 | 9.25k | Py_ssize_t i; |
755 | | |
756 | 9.25k | if (vv == NULL) { |
757 | 0 | PyErr_BadInternalCall(); |
758 | 0 | return (unsigned long)-1; |
759 | 0 | } |
760 | 9.25k | if (!PyLong_Check(vv)) { |
761 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
762 | 0 | return (unsigned long)-1; |
763 | 0 | } |
764 | | |
765 | 9.25k | v = (PyLongObject *)vv; |
766 | 9.25k | if (_PyLong_IsNonNegativeCompact(v)) { |
767 | | #if SIZEOF_LONG < SIZEOF_SIZE_T |
768 | | size_t tmp = (size_t)_PyLong_CompactValue(v); |
769 | | unsigned long res = (unsigned long)tmp; |
770 | | if (res != tmp) { |
771 | | goto overflow; |
772 | | } |
773 | | return res; |
774 | | #else |
775 | 8.80k | return (unsigned long)(size_t)_PyLong_CompactValue(v); |
776 | 8.80k | #endif |
777 | 8.80k | } |
778 | 453 | if (_PyLong_IsNegative(v)) { |
779 | 0 | PyErr_SetString(PyExc_OverflowError, |
780 | 0 | "can't convert negative value to unsigned int"); |
781 | 0 | return (unsigned long) -1; |
782 | 0 | } |
783 | 453 | i = _PyLong_DigitCount(v); |
784 | | |
785 | 453 | unsigned long x = unroll_digits_ulong(v, &i); |
786 | 453 | while (--i >= 0) { |
787 | 0 | if (x > (ULONG_MAX >> PyLong_SHIFT)) { |
788 | 0 | goto overflow; |
789 | 0 | } |
790 | 0 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
791 | 0 | } |
792 | 453 | return x; |
793 | 0 | overflow: |
794 | 0 | PyErr_SetString(PyExc_OverflowError, |
795 | 0 | "Python int too large to convert " |
796 | 0 | "to C unsigned long"); |
797 | 0 | return (unsigned long) -1; |
798 | 453 | } |
799 | | |
800 | | /* Get a C size_t from an int object. Returns (size_t)-1 and sets |
801 | | an error condition if overflow occurs. */ |
802 | | |
803 | | size_t |
804 | | PyLong_AsSize_t(PyObject *vv) |
805 | 17 | { |
806 | 17 | PyLongObject *v; |
807 | 17 | Py_ssize_t i; |
808 | | |
809 | 17 | if (vv == NULL) { |
810 | 0 | PyErr_BadInternalCall(); |
811 | 0 | return (size_t) -1; |
812 | 0 | } |
813 | 17 | if (!PyLong_Check(vv)) { |
814 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
815 | 0 | return (size_t)-1; |
816 | 0 | } |
817 | | |
818 | 17 | v = (PyLongObject *)vv; |
819 | 17 | if (_PyLong_IsNonNegativeCompact(v)) { |
820 | 17 | return (size_t)_PyLong_CompactValue(v); |
821 | 17 | } |
822 | 0 | if (_PyLong_IsNegative(v)) { |
823 | 0 | PyErr_SetString(PyExc_OverflowError, |
824 | 0 | "can't convert negative value to size_t"); |
825 | 0 | return (size_t) -1; |
826 | 0 | } |
827 | 0 | i = _PyLong_DigitCount(v); |
828 | |
|
829 | 0 | size_t x = unroll_digits_size_t(v, &i); |
830 | 0 | while (--i >= 0) { |
831 | 0 | if (x > (SIZE_MAX >> PyLong_SHIFT)) { |
832 | 0 | PyErr_SetString(PyExc_OverflowError, |
833 | 0 | "Python int too large to convert to C size_t"); |
834 | 0 | return (size_t) -1; |
835 | 0 | } |
836 | 0 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
837 | 0 | } |
838 | 0 | return x; |
839 | 0 | } |
840 | | |
841 | | /* Get a C unsigned long int from an int object, ignoring the high bits. |
842 | | Returns -1 and sets an error condition if an error occurs. */ |
843 | | |
844 | | static unsigned long |
845 | | _PyLong_AsUnsignedLongMask(PyObject *vv) |
846 | 0 | { |
847 | 0 | PyLongObject *v; |
848 | 0 | Py_ssize_t i; |
849 | |
|
850 | 0 | if (vv == NULL || !PyLong_Check(vv)) { |
851 | 0 | PyErr_BadInternalCall(); |
852 | 0 | return (unsigned long) -1; |
853 | 0 | } |
854 | 0 | v = (PyLongObject *)vv; |
855 | 0 | if (_PyLong_IsCompact(v)) { |
856 | | #if SIZEOF_LONG < SIZEOF_SIZE_T |
857 | | return (unsigned long)(size_t)_PyLong_CompactValue(v); |
858 | | #else |
859 | 0 | return (unsigned long)(long)_PyLong_CompactValue(v); |
860 | 0 | #endif |
861 | 0 | } |
862 | 0 | i = _PyLong_DigitCount(v); |
863 | 0 | int sign = _PyLong_NonCompactSign(v); |
864 | 0 | unsigned long x = unroll_digits_ulong(v, &i); |
865 | 0 | while (--i >= 0) { |
866 | 0 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
867 | 0 | } |
868 | 0 | return x * sign; |
869 | 0 | } |
870 | | |
871 | | unsigned long |
872 | | PyLong_AsUnsignedLongMask(PyObject *op) |
873 | 0 | { |
874 | 0 | PyLongObject *lo; |
875 | 0 | unsigned long val; |
876 | |
|
877 | 0 | if (op == NULL) { |
878 | 0 | PyErr_BadInternalCall(); |
879 | 0 | return (unsigned long)-1; |
880 | 0 | } |
881 | | |
882 | 0 | if (PyLong_Check(op)) { |
883 | 0 | return _PyLong_AsUnsignedLongMask(op); |
884 | 0 | } |
885 | | |
886 | 0 | lo = (PyLongObject *)_PyNumber_Index(op); |
887 | 0 | if (lo == NULL) |
888 | 0 | return (unsigned long)-1; |
889 | | |
890 | 0 | val = _PyLong_AsUnsignedLongMask((PyObject *)lo); |
891 | 0 | Py_DECREF(lo); |
892 | 0 | return val; |
893 | 0 | } |
894 | | |
895 | | int |
896 | | PyLong_IsPositive(PyObject *obj) |
897 | 0 | { |
898 | 0 | assert(obj != NULL); |
899 | 0 | if (!PyLong_Check(obj)) { |
900 | 0 | PyErr_Format(PyExc_TypeError, "expected int, got %T", obj); |
901 | 0 | return -1; |
902 | 0 | } |
903 | 0 | return _PyLong_IsPositive((PyLongObject *)obj); |
904 | 0 | } |
905 | | |
906 | | int |
907 | | PyLong_IsNegative(PyObject *obj) |
908 | 0 | { |
909 | 0 | assert(obj != NULL); |
910 | 0 | if (!PyLong_Check(obj)) { |
911 | 0 | PyErr_Format(PyExc_TypeError, "expected int, got %T", obj); |
912 | 0 | return -1; |
913 | 0 | } |
914 | 0 | return _PyLong_IsNegative((PyLongObject *)obj); |
915 | 0 | } |
916 | | |
917 | | int |
918 | | PyLong_IsZero(PyObject *obj) |
919 | 2.49M | { |
920 | 2.49M | assert(obj != NULL); |
921 | 2.49M | if (!PyLong_Check(obj)) { |
922 | 0 | PyErr_Format(PyExc_TypeError, "expected int, got %T", obj); |
923 | 0 | return -1; |
924 | 0 | } |
925 | 2.49M | return _PyLong_IsZero((PyLongObject *)obj); |
926 | 2.49M | } |
927 | | |
928 | | static int |
929 | | long_sign(PyObject *vv) |
930 | 623 | { |
931 | 623 | assert(vv != NULL); |
932 | 623 | assert(PyLong_Check(vv)); |
933 | 623 | PyLongObject *v = (PyLongObject *)vv; |
934 | | |
935 | 623 | if (_PyLong_IsCompact(v)) { |
936 | 623 | return _PyLong_CompactSign(v); |
937 | 623 | } |
938 | 0 | return _PyLong_NonCompactSign(v); |
939 | 623 | } |
940 | | |
941 | | int |
942 | | _PyLong_Sign(PyObject *vv) |
943 | 0 | { |
944 | 0 | return long_sign(vv); |
945 | 0 | } |
946 | | |
947 | | int |
948 | | PyLong_GetSign(PyObject *vv, int *sign) |
949 | 623 | { |
950 | 623 | if (!PyLong_Check(vv)) { |
951 | 0 | PyErr_Format(PyExc_TypeError, "expect int, got %T", vv); |
952 | 0 | return -1; |
953 | 0 | } |
954 | | |
955 | 623 | *sign = long_sign(vv); |
956 | 623 | return 0; |
957 | 623 | } |
958 | | |
959 | | static int |
960 | | bit_length_digit(digit x) |
961 | 2.02k | { |
962 | | // digit can be larger than unsigned long, but only PyLong_SHIFT bits |
963 | | // of it will be ever used. |
964 | 2.02k | static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8, |
965 | 2.02k | "digit is larger than unsigned long"); |
966 | 2.02k | return _Py_bit_length((unsigned long)x); |
967 | 2.02k | } |
968 | | |
969 | | int64_t |
970 | | _PyLong_NumBits(PyObject *vv) |
971 | 89 | { |
972 | 89 | PyLongObject *v = (PyLongObject *)vv; |
973 | 89 | int64_t result = 0; |
974 | 89 | Py_ssize_t ndigits; |
975 | 89 | int msd_bits; |
976 | | |
977 | 89 | assert(v != NULL); |
978 | 89 | assert(PyLong_Check(v)); |
979 | 89 | ndigits = _PyLong_DigitCount(v); |
980 | 89 | assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0); |
981 | 89 | if (ndigits > 0) { |
982 | 87 | digit msd = v->long_value.ob_digit[ndigits - 1]; |
983 | 87 | #if SIZEOF_SIZE_T == 8 |
984 | 87 | assert(ndigits <= INT64_MAX / PyLong_SHIFT); |
985 | 87 | #endif |
986 | 87 | result = (int64_t)(ndigits - 1) * PyLong_SHIFT; |
987 | 87 | msd_bits = bit_length_digit(msd); |
988 | 87 | result += msd_bits; |
989 | 87 | } |
990 | 89 | return result; |
991 | 89 | } |
992 | | |
993 | | PyObject * |
994 | | _PyLong_FromByteArray(const unsigned char* bytes, size_t n, |
995 | | int little_endian, int is_signed) |
996 | 2.30k | { |
997 | 2.30k | const unsigned char* pstartbyte; /* LSB of bytes */ |
998 | 2.30k | int incr; /* direction to move pstartbyte */ |
999 | 2.30k | const unsigned char* pendbyte; /* MSB of bytes */ |
1000 | 2.30k | size_t numsignificantbytes; /* number of bytes that matter */ |
1001 | 2.30k | Py_ssize_t ndigits; /* number of Python int digits */ |
1002 | 2.30k | PyLongObject* v; /* result */ |
1003 | 2.30k | Py_ssize_t idigit = 0; /* next free index in v->long_value.ob_digit */ |
1004 | | |
1005 | 2.30k | if (n == 0) |
1006 | 0 | return PyLong_FromLong(0L); |
1007 | | |
1008 | 2.30k | if (little_endian) { |
1009 | 2.16k | pstartbyte = bytes; |
1010 | 2.16k | pendbyte = bytes + n - 1; |
1011 | 2.16k | incr = 1; |
1012 | 2.16k | } |
1013 | 132 | else { |
1014 | 132 | pstartbyte = bytes + n - 1; |
1015 | 132 | pendbyte = bytes; |
1016 | 132 | incr = -1; |
1017 | 132 | } |
1018 | | |
1019 | 2.30k | if (is_signed) |
1020 | 0 | is_signed = *pendbyte >= 0x80; |
1021 | | |
1022 | | /* Compute numsignificantbytes. This consists of finding the most |
1023 | | significant byte. Leading 0 bytes are insignificant if the number |
1024 | | is positive, and leading 0xff bytes if negative. */ |
1025 | 2.30k | { |
1026 | 2.30k | size_t i; |
1027 | 2.30k | const unsigned char* p = pendbyte; |
1028 | 2.30k | const int pincr = -incr; /* search MSB to LSB */ |
1029 | 2.30k | const unsigned char insignificant = is_signed ? 0xff : 0x00; |
1030 | | |
1031 | 6.68k | for (i = 0; i < n; ++i, p += pincr) { |
1032 | 5.86k | if (*p != insignificant) |
1033 | 1.47k | break; |
1034 | 5.86k | } |
1035 | 2.30k | numsignificantbytes = n - i; |
1036 | | /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so |
1037 | | actually has 2 significant bytes. OTOH, 0xff0001 == |
1038 | | -0x00ffff, so we wouldn't *need* to bump it there; but we |
1039 | | do for 0xffff = -0x0001. To be safe without bothering to |
1040 | | check every case, bump it regardless. */ |
1041 | 2.30k | if (is_signed && numsignificantbytes < n) |
1042 | 0 | ++numsignificantbytes; |
1043 | 2.30k | } |
1044 | | |
1045 | | /* avoid integer overflow */ |
1046 | 2.30k | ndigits = numsignificantbytes / PyLong_SHIFT * 8 |
1047 | 2.30k | + (numsignificantbytes % PyLong_SHIFT * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; |
1048 | 2.30k | v = long_alloc(ndigits); |
1049 | 2.30k | if (v == NULL) |
1050 | 0 | return NULL; |
1051 | | |
1052 | | /* Copy the bits over. The tricky parts are computing 2's-comp on |
1053 | | the fly for signed numbers, and dealing with the mismatch between |
1054 | | 8-bit bytes and (probably) 15-bit Python digits.*/ |
1055 | 2.30k | { |
1056 | 2.30k | size_t i; |
1057 | 2.30k | twodigits carry = 1; /* for 2's-comp calculation */ |
1058 | 2.30k | twodigits accum = 0; /* sliding register */ |
1059 | 2.30k | unsigned int accumbits = 0; /* number of bits in accum */ |
1060 | 2.30k | const unsigned char* p = pstartbyte; |
1061 | | |
1062 | 7.11k | for (i = 0; i < numsignificantbytes; ++i, p += incr) { |
1063 | 4.81k | twodigits thisbyte = *p; |
1064 | | /* Compute correction for 2's comp, if needed. */ |
1065 | 4.81k | if (is_signed) { |
1066 | 0 | thisbyte = (0xff ^ thisbyte) + carry; |
1067 | 0 | carry = thisbyte >> 8; |
1068 | 0 | thisbyte &= 0xff; |
1069 | 0 | } |
1070 | | /* Because we're going LSB to MSB, thisbyte is |
1071 | | more significant than what's already in accum, |
1072 | | so needs to be prepended to accum. */ |
1073 | 4.81k | accum |= thisbyte << accumbits; |
1074 | 4.81k | accumbits += 8; |
1075 | 4.81k | if (accumbits >= PyLong_SHIFT) { |
1076 | | /* There's enough to fill a Python digit. */ |
1077 | 924 | assert(idigit < ndigits); |
1078 | 924 | v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK); |
1079 | 924 | ++idigit; |
1080 | 924 | accum >>= PyLong_SHIFT; |
1081 | 924 | accumbits -= PyLong_SHIFT; |
1082 | 924 | assert(accumbits < PyLong_SHIFT); |
1083 | 924 | } |
1084 | 4.81k | } |
1085 | 2.30k | assert(accumbits < PyLong_SHIFT); |
1086 | 2.30k | if (accumbits) { |
1087 | 1.47k | assert(idigit < ndigits); |
1088 | 1.47k | v->long_value.ob_digit[idigit] = (digit)accum; |
1089 | 1.47k | ++idigit; |
1090 | 1.47k | } |
1091 | 2.30k | } |
1092 | | |
1093 | 2.30k | int sign = is_signed ? -1: 1; |
1094 | 2.30k | if (idigit == 0) { |
1095 | 827 | sign = 0; |
1096 | 827 | } |
1097 | 2.30k | _PyLong_SetSignAndDigitCount(v, sign, idigit); |
1098 | 2.30k | return (PyObject *)maybe_small_long(long_normalize(v)); |
1099 | 2.30k | } |
1100 | | |
1101 | | int |
1102 | | _PyLong_AsByteArray(PyLongObject* v, |
1103 | | unsigned char* bytes, size_t n, |
1104 | | int little_endian, int is_signed, |
1105 | | int with_exceptions) |
1106 | 748 | { |
1107 | 748 | Py_ssize_t i; /* index into v->long_value.ob_digit */ |
1108 | 748 | Py_ssize_t ndigits; /* number of digits */ |
1109 | 748 | twodigits accum; /* sliding register */ |
1110 | 748 | unsigned int accumbits; /* # bits in accum */ |
1111 | 748 | int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ |
1112 | 748 | digit carry; /* for computing 2's-comp */ |
1113 | 748 | size_t j; /* # bytes filled */ |
1114 | 748 | unsigned char* p; /* pointer to next byte in bytes */ |
1115 | 748 | int pincr; /* direction to move p */ |
1116 | | |
1117 | 748 | assert(v != NULL && PyLong_Check(v)); |
1118 | | |
1119 | 748 | ndigits = _PyLong_DigitCount(v); |
1120 | 748 | if (_PyLong_IsNegative(v)) { |
1121 | 0 | if (!is_signed) { |
1122 | 0 | if (with_exceptions) { |
1123 | 0 | PyErr_SetString(PyExc_OverflowError, |
1124 | 0 | "can't convert negative int to unsigned"); |
1125 | 0 | } |
1126 | 0 | return -1; |
1127 | 0 | } |
1128 | 0 | do_twos_comp = 1; |
1129 | 0 | } |
1130 | 748 | else { |
1131 | 748 | do_twos_comp = 0; |
1132 | 748 | } |
1133 | | |
1134 | 748 | if (little_endian) { |
1135 | 748 | p = bytes; |
1136 | 748 | pincr = 1; |
1137 | 748 | } |
1138 | 0 | else { |
1139 | 0 | p = bytes + n - 1; |
1140 | 0 | pincr = -1; |
1141 | 0 | } |
1142 | | |
1143 | | /* Copy over all the Python digits. |
1144 | | It's crucial that every Python digit except for the MSD contribute |
1145 | | exactly PyLong_SHIFT bits to the total, so first assert that the int is |
1146 | | normalized. |
1147 | | NOTE: PyLong_AsNativeBytes() assumes that this function will fill in 'n' |
1148 | | bytes even if it eventually fails to convert the whole number. Make sure |
1149 | | you account for that if you are changing this algorithm to return without |
1150 | | doing that. |
1151 | | */ |
1152 | 748 | assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0); |
1153 | 748 | j = 0; |
1154 | 748 | accum = 0; |
1155 | 748 | accumbits = 0; |
1156 | 748 | carry = do_twos_comp ? 1 : 0; |
1157 | 1.49k | for (i = 0; i < ndigits; ++i) { |
1158 | 745 | digit thisdigit = v->long_value.ob_digit[i]; |
1159 | 745 | if (do_twos_comp) { |
1160 | 0 | thisdigit = (thisdigit ^ PyLong_MASK) + carry; |
1161 | 0 | carry = thisdigit >> PyLong_SHIFT; |
1162 | 0 | thisdigit &= PyLong_MASK; |
1163 | 0 | } |
1164 | | /* Because we're going LSB to MSB, thisdigit is more |
1165 | | significant than what's already in accum, so needs to be |
1166 | | prepended to accum. */ |
1167 | 745 | accum |= (twodigits)thisdigit << accumbits; |
1168 | | |
1169 | | /* The most-significant digit may be (probably is) at least |
1170 | | partly empty. */ |
1171 | 745 | if (i == ndigits - 1) { |
1172 | | /* Count # of sign bits -- they needn't be stored, |
1173 | | * although for signed conversion we need later to |
1174 | | * make sure at least one sign bit gets stored. */ |
1175 | 501 | digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; |
1176 | 4.50k | while (s != 0) { |
1177 | 4.00k | s >>= 1; |
1178 | 4.00k | accumbits++; |
1179 | 4.00k | } |
1180 | 501 | } |
1181 | 244 | else |
1182 | 244 | accumbits += PyLong_SHIFT; |
1183 | | |
1184 | | /* Store as many bytes as possible. */ |
1185 | 1.82k | while (accumbits >= 8) { |
1186 | 1.07k | if (j >= n) |
1187 | 0 | goto Overflow; |
1188 | 1.07k | ++j; |
1189 | 1.07k | *p = (unsigned char)(accum & 0xff); |
1190 | 1.07k | p += pincr; |
1191 | 1.07k | accumbits -= 8; |
1192 | 1.07k | accum >>= 8; |
1193 | 1.07k | } |
1194 | 745 | } |
1195 | | |
1196 | | /* Store the straggler (if any). */ |
1197 | 748 | assert(accumbits < 8); |
1198 | 748 | assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ |
1199 | 748 | if (accumbits > 0) { |
1200 | 459 | if (j >= n) |
1201 | 0 | goto Overflow; |
1202 | 459 | ++j; |
1203 | 459 | if (do_twos_comp) { |
1204 | | /* Fill leading bits of the byte with sign bits |
1205 | | (appropriately pretending that the int had an |
1206 | | infinite supply of sign bits). */ |
1207 | 0 | accum |= (~(twodigits)0) << accumbits; |
1208 | 0 | } |
1209 | 459 | *p = (unsigned char)(accum & 0xff); |
1210 | 459 | p += pincr; |
1211 | 459 | } |
1212 | 289 | else if (j == n && is_signed) { |
1213 | | /* The main loop filled the byte array exactly, so the code |
1214 | | just above didn't get to ensure there's a sign bit, and the |
1215 | | loop below wouldn't add one either. Make sure a sign bit |
1216 | | exists. */ |
1217 | 0 | int sign_bit_set; |
1218 | 0 | if (n > 0) { |
1219 | 0 | unsigned char msb = *(p - pincr); |
1220 | 0 | sign_bit_set = msb >= 0x80; |
1221 | 0 | } |
1222 | 0 | else { |
1223 | 0 | sign_bit_set = 0; |
1224 | 0 | } |
1225 | 0 | assert(accumbits == 0); |
1226 | 0 | if (sign_bit_set == do_twos_comp) |
1227 | 0 | return 0; |
1228 | 0 | else |
1229 | 0 | goto Overflow; |
1230 | 0 | } |
1231 | | |
1232 | | /* Fill remaining bytes with copies of the sign bit. */ |
1233 | 748 | { |
1234 | 748 | unsigned char signbyte = do_twos_comp ? 0xffU : 0U; |
1235 | 2.20k | for ( ; j < n; ++j, p += pincr) |
1236 | 1.45k | *p = signbyte; |
1237 | 748 | } |
1238 | | |
1239 | 748 | return 0; |
1240 | | |
1241 | 0 | Overflow: |
1242 | 0 | if (with_exceptions) { |
1243 | 0 | PyErr_SetString(PyExc_OverflowError, "int too big to convert"); |
1244 | 0 | } |
1245 | 0 | return -1; |
1246 | | |
1247 | 748 | } |
1248 | | |
1249 | | // Refactored out for readability, not reuse |
1250 | | static inline int |
1251 | | _fits_in_n_bits(Py_ssize_t v, Py_ssize_t n) |
1252 | 465 | { |
1253 | 465 | if (n >= (Py_ssize_t)sizeof(Py_ssize_t) * 8) { |
1254 | 465 | return 1; |
1255 | 465 | } |
1256 | | // If all bits above n are the same, we fit. |
1257 | | // (Use n-1 if we require the sign bit to be consistent.) |
1258 | 0 | Py_ssize_t v_extended = v >> ((int)n - 1); |
1259 | 0 | return v_extended == 0 || v_extended == -1; |
1260 | 465 | } |
1261 | | |
1262 | | static inline int |
1263 | | _resolve_endianness(int *endianness) |
1264 | 465 | { |
1265 | 465 | if (*endianness == -1 || (*endianness & 2)) { |
1266 | 465 | *endianness = PY_LITTLE_ENDIAN; |
1267 | 465 | } else { |
1268 | 0 | *endianness &= 1; |
1269 | 0 | } |
1270 | 465 | assert(*endianness == 0 || *endianness == 1); |
1271 | 465 | return 0; |
1272 | 465 | } |
1273 | | |
1274 | | Py_ssize_t |
1275 | | PyLong_AsNativeBytes(PyObject* vv, void* buffer, Py_ssize_t n, int flags) |
1276 | 465 | { |
1277 | 465 | PyLongObject *v; |
1278 | 465 | union { |
1279 | 465 | Py_ssize_t v; |
1280 | 465 | unsigned char b[sizeof(Py_ssize_t)]; |
1281 | 465 | } cv; |
1282 | 465 | int do_decref = 0; |
1283 | 465 | Py_ssize_t res = 0; |
1284 | | |
1285 | 465 | if (vv == NULL || n < 0) { |
1286 | 0 | PyErr_BadInternalCall(); |
1287 | 0 | return -1; |
1288 | 0 | } |
1289 | | |
1290 | 465 | int little_endian = flags; |
1291 | 465 | if (_resolve_endianness(&little_endian) < 0) { |
1292 | 0 | return -1; |
1293 | 0 | } |
1294 | | |
1295 | 465 | if (PyLong_Check(vv)) { |
1296 | 465 | v = (PyLongObject *)vv; |
1297 | 465 | } |
1298 | 0 | else if (flags != -1 && (flags & Py_ASNATIVEBYTES_ALLOW_INDEX)) { |
1299 | 0 | v = (PyLongObject *)_PyNumber_Index(vv); |
1300 | 0 | if (v == NULL) { |
1301 | 0 | return -1; |
1302 | 0 | } |
1303 | 0 | do_decref = 1; |
1304 | 0 | } |
1305 | 0 | else { |
1306 | 0 | PyErr_Format(PyExc_TypeError, "expect int, got %T", vv); |
1307 | 0 | return -1; |
1308 | 0 | } |
1309 | | |
1310 | 465 | if ((flags != -1 && (flags & Py_ASNATIVEBYTES_REJECT_NEGATIVE)) |
1311 | 0 | && _PyLong_IsNegative(v)) { |
1312 | 0 | PyErr_SetString(PyExc_ValueError, "Cannot convert negative int"); |
1313 | 0 | if (do_decref) { |
1314 | 0 | Py_DECREF(v); |
1315 | 0 | } |
1316 | 0 | return -1; |
1317 | 0 | } |
1318 | | |
1319 | 465 | if (_PyLong_IsCompact(v)) { |
1320 | 465 | res = 0; |
1321 | 465 | cv.v = _PyLong_CompactValue(v); |
1322 | | /* Most paths result in res = sizeof(compact value). Only the case |
1323 | | * where 0 < n < sizeof(compact value) do we need to check and adjust |
1324 | | * our return value. */ |
1325 | 465 | res = sizeof(cv.b); |
1326 | 465 | if (n <= 0) { |
1327 | | // nothing to do! |
1328 | 0 | } |
1329 | 465 | else if (n <= (Py_ssize_t)sizeof(cv.b)) { |
1330 | 465 | #if PY_LITTLE_ENDIAN |
1331 | 465 | if (little_endian) { |
1332 | 465 | memcpy(buffer, cv.b, n); |
1333 | 465 | } |
1334 | 0 | else { |
1335 | 0 | for (Py_ssize_t i = 0; i < n; ++i) { |
1336 | 0 | ((unsigned char*)buffer)[n - i - 1] = cv.b[i]; |
1337 | 0 | } |
1338 | 0 | } |
1339 | | #else |
1340 | | if (little_endian) { |
1341 | | for (Py_ssize_t i = 0; i < n; ++i) { |
1342 | | ((unsigned char*)buffer)[i] = cv.b[sizeof(cv.b) - i - 1]; |
1343 | | } |
1344 | | } |
1345 | | else { |
1346 | | memcpy(buffer, &cv.b[sizeof(cv.b) - n], n); |
1347 | | } |
1348 | | #endif |
1349 | | |
1350 | | /* If we fit, return the requested number of bytes */ |
1351 | 465 | if (_fits_in_n_bits(cv.v, n * 8)) { |
1352 | 465 | res = n; |
1353 | 465 | } else if (cv.v > 0 && _fits_in_n_bits(cv.v, n * 8 + 1)) { |
1354 | | /* Positive values with the MSB set do not require an |
1355 | | * additional bit when the caller's intent is to treat them |
1356 | | * as unsigned. */ |
1357 | 0 | if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) { |
1358 | 0 | res = n; |
1359 | 0 | } else { |
1360 | 0 | res = n + 1; |
1361 | 0 | } |
1362 | 0 | } |
1363 | 465 | } |
1364 | 0 | else { |
1365 | 0 | unsigned char fill = cv.v < 0 ? 0xFF : 0x00; |
1366 | 0 | #if PY_LITTLE_ENDIAN |
1367 | 0 | if (little_endian) { |
1368 | 0 | memcpy(buffer, cv.b, sizeof(cv.b)); |
1369 | 0 | memset((char *)buffer + sizeof(cv.b), fill, n - sizeof(cv.b)); |
1370 | 0 | } |
1371 | 0 | else { |
1372 | 0 | unsigned char *b = (unsigned char *)buffer; |
1373 | 0 | for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) { |
1374 | 0 | *b++ = fill; |
1375 | 0 | } |
1376 | 0 | for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) { |
1377 | 0 | *b++ = cv.b[i - 1]; |
1378 | 0 | } |
1379 | 0 | } |
1380 | | #else |
1381 | | if (little_endian) { |
1382 | | unsigned char *b = (unsigned char *)buffer; |
1383 | | for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) { |
1384 | | *b++ = cv.b[i - 1]; |
1385 | | } |
1386 | | for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) { |
1387 | | *b++ = fill; |
1388 | | } |
1389 | | } |
1390 | | else { |
1391 | | memset(buffer, fill, n - sizeof(cv.b)); |
1392 | | memcpy((char *)buffer + n - sizeof(cv.b), cv.b, sizeof(cv.b)); |
1393 | | } |
1394 | | #endif |
1395 | 0 | } |
1396 | 465 | } |
1397 | 0 | else { |
1398 | 0 | if (n > 0) { |
1399 | 0 | _PyLong_AsByteArray(v, buffer, (size_t)n, little_endian, 1, 0); |
1400 | 0 | } |
1401 | | |
1402 | | /* Calculates the number of bits required for the *absolute* value |
1403 | | * of v. This does not take sign into account, only magnitude. */ |
1404 | 0 | int64_t nb = _PyLong_NumBits((PyObject *)v); |
1405 | 0 | assert(nb >= 0); |
1406 | | /* Normally this would be ((nb - 1) / 8) + 1 to avoid rounding up |
1407 | | * multiples of 8 to the next byte, but we add an implied bit for |
1408 | | * the sign and it cancels out. */ |
1409 | 0 | res = (Py_ssize_t)(nb / 8) + 1; |
1410 | | |
1411 | | /* Two edge cases exist that are best handled after extracting the |
1412 | | * bits. These may result in us reporting overflow when the value |
1413 | | * actually fits. |
1414 | | */ |
1415 | 0 | if (n > 0 && res == n + 1 && nb % 8 == 0) { |
1416 | 0 | if (_PyLong_IsNegative(v)) { |
1417 | | /* Values of 0x80...00 from negative values that use every |
1418 | | * available bit in the buffer do not require an additional |
1419 | | * bit to store the sign. */ |
1420 | 0 | int is_edge_case = 1; |
1421 | 0 | unsigned char *b = (unsigned char *)buffer; |
1422 | 0 | for (Py_ssize_t i = 0; i < n && is_edge_case; ++i, ++b) { |
1423 | 0 | if (i == 0) { |
1424 | 0 | is_edge_case = (*b == (little_endian ? 0 : 0x80)); |
1425 | 0 | } else if (i < n - 1) { |
1426 | 0 | is_edge_case = (*b == 0); |
1427 | 0 | } else { |
1428 | 0 | is_edge_case = (*b == (little_endian ? 0x80 : 0)); |
1429 | 0 | } |
1430 | 0 | } |
1431 | 0 | if (is_edge_case) { |
1432 | 0 | res = n; |
1433 | 0 | } |
1434 | 0 | } |
1435 | 0 | else { |
1436 | | /* Positive values with the MSB set do not require an |
1437 | | * additional bit when the caller's intent is to treat them |
1438 | | * as unsigned. */ |
1439 | 0 | unsigned char *b = (unsigned char *)buffer; |
1440 | 0 | if (b[little_endian ? n - 1 : 0] & 0x80) { |
1441 | 0 | if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) { |
1442 | 0 | res = n; |
1443 | 0 | } else { |
1444 | 0 | res = n + 1; |
1445 | 0 | } |
1446 | 0 | } |
1447 | 0 | } |
1448 | 0 | } |
1449 | 0 | } |
1450 | | |
1451 | 465 | if (do_decref) { |
1452 | 0 | Py_DECREF(v); |
1453 | 0 | } |
1454 | | |
1455 | 465 | return res; |
1456 | 465 | } |
1457 | | |
1458 | | |
1459 | | PyObject * |
1460 | | PyLong_FromNativeBytes(const void* buffer, size_t n, int flags) |
1461 | 0 | { |
1462 | 0 | if (!buffer) { |
1463 | 0 | PyErr_BadInternalCall(); |
1464 | 0 | return NULL; |
1465 | 0 | } |
1466 | | |
1467 | 0 | int little_endian = flags; |
1468 | 0 | if (_resolve_endianness(&little_endian) < 0) { |
1469 | 0 | return NULL; |
1470 | 0 | } |
1471 | | |
1472 | 0 | return _PyLong_FromByteArray( |
1473 | 0 | (const unsigned char *)buffer, |
1474 | 0 | n, |
1475 | 0 | little_endian, |
1476 | 0 | (flags == -1 || !(flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) ? 1 : 0 |
1477 | 0 | ); |
1478 | 0 | } |
1479 | | |
1480 | | |
1481 | | PyObject * |
1482 | | PyLong_FromUnsignedNativeBytes(const void* buffer, size_t n, int flags) |
1483 | 0 | { |
1484 | 0 | if (!buffer) { |
1485 | 0 | PyErr_BadInternalCall(); |
1486 | 0 | return NULL; |
1487 | 0 | } |
1488 | | |
1489 | 0 | int little_endian = flags; |
1490 | 0 | if (_resolve_endianness(&little_endian) < 0) { |
1491 | 0 | return NULL; |
1492 | 0 | } |
1493 | | |
1494 | 0 | return _PyLong_FromByteArray((const unsigned char *)buffer, n, little_endian, 0); |
1495 | 0 | } |
1496 | | |
1497 | | |
1498 | | /* Create a new int object from a C pointer */ |
1499 | | |
1500 | | PyObject * |
1501 | | PyLong_FromVoidPtr(void *p) |
1502 | 2.36M | { |
1503 | 2.36M | #if SIZEOF_VOID_P <= SIZEOF_LONG |
1504 | 2.36M | return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p); |
1505 | | #else |
1506 | | |
1507 | | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
1508 | | # error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)" |
1509 | | #endif |
1510 | | return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p); |
1511 | | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
1512 | | |
1513 | 2.36M | } |
1514 | | |
1515 | | /* Get a C pointer from an int object. */ |
1516 | | |
1517 | | void * |
1518 | | PyLong_AsVoidPtr(PyObject *vv) |
1519 | 51 | { |
1520 | 51 | #if SIZEOF_VOID_P <= SIZEOF_LONG |
1521 | 51 | long x; |
1522 | | |
1523 | 51 | if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) { |
1524 | 0 | x = PyLong_AsLong(vv); |
1525 | 0 | } |
1526 | 51 | else { |
1527 | 51 | x = PyLong_AsUnsignedLong(vv); |
1528 | 51 | } |
1529 | | #else |
1530 | | |
1531 | | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
1532 | | # error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)" |
1533 | | #endif |
1534 | | long long x; |
1535 | | |
1536 | | if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) { |
1537 | | x = PyLong_AsLongLong(vv); |
1538 | | } |
1539 | | else { |
1540 | | x = PyLong_AsUnsignedLongLong(vv); |
1541 | | } |
1542 | | |
1543 | | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
1544 | | |
1545 | 51 | if (x == -1 && PyErr_Occurred()) |
1546 | 0 | return NULL; |
1547 | 51 | return (void *)x; |
1548 | 51 | } |
1549 | | |
1550 | | /* Initial long long support by Chris Herborth (chrish@qnx.com), later |
1551 | | * rewritten to use the newer PyLong_{As,From}ByteArray API. |
1552 | | */ |
1553 | | |
1554 | 0 | #define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN) |
1555 | | |
1556 | | /* Create a new int object from a C long long int. */ |
1557 | | |
1558 | | PyObject * |
1559 | | PyLong_FromLongLong(long long ival) |
1560 | 36.8k | { |
1561 | 36.8k | PYLONG_FROM_INT(unsigned long long, long long, ival); |
1562 | 36.8k | } |
1563 | | |
1564 | | /* Create a new int object from a C Py_ssize_t. */ |
1565 | | |
1566 | | PyObject * |
1567 | | PyLong_FromSsize_t(Py_ssize_t ival) |
1568 | 272M | { |
1569 | 272M | PYLONG_FROM_INT(size_t, Py_ssize_t, ival); |
1570 | 272M | } |
1571 | | |
1572 | | /* Get a C long long int from an int object or any object that has an |
1573 | | __index__ method. Return -1 and set an error if overflow occurs. */ |
1574 | | |
1575 | | long long |
1576 | | PyLong_AsLongLong(PyObject *vv) |
1577 | 0 | { |
1578 | 0 | PyLongObject *v; |
1579 | 0 | long long bytes; |
1580 | 0 | int res; |
1581 | 0 | int do_decref = 0; /* if PyNumber_Index was called */ |
1582 | |
|
1583 | 0 | if (vv == NULL) { |
1584 | 0 | PyErr_BadInternalCall(); |
1585 | 0 | return -1; |
1586 | 0 | } |
1587 | | |
1588 | 0 | if (PyLong_Check(vv)) { |
1589 | 0 | v = (PyLongObject *)vv; |
1590 | 0 | } |
1591 | 0 | else { |
1592 | 0 | v = (PyLongObject *)_PyNumber_Index(vv); |
1593 | 0 | if (v == NULL) |
1594 | 0 | return -1; |
1595 | 0 | do_decref = 1; |
1596 | 0 | } |
1597 | | |
1598 | 0 | if (_PyLong_IsCompact(v)) { |
1599 | 0 | res = 0; |
1600 | 0 | bytes = _PyLong_CompactValue(v); |
1601 | 0 | } |
1602 | 0 | else { |
1603 | 0 | res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes, |
1604 | 0 | SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1, 1); |
1605 | 0 | } |
1606 | 0 | if (do_decref) { |
1607 | 0 | Py_DECREF(v); |
1608 | 0 | } |
1609 | | |
1610 | | /* Plan 9 can't handle long long in ? : expressions */ |
1611 | 0 | if (res < 0) |
1612 | 0 | return (long long)-1; |
1613 | 0 | else |
1614 | 0 | return bytes; |
1615 | 0 | } |
1616 | | |
1617 | | /* Get a C unsigned long long int from an int object. |
1618 | | Return -1 and set an error if overflow occurs. */ |
1619 | | |
1620 | | unsigned long long |
1621 | | PyLong_AsUnsignedLongLong(PyObject *vv) |
1622 | 0 | { |
1623 | 0 | PyLongObject *v; |
1624 | 0 | unsigned long long bytes; |
1625 | 0 | int res; |
1626 | |
|
1627 | 0 | if (vv == NULL) { |
1628 | 0 | PyErr_BadInternalCall(); |
1629 | 0 | return (unsigned long long)-1; |
1630 | 0 | } |
1631 | 0 | if (!PyLong_Check(vv)) { |
1632 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
1633 | 0 | return (unsigned long long)-1; |
1634 | 0 | } |
1635 | | |
1636 | 0 | v = (PyLongObject*)vv; |
1637 | 0 | if (_PyLong_IsNonNegativeCompact(v)) { |
1638 | 0 | res = 0; |
1639 | | #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T |
1640 | | size_t tmp = (size_t)_PyLong_CompactValue(v); |
1641 | | bytes = (unsigned long long)tmp; |
1642 | | if (bytes != tmp) { |
1643 | | PyErr_SetString(PyExc_OverflowError, |
1644 | | "Python int too large to convert " |
1645 | | "to C unsigned long long"); |
1646 | | res = -1; |
1647 | | } |
1648 | | #else |
1649 | 0 | bytes = (unsigned long long)(size_t)_PyLong_CompactValue(v); |
1650 | 0 | #endif |
1651 | 0 | } |
1652 | 0 | else { |
1653 | 0 | res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, |
1654 | 0 | SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0, 1); |
1655 | 0 | } |
1656 | | |
1657 | | /* Plan 9 can't handle long long in ? : expressions */ |
1658 | 0 | if (res < 0) |
1659 | 0 | return (unsigned long long)res; |
1660 | 0 | else |
1661 | 0 | return bytes; |
1662 | 0 | } |
1663 | | |
1664 | | /* Get a C unsigned long int from an int object, ignoring the high bits. |
1665 | | Returns -1 and sets an error condition if an error occurs. */ |
1666 | | |
1667 | | static unsigned long long |
1668 | | _PyLong_AsUnsignedLongLongMask(PyObject *vv) |
1669 | 0 | { |
1670 | 0 | PyLongObject *v; |
1671 | 0 | Py_ssize_t i; |
1672 | 0 | int sign; |
1673 | |
|
1674 | 0 | if (vv == NULL || !PyLong_Check(vv)) { |
1675 | 0 | PyErr_BadInternalCall(); |
1676 | 0 | return (unsigned long long) -1; |
1677 | 0 | } |
1678 | 0 | v = (PyLongObject *)vv; |
1679 | 0 | if (_PyLong_IsCompact(v)) { |
1680 | | #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T |
1681 | | return (unsigned long long)(size_t)_PyLong_CompactValue(v); |
1682 | | #else |
1683 | 0 | return (unsigned long long)(long long)_PyLong_CompactValue(v); |
1684 | 0 | #endif |
1685 | 0 | } |
1686 | 0 | i = _PyLong_DigitCount(v); |
1687 | 0 | sign = _PyLong_NonCompactSign(v); |
1688 | 0 | unsigned long long x = unroll_digits_ulong(v, &i); |
1689 | 0 | while (--i >= 0) { |
1690 | 0 | x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i]; |
1691 | 0 | } |
1692 | 0 | return x * sign; |
1693 | 0 | } |
1694 | | |
1695 | | unsigned long long |
1696 | | PyLong_AsUnsignedLongLongMask(PyObject *op) |
1697 | 0 | { |
1698 | 0 | PyLongObject *lo; |
1699 | 0 | unsigned long long val; |
1700 | |
|
1701 | 0 | if (op == NULL) { |
1702 | 0 | PyErr_BadInternalCall(); |
1703 | 0 | return (unsigned long long)-1; |
1704 | 0 | } |
1705 | | |
1706 | 0 | if (PyLong_Check(op)) { |
1707 | 0 | return _PyLong_AsUnsignedLongLongMask(op); |
1708 | 0 | } |
1709 | | |
1710 | 0 | lo = (PyLongObject *)_PyNumber_Index(op); |
1711 | 0 | if (lo == NULL) |
1712 | 0 | return (unsigned long long)-1; |
1713 | | |
1714 | 0 | val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); |
1715 | 0 | Py_DECREF(lo); |
1716 | 0 | return val; |
1717 | 0 | } |
1718 | | |
1719 | | /* Get a C long long int from an int object or any object that has an |
1720 | | __index__ method. |
1721 | | |
1722 | | On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of |
1723 | | the result. Otherwise *overflow is 0. |
1724 | | |
1725 | | For other errors (e.g., TypeError), return -1 and set an error condition. |
1726 | | In this case *overflow will be 0. |
1727 | | */ |
1728 | | |
1729 | | long long |
1730 | | PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) |
1731 | 0 | { |
1732 | | /* This version by Tim Peters */ |
1733 | 0 | PyLongObject *v; |
1734 | 0 | long long res; |
1735 | 0 | Py_ssize_t i; |
1736 | 0 | int sign; |
1737 | 0 | int do_decref = 0; /* if PyNumber_Index was called */ |
1738 | |
|
1739 | 0 | *overflow = 0; |
1740 | 0 | if (vv == NULL) { |
1741 | 0 | PyErr_BadInternalCall(); |
1742 | 0 | return -1; |
1743 | 0 | } |
1744 | | |
1745 | 0 | if (PyLong_Check(vv)) { |
1746 | 0 | v = (PyLongObject *)vv; |
1747 | 0 | } |
1748 | 0 | else { |
1749 | 0 | v = (PyLongObject *)_PyNumber_Index(vv); |
1750 | 0 | if (v == NULL) |
1751 | 0 | return -1; |
1752 | 0 | do_decref = 1; |
1753 | 0 | } |
1754 | 0 | if (_PyLong_IsCompact(v)) { |
1755 | | #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T |
1756 | | Py_ssize_t tmp = _PyLong_CompactValue(v); |
1757 | | if (tmp < LLONG_MIN) { |
1758 | | *overflow = -1; |
1759 | | res = -1; |
1760 | | } |
1761 | | else if (tmp > LLONG_MAX) { |
1762 | | *overflow = 1; |
1763 | | res = -1; |
1764 | | } |
1765 | | else { |
1766 | | res = (long long)tmp; |
1767 | | } |
1768 | | #else |
1769 | 0 | res = _PyLong_CompactValue(v); |
1770 | 0 | #endif |
1771 | 0 | } |
1772 | 0 | else { |
1773 | 0 | i = _PyLong_DigitCount(v); |
1774 | 0 | sign = _PyLong_NonCompactSign(v); |
1775 | 0 | unsigned long long x = unroll_digits_ulong(v, &i); |
1776 | 0 | while (--i >= 0) { |
1777 | 0 | if (x > ULLONG_MAX >> PyLong_SHIFT) { |
1778 | 0 | *overflow = sign; |
1779 | 0 | res = -1; |
1780 | 0 | goto exit; |
1781 | 0 | } |
1782 | 0 | x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i]; |
1783 | 0 | } |
1784 | | /* Haven't lost any bits, but casting to long requires extra |
1785 | | * care (see comment above). |
1786 | | */ |
1787 | 0 | if (x <= (unsigned long long)LLONG_MAX) { |
1788 | 0 | res = (long long)x * sign; |
1789 | 0 | } |
1790 | 0 | else if (sign < 0 && x == PY_ABS_LLONG_MIN) { |
1791 | 0 | res = LLONG_MIN; |
1792 | 0 | } |
1793 | 0 | else { |
1794 | 0 | *overflow = sign; |
1795 | 0 | res = -1; |
1796 | 0 | } |
1797 | 0 | } |
1798 | 0 | exit: |
1799 | 0 | if (do_decref) { |
1800 | 0 | Py_DECREF(v); |
1801 | 0 | } |
1802 | 0 | return res; |
1803 | 0 | } |
1804 | | |
1805 | | #define UNSIGNED_INT_CONVERTER(NAME, TYPE) \ |
1806 | | int \ |
1807 | 0 | _PyLong_##NAME##_Converter(PyObject *obj, void *ptr) \ |
1808 | 0 | { \ |
1809 | 0 | Py_ssize_t bytes = PyLong_AsNativeBytes(obj, ptr, sizeof(TYPE), \ |
1810 | 0 | Py_ASNATIVEBYTES_NATIVE_ENDIAN | \ |
1811 | 0 | Py_ASNATIVEBYTES_ALLOW_INDEX | \ |
1812 | 0 | Py_ASNATIVEBYTES_REJECT_NEGATIVE | \ |
1813 | 0 | Py_ASNATIVEBYTES_UNSIGNED_BUFFER); \ |
1814 | 0 | if (bytes < 0) { \ |
1815 | 0 | return 0; \ |
1816 | 0 | } \ |
1817 | 0 | if ((size_t)bytes > sizeof(TYPE)) { \ |
1818 | 0 | PyErr_SetString(PyExc_OverflowError, \ |
1819 | 0 | "Python int too large for C "#TYPE); \ |
1820 | 0 | return 0; \ |
1821 | 0 | } \ |
1822 | 0 | return 1; \ |
1823 | 0 | } Unexecuted instantiation: _PyLong_UnsignedShort_Converter Unexecuted instantiation: _PyLong_UnsignedInt_Converter Unexecuted instantiation: _PyLong_UnsignedLong_Converter Unexecuted instantiation: _PyLong_UnsignedLongLong_Converter Unexecuted instantiation: _PyLong_Size_t_Converter Unexecuted instantiation: _PyLong_UInt8_Converter Unexecuted instantiation: _PyLong_UInt16_Converter Unexecuted instantiation: _PyLong_UInt32_Converter Unexecuted instantiation: _PyLong_UInt64_Converter |
1824 | | |
1825 | | UNSIGNED_INT_CONVERTER(UnsignedShort, unsigned short) |
1826 | | UNSIGNED_INT_CONVERTER(UnsignedInt, unsigned int) |
1827 | | UNSIGNED_INT_CONVERTER(UnsignedLong, unsigned long) |
1828 | | UNSIGNED_INT_CONVERTER(UnsignedLongLong, unsigned long long) |
1829 | | UNSIGNED_INT_CONVERTER(Size_t, size_t) |
1830 | | UNSIGNED_INT_CONVERTER(UInt8, uint8_t) |
1831 | | UNSIGNED_INT_CONVERTER(UInt16, uint16_t) |
1832 | | UNSIGNED_INT_CONVERTER(UInt32, uint32_t) |
1833 | | UNSIGNED_INT_CONVERTER(UInt64, uint64_t) |
1834 | | |
1835 | | |
1836 | | #define CHECK_BINOP(v,w) \ |
1837 | 141M | do { \ |
1838 | 141M | if (!PyLong_Check(v) || !PyLong_Check(w)) \ |
1839 | 141M | Py_RETURN_NOTIMPLEMENTED; \ |
1840 | 141M | } while(0) |
1841 | | |
1842 | | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
1843 | | * is modified in place, by adding y to it. Carries are propagated as far as |
1844 | | * x[m-1], and the remaining carry (0 or 1) is returned. |
1845 | | */ |
1846 | | static digit |
1847 | | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
1848 | 0 | { |
1849 | 0 | Py_ssize_t i; |
1850 | 0 | digit carry = 0; |
1851 | |
|
1852 | 0 | assert(m >= n); |
1853 | 0 | for (i = 0; i < n; ++i) { |
1854 | 0 | carry += x[i] + y[i]; |
1855 | 0 | x[i] = carry & PyLong_MASK; |
1856 | 0 | carry >>= PyLong_SHIFT; |
1857 | 0 | assert((carry & 1) == carry); |
1858 | 0 | } |
1859 | 0 | for (; carry && i < m; ++i) { |
1860 | 0 | carry += x[i]; |
1861 | 0 | x[i] = carry & PyLong_MASK; |
1862 | 0 | carry >>= PyLong_SHIFT; |
1863 | 0 | assert((carry & 1) == carry); |
1864 | 0 | } |
1865 | 0 | return carry; |
1866 | 0 | } |
1867 | | |
1868 | | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
1869 | | * is modified in place, by subtracting y from it. Borrows are propagated as |
1870 | | * far as x[m-1], and the remaining borrow (0 or 1) is returned. |
1871 | | */ |
1872 | | static digit |
1873 | | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
1874 | 0 | { |
1875 | 0 | Py_ssize_t i; |
1876 | 0 | digit borrow = 0; |
1877 | |
|
1878 | 0 | assert(m >= n); |
1879 | 0 | for (i = 0; i < n; ++i) { |
1880 | 0 | borrow = x[i] - y[i] - borrow; |
1881 | 0 | x[i] = borrow & PyLong_MASK; |
1882 | 0 | borrow >>= PyLong_SHIFT; |
1883 | 0 | borrow &= 1; /* keep only 1 sign bit */ |
1884 | 0 | } |
1885 | 0 | for (; borrow && i < m; ++i) { |
1886 | 0 | borrow = x[i] - borrow; |
1887 | 0 | x[i] = borrow & PyLong_MASK; |
1888 | 0 | borrow >>= PyLong_SHIFT; |
1889 | 0 | borrow &= 1; |
1890 | 0 | } |
1891 | 0 | return borrow; |
1892 | 0 | } |
1893 | | |
1894 | | /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put |
1895 | | * result in z[0:m], and return the d bits shifted out of the top. |
1896 | | */ |
1897 | | static digit |
1898 | | v_lshift(digit *z, digit *a, Py_ssize_t m, int d) |
1899 | 0 | { |
1900 | 0 | Py_ssize_t i; |
1901 | 0 | digit carry = 0; |
1902 | |
|
1903 | 0 | assert(0 <= d && d < PyLong_SHIFT); |
1904 | 0 | for (i=0; i < m; i++) { |
1905 | 0 | twodigits acc = (twodigits)a[i] << d | carry; |
1906 | 0 | z[i] = (digit)acc & PyLong_MASK; |
1907 | 0 | carry = (digit)(acc >> PyLong_SHIFT); |
1908 | 0 | } |
1909 | 0 | return carry; |
1910 | 0 | } |
1911 | | |
1912 | | /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put |
1913 | | * result in z[0:m], and return the d bits shifted out of the bottom. |
1914 | | */ |
1915 | | static digit |
1916 | | v_rshift(digit *z, digit *a, Py_ssize_t m, int d) |
1917 | 0 | { |
1918 | 0 | Py_ssize_t i; |
1919 | 0 | digit carry = 0; |
1920 | 0 | digit mask = ((digit)1 << d) - 1U; |
1921 | |
|
1922 | 0 | assert(0 <= d && d < PyLong_SHIFT); |
1923 | 0 | for (i=m; i-- > 0;) { |
1924 | 0 | twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; |
1925 | 0 | carry = (digit)acc & mask; |
1926 | 0 | z[i] = (digit)(acc >> d); |
1927 | 0 | } |
1928 | 0 | return carry; |
1929 | 0 | } |
1930 | | |
1931 | | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient |
1932 | | in pout, and returning the remainder. pin and pout point at the LSD. |
1933 | | It's OK for pin == pout on entry, which saves oodles of mallocs/frees in |
1934 | | _PyLong_Format, but that should be done with great care since ints are |
1935 | | immutable. |
1936 | | |
1937 | | This version of the code can be 20% faster than the pre-2022 version |
1938 | | on todays compilers on architectures like amd64. It evolved from Mark |
1939 | | Dickinson observing that a 128:64 divide instruction was always being |
1940 | | generated by the compiler despite us working with 30-bit digit values. |
1941 | | See the thread for full context: |
1942 | | |
1943 | | https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5 |
1944 | | |
1945 | | If you ever want to change this code, pay attention to performance using |
1946 | | different compilers, optimization levels, and cpu architectures. Beware of |
1947 | | PGO/FDO builds doing value specialization such as a fast path for //10. :) |
1948 | | |
1949 | | Verify that 17 isn't specialized and this works as a quick test: |
1950 | | python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17' |
1951 | | */ |
1952 | | static digit |
1953 | | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) |
1954 | 594 | { |
1955 | 594 | digit remainder = 0; |
1956 | | |
1957 | 594 | assert(n > 0 && n <= PyLong_MASK); |
1958 | 7.70k | while (--size >= 0) { |
1959 | 7.11k | twodigits dividend; |
1960 | 7.11k | dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size]; |
1961 | 7.11k | digit quotient; |
1962 | 7.11k | quotient = (digit)(dividend / n); |
1963 | 7.11k | remainder = dividend % n; |
1964 | 7.11k | pout[size] = quotient; |
1965 | 7.11k | } |
1966 | 594 | return remainder; |
1967 | 594 | } |
1968 | | |
1969 | | |
1970 | | /* Divide an integer by a digit, returning both the quotient |
1971 | | (as function result) and the remainder (through *prem). |
1972 | | The sign of a is ignored; n should not be zero. */ |
1973 | | |
1974 | | static PyLongObject * |
1975 | | divrem1(PyLongObject *a, digit n, digit *prem) |
1976 | 594 | { |
1977 | 594 | const Py_ssize_t size = _PyLong_DigitCount(a); |
1978 | 594 | PyLongObject *z; |
1979 | | |
1980 | 594 | assert(n > 0 && n <= PyLong_MASK); |
1981 | 594 | z = long_alloc(size); |
1982 | 594 | if (z == NULL) |
1983 | 0 | return NULL; |
1984 | 594 | *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n); |
1985 | 594 | return long_normalize(z); |
1986 | 594 | } |
1987 | | |
1988 | | /* Remainder of long pin, w/ size digits, by non-zero digit n, |
1989 | | returning the remainder. pin points at the LSD. */ |
1990 | | |
1991 | | static digit |
1992 | | inplace_rem1(digit *pin, Py_ssize_t size, digit n) |
1993 | 143 | { |
1994 | 143 | twodigits rem = 0; |
1995 | | |
1996 | 143 | assert(n > 0 && n <= PyLong_MASK); |
1997 | 429 | while (--size >= 0) |
1998 | 286 | rem = ((rem << PyLong_SHIFT) | pin[size]) % n; |
1999 | 143 | return (digit)rem; |
2000 | 143 | } |
2001 | | |
2002 | | /* Get the remainder of an integer divided by a digit, returning |
2003 | | the remainder as the result of the function. The sign of a is |
2004 | | ignored; n should not be zero. */ |
2005 | | |
2006 | | static PyLongObject * |
2007 | | rem1(PyLongObject *a, digit n) |
2008 | 143 | { |
2009 | 143 | const Py_ssize_t size = _PyLong_DigitCount(a); |
2010 | | |
2011 | 143 | assert(n > 0 && n <= PyLong_MASK); |
2012 | 143 | return (PyLongObject *)PyLong_FromLong( |
2013 | 143 | (long)inplace_rem1(a->long_value.ob_digit, size, n) |
2014 | 143 | ); |
2015 | 143 | } |
2016 | | |
2017 | | #ifdef WITH_PYLONG_MODULE |
2018 | | /* asymptotically faster long_to_decimal_string, using _pylong.py */ |
2019 | | static int |
2020 | | pylong_int_to_decimal_string(PyObject *aa, |
2021 | | PyObject **p_output, |
2022 | | _PyUnicodeWriter *writer, |
2023 | | PyBytesWriter *bytes_writer, |
2024 | | char **bytes_str) |
2025 | 0 | { |
2026 | 0 | PyObject *s = NULL; |
2027 | 0 | PyObject *mod = PyImport_ImportModule("_pylong"); |
2028 | 0 | if (mod == NULL) { |
2029 | 0 | return -1; |
2030 | 0 | } |
2031 | 0 | s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa); |
2032 | 0 | if (s == NULL) { |
2033 | 0 | goto error; |
2034 | 0 | } |
2035 | 0 | if (!PyUnicode_Check(s)) { |
2036 | 0 | PyErr_SetString(PyExc_TypeError, |
2037 | 0 | "_pylong.int_to_decimal_string did not return a str"); |
2038 | 0 | goto error; |
2039 | 0 | } |
2040 | 0 | if (writer) { |
2041 | 0 | Py_ssize_t size = PyUnicode_GET_LENGTH(s); |
2042 | 0 | if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) { |
2043 | 0 | goto error; |
2044 | 0 | } |
2045 | 0 | if (_PyUnicodeWriter_WriteStr(writer, s) < 0) { |
2046 | 0 | goto error; |
2047 | 0 | } |
2048 | 0 | goto success; |
2049 | 0 | } |
2050 | 0 | else if (bytes_writer) { |
2051 | 0 | Py_ssize_t size = PyUnicode_GET_LENGTH(s); |
2052 | 0 | const void *data = PyUnicode_DATA(s); |
2053 | 0 | int kind = PyUnicode_KIND(s); |
2054 | 0 | *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, size, |
2055 | 0 | *bytes_str); |
2056 | 0 | if (*bytes_str == NULL) { |
2057 | 0 | goto error; |
2058 | 0 | } |
2059 | 0 | char *p = *bytes_str; |
2060 | 0 | for (Py_ssize_t i=0; i < size; i++) { |
2061 | 0 | Py_UCS4 ch = PyUnicode_READ(kind, data, i); |
2062 | 0 | *p++ = (char) ch; |
2063 | 0 | } |
2064 | 0 | (*bytes_str) = p; |
2065 | 0 | goto success; |
2066 | 0 | } |
2067 | 0 | else { |
2068 | 0 | *p_output = Py_NewRef(s); |
2069 | 0 | goto success; |
2070 | 0 | } |
2071 | | |
2072 | 0 | error: |
2073 | 0 | Py_DECREF(mod); |
2074 | 0 | Py_XDECREF(s); |
2075 | 0 | return -1; |
2076 | | |
2077 | 0 | success: |
2078 | 0 | Py_DECREF(mod); |
2079 | 0 | Py_DECREF(s); |
2080 | 0 | return 0; |
2081 | 0 | } |
2082 | | #endif /* WITH_PYLONG_MODULE */ |
2083 | | |
2084 | | /* Convert an integer to a base 10 string. Returns a new non-shared |
2085 | | string. (Return value is non-shared so that callers can modify the |
2086 | | returned value if necessary.) */ |
2087 | | |
2088 | | static int |
2089 | | long_to_decimal_string_internal(PyObject *aa, |
2090 | | PyObject **p_output, |
2091 | | _PyUnicodeWriter *writer, |
2092 | | PyBytesWriter *bytes_writer, |
2093 | | char **bytes_str) |
2094 | 7.52M | { |
2095 | 7.52M | PyLongObject *scratch, *a; |
2096 | 7.52M | PyObject *str = NULL; |
2097 | 7.52M | Py_ssize_t size, strlen, size_a, i, j; |
2098 | 7.52M | digit *pout, *pin, rem, tenpow; |
2099 | 7.52M | int negative; |
2100 | 7.52M | int d; |
2101 | | |
2102 | | // writer or bytes_writer can be used, but not both at the same time. |
2103 | 7.52M | assert(writer == NULL || bytes_writer == NULL); |
2104 | | |
2105 | 7.52M | a = (PyLongObject *)aa; |
2106 | 7.52M | if (a == NULL || !PyLong_Check(a)) { |
2107 | 0 | PyErr_BadInternalCall(); |
2108 | 0 | return -1; |
2109 | 0 | } |
2110 | 7.52M | size_a = _PyLong_DigitCount(a); |
2111 | 7.52M | negative = _PyLong_IsNegative(a); |
2112 | | |
2113 | | /* quick and dirty pre-check for overflowing the decimal digit limit, |
2114 | | based on the inequality 10/3 >= log2(10) |
2115 | | |
2116 | | explanation in https://github.com/python/cpython/pull/96537 |
2117 | | */ |
2118 | 7.52M | if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD |
2119 | 7.52M | / (3 * PyLong_SHIFT) + 2) { |
2120 | 309 | PyInterpreterState *interp = _PyInterpreterState_GET(); |
2121 | 309 | int max_str_digits = interp->long_state.max_str_digits; |
2122 | 309 | if ((max_str_digits > 0) && |
2123 | 309 | (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) { |
2124 | 1 | PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR, |
2125 | 1 | max_str_digits); |
2126 | 1 | return -1; |
2127 | 1 | } |
2128 | 309 | } |
2129 | | |
2130 | 7.52M | #if WITH_PYLONG_MODULE |
2131 | 7.52M | if (size_a > 1000) { |
2132 | | /* Switch to _pylong.int_to_decimal_string(). */ |
2133 | 0 | return pylong_int_to_decimal_string(aa, |
2134 | 0 | p_output, |
2135 | 0 | writer, |
2136 | 0 | bytes_writer, |
2137 | 0 | bytes_str); |
2138 | 0 | } |
2139 | 7.52M | #endif |
2140 | | |
2141 | | /* quick and dirty upper bound for the number of digits |
2142 | | required to express a in base _PyLong_DECIMAL_BASE: |
2143 | | |
2144 | | #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) |
2145 | | |
2146 | | But log2(a) < size_a * PyLong_SHIFT, and |
2147 | | log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT |
2148 | | > 3.3 * _PyLong_DECIMAL_SHIFT |
2149 | | |
2150 | | size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) = |
2151 | | size_a + size_a / d < size_a + size_a / floor(d), |
2152 | | where d = (3.3 * _PyLong_DECIMAL_SHIFT) / |
2153 | | (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT) |
2154 | | */ |
2155 | 7.52M | d = (33 * _PyLong_DECIMAL_SHIFT) / |
2156 | 7.52M | (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT); |
2157 | 7.52M | assert(size_a < PY_SSIZE_T_MAX/2); |
2158 | 7.52M | size = 1 + size_a + size_a / d; |
2159 | 7.52M | scratch = long_alloc(size); |
2160 | 7.52M | if (scratch == NULL) |
2161 | 0 | return -1; |
2162 | | |
2163 | | /* convert array of base _PyLong_BASE digits in pin to an array of |
2164 | | base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, |
2165 | | Volume 2 (3rd edn), section 4.4, Method 1b). */ |
2166 | 7.52M | pin = a->long_value.ob_digit; |
2167 | 7.52M | pout = scratch->long_value.ob_digit; |
2168 | 7.52M | size = 0; |
2169 | 15.0M | for (i = size_a; --i >= 0; ) { |
2170 | 7.48M | digit hi = pin[i]; |
2171 | 9.28M | for (j = 0; j < size; j++) { |
2172 | 1.80M | twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; |
2173 | 1.80M | hi = (digit)(z / _PyLong_DECIMAL_BASE); |
2174 | 1.80M | pout[j] = (digit)(z - (twodigits)hi * |
2175 | 1.80M | _PyLong_DECIMAL_BASE); |
2176 | 1.80M | } |
2177 | 14.9M | while (hi) { |
2178 | 7.48M | pout[size++] = hi % _PyLong_DECIMAL_BASE; |
2179 | 7.48M | hi /= _PyLong_DECIMAL_BASE; |
2180 | 7.48M | } |
2181 | | /* check for keyboard interrupt */ |
2182 | 7.48M | SIGCHECK({ |
2183 | 7.48M | Py_DECREF(scratch); |
2184 | 7.48M | return -1; |
2185 | 7.48M | }); |
2186 | 7.48M | } |
2187 | | /* pout should have at least one digit, so that the case when a = 0 |
2188 | | works correctly */ |
2189 | 7.52M | if (size == 0) |
2190 | 94.5k | pout[size++] = 0; |
2191 | | |
2192 | | /* calculate exact length of output string, and allocate */ |
2193 | 7.52M | strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; |
2194 | 7.52M | tenpow = 10; |
2195 | 7.52M | rem = pout[size-1]; |
2196 | 28.3M | while (rem >= tenpow) { |
2197 | 20.7M | tenpow *= 10; |
2198 | 20.7M | strlen++; |
2199 | 20.7M | } |
2200 | 7.52M | if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) { |
2201 | 340 | PyInterpreterState *interp = _PyInterpreterState_GET(); |
2202 | 340 | int max_str_digits = interp->long_state.max_str_digits; |
2203 | 340 | Py_ssize_t strlen_nosign = strlen - negative; |
2204 | 340 | if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) { |
2205 | 1 | Py_DECREF(scratch); |
2206 | 1 | PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR, |
2207 | 1 | max_str_digits); |
2208 | 1 | return -1; |
2209 | 1 | } |
2210 | 340 | } |
2211 | 7.52M | if (writer) { |
2212 | 7.49M | if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) { |
2213 | 0 | Py_DECREF(scratch); |
2214 | 0 | return -1; |
2215 | 0 | } |
2216 | 7.49M | } |
2217 | 30.1k | else if (bytes_writer) { |
2218 | 0 | *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, strlen, |
2219 | 0 | *bytes_str); |
2220 | 0 | if (*bytes_str == NULL) { |
2221 | 0 | Py_DECREF(scratch); |
2222 | 0 | return -1; |
2223 | 0 | } |
2224 | 0 | } |
2225 | 30.1k | else { |
2226 | 30.1k | str = PyUnicode_New(strlen, '9'); |
2227 | 30.1k | if (str == NULL) { |
2228 | 0 | Py_DECREF(scratch); |
2229 | 0 | return -1; |
2230 | 0 | } |
2231 | 30.1k | } |
2232 | | |
2233 | 7.52M | #define WRITE_DIGITS(p) \ |
2234 | 7.52M | do { \ |
2235 | | /* pout[0] through pout[size-2] contribute exactly \ |
2236 | | _PyLong_DECIMAL_SHIFT digits each */ \ |
2237 | 7.57M | for (i=0; i < size - 1; i++) { \ |
2238 | 47.3k | rem = pout[i]; \ |
2239 | 473k | for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \ |
2240 | 426k | *--p = '0' + rem % 10; \ |
2241 | 426k | rem /= 10; \ |
2242 | 426k | } \ |
2243 | 47.3k | } \ |
2244 | | /* pout[size-1]: always produce at least one decimal digit */ \ |
2245 | 7.52M | rem = pout[i]; \ |
2246 | 28.3M | do { \ |
2247 | 28.3M | *--p = '0' + rem % 10; \ |
2248 | 28.3M | rem /= 10; \ |
2249 | 28.3M | } while (rem != 0); \ |
2250 | 7.52M | \ |
2251 | | /* and sign */ \ |
2252 | 7.52M | if (negative) \ |
2253 | 7.52M | *--p = '-'; \ |
2254 | 7.52M | } while (0) |
2255 | | |
2256 | 7.52M | #define WRITE_UNICODE_DIGITS(TYPE) \ |
2257 | 7.52M | do { \ |
2258 | 7.52M | if (writer) \ |
2259 | 7.52M | p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \ |
2260 | 7.52M | else \ |
2261 | 7.52M | p = (TYPE*)PyUnicode_DATA(str) + strlen; \ |
2262 | 7.52M | \ |
2263 | 7.52M | WRITE_DIGITS(p); \ |
2264 | 7.52M | \ |
2265 | | /* check we've counted correctly */ \ |
2266 | 7.52M | if (writer) \ |
2267 | 7.52M | assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \ |
2268 | 7.52M | else \ |
2269 | 7.52M | assert(p == (TYPE*)PyUnicode_DATA(str)); \ |
2270 | 7.52M | } while (0) |
2271 | | |
2272 | | /* fill the string right-to-left */ |
2273 | 7.52M | if (bytes_writer) { |
2274 | 0 | char *p = *bytes_str + strlen; |
2275 | 0 | WRITE_DIGITS(p); |
2276 | 0 | assert(p == *bytes_str); |
2277 | 0 | } |
2278 | 7.52M | else { |
2279 | 7.52M | int kind = writer ? writer->kind : PyUnicode_KIND(str); |
2280 | 7.52M | if (kind == PyUnicode_1BYTE_KIND) { |
2281 | 7.52M | Py_UCS1 *p; |
2282 | 7.52M | WRITE_UNICODE_DIGITS(Py_UCS1); |
2283 | 7.52M | } |
2284 | 0 | else if (kind == PyUnicode_2BYTE_KIND) { |
2285 | 0 | Py_UCS2 *p; |
2286 | 0 | WRITE_UNICODE_DIGITS(Py_UCS2); |
2287 | 0 | } |
2288 | 0 | else { |
2289 | 0 | assert (kind == PyUnicode_4BYTE_KIND); |
2290 | 0 | Py_UCS4 *p; |
2291 | 0 | WRITE_UNICODE_DIGITS(Py_UCS4); |
2292 | 0 | } |
2293 | 7.52M | } |
2294 | | |
2295 | 7.52M | #undef WRITE_DIGITS |
2296 | 7.52M | #undef WRITE_UNICODE_DIGITS |
2297 | | |
2298 | 7.52M | _Py_DECREF_INT(scratch); |
2299 | 7.52M | if (writer) { |
2300 | 7.49M | writer->pos += strlen; |
2301 | 7.49M | } |
2302 | 30.1k | else if (bytes_writer) { |
2303 | 0 | (*bytes_str) += strlen; |
2304 | 0 | } |
2305 | 30.1k | else { |
2306 | 30.1k | assert(_PyUnicode_CheckConsistency(str, 1)); |
2307 | 30.1k | *p_output = (PyObject *)str; |
2308 | 30.1k | } |
2309 | 7.52M | return 0; |
2310 | 7.52M | } |
2311 | | |
2312 | | static PyObject * |
2313 | | long_to_decimal_string(PyObject *aa) |
2314 | 30.1k | { |
2315 | 30.1k | PyObject *v; |
2316 | 30.1k | if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1) |
2317 | 2 | return NULL; |
2318 | 30.1k | return v; |
2319 | 30.1k | } |
2320 | | |
2321 | | /* Convert an int object to a string, using a given conversion base, |
2322 | | which should be one of 2, 8 or 16. Return a string object. |
2323 | | If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x' |
2324 | | if alternate is nonzero. */ |
2325 | | |
2326 | | static int |
2327 | | long_format_binary(PyObject *aa, int base, int alternate, |
2328 | | PyObject **p_output, _PyUnicodeWriter *writer, |
2329 | | PyBytesWriter *bytes_writer, char **bytes_str) |
2330 | 1.94k | { |
2331 | 1.94k | PyLongObject *a = (PyLongObject *)aa; |
2332 | 1.94k | PyObject *v = NULL; |
2333 | 1.94k | Py_ssize_t sz; |
2334 | 1.94k | Py_ssize_t size_a; |
2335 | 1.94k | int negative; |
2336 | 1.94k | int bits; |
2337 | | |
2338 | 1.94k | assert(base == 2 || base == 8 || base == 16); |
2339 | | // writer or bytes_writer can be used, but not both at the same time. |
2340 | 1.94k | assert(writer == NULL || bytes_writer == NULL); |
2341 | 1.94k | if (a == NULL || !PyLong_Check(a)) { |
2342 | 0 | PyErr_BadInternalCall(); |
2343 | 0 | return -1; |
2344 | 0 | } |
2345 | 1.94k | size_a = _PyLong_DigitCount(a); |
2346 | 1.94k | negative = _PyLong_IsNegative(a); |
2347 | | |
2348 | | /* Compute a rough upper bound for the length of the string */ |
2349 | 1.94k | switch (base) { |
2350 | 1.94k | case 16: |
2351 | 1.94k | bits = 4; |
2352 | 1.94k | break; |
2353 | 0 | case 8: |
2354 | 0 | bits = 3; |
2355 | 0 | break; |
2356 | 0 | case 2: |
2357 | 0 | bits = 1; |
2358 | 0 | break; |
2359 | 0 | default: |
2360 | 0 | Py_UNREACHABLE(); |
2361 | 1.94k | } |
2362 | | |
2363 | | /* Compute exact length 'sz' of output string. */ |
2364 | 1.94k | if (size_a == 0) { |
2365 | 8 | sz = 1; |
2366 | 8 | } |
2367 | 1.94k | else { |
2368 | 1.94k | Py_ssize_t size_a_in_bits; |
2369 | | /* Ensure overflow doesn't occur during computation of sz. */ |
2370 | 1.94k | if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) { |
2371 | 0 | PyErr_SetString(PyExc_OverflowError, |
2372 | 0 | "int too large to format"); |
2373 | 0 | return -1; |
2374 | 0 | } |
2375 | 1.94k | size_a_in_bits = (size_a - 1) * PyLong_SHIFT + |
2376 | 1.94k | bit_length_digit(a->long_value.ob_digit[size_a - 1]); |
2377 | | /* Allow 1 character for a '-' sign. */ |
2378 | 1.94k | sz = negative + (size_a_in_bits + (bits - 1)) / bits; |
2379 | 1.94k | } |
2380 | 1.94k | if (alternate) { |
2381 | | /* 2 characters for prefix */ |
2382 | 1.60k | sz += 2; |
2383 | 1.60k | } |
2384 | | |
2385 | 1.94k | if (writer) { |
2386 | 348 | if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1) |
2387 | 0 | return -1; |
2388 | 348 | } |
2389 | 1.60k | else if (bytes_writer) { |
2390 | 0 | *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, sz, |
2391 | 0 | *bytes_str); |
2392 | 0 | if (*bytes_str == NULL) |
2393 | 0 | return -1; |
2394 | 0 | } |
2395 | 1.60k | else { |
2396 | 1.60k | v = PyUnicode_New(sz, 'x'); |
2397 | 1.60k | if (v == NULL) |
2398 | 0 | return -1; |
2399 | 1.60k | } |
2400 | | |
2401 | 1.94k | #define WRITE_DIGITS(p) \ |
2402 | 1.94k | do { \ |
2403 | 1.94k | if (size_a == 0) { \ |
2404 | 8 | *--p = '0'; \ |
2405 | 8 | } \ |
2406 | 1.94k | else { \ |
2407 | | /* JRH: special case for power-of-2 bases */ \ |
2408 | 1.94k | twodigits accum = 0; \ |
2409 | 1.94k | int accumbits = 0; /* # of bits in accum */ \ |
2410 | 1.94k | Py_ssize_t i; \ |
2411 | 9.52k | for (i = 0; i < size_a; ++i) { \ |
2412 | 7.58k | accum |= (twodigits)a->long_value.ob_digit[i] << accumbits; \ |
2413 | 7.58k | accumbits += PyLong_SHIFT; \ |
2414 | 7.58k | assert(accumbits >= bits); \ |
2415 | 46.8k | do { \ |
2416 | 46.8k | char cdigit; \ |
2417 | 46.8k | cdigit = (char)(accum & (base - 1)); \ |
2418 | 46.8k | cdigit += (cdigit < 10) ? '0' : 'a'-10; \ |
2419 | 46.8k | *--p = cdigit; \ |
2420 | 46.8k | accumbits -= bits; \ |
2421 | 46.8k | accum >>= bits; \ |
2422 | 46.8k | } while (i < size_a-1 ? accumbits >= bits : accum > 0); \ |
2423 | 7.58k | } \ |
2424 | 1.94k | } \ |
2425 | 1.94k | \ |
2426 | 1.94k | if (alternate) { \ |
2427 | 1.60k | if (base == 16) \ |
2428 | 1.60k | *--p = 'x'; \ |
2429 | 1.60k | else if (base == 8) \ |
2430 | 0 | *--p = 'o'; \ |
2431 | 0 | else /* (base == 2) */ \ |
2432 | 0 | *--p = 'b'; \ |
2433 | 1.60k | *--p = '0'; \ |
2434 | 1.60k | } \ |
2435 | 1.94k | if (negative) \ |
2436 | 1.94k | *--p = '-'; \ |
2437 | 1.94k | } while (0) |
2438 | | |
2439 | 1.94k | #define WRITE_UNICODE_DIGITS(TYPE) \ |
2440 | 1.94k | do { \ |
2441 | 1.94k | if (writer) \ |
2442 | 1.94k | p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \ |
2443 | 1.94k | else \ |
2444 | 1.94k | p = (TYPE*)PyUnicode_DATA(v) + sz; \ |
2445 | 1.94k | \ |
2446 | 1.94k | WRITE_DIGITS(p); \ |
2447 | 1.94k | \ |
2448 | 1.94k | if (writer) \ |
2449 | 1.94k | assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \ |
2450 | 1.94k | else \ |
2451 | 1.94k | assert(p == (TYPE*)PyUnicode_DATA(v)); \ |
2452 | 1.94k | } while (0) |
2453 | | |
2454 | 1.94k | if (bytes_writer) { |
2455 | 0 | char *p = *bytes_str + sz; |
2456 | 0 | WRITE_DIGITS(p); |
2457 | 0 | assert(p == *bytes_str); |
2458 | 0 | } |
2459 | 1.94k | else { |
2460 | 1.94k | int kind = writer ? writer->kind : PyUnicode_KIND(v); |
2461 | 1.94k | if (kind == PyUnicode_1BYTE_KIND) { |
2462 | 1.94k | Py_UCS1 *p; |
2463 | 1.94k | WRITE_UNICODE_DIGITS(Py_UCS1); |
2464 | 1.94k | } |
2465 | 0 | else if (kind == PyUnicode_2BYTE_KIND) { |
2466 | 0 | Py_UCS2 *p; |
2467 | 0 | WRITE_UNICODE_DIGITS(Py_UCS2); |
2468 | 0 | } |
2469 | 0 | else { |
2470 | 0 | assert (kind == PyUnicode_4BYTE_KIND); |
2471 | 0 | Py_UCS4 *p; |
2472 | 0 | WRITE_UNICODE_DIGITS(Py_UCS4); |
2473 | 0 | } |
2474 | 1.94k | } |
2475 | | |
2476 | 1.94k | #undef WRITE_DIGITS |
2477 | 1.94k | #undef WRITE_UNICODE_DIGITS |
2478 | | |
2479 | 1.94k | if (writer) { |
2480 | 348 | writer->pos += sz; |
2481 | 348 | } |
2482 | 1.60k | else if (bytes_writer) { |
2483 | 0 | (*bytes_str) += sz; |
2484 | 0 | } |
2485 | 1.60k | else { |
2486 | 1.60k | assert(_PyUnicode_CheckConsistency(v, 1)); |
2487 | 1.60k | *p_output = v; |
2488 | 1.60k | } |
2489 | 1.94k | return 0; |
2490 | 1.94k | } |
2491 | | |
2492 | | PyObject * |
2493 | | _PyLong_Format(PyObject *obj, int base) |
2494 | 1.60k | { |
2495 | 1.60k | PyObject *str; |
2496 | 1.60k | int err; |
2497 | 1.60k | if (base == 10) |
2498 | 0 | err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL); |
2499 | 1.60k | else |
2500 | 1.60k | err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL); |
2501 | 1.60k | if (err == -1) |
2502 | 0 | return NULL; |
2503 | 1.60k | return str; |
2504 | 1.60k | } |
2505 | | |
2506 | | int |
2507 | | _PyLong_FormatWriter(_PyUnicodeWriter *writer, |
2508 | | PyObject *obj, |
2509 | | int base, int alternate) |
2510 | 7.49M | { |
2511 | 7.49M | if (base == 10) |
2512 | 7.49M | return long_to_decimal_string_internal(obj, NULL, writer, |
2513 | 7.49M | NULL, NULL); |
2514 | 348 | else |
2515 | 348 | return long_format_binary(obj, base, alternate, NULL, writer, |
2516 | 348 | NULL, NULL); |
2517 | 7.49M | } |
2518 | | |
2519 | | char* |
2520 | | _PyLong_FormatBytesWriter(PyBytesWriter *writer, char *str, |
2521 | | PyObject *obj, |
2522 | | int base, int alternate) |
2523 | 0 | { |
2524 | 0 | char *str2; |
2525 | 0 | int res; |
2526 | 0 | str2 = str; |
2527 | 0 | if (base == 10) |
2528 | 0 | res = long_to_decimal_string_internal(obj, NULL, NULL, |
2529 | 0 | writer, &str2); |
2530 | 0 | else |
2531 | 0 | res = long_format_binary(obj, base, alternate, NULL, NULL, |
2532 | 0 | writer, &str2); |
2533 | 0 | if (res < 0) |
2534 | 0 | return NULL; |
2535 | 0 | assert(str2 != NULL); |
2536 | 0 | return str2; |
2537 | 0 | } |
2538 | | |
2539 | | /* Table of digit values for 8-bit string -> integer conversion. |
2540 | | * '0' maps to 0, ..., '9' maps to 9. |
2541 | | * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. |
2542 | | * All other indices map to 37. |
2543 | | * Note that when converting a base B string, a char c is a legitimate |
2544 | | * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B. |
2545 | | */ |
2546 | | unsigned char _PyLong_DigitValue[256] = { |
2547 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2548 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2549 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2550 | | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, |
2551 | | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
2552 | | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
2553 | | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
2554 | | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
2555 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2556 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2557 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2558 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2559 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2560 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2561 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2562 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2563 | | }; |
2564 | | |
2565 | | /* `start` and `end` point to the start and end of a string of base `base` |
2566 | | * digits. base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is |
2567 | | * returned in *res. The string should be already validated by the caller and |
2568 | | * consists only of valid digit characters and underscores. `digits` gives the |
2569 | | * number of digit characters. |
2570 | | * |
2571 | | * The point to this routine is that it takes time linear in the |
2572 | | * number of string characters. |
2573 | | * |
2574 | | * Return values: |
2575 | | * -1 on syntax error (exception needs to be set, *res is untouched) |
2576 | | * 0 else (exception may be set, in that case *res is set to NULL) |
2577 | | */ |
2578 | | static int |
2579 | | long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res) |
2580 | 281k | { |
2581 | 281k | const char *p; |
2582 | 281k | int bits_per_char; |
2583 | 281k | Py_ssize_t n; |
2584 | 281k | PyLongObject *z; |
2585 | 281k | twodigits accum; |
2586 | 281k | int bits_in_accum; |
2587 | 281k | digit *pdigit; |
2588 | | |
2589 | 281k | assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); |
2590 | 281k | n = base; |
2591 | 1.68M | for (bits_per_char = -1; n; ++bits_per_char) { |
2592 | 1.40M | n >>= 1; |
2593 | 1.40M | } |
2594 | | |
2595 | | /* n <- the number of Python digits needed, |
2596 | | = ceiling((digits * bits_per_char) / PyLong_SHIFT). */ |
2597 | 281k | if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) { |
2598 | 0 | PyErr_SetString(PyExc_ValueError, |
2599 | 0 | "int string too large to convert"); |
2600 | 0 | *res = NULL; |
2601 | 0 | return 0; |
2602 | 0 | } |
2603 | 281k | n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT; |
2604 | 281k | z = long_alloc(n); |
2605 | 281k | if (z == NULL) { |
2606 | 0 | *res = NULL; |
2607 | 0 | return 0; |
2608 | 0 | } |
2609 | | /* Read string from right, and fill in int from left; i.e., |
2610 | | * from least to most significant in both. |
2611 | | */ |
2612 | 281k | accum = 0; |
2613 | 281k | bits_in_accum = 0; |
2614 | 281k | pdigit = z->long_value.ob_digit; |
2615 | 281k | p = end; |
2616 | 7.57M | while (--p >= start) { |
2617 | 7.29M | int k; |
2618 | 7.29M | if (*p == '_') { |
2619 | 0 | continue; |
2620 | 0 | } |
2621 | 7.29M | k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)]; |
2622 | 7.29M | assert(k >= 0 && k < base); |
2623 | 7.29M | accum |= (twodigits)k << bits_in_accum; |
2624 | 7.29M | bits_in_accum += bits_per_char; |
2625 | 7.29M | if (bits_in_accum >= PyLong_SHIFT) { |
2626 | 922k | *pdigit++ = (digit)(accum & PyLong_MASK); |
2627 | 922k | assert(pdigit - z->long_value.ob_digit <= n); |
2628 | 922k | accum >>= PyLong_SHIFT; |
2629 | 922k | bits_in_accum -= PyLong_SHIFT; |
2630 | 922k | assert(bits_in_accum < PyLong_SHIFT); |
2631 | 922k | } |
2632 | 7.29M | } |
2633 | 281k | if (bits_in_accum) { |
2634 | 280k | assert(bits_in_accum <= PyLong_SHIFT); |
2635 | 280k | *pdigit++ = (digit)accum; |
2636 | 280k | assert(pdigit - z->long_value.ob_digit <= n); |
2637 | 280k | } |
2638 | 281k | while (pdigit - z->long_value.ob_digit < n) |
2639 | 0 | *pdigit++ = 0; |
2640 | 281k | *res = z; |
2641 | 281k | return 0; |
2642 | 281k | } |
2643 | | |
2644 | | #ifdef WITH_PYLONG_MODULE |
2645 | | /* asymptotically faster str-to-long conversion for base 10, using _pylong.py */ |
2646 | | static int |
2647 | | pylong_int_from_string(const char *start, const char *end, PyLongObject **res) |
2648 | 0 | { |
2649 | 0 | PyObject *mod = PyImport_ImportModule("_pylong"); |
2650 | 0 | if (mod == NULL) { |
2651 | 0 | goto error; |
2652 | 0 | } |
2653 | 0 | PyObject *s = PyUnicode_FromStringAndSize(start, end-start); |
2654 | 0 | if (s == NULL) { |
2655 | 0 | Py_DECREF(mod); |
2656 | 0 | goto error; |
2657 | 0 | } |
2658 | 0 | PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s); |
2659 | 0 | Py_DECREF(s); |
2660 | 0 | Py_DECREF(mod); |
2661 | 0 | if (result == NULL) { |
2662 | 0 | goto error; |
2663 | 0 | } |
2664 | 0 | if (!PyLong_Check(result)) { |
2665 | 0 | Py_DECREF(result); |
2666 | 0 | PyErr_SetString(PyExc_TypeError, |
2667 | 0 | "_pylong.int_from_string did not return an int"); |
2668 | 0 | goto error; |
2669 | 0 | } |
2670 | 0 | *res = (PyLongObject *)result; |
2671 | 0 | return 0; |
2672 | 0 | error: |
2673 | 0 | *res = NULL; |
2674 | 0 | return 0; // See the long_from_string_base() API comment. |
2675 | 0 | } |
2676 | | #endif /* WITH_PYLONG_MODULE */ |
2677 | | |
2678 | | /*** |
2679 | | long_from_non_binary_base: parameters and return values are the same as |
2680 | | long_from_binary_base. |
2681 | | |
2682 | | Binary bases can be converted in time linear in the number of digits, because |
2683 | | Python's representation base is binary. Other bases (including decimal!) use |
2684 | | the simple quadratic-time algorithm below, complicated by some speed tricks. |
2685 | | |
2686 | | First some math: the largest integer that can be expressed in N base-B digits |
2687 | | is B**N-1. Consequently, if we have an N-digit input in base B, the worst- |
2688 | | case number of Python digits needed to hold it is the smallest integer n s.t. |
2689 | | |
2690 | | BASE**n-1 >= B**N-1 [or, adding 1 to both sides] |
2691 | | BASE**n >= B**N [taking logs to base BASE] |
2692 | | n >= log(B**N)/log(BASE) = N * log(B)/log(BASE) |
2693 | | |
2694 | | The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute |
2695 | | this quickly. A Python int with that much space is reserved near the start, |
2696 | | and the result is computed into it. |
2697 | | |
2698 | | The input string is actually treated as being in base base**i (i.e., i digits |
2699 | | are processed at a time), where two more static arrays hold: |
2700 | | |
2701 | | convwidth_base[base] = the largest integer i such that base**i <= BASE |
2702 | | convmultmax_base[base] = base ** convwidth_base[base] |
2703 | | |
2704 | | The first of these is the largest i such that i consecutive input digits |
2705 | | must fit in a single Python digit. The second is effectively the input |
2706 | | base we're really using. |
2707 | | |
2708 | | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base |
2709 | | convmultmax_base[base], the result is "simply" |
2710 | | |
2711 | | (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 |
2712 | | |
2713 | | where B = convmultmax_base[base]. |
2714 | | |
2715 | | Error analysis: as above, the number of Python digits `n` needed is worst- |
2716 | | case |
2717 | | |
2718 | | n >= N * log(B)/log(BASE) |
2719 | | |
2720 | | where `N` is the number of input digits in base `B`. This is computed via |
2721 | | |
2722 | | size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; |
2723 | | |
2724 | | below. Two numeric concerns are how much space this can waste, and whether |
2725 | | the computed result can be too small. To be concrete, assume BASE = 2**15, |
2726 | | which is the default (and it's unlikely anyone changes that). |
2727 | | |
2728 | | Waste isn't a problem: provided the first input digit isn't 0, the difference |
2729 | | between the worst-case input with N digits and the smallest input with N |
2730 | | digits is about a factor of B, but B is small compared to BASE so at most |
2731 | | one allocated Python digit can remain unused on that count. If |
2732 | | N*log(B)/log(BASE) is mathematically an exact integer, then truncating that |
2733 | | and adding 1 returns a result 1 larger than necessary. However, that can't |
2734 | | happen: whenever B is a power of 2, long_from_binary_base() is called |
2735 | | instead, and it's impossible for B**i to be an integer power of 2**15 when |
2736 | | B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be |
2737 | | an exact integer when B is not a power of 2, since B**i has a prime factor |
2738 | | other than 2 in that case, but (2**15)**j's only prime factor is 2). |
2739 | | |
2740 | | The computed result can be too small if the true value of N*log(B)/log(BASE) |
2741 | | is a little bit larger than an exact integer, but due to roundoff errors (in |
2742 | | computing log(B), log(BASE), their quotient, and/or multiplying that by N) |
2743 | | yields a numeric result a little less than that integer. Unfortunately, "how |
2744 | | close can a transcendental function get to an integer over some range?" |
2745 | | questions are generally theoretically intractable. Computer analysis via |
2746 | | continued fractions is practical: expand log(B)/log(BASE) via continued |
2747 | | fractions, giving a sequence i/j of "the best" rational approximations. Then |
2748 | | j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that |
2749 | | we can get very close to being in trouble, but very rarely. For example, |
2750 | | 76573 is a denominator in one of the continued-fraction approximations to |
2751 | | log(10)/log(2**15), and indeed: |
2752 | | |
2753 | | >>> log(10)/log(2**15)*76573 |
2754 | | 16958.000000654003 |
2755 | | |
2756 | | is very close to an integer. If we were working with IEEE single-precision, |
2757 | | rounding errors could kill us. Finding worst cases in IEEE double-precision |
2758 | | requires better-than-double-precision log() functions, and Tim didn't bother. |
2759 | | Instead the code checks to see whether the allocated space is enough as each |
2760 | | new Python digit is added, and copies the whole thing to a larger int if not. |
2761 | | This should happen extremely rarely, and in fact I don't have a test case |
2762 | | that triggers it(!). Instead the code was tested by artificially allocating |
2763 | | just 1 digit at the start, so that the copying code was exercised for every |
2764 | | digit beyond the first. |
2765 | | ***/ |
2766 | | |
2767 | | // Tables are computed by Tools/scripts/long_conv_tables.py |
2768 | | #if PYLONG_BITS_IN_DIGIT == 15 |
2769 | | static const double log_base_BASE[37] = {0.0, 0.0, 0.0, |
2770 | | 0.10566416671474375, 0.0, 0.15479520632582416, |
2771 | | 0.17233083338141042, 0.18715699480384027, 0.0, |
2772 | | 0.2113283334294875, 0.22146187299249084, 0.23062877457581984, |
2773 | | 0.2389975000480771, 0.24669598120940617, 0.25382366147050694, |
2774 | | 0.26045937304056793, 0.0, 0.27249752275002265, |
2775 | | 0.27799500009615413, 0.2831951675629057, 0.28812853965915747, |
2776 | | 0.29282116151858406, 0.2972954412424865, 0.3015707970704675, |
2777 | | 0.3056641667147438, 0.30959041265164833, 0.3133626478760728, |
2778 | | 0.31699250014423125, 0.3204903281371736, 0.3238653996751715, |
2779 | | 0.3271260397072346, 0.3302797540257917, 0.0, |
2780 | | 0.3362929412905636, 0.3391641894166893, 0.34195220112966446, |
2781 | | 0.34466166676282084}; |
2782 | | static const int convwidth_base[37] = {0, 0, 0, 9, 0, 6, 5, 5, 0, |
2783 | | 4, 4, 4, 4, 4, 3, 3, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
2784 | | 3, 3, 0, 2, 2, 2, 2}; |
2785 | | static const twodigits convmultmax_base[37] = {0, 0, 0, 19683, 0, |
2786 | | 15625, 7776, 16807, 0, 6561, 10000, 14641, 20736, 28561, 2744, |
2787 | | 3375, 0, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, |
2788 | | 15625, 17576, 19683, 21952, 24389, 27000, 29791, 0, 1089, |
2789 | | 1156, 1225, 1296}; |
2790 | | #elif PYLONG_BITS_IN_DIGIT == 30 |
2791 | | static const double log_base_BASE[37] = {0.0, 0.0, 0.0, |
2792 | | 0.05283208335737188, 0.0, 0.07739760316291208, |
2793 | | 0.08616541669070521, 0.09357849740192013, 0.0, |
2794 | | 0.10566416671474375, 0.11073093649624542, 0.11531438728790992, |
2795 | | 0.11949875002403855, 0.12334799060470308, 0.12691183073525347, |
2796 | | 0.13022968652028397, 0.0, 0.13624876137501132, |
2797 | | 0.13899750004807707, 0.14159758378145285, 0.14406426982957873, |
2798 | | 0.14641058075929203, 0.14864772062124326, 0.15078539853523376, |
2799 | | 0.1528320833573719, 0.15479520632582416, 0.1566813239380364, |
2800 | | 0.15849625007211562, 0.1602451640685868, 0.16193269983758574, |
2801 | | 0.1635630198536173, 0.16513987701289584, 0.0, |
2802 | | 0.1681464706452818, 0.16958209470834465, 0.17097610056483223, |
2803 | | 0.17233083338141042}; |
2804 | | static const int convwidth_base[37] = {0, 0, 0, 18, 0, 12, 11, 10, |
2805 | | 0, 9, 9, 8, 8, 8, 7, 7, 0, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
2806 | | 6, 6, 6, 0, 5, 5, 5, 5}; |
2807 | | static const twodigits convmultmax_base[37] = {0, 0, 0, 387420489, |
2808 | | 0, 244140625, 362797056, 282475249, 0, 387420489, 1000000000, |
2809 | | 214358881, 429981696, 815730721, 105413504, 170859375, 0, |
2810 | | 410338673, 612220032, 893871739, 64000000, 85766121, |
2811 | | 113379904, 148035889, 191102976, 244140625, 308915776, |
2812 | | 387420489, 481890304, 594823321, 729000000, 887503681, 0, |
2813 | | 39135393, 45435424, 52521875, 60466176}; |
2814 | | #else |
2815 | | #error "invalid PYLONG_BITS_IN_DIGIT value" |
2816 | | #endif |
2817 | | |
2818 | | static int |
2819 | | long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res) |
2820 | 7.51M | { |
2821 | 7.51M | twodigits c; /* current input character */ |
2822 | 7.51M | Py_ssize_t size_z; |
2823 | 7.51M | int i; |
2824 | 7.51M | int convwidth; |
2825 | 7.51M | twodigits convmultmax, convmult; |
2826 | 7.51M | digit *pz, *pzstop; |
2827 | 7.51M | PyLongObject *z; |
2828 | 7.51M | const char *p; |
2829 | | |
2830 | 7.51M | assert(log_base_BASE[base] != 0.0); |
2831 | | |
2832 | | /* Create an int object that can contain the largest possible |
2833 | | * integer with this base and length. Note that there's no |
2834 | | * need to initialize z->long_value.ob_digit -- no slot is read up before |
2835 | | * being stored into. |
2836 | | */ |
2837 | 7.51M | double fsize_z = (double)digits * log_base_BASE[base] + 1.0; |
2838 | 7.51M | if (fsize_z > (double)MAX_LONG_DIGITS) { |
2839 | | /* The same exception as in long_alloc(). */ |
2840 | 0 | PyErr_SetString(PyExc_OverflowError, |
2841 | 0 | "too many digits in integer"); |
2842 | 0 | *res = NULL; |
2843 | 0 | return 0; |
2844 | 0 | } |
2845 | 7.51M | size_z = (Py_ssize_t)fsize_z; |
2846 | | /* Uncomment next line to test exceedingly rare copy code */ |
2847 | | /* size_z = 1; */ |
2848 | 7.51M | assert(size_z > 0); |
2849 | 7.51M | z = long_alloc(size_z); |
2850 | 7.51M | if (z == NULL) { |
2851 | 0 | *res = NULL; |
2852 | 0 | return 0; |
2853 | 0 | } |
2854 | 7.51M | _PyLong_SetSignAndDigitCount(z, 0, 0); |
2855 | | |
2856 | | /* `convwidth` consecutive input digits are treated as a single |
2857 | | * digit in base `convmultmax`. |
2858 | | */ |
2859 | 7.51M | convwidth = convwidth_base[base]; |
2860 | 7.51M | convmultmax = convmultmax_base[base]; |
2861 | | |
2862 | | /* Work ;-) */ |
2863 | 7.51M | p = start; |
2864 | 15.3M | while (p < end) { |
2865 | 7.80M | if (*p == '_') { |
2866 | 111 | p++; |
2867 | 111 | continue; |
2868 | 111 | } |
2869 | | /* grab up to convwidth digits from the input string */ |
2870 | 7.80M | c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)]; |
2871 | 10.6M | for (i = 1; i < convwidth && p != end; ++p) { |
2872 | 2.79M | if (*p == '_') { |
2873 | 629 | continue; |
2874 | 629 | } |
2875 | 2.79M | i++; |
2876 | 2.79M | c = (twodigits)(c * base + |
2877 | 2.79M | (int)_PyLong_DigitValue[Py_CHARMASK(*p)]); |
2878 | 2.79M | assert(c < PyLong_BASE); |
2879 | 2.79M | } |
2880 | | |
2881 | 7.80M | convmult = convmultmax; |
2882 | | /* Calculate the shift only if we couldn't get |
2883 | | * convwidth digits. |
2884 | | */ |
2885 | 7.80M | if (i != convwidth) { |
2886 | 7.50M | convmult = base; |
2887 | 7.95M | for ( ; i > 1; --i) { |
2888 | 440k | convmult *= base; |
2889 | 440k | } |
2890 | 7.50M | } |
2891 | | |
2892 | | /* Multiply z by convmult, and add c. */ |
2893 | 7.80M | pz = z->long_value.ob_digit; |
2894 | 7.80M | pzstop = pz + _PyLong_DigitCount(z); |
2895 | 16.5M | for (; pz < pzstop; ++pz) { |
2896 | 8.77M | c += (twodigits)*pz * convmult; |
2897 | 8.77M | *pz = (digit)(c & PyLong_MASK); |
2898 | 8.77M | c >>= PyLong_SHIFT; |
2899 | 8.77M | } |
2900 | | /* carry off the current end? */ |
2901 | 7.80M | if (c) { |
2902 | 5.80M | assert(c < PyLong_BASE); |
2903 | 5.80M | if (_PyLong_DigitCount(z) < size_z) { |
2904 | 5.80M | *pz = (digit)c; |
2905 | 5.80M | assert(!_PyLong_IsNegative(z)); |
2906 | 5.80M | _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1); |
2907 | 5.80M | } |
2908 | 0 | else { |
2909 | 0 | PyLongObject *tmp; |
2910 | | /* Extremely rare. Get more space. */ |
2911 | 0 | assert(_PyLong_DigitCount(z) == size_z); |
2912 | 0 | tmp = long_alloc(size_z + 1); |
2913 | 0 | if (tmp == NULL) { |
2914 | 0 | Py_DECREF(z); |
2915 | 0 | *res = NULL; |
2916 | 0 | return 0; |
2917 | 0 | } |
2918 | 0 | memcpy(tmp->long_value.ob_digit, |
2919 | 0 | z->long_value.ob_digit, |
2920 | 0 | sizeof(digit) * size_z); |
2921 | 0 | Py_SETREF(z, tmp); |
2922 | 0 | z->long_value.ob_digit[size_z] = (digit)c; |
2923 | 0 | ++size_z; |
2924 | 0 | } |
2925 | 5.80M | } |
2926 | 7.80M | } |
2927 | 7.51M | *res = z; |
2928 | 7.51M | return 0; |
2929 | 7.51M | } |
2930 | | |
2931 | | /* *str points to the first digit in a string of base `base` digits. base is an |
2932 | | * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes |
2933 | | * like 0x or leading +- signs. The string should be null terminated consisting |
2934 | | * of ASCII digits and separating underscores possibly with trailing whitespace |
2935 | | * but we have to validate all of those points here. |
2936 | | * |
2937 | | * If base is a power of 2 then the complexity is linear in the number of |
2938 | | * characters in the string. Otherwise a quadratic algorithm is used for |
2939 | | * non-binary bases. |
2940 | | * |
2941 | | * Return values: |
2942 | | * |
2943 | | * - Returns -1 on syntax error (exception needs to be set, *res is untouched) |
2944 | | * - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or |
2945 | | * _pylong.int_from_string() errors. |
2946 | | * - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!). |
2947 | | * |
2948 | | * Afterwards *str is set to point to the first non-digit (which may be *str!). |
2949 | | */ |
2950 | | static int |
2951 | | long_from_string_base(const char **str, int base, PyLongObject **res) |
2952 | 7.79M | { |
2953 | 7.79M | const char *start, *end, *p; |
2954 | 7.79M | char prev = 0; |
2955 | 7.79M | Py_ssize_t digits = 0; |
2956 | 7.79M | int is_binary_base = (base & (base - 1)) == 0; |
2957 | | |
2958 | | /* Here we do four things: |
2959 | | * |
2960 | | * - Find the `end` of the string. |
2961 | | * - Validate the string. |
2962 | | * - Count the number of `digits` (rather than underscores) |
2963 | | * - Point *str to the end-of-string or first invalid character. |
2964 | | */ |
2965 | 7.79M | start = p = *str; |
2966 | | /* Leading underscore not allowed. */ |
2967 | 7.79M | if (*start == '_') { |
2968 | 1 | return -1; |
2969 | 1 | } |
2970 | | /* Verify all characters are digits and underscores. */ |
2971 | 32.8M | while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') { |
2972 | 25.0M | if (*p == '_') { |
2973 | | /* Double underscore not allowed. */ |
2974 | 785 | if (prev == '_') { |
2975 | 1 | *str = p - 1; |
2976 | 1 | return -1; |
2977 | 1 | } |
2978 | 25.0M | } else { |
2979 | 25.0M | ++digits; |
2980 | 25.0M | } |
2981 | 25.0M | prev = *p; |
2982 | 25.0M | ++p; |
2983 | 25.0M | } |
2984 | | /* Trailing underscore not allowed. */ |
2985 | 7.79M | if (prev == '_') { |
2986 | 7 | *str = p - 1; |
2987 | 7 | return -1; |
2988 | 7 | } |
2989 | 7.79M | *str = end = p; |
2990 | | /* Reject empty strings */ |
2991 | 7.79M | if (start == end) { |
2992 | 227 | return -1; |
2993 | 227 | } |
2994 | | /* Allow only trailing whitespace after `end` */ |
2995 | 7.80M | while (*p && Py_ISSPACE(*p)) { |
2996 | 14.0k | p++; |
2997 | 14.0k | } |
2998 | 7.79M | *str = p; |
2999 | 7.79M | if (*p != '\0') { |
3000 | 39 | return -1; |
3001 | 39 | } |
3002 | | |
3003 | | /* |
3004 | | * Pass a validated string consisting of only valid digits and underscores |
3005 | | * to long_from_xxx_base. |
3006 | | */ |
3007 | 7.79M | if (is_binary_base) { |
3008 | | /* Use the linear algorithm for binary bases. */ |
3009 | 281k | return long_from_binary_base(start, end, digits, base, res); |
3010 | 281k | } |
3011 | 7.51M | else { |
3012 | | /* Limit the size to avoid excessive computation attacks exploiting the |
3013 | | * quadratic algorithm. */ |
3014 | 7.51M | if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) { |
3015 | 1.76k | PyInterpreterState *interp = _PyInterpreterState_GET(); |
3016 | 1.76k | int max_str_digits = interp->long_state.max_str_digits; |
3017 | 1.76k | if ((max_str_digits > 0) && (digits > max_str_digits)) { |
3018 | 55 | PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT, |
3019 | 55 | max_str_digits, digits); |
3020 | 55 | *res = NULL; |
3021 | 55 | return 0; |
3022 | 55 | } |
3023 | 1.76k | } |
3024 | 7.51M | #if WITH_PYLONG_MODULE |
3025 | 7.51M | if (digits > 6000 && base == 10) { |
3026 | | /* Switch to _pylong.int_from_string() */ |
3027 | 0 | return pylong_int_from_string(start, end, res); |
3028 | 0 | } |
3029 | 7.51M | #endif |
3030 | | /* Use the quadratic algorithm for non binary bases. */ |
3031 | 7.51M | return long_from_non_binary_base(start, end, digits, base, res); |
3032 | 7.51M | } |
3033 | 7.79M | } |
3034 | | |
3035 | | /* Parses an int from a bytestring. Leading and trailing whitespace will be |
3036 | | * ignored. |
3037 | | * |
3038 | | * If successful, a PyLong object will be returned and 'pend' will be pointing |
3039 | | * to the first unused byte unless it's NULL. |
3040 | | * |
3041 | | * If unsuccessful, NULL will be returned. |
3042 | | */ |
3043 | | PyObject * |
3044 | | PyLong_FromString(const char *str, char **pend, int base) |
3045 | 7.79M | { |
3046 | 7.79M | int sign = 1, error_if_nonzero = 0; |
3047 | 7.79M | const char *orig_str = str; |
3048 | 7.79M | PyLongObject *z = NULL; |
3049 | 7.79M | PyObject *strobj; |
3050 | 7.79M | Py_ssize_t slen; |
3051 | | |
3052 | 7.79M | if ((base != 0 && base < 2) || base > 36) { |
3053 | 0 | PyErr_SetString(PyExc_ValueError, |
3054 | 0 | "int() arg 2 must be >= 2 and <= 36"); |
3055 | 0 | return NULL; |
3056 | 0 | } |
3057 | 7.79M | while (*str != '\0' && Py_ISSPACE(*str)) { |
3058 | 589 | ++str; |
3059 | 589 | } |
3060 | 7.79M | if (*str == '+') { |
3061 | 25 | ++str; |
3062 | 25 | } |
3063 | 7.79M | else if (*str == '-') { |
3064 | 21.6k | ++str; |
3065 | 21.6k | sign = -1; |
3066 | 21.6k | } |
3067 | 7.79M | if (base == 0) { |
3068 | 2.81k | if (str[0] != '0') { |
3069 | 1.46k | base = 10; |
3070 | 1.46k | } |
3071 | 1.35k | else if (str[1] == 'x' || str[1] == 'X') { |
3072 | 1.08k | base = 16; |
3073 | 1.08k | } |
3074 | 264 | else if (str[1] == 'o' || str[1] == 'O') { |
3075 | 124 | base = 8; |
3076 | 124 | } |
3077 | 140 | else if (str[1] == 'b' || str[1] == 'B') { |
3078 | 140 | base = 2; |
3079 | 140 | } |
3080 | 0 | else { |
3081 | | /* "old" (C-style) octal literal, now invalid. |
3082 | | it might still be zero though */ |
3083 | 0 | error_if_nonzero = 1; |
3084 | 0 | base = 10; |
3085 | 0 | } |
3086 | 2.81k | } |
3087 | 7.79M | if (str[0] == '0' && |
3088 | 2.00M | ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || |
3089 | 2.00M | (base == 8 && (str[1] == 'o' || str[1] == 'O')) || |
3090 | 2.00M | (base == 2 && (str[1] == 'b' || str[1] == 'B')))) { |
3091 | 1.35k | str += 2; |
3092 | | /* One underscore allowed here. */ |
3093 | 1.35k | if (*str == '_') { |
3094 | 0 | ++str; |
3095 | 0 | } |
3096 | 1.35k | } |
3097 | | |
3098 | | /* long_from_string_base is the main workhorse here. */ |
3099 | 7.79M | int ret = long_from_string_base(&str, base, &z); |
3100 | 7.79M | if (ret == -1) { |
3101 | | /* Syntax error. */ |
3102 | 275 | goto onError; |
3103 | 275 | } |
3104 | 7.79M | if (z == NULL) { |
3105 | | /* Error. exception already set. */ |
3106 | 55 | return NULL; |
3107 | 55 | } |
3108 | | |
3109 | 7.79M | if (error_if_nonzero) { |
3110 | | /* reset the base to 0, else the exception message |
3111 | | doesn't make too much sense */ |
3112 | 0 | base = 0; |
3113 | 0 | if (!_PyLong_IsZero(z)) { |
3114 | 0 | goto onError; |
3115 | 0 | } |
3116 | | /* there might still be other problems, therefore base |
3117 | | remains zero here for the same reason */ |
3118 | 0 | } |
3119 | | |
3120 | | /* Set sign and normalize */ |
3121 | 7.79M | if (sign < 0) { |
3122 | 21.6k | _PyLong_FlipSign(z); |
3123 | 21.6k | } |
3124 | 7.79M | long_normalize(z); |
3125 | 7.79M | z = maybe_small_long(z); |
3126 | | |
3127 | 7.79M | if (pend != NULL) { |
3128 | 4.54M | *pend = (char *)str; |
3129 | 4.54M | } |
3130 | 7.79M | return (PyObject *) z; |
3131 | | |
3132 | 275 | onError: |
3133 | 275 | if (pend != NULL) { |
3134 | 275 | *pend = (char *)str; |
3135 | 275 | } |
3136 | 275 | Py_XDECREF(z); |
3137 | 275 | slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; |
3138 | 275 | strobj = PyUnicode_FromStringAndSize(orig_str, slen); |
3139 | 275 | if (strobj == NULL) { |
3140 | 0 | return NULL; |
3141 | 0 | } |
3142 | 275 | PyErr_Format(PyExc_ValueError, |
3143 | 275 | "invalid literal for int() with base %d: %.200R", |
3144 | 275 | base, strobj); |
3145 | 275 | Py_DECREF(strobj); |
3146 | 275 | return NULL; |
3147 | 275 | } |
3148 | | |
3149 | | /* Since PyLong_FromString doesn't have a length parameter, |
3150 | | * check here for possible NULs in the string. |
3151 | | * |
3152 | | * Reports an invalid literal as a bytes object. |
3153 | | */ |
3154 | | PyObject * |
3155 | | _PyLong_FromBytes(const char *s, Py_ssize_t len, int base) |
3156 | 1.24k | { |
3157 | 1.24k | PyObject *result, *strobj; |
3158 | 1.24k | char *end = NULL; |
3159 | | |
3160 | 1.24k | result = PyLong_FromString(s, &end, base); |
3161 | 1.24k | if (end == NULL || (result != NULL && end == s + len)) |
3162 | 1.24k | return result; |
3163 | 0 | Py_XDECREF(result); |
3164 | 0 | strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200)); |
3165 | 0 | if (strobj != NULL) { |
3166 | 0 | PyErr_Format(PyExc_ValueError, |
3167 | 0 | "invalid literal for int() with base %d: %.200R", |
3168 | 0 | base, strobj); |
3169 | 0 | Py_DECREF(strobj); |
3170 | 0 | } |
3171 | 0 | return NULL; |
3172 | 1.24k | } |
3173 | | |
3174 | | PyObject * |
3175 | | PyLong_FromUnicodeObject(PyObject *u, int base) |
3176 | 4.54M | { |
3177 | 4.54M | PyObject *result, *asciidig; |
3178 | 4.54M | const char *buffer; |
3179 | 4.54M | char *end = NULL; |
3180 | 4.54M | Py_ssize_t buflen; |
3181 | | |
3182 | 4.54M | asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u); |
3183 | 4.54M | if (asciidig == NULL) |
3184 | 0 | return NULL; |
3185 | 4.54M | assert(PyUnicode_IS_ASCII(asciidig)); |
3186 | | /* Simply get a pointer to existing ASCII characters. */ |
3187 | 4.54M | buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen); |
3188 | 4.54M | assert(buffer != NULL); |
3189 | | |
3190 | 4.54M | result = PyLong_FromString(buffer, &end, base); |
3191 | 4.54M | if (end == NULL || (result != NULL && end == buffer + buflen)) { |
3192 | 4.54M | Py_DECREF(asciidig); |
3193 | 4.54M | return result; |
3194 | 4.54M | } |
3195 | 290 | Py_DECREF(asciidig); |
3196 | 290 | Py_XDECREF(result); |
3197 | 290 | PyErr_Format(PyExc_ValueError, |
3198 | 290 | "invalid literal for int() with base %d: %.200R", |
3199 | 290 | base, u); |
3200 | 290 | return NULL; |
3201 | 4.54M | } |
3202 | | |
3203 | | /* Int division with remainder, top-level routine */ |
3204 | | |
3205 | | static int |
3206 | | long_divrem(PyLongObject *a, PyLongObject *b, |
3207 | | PyLongObject **pdiv, PyLongObject **prem) |
3208 | 376k | { |
3209 | 376k | Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b); |
3210 | 376k | PyLongObject *z; |
3211 | | |
3212 | 376k | if (size_b == 0) { |
3213 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, "division by zero"); |
3214 | 0 | return -1; |
3215 | 0 | } |
3216 | 376k | if (size_a < size_b || |
3217 | 594 | (size_a == size_b && |
3218 | 375k | a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) { |
3219 | | /* |a| < |b|. */ |
3220 | 375k | *prem = (PyLongObject *)long_long((PyObject *)a); |
3221 | 375k | if (*prem == NULL) { |
3222 | 0 | return -1; |
3223 | 0 | } |
3224 | 375k | *pdiv = (PyLongObject*)_PyLong_GetZero(); |
3225 | 375k | return 0; |
3226 | 375k | } |
3227 | 594 | if (size_b == 1) { |
3228 | 594 | digit rem = 0; |
3229 | 594 | z = divrem1(a, b->long_value.ob_digit[0], &rem); |
3230 | 594 | if (z == NULL) |
3231 | 0 | return -1; |
3232 | 594 | *prem = (PyLongObject *) PyLong_FromLong((long)rem); |
3233 | 594 | if (*prem == NULL) { |
3234 | 0 | Py_DECREF(z); |
3235 | 0 | return -1; |
3236 | 0 | } |
3237 | 594 | } |
3238 | 0 | else { |
3239 | 0 | z = x_divrem(a, b, prem); |
3240 | 0 | *prem = maybe_small_long(*prem); |
3241 | 0 | if (z == NULL) |
3242 | 0 | return -1; |
3243 | 0 | } |
3244 | | /* Set the signs. |
3245 | | The quotient z has the sign of a*b; |
3246 | | the remainder r has the sign of a, |
3247 | | so a = b*z + r. */ |
3248 | 594 | if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) { |
3249 | 0 | _PyLong_Negate(&z); |
3250 | 0 | if (z == NULL) { |
3251 | 0 | Py_CLEAR(*prem); |
3252 | 0 | return -1; |
3253 | 0 | } |
3254 | 0 | } |
3255 | 594 | if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) { |
3256 | 0 | _PyLong_Negate(prem); |
3257 | 0 | if (*prem == NULL) { |
3258 | 0 | Py_DECREF(z); |
3259 | 0 | Py_CLEAR(*prem); |
3260 | 0 | return -1; |
3261 | 0 | } |
3262 | 0 | } |
3263 | 594 | *pdiv = maybe_small_long(z); |
3264 | 594 | return 0; |
3265 | 594 | } |
3266 | | |
3267 | | /* Int remainder, top-level routine */ |
3268 | | |
3269 | | static int |
3270 | | long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem) |
3271 | 4.10M | { |
3272 | 4.10M | Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b); |
3273 | | |
3274 | 4.10M | if (size_b == 0) { |
3275 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
3276 | 0 | "division by zero"); |
3277 | 0 | return -1; |
3278 | 0 | } |
3279 | 4.10M | if (size_a < size_b || |
3280 | 143 | (size_a == size_b && |
3281 | 4.10M | a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) { |
3282 | | /* |a| < |b|. */ |
3283 | 4.10M | *prem = (PyLongObject *)long_long((PyObject *)a); |
3284 | 4.10M | return -(*prem == NULL); |
3285 | 4.10M | } |
3286 | 143 | if (size_b == 1) { |
3287 | 143 | *prem = rem1(a, b->long_value.ob_digit[0]); |
3288 | 143 | if (*prem == NULL) |
3289 | 0 | return -1; |
3290 | 143 | } |
3291 | 0 | else { |
3292 | | /* Slow path using divrem. */ |
3293 | 0 | Py_XDECREF(x_divrem(a, b, prem)); |
3294 | 0 | *prem = maybe_small_long(*prem); |
3295 | 0 | if (*prem == NULL) |
3296 | 0 | return -1; |
3297 | 0 | } |
3298 | | /* Set the sign. */ |
3299 | 143 | if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) { |
3300 | 0 | _PyLong_Negate(prem); |
3301 | 0 | if (*prem == NULL) { |
3302 | 0 | Py_CLEAR(*prem); |
3303 | 0 | return -1; |
3304 | 0 | } |
3305 | 0 | } |
3306 | 143 | return 0; |
3307 | 143 | } |
3308 | | |
3309 | | /* Unsigned int division with remainder -- the algorithm. The arguments v1 |
3310 | | and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */ |
3311 | | |
3312 | | static PyLongObject * |
3313 | | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) |
3314 | 0 | { |
3315 | 0 | PyLongObject *v, *w, *a; |
3316 | 0 | Py_ssize_t i, k, size_v, size_w; |
3317 | 0 | int d; |
3318 | 0 | digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; |
3319 | 0 | twodigits vv; |
3320 | 0 | sdigit zhi; |
3321 | 0 | stwodigits z; |
3322 | | |
3323 | | /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd |
3324 | | edn.), section 4.3.1, Algorithm D], except that we don't explicitly |
3325 | | handle the special case when the initial estimate q for a quotient |
3326 | | digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and |
3327 | | that won't overflow a digit. */ |
3328 | | |
3329 | | /* allocate space; w will also be used to hold the final remainder */ |
3330 | 0 | size_v = _PyLong_DigitCount(v1); |
3331 | 0 | size_w = _PyLong_DigitCount(w1); |
3332 | 0 | assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ |
3333 | 0 | v = long_alloc(size_v+1); |
3334 | 0 | if (v == NULL) { |
3335 | 0 | *prem = NULL; |
3336 | 0 | return NULL; |
3337 | 0 | } |
3338 | 0 | w = long_alloc(size_w); |
3339 | 0 | if (w == NULL) { |
3340 | 0 | Py_DECREF(v); |
3341 | 0 | *prem = NULL; |
3342 | 0 | return NULL; |
3343 | 0 | } |
3344 | | |
3345 | | /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. |
3346 | | shift v1 left by the same amount. Results go into w and v. */ |
3347 | 0 | d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]); |
3348 | 0 | carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d); |
3349 | 0 | assert(carry == 0); |
3350 | 0 | carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d); |
3351 | 0 | if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) { |
3352 | 0 | v->long_value.ob_digit[size_v] = carry; |
3353 | 0 | size_v++; |
3354 | 0 | } |
3355 | | |
3356 | | /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has |
3357 | | at most (and usually exactly) k = size_v - size_w digits. */ |
3358 | 0 | k = size_v - size_w; |
3359 | 0 | assert(k >= 0); |
3360 | 0 | a = long_alloc(k); |
3361 | 0 | if (a == NULL) { |
3362 | 0 | Py_DECREF(w); |
3363 | 0 | Py_DECREF(v); |
3364 | 0 | *prem = NULL; |
3365 | 0 | return NULL; |
3366 | 0 | } |
3367 | 0 | v0 = v->long_value.ob_digit; |
3368 | 0 | w0 = w->long_value.ob_digit; |
3369 | 0 | wm1 = w0[size_w-1]; |
3370 | 0 | wm2 = w0[size_w-2]; |
3371 | 0 | for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) { |
3372 | | /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving |
3373 | | single-digit quotient q, remainder in vk[0:size_w]. */ |
3374 | |
|
3375 | 0 | SIGCHECK({ |
3376 | 0 | Py_DECREF(a); |
3377 | 0 | Py_DECREF(w); |
3378 | 0 | Py_DECREF(v); |
3379 | 0 | *prem = NULL; |
3380 | 0 | return NULL; |
3381 | 0 | }); |
3382 | | |
3383 | | /* estimate quotient digit q; may overestimate by 1 (rare) */ |
3384 | 0 | vtop = vk[size_w]; |
3385 | 0 | assert(vtop <= wm1); |
3386 | 0 | vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; |
3387 | | /* The code used to compute the remainder via |
3388 | | * r = (digit)(vv - (twodigits)wm1 * q); |
3389 | | * and compilers generally generated code to do the * and -. |
3390 | | * But modern processors generally compute q and r with a single |
3391 | | * instruction, and modern optimizing compilers exploit that if we |
3392 | | * _don't_ try to optimize it. |
3393 | | */ |
3394 | 0 | q = (digit)(vv / wm1); |
3395 | 0 | r = (digit)(vv % wm1); |
3396 | 0 | while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) |
3397 | 0 | | vk[size_w-2])) { |
3398 | 0 | --q; |
3399 | 0 | r += wm1; |
3400 | 0 | if (r >= PyLong_BASE) |
3401 | 0 | break; |
3402 | 0 | } |
3403 | 0 | assert(q <= PyLong_BASE); |
3404 | | |
3405 | | /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ |
3406 | 0 | zhi = 0; |
3407 | 0 | for (i = 0; i < size_w; ++i) { |
3408 | | /* invariants: -PyLong_BASE <= -q <= zhi <= 0; |
3409 | | -PyLong_BASE * q <= z < PyLong_BASE */ |
3410 | 0 | z = (sdigit)vk[i] + zhi - |
3411 | 0 | (stwodigits)q * (stwodigits)w0[i]; |
3412 | 0 | vk[i] = (digit)z & PyLong_MASK; |
3413 | 0 | zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, |
3414 | 0 | z, PyLong_SHIFT); |
3415 | 0 | } |
3416 | | |
3417 | | /* add w back if q was too large (this branch taken rarely) */ |
3418 | 0 | assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); |
3419 | 0 | if ((sdigit)vtop + zhi < 0) { |
3420 | 0 | carry = 0; |
3421 | 0 | for (i = 0; i < size_w; ++i) { |
3422 | 0 | carry += vk[i] + w0[i]; |
3423 | 0 | vk[i] = carry & PyLong_MASK; |
3424 | 0 | carry >>= PyLong_SHIFT; |
3425 | 0 | } |
3426 | 0 | --q; |
3427 | 0 | } |
3428 | | |
3429 | | /* store quotient digit */ |
3430 | 0 | assert(q < PyLong_BASE); |
3431 | 0 | *--ak = q; |
3432 | 0 | } |
3433 | | |
3434 | | /* unshift remainder; we reuse w to store the result */ |
3435 | 0 | carry = v_rshift(w0, v0, size_w, d); |
3436 | 0 | assert(carry==0); |
3437 | 0 | Py_DECREF(v); |
3438 | |
|
3439 | 0 | *prem = long_normalize(w); |
3440 | 0 | return long_normalize(a); |
3441 | 0 | } |
3442 | | |
3443 | | /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= |
3444 | | abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is |
3445 | | rounded to DBL_MANT_DIG significant bits using round-half-to-even. |
3446 | | If a == 0, return 0.0 and set *e = 0. */ |
3447 | | |
3448 | | /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ |
3449 | | #if DBL_MANT_DIG == 53 |
3450 | 0 | #define EXP2_DBL_MANT_DIG 9007199254740992.0 |
3451 | | #else |
3452 | | #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) |
3453 | | #endif |
3454 | | |
3455 | | double |
3456 | | _PyLong_Frexp(PyLongObject *a, int64_t *e) |
3457 | 0 | { |
3458 | 0 | Py_ssize_t a_size, shift_digits, x_size; |
3459 | 0 | int shift_bits; |
3460 | 0 | int64_t a_bits; |
3461 | | /* See below for why x_digits is always large enough. */ |
3462 | 0 | digit rem; |
3463 | 0 | digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,}; |
3464 | 0 | double dx; |
3465 | | /* Correction term for round-half-to-even rounding. For a digit x, |
3466 | | "x + half_even_correction[x & 7]" gives x rounded to the nearest |
3467 | | multiple of 4, rounding ties to a multiple of 8. */ |
3468 | 0 | static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; |
3469 | |
|
3470 | 0 | a_size = _PyLong_DigitCount(a); |
3471 | 0 | if (a_size == 0) { |
3472 | | /* Special case for 0: significand 0.0, exponent 0. */ |
3473 | 0 | *e = 0; |
3474 | 0 | return 0.0; |
3475 | 0 | } |
3476 | 0 | a_bits = _PyLong_NumBits((PyObject *)a); |
3477 | | |
3478 | | /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] |
3479 | | (shifting left if a_bits <= DBL_MANT_DIG + 2). |
3480 | | |
3481 | | Number of digits needed for result: write // for floor division. |
3482 | | Then if shifting left, we end up using |
3483 | | |
3484 | | 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT |
3485 | | |
3486 | | digits. If shifting right, we use |
3487 | | |
3488 | | a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT |
3489 | | |
3490 | | digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with |
3491 | | the inequalities |
3492 | | |
3493 | | m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT |
3494 | | m // PyLong_SHIFT - n // PyLong_SHIFT <= |
3495 | | 1 + (m - n - 1) // PyLong_SHIFT, |
3496 | | |
3497 | | valid for any integers m and n, we find that x_size satisfies |
3498 | | |
3499 | | x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT |
3500 | | |
3501 | | in both cases. |
3502 | | */ |
3503 | 0 | if (a_bits <= DBL_MANT_DIG + 2) { |
3504 | 0 | shift_digits = (DBL_MANT_DIG + 2 - (Py_ssize_t)a_bits) / PyLong_SHIFT; |
3505 | 0 | shift_bits = (DBL_MANT_DIG + 2 - (int)a_bits) % PyLong_SHIFT; |
3506 | 0 | x_size = shift_digits; |
3507 | 0 | rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size, |
3508 | 0 | shift_bits); |
3509 | 0 | x_size += a_size; |
3510 | 0 | x_digits[x_size++] = rem; |
3511 | 0 | } |
3512 | 0 | else { |
3513 | 0 | shift_digits = (Py_ssize_t)((a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT); |
3514 | 0 | shift_bits = (int)((a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT); |
3515 | 0 | rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits, |
3516 | 0 | a_size - shift_digits, shift_bits); |
3517 | 0 | x_size = a_size - shift_digits; |
3518 | | /* For correct rounding below, we need the least significant |
3519 | | bit of x to be 'sticky' for this shift: if any of the bits |
3520 | | shifted out was nonzero, we set the least significant bit |
3521 | | of x. */ |
3522 | 0 | if (rem) |
3523 | 0 | x_digits[0] |= 1; |
3524 | 0 | else |
3525 | 0 | while (shift_digits > 0) |
3526 | 0 | if (a->long_value.ob_digit[--shift_digits]) { |
3527 | 0 | x_digits[0] |= 1; |
3528 | 0 | break; |
3529 | 0 | } |
3530 | 0 | } |
3531 | 0 | assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits)); |
3532 | | |
3533 | | /* Round, and convert to double. */ |
3534 | 0 | x_digits[0] += half_even_correction[x_digits[0] & 7]; |
3535 | 0 | dx = x_digits[--x_size]; |
3536 | 0 | while (x_size > 0) |
3537 | 0 | dx = dx * PyLong_BASE + x_digits[--x_size]; |
3538 | | |
3539 | | /* Rescale; make correction if result is 1.0. */ |
3540 | 0 | dx /= 4.0 * EXP2_DBL_MANT_DIG; |
3541 | 0 | if (dx == 1.0) { |
3542 | 0 | assert(a_bits < INT64_MAX); |
3543 | 0 | dx = 0.5; |
3544 | 0 | a_bits += 1; |
3545 | 0 | } |
3546 | |
|
3547 | 0 | *e = a_bits; |
3548 | 0 | return _PyLong_IsNegative(a) ? -dx : dx; |
3549 | 0 | } |
3550 | | |
3551 | | /* Get a C double from an int object. Rounds to the nearest double, |
3552 | | using the round-half-to-even rule in the case of a tie. */ |
3553 | | |
3554 | | double |
3555 | | PyLong_AsDouble(PyObject *v) |
3556 | 8 | { |
3557 | 8 | int64_t exponent; |
3558 | 8 | double x; |
3559 | | |
3560 | 8 | if (v == NULL) { |
3561 | 0 | PyErr_BadInternalCall(); |
3562 | 0 | return -1.0; |
3563 | 0 | } |
3564 | 8 | if (!PyLong_Check(v)) { |
3565 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
3566 | 0 | return -1.0; |
3567 | 0 | } |
3568 | 8 | if (_PyLong_IsCompact((PyLongObject *)v)) { |
3569 | | /* Fast path; single digit long (31 bits) will cast safely |
3570 | | to double. This improves performance of FP/long operations |
3571 | | by 20%. |
3572 | | */ |
3573 | 8 | return (double)medium_value((PyLongObject *)v); |
3574 | 8 | } |
3575 | 0 | x = _PyLong_Frexp((PyLongObject *)v, &exponent); |
3576 | 0 | assert(exponent >= 0); |
3577 | 0 | assert(!PyErr_Occurred()); |
3578 | 0 | if (exponent > DBL_MAX_EXP) { |
3579 | 0 | PyErr_SetString(PyExc_OverflowError, |
3580 | 0 | "int too large to convert to float"); |
3581 | 0 | return -1.0; |
3582 | 0 | } |
3583 | 0 | return ldexp(x, (int)exponent); |
3584 | 0 | } |
3585 | | |
3586 | | /* Methods */ |
3587 | | |
3588 | | /* if a < b, return a negative number |
3589 | | if a == b, return 0 |
3590 | | if a > b, return a positive number */ |
3591 | | |
3592 | | static Py_ssize_t |
3593 | | long_compare(PyLongObject *a, PyLongObject *b) |
3594 | 124M | { |
3595 | 124M | if (_PyLong_BothAreCompact(a, b)) { |
3596 | 122M | return _PyLong_CompactValue(a) - _PyLong_CompactValue(b); |
3597 | 122M | } |
3598 | 2.06M | Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b); |
3599 | 2.06M | if (sign == 0) { |
3600 | 644k | Py_ssize_t i = _PyLong_DigitCount(a); |
3601 | 644k | sdigit diff = 0; |
3602 | 1.95M | while (--i >= 0) { |
3603 | 1.32M | diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i]; |
3604 | 1.32M | if (diff) { |
3605 | 19.3k | break; |
3606 | 19.3k | } |
3607 | 1.32M | } |
3608 | 644k | sign = _PyLong_IsNegative(a) ? -diff : diff; |
3609 | 644k | } |
3610 | 2.06M | return sign; |
3611 | 124M | } |
3612 | | |
3613 | | static PyObject * |
3614 | | long_richcompare(PyObject *self, PyObject *other, int op) |
3615 | 133M | { |
3616 | 133M | Py_ssize_t result; |
3617 | 133M | CHECK_BINOP(self, other); |
3618 | 132M | if (self == other) |
3619 | 8.50M | result = 0; |
3620 | 124M | else |
3621 | 124M | result = long_compare((PyLongObject*)self, (PyLongObject*)other); |
3622 | 132M | Py_RETURN_RICHCOMPARE(result, 0, op); |
3623 | 132M | } |
3624 | | |
3625 | | static inline int |
3626 | | /// Return 1 if the object is one of the immortal small ints |
3627 | | _long_is_small_int(PyObject *op) |
3628 | 907M | { |
3629 | 907M | PyLongObject *long_object = (PyLongObject *)op; |
3630 | 907M | int is_small_int = (long_object->long_value.lv_tag & IMMORTALITY_BIT_MASK) != 0; |
3631 | 907M | assert((!is_small_int) || PyLong_CheckExact(op)); |
3632 | 907M | return is_small_int; |
3633 | 907M | } |
3634 | | |
3635 | | void |
3636 | | _PyLong_ExactDealloc(PyObject *self) |
3637 | 109M | { |
3638 | 109M | assert(PyLong_CheckExact(self)); |
3639 | 109M | if (_long_is_small_int(self)) { |
3640 | | // See PEP 683, section Accidental De-Immortalizing for details |
3641 | 0 | _Py_SetImmortal(self); |
3642 | 0 | return; |
3643 | 0 | } |
3644 | 109M | if (_PyLong_IsCompact((PyLongObject *)self)) { |
3645 | 102M | _Py_FREELIST_FREE(ints, self, PyObject_Free); |
3646 | 102M | return; |
3647 | 102M | } |
3648 | 7.43M | PyObject_Free(self); |
3649 | 7.43M | } |
3650 | | |
3651 | | static void |
3652 | | long_dealloc(PyObject *self) |
3653 | 798M | { |
3654 | 798M | if (_long_is_small_int(self)) { |
3655 | | /* This should never get called, but we also don't want to SEGV if |
3656 | | * we accidentally decref small Ints out of existence. Instead, |
3657 | | * since small Ints are immortal, re-set the reference count. |
3658 | | * |
3659 | | * See PEP 683, section Accidental De-Immortalizing for details |
3660 | | */ |
3661 | 0 | _Py_SetImmortal(self); |
3662 | 0 | return; |
3663 | 0 | } |
3664 | 798M | if (PyLong_CheckExact(self) && _PyLong_IsCompact((PyLongObject *)self)) { |
3665 | 795M | _Py_FREELIST_FREE(ints, self, PyObject_Free); |
3666 | 795M | return; |
3667 | 795M | } |
3668 | 2.91M | Py_TYPE(self)->tp_free(self); |
3669 | 2.91M | } |
3670 | | |
3671 | | static Py_hash_t |
3672 | | long_hash(PyObject *obj) |
3673 | 628M | { |
3674 | 628M | PyLongObject *v = (PyLongObject *)obj; |
3675 | 628M | Py_uhash_t x; |
3676 | 628M | Py_ssize_t i; |
3677 | 628M | int sign; |
3678 | | |
3679 | 628M | if (_PyLong_IsCompact(v)) { |
3680 | 623M | x = (Py_uhash_t)_PyLong_CompactValue(v); |
3681 | 623M | if (x == (Py_uhash_t)-1) { |
3682 | 359k | x = (Py_uhash_t)-2; |
3683 | 359k | } |
3684 | 623M | return x; |
3685 | 623M | } |
3686 | 5.07M | i = _PyLong_DigitCount(v); |
3687 | 5.07M | sign = _PyLong_NonCompactSign(v); |
3688 | | |
3689 | | // unroll first digit |
3690 | 5.07M | Py_BUILD_ASSERT(PyHASH_BITS > PyLong_SHIFT); |
3691 | 5.07M | assert(i >= 1); |
3692 | 5.07M | --i; |
3693 | 5.07M | x = v->long_value.ob_digit[i]; |
3694 | 5.07M | assert(x < PyHASH_MODULUS); |
3695 | | |
3696 | 5.07M | #if PyHASH_BITS >= 2 * PyLong_SHIFT |
3697 | | // unroll second digit |
3698 | 5.07M | assert(i >= 1); |
3699 | 5.07M | --i; |
3700 | 5.07M | x <<= PyLong_SHIFT; |
3701 | 5.07M | x += v->long_value.ob_digit[i]; |
3702 | 5.07M | assert(x < PyHASH_MODULUS); |
3703 | 5.07M | #endif |
3704 | | |
3705 | 5.77M | while (--i >= 0) { |
3706 | | /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we |
3707 | | want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo |
3708 | | _PyHASH_MODULUS. |
3709 | | |
3710 | | The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS |
3711 | | amounts to a rotation of the bits of x. To see this, write |
3712 | | |
3713 | | x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z |
3714 | | |
3715 | | where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top |
3716 | | PyLong_SHIFT bits of x (those that are shifted out of the |
3717 | | original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) & |
3718 | | _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT |
3719 | | bits of x, shifted up. Then since 2**_PyHASH_BITS is |
3720 | | congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is |
3721 | | congruent to y modulo _PyHASH_MODULUS. So |
3722 | | |
3723 | | x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS). |
3724 | | |
3725 | | The right-hand side is just the result of rotating the |
3726 | | _PyHASH_BITS bits of x left by PyLong_SHIFT places; since |
3727 | | not all _PyHASH_BITS bits of x are 1s, the same is true |
3728 | | after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is |
3729 | | the reduction of x*2**PyLong_SHIFT modulo |
3730 | | _PyHASH_MODULUS. */ |
3731 | 702k | x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) | |
3732 | 702k | (x >> (_PyHASH_BITS - PyLong_SHIFT)); |
3733 | 702k | x += v->long_value.ob_digit[i]; |
3734 | 702k | if (x >= _PyHASH_MODULUS) |
3735 | 6.70k | x -= _PyHASH_MODULUS; |
3736 | 702k | } |
3737 | 5.07M | x = x * sign; |
3738 | 5.07M | if (x == (Py_uhash_t)-1) |
3739 | 0 | x = (Py_uhash_t)-2; |
3740 | 5.07M | return (Py_hash_t)x; |
3741 | 628M | } |
3742 | | |
3743 | | |
3744 | | /* Add the absolute values of two integers. */ |
3745 | | |
3746 | | static PyLongObject * |
3747 | | x_add(PyLongObject *a, PyLongObject *b) |
3748 | 67.6k | { |
3749 | 67.6k | Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b); |
3750 | 67.6k | PyLongObject *z; |
3751 | 67.6k | Py_ssize_t i; |
3752 | 67.6k | digit carry = 0; |
3753 | | |
3754 | | /* Ensure a is the larger of the two: */ |
3755 | 67.6k | if (size_a < size_b) { |
3756 | 8.24k | { PyLongObject *temp = a; a = b; b = temp; } |
3757 | 8.24k | { Py_ssize_t size_temp = size_a; |
3758 | 8.24k | size_a = size_b; |
3759 | 8.24k | size_b = size_temp; } |
3760 | 8.24k | } |
3761 | 67.6k | z = long_alloc(size_a+1); |
3762 | 67.6k | if (z == NULL) |
3763 | 0 | return NULL; |
3764 | 9.88M | for (i = 0; i < size_b; ++i) { |
3765 | 9.82M | carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i]; |
3766 | 9.82M | z->long_value.ob_digit[i] = carry & PyLong_MASK; |
3767 | 9.82M | carry >>= PyLong_SHIFT; |
3768 | 9.82M | } |
3769 | 89.0k | for (; i < size_a; ++i) { |
3770 | 21.3k | carry += a->long_value.ob_digit[i]; |
3771 | 21.3k | z->long_value.ob_digit[i] = carry & PyLong_MASK; |
3772 | 21.3k | carry >>= PyLong_SHIFT; |
3773 | 21.3k | } |
3774 | 67.6k | z->long_value.ob_digit[i] = carry; |
3775 | 67.6k | return long_normalize(z); |
3776 | 67.6k | } |
3777 | | |
3778 | | /* Subtract the absolute values of two integers. */ |
3779 | | |
3780 | | static PyLongObject * |
3781 | | x_sub(PyLongObject *a, PyLongObject *b) |
3782 | 688 | { |
3783 | 688 | Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b); |
3784 | 688 | PyLongObject *z; |
3785 | 688 | Py_ssize_t i; |
3786 | 688 | int sign = 1; |
3787 | 688 | digit borrow = 0; |
3788 | | |
3789 | | /* Ensure a is the larger of the two: */ |
3790 | 688 | if (size_a < size_b) { |
3791 | 0 | sign = -1; |
3792 | 0 | { PyLongObject *temp = a; a = b; b = temp; } |
3793 | 0 | { Py_ssize_t size_temp = size_a; |
3794 | 0 | size_a = size_b; |
3795 | 0 | size_b = size_temp; } |
3796 | 0 | } |
3797 | 688 | else if (size_a == size_b) { |
3798 | | /* Find highest digit where a and b differ: */ |
3799 | 0 | i = size_a; |
3800 | 0 | while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i]) |
3801 | 0 | ; |
3802 | 0 | if (i < 0) |
3803 | 0 | return (PyLongObject *)PyLong_FromLong(0); |
3804 | 0 | if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) { |
3805 | 0 | sign = -1; |
3806 | 0 | { PyLongObject *temp = a; a = b; b = temp; } |
3807 | 0 | } |
3808 | 0 | size_a = size_b = i+1; |
3809 | 0 | } |
3810 | 688 | z = long_alloc(size_a); |
3811 | 688 | if (z == NULL) |
3812 | 0 | return NULL; |
3813 | 1.36k | for (i = 0; i < size_b; ++i) { |
3814 | | /* The following assumes unsigned arithmetic |
3815 | | works module 2**N for some N>PyLong_SHIFT. */ |
3816 | 672 | borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow; |
3817 | 672 | z->long_value.ob_digit[i] = borrow & PyLong_MASK; |
3818 | 672 | borrow >>= PyLong_SHIFT; |
3819 | 672 | borrow &= 1; /* Keep only one sign bit */ |
3820 | 672 | } |
3821 | 12.9k | for (; i < size_a; ++i) { |
3822 | 12.2k | borrow = a->long_value.ob_digit[i] - borrow; |
3823 | 12.2k | z->long_value.ob_digit[i] = borrow & PyLong_MASK; |
3824 | 12.2k | borrow >>= PyLong_SHIFT; |
3825 | 12.2k | borrow &= 1; /* Keep only one sign bit */ |
3826 | 12.2k | } |
3827 | 688 | assert(borrow == 0); |
3828 | 688 | if (sign < 0) { |
3829 | 0 | _PyLong_FlipSign(z); |
3830 | 0 | } |
3831 | 688 | return maybe_small_long(long_normalize(z)); |
3832 | 688 | } |
3833 | | |
3834 | | static PyLongObject * |
3835 | | long_add(PyLongObject *a, PyLongObject *b) |
3836 | 139k | { |
3837 | 139k | if (_PyLong_BothAreCompact(a, b)) { |
3838 | 71.9k | stwodigits z = medium_value(a) + medium_value(b); |
3839 | 71.9k | return _PyLong_FromSTwoDigits(z); |
3840 | 71.9k | } |
3841 | | |
3842 | 67.9k | PyLongObject *z; |
3843 | 67.9k | if (_PyLong_IsNegative(a)) { |
3844 | 202 | if (_PyLong_IsNegative(b)) { |
3845 | 0 | z = x_add(a, b); |
3846 | 0 | if (z != NULL) { |
3847 | | /* x_add received at least one multiple-digit int, |
3848 | | and thus z must be a multiple-digit int. |
3849 | | That also means z is not an element of |
3850 | | small_ints, so negating it in-place is safe. */ |
3851 | 0 | assert(Py_REFCNT(z) == 1); |
3852 | 0 | _PyLong_FlipSign(z); |
3853 | 0 | } |
3854 | 0 | } |
3855 | 202 | else |
3856 | 202 | z = x_sub(b, a); |
3857 | 202 | } |
3858 | 67.7k | else { |
3859 | 67.7k | if (_PyLong_IsNegative(b)) |
3860 | 27 | z = x_sub(a, b); |
3861 | 67.6k | else |
3862 | 67.6k | z = x_add(a, b); |
3863 | 67.7k | } |
3864 | 67.9k | return z; |
3865 | 139k | } |
3866 | | |
3867 | | _PyStackRef |
3868 | | _PyCompactLong_Add(PyLongObject *a, PyLongObject *b) |
3869 | 573M | { |
3870 | 573M | assert(_PyLong_BothAreCompact(a, b)); |
3871 | 573M | stwodigits v = medium_value(a) + medium_value(b); |
3872 | 573M | return medium_from_stwodigits(v); |
3873 | 573M | } |
3874 | | |
3875 | | static PyObject * |
3876 | | long_add_method(PyObject *a, PyObject *b) |
3877 | 139k | { |
3878 | 139k | CHECK_BINOP(a, b); |
3879 | 139k | return (PyObject*)long_add((PyLongObject*)a, (PyLongObject*)b); |
3880 | 139k | } |
3881 | | |
3882 | | |
3883 | | static PyLongObject * |
3884 | | long_sub(PyLongObject *a, PyLongObject *b) |
3885 | 804 | { |
3886 | 804 | if (_PyLong_BothAreCompact(a, b)) { |
3887 | 345 | return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b)); |
3888 | 345 | } |
3889 | | |
3890 | 459 | PyLongObject *z; |
3891 | 459 | if (_PyLong_IsNegative(a)) { |
3892 | 0 | if (_PyLong_IsNegative(b)) { |
3893 | 0 | z = x_sub(b, a); |
3894 | 0 | } |
3895 | 0 | else { |
3896 | 0 | z = x_add(a, b); |
3897 | 0 | if (z != NULL) { |
3898 | 0 | assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1); |
3899 | 0 | _PyLong_FlipSign(z); |
3900 | 0 | } |
3901 | 0 | } |
3902 | 0 | } |
3903 | 459 | else { |
3904 | 459 | if (_PyLong_IsNegative(b)) |
3905 | 0 | z = x_add(a, b); |
3906 | 459 | else |
3907 | 459 | z = x_sub(a, b); |
3908 | 459 | } |
3909 | 459 | return z; |
3910 | 804 | } |
3911 | | |
3912 | | _PyStackRef |
3913 | | _PyCompactLong_Subtract(PyLongObject *a, PyLongObject *b) |
3914 | 397M | { |
3915 | 397M | assert(_PyLong_BothAreCompact(a, b)); |
3916 | 397M | stwodigits v = medium_value(a) - medium_value(b); |
3917 | 397M | return medium_from_stwodigits(v); |
3918 | 397M | } |
3919 | | |
3920 | | static PyObject * |
3921 | | long_sub_method(PyObject *a, PyObject *b) |
3922 | 804 | { |
3923 | 804 | CHECK_BINOP(a, b); |
3924 | 804 | return (PyObject*)long_sub((PyLongObject*)a, (PyLongObject*)b); |
3925 | 804 | } |
3926 | | |
3927 | | |
3928 | | /* Grade school multiplication, ignoring the signs. |
3929 | | * Returns the absolute value of the product, or NULL if error. |
3930 | | */ |
3931 | | static PyLongObject * |
3932 | | x_mul(PyLongObject *a, PyLongObject *b) |
3933 | 131k | { |
3934 | 131k | PyLongObject *z; |
3935 | 131k | Py_ssize_t size_a = _PyLong_DigitCount(a); |
3936 | 131k | Py_ssize_t size_b = _PyLong_DigitCount(b); |
3937 | 131k | Py_ssize_t i; |
3938 | | |
3939 | 131k | z = long_alloc(size_a + size_b); |
3940 | 131k | if (z == NULL) |
3941 | 0 | return NULL; |
3942 | | |
3943 | 131k | memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit)); |
3944 | 131k | if (a == b) { |
3945 | | /* Efficient squaring per HAC, Algorithm 14.16: |
3946 | | * https://cacr.uwaterloo.ca/hac/about/chap14.pdf |
3947 | | * Gives slightly less than a 2x speedup when a == b, |
3948 | | * via exploiting that each entry in the multiplication |
3949 | | * pyramid appears twice (except for the size_a squares). |
3950 | | */ |
3951 | 12 | digit *paend = a->long_value.ob_digit + size_a; |
3952 | 42 | for (i = 0; i < size_a; ++i) { |
3953 | 30 | twodigits carry; |
3954 | 30 | twodigits f = a->long_value.ob_digit[i]; |
3955 | 30 | digit *pz = z->long_value.ob_digit + (i << 1); |
3956 | 30 | digit *pa = a->long_value.ob_digit + i + 1; |
3957 | | |
3958 | 30 | SIGCHECK({ |
3959 | 30 | Py_DECREF(z); |
3960 | 30 | return NULL; |
3961 | 30 | }); |
3962 | | |
3963 | 30 | carry = *pz + f * f; |
3964 | 30 | *pz++ = (digit)(carry & PyLong_MASK); |
3965 | 30 | carry >>= PyLong_SHIFT; |
3966 | 30 | assert(carry <= PyLong_MASK); |
3967 | | |
3968 | | /* Now f is added in twice in each column of the |
3969 | | * pyramid it appears. Same as adding f<<1 once. |
3970 | | */ |
3971 | 30 | f <<= 1; |
3972 | 54 | while (pa < paend) { |
3973 | 24 | carry += *pz + *pa++ * f; |
3974 | 24 | *pz++ = (digit)(carry & PyLong_MASK); |
3975 | 24 | carry >>= PyLong_SHIFT; |
3976 | 24 | assert(carry <= (PyLong_MASK << 1)); |
3977 | 24 | } |
3978 | 30 | if (carry) { |
3979 | | /* See comment below. pz points at the highest possible |
3980 | | * carry position from the last outer loop iteration, so |
3981 | | * *pz is at most 1. |
3982 | | */ |
3983 | 0 | assert(*pz <= 1); |
3984 | 0 | carry += *pz; |
3985 | 0 | *pz = (digit)(carry & PyLong_MASK); |
3986 | 0 | carry >>= PyLong_SHIFT; |
3987 | 0 | if (carry) { |
3988 | | /* If there's still a carry, it must be into a position |
3989 | | * that still holds a 0. Where the base |
3990 | | ^ B is 1 << PyLong_SHIFT, the last add was of a carry no |
3991 | | * more than 2*B - 2 to a stored digit no more than 1. |
3992 | | * So the sum was no more than 2*B - 1, so the current |
3993 | | * carry no more than floor((2*B - 1)/B) = 1. |
3994 | | */ |
3995 | 0 | assert(carry == 1); |
3996 | 0 | assert(pz[1] == 0); |
3997 | 0 | pz[1] = (digit)carry; |
3998 | 0 | } |
3999 | 0 | } |
4000 | 30 | } |
4001 | 12 | } |
4002 | 131k | else { /* a is not the same as b -- gradeschool int mult */ |
4003 | 262k | for (i = 0; i < size_a; ++i) { |
4004 | 131k | twodigits carry = 0; |
4005 | 131k | twodigits f = a->long_value.ob_digit[i]; |
4006 | 131k | digit *pz = z->long_value.ob_digit + i; |
4007 | 131k | digit *pb = b->long_value.ob_digit; |
4008 | 131k | digit *pbend = b->long_value.ob_digit + size_b; |
4009 | | |
4010 | 131k | SIGCHECK({ |
4011 | 131k | Py_DECREF(z); |
4012 | 131k | return NULL; |
4013 | 131k | }); |
4014 | | |
4015 | 19.7M | while (pb < pbend) { |
4016 | 19.6M | carry += *pz + *pb++ * f; |
4017 | 19.6M | *pz++ = (digit)(carry & PyLong_MASK); |
4018 | 19.6M | carry >>= PyLong_SHIFT; |
4019 | 19.6M | assert(carry <= PyLong_MASK); |
4020 | 19.6M | } |
4021 | 131k | if (carry) |
4022 | 17.6k | *pz += (digit)(carry & PyLong_MASK); |
4023 | 131k | assert((carry >> PyLong_SHIFT) == 0); |
4024 | 131k | } |
4025 | 131k | } |
4026 | 131k | return long_normalize(z); |
4027 | 131k | } |
4028 | | |
4029 | | /* A helper for Karatsuba multiplication (k_mul). |
4030 | | Takes an int "n" and an integer "size" representing the place to |
4031 | | split, and sets low and high such that abs(n) == (high << size) + low, |
4032 | | viewing the shift as being by digits. The sign bit is ignored, and |
4033 | | the return values are >= 0. |
4034 | | Returns 0 on success, -1 on failure. |
4035 | | */ |
4036 | | static int |
4037 | | kmul_split(PyLongObject *n, |
4038 | | Py_ssize_t size, |
4039 | | PyLongObject **high, |
4040 | | PyLongObject **low) |
4041 | 0 | { |
4042 | 0 | PyLongObject *hi, *lo; |
4043 | 0 | Py_ssize_t size_lo, size_hi; |
4044 | 0 | const Py_ssize_t size_n = _PyLong_DigitCount(n); |
4045 | |
|
4046 | 0 | size_lo = Py_MIN(size_n, size); |
4047 | 0 | size_hi = size_n - size_lo; |
4048 | |
|
4049 | 0 | if ((hi = long_alloc(size_hi)) == NULL) |
4050 | 0 | return -1; |
4051 | 0 | if ((lo = long_alloc(size_lo)) == NULL) { |
4052 | 0 | Py_DECREF(hi); |
4053 | 0 | return -1; |
4054 | 0 | } |
4055 | | |
4056 | 0 | memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit)); |
4057 | 0 | memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit)); |
4058 | |
|
4059 | 0 | *high = long_normalize(hi); |
4060 | 0 | *low = long_normalize(lo); |
4061 | 0 | return 0; |
4062 | 0 | } |
4063 | | |
4064 | | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); |
4065 | | |
4066 | | /* Karatsuba multiplication. Ignores the input signs, and returns the |
4067 | | * absolute value of the product (or NULL if error). |
4068 | | * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). |
4069 | | */ |
4070 | | static PyLongObject * |
4071 | | k_mul(PyLongObject *a, PyLongObject *b) |
4072 | 131k | { |
4073 | 131k | Py_ssize_t asize = _PyLong_DigitCount(a); |
4074 | 131k | Py_ssize_t bsize = _PyLong_DigitCount(b); |
4075 | 131k | PyLongObject *ah = NULL; |
4076 | 131k | PyLongObject *al = NULL; |
4077 | 131k | PyLongObject *bh = NULL; |
4078 | 131k | PyLongObject *bl = NULL; |
4079 | 131k | PyLongObject *ret = NULL; |
4080 | 131k | PyLongObject *t1, *t2, *t3; |
4081 | 131k | Py_ssize_t shift; /* the number of digits we split off */ |
4082 | 131k | Py_ssize_t i; |
4083 | | |
4084 | | /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl |
4085 | | * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl |
4086 | | * Then the original product is |
4087 | | * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl |
4088 | | * By picking X to be a power of 2, "*X" is just shifting, and it's |
4089 | | * been reduced to 3 multiplies on numbers half the size. |
4090 | | */ |
4091 | | |
4092 | | /* We want to split based on the larger number; fiddle so that b |
4093 | | * is largest. |
4094 | | */ |
4095 | 131k | if (asize > bsize) { |
4096 | 65.4k | t1 = a; |
4097 | 65.4k | a = b; |
4098 | 65.4k | b = t1; |
4099 | | |
4100 | 65.4k | i = asize; |
4101 | 65.4k | asize = bsize; |
4102 | 65.4k | bsize = i; |
4103 | 65.4k | } |
4104 | | |
4105 | | /* Use gradeschool math when either number is too small. */ |
4106 | 131k | i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; |
4107 | 131k | if (asize <= i) { |
4108 | 131k | if (asize == 0) |
4109 | 18 | return (PyLongObject *)PyLong_FromLong(0); |
4110 | 131k | else |
4111 | 131k | return x_mul(a, b); |
4112 | 131k | } |
4113 | | |
4114 | | /* If a is small compared to b, splitting on b gives a degenerate |
4115 | | * case with ah==0, and Karatsuba may be (even much) less efficient |
4116 | | * than "grade school" then. However, we can still win, by viewing |
4117 | | * b as a string of "big digits", each of the same width as a. That |
4118 | | * leads to a sequence of balanced calls to k_mul. |
4119 | | */ |
4120 | 0 | if (2 * asize <= bsize) |
4121 | 0 | return k_lopsided_mul(a, b); |
4122 | | |
4123 | | /* Split a & b into hi & lo pieces. */ |
4124 | 0 | shift = bsize >> 1; |
4125 | 0 | if (kmul_split(a, shift, &ah, &al) < 0) goto fail; |
4126 | 0 | assert(_PyLong_IsPositive(ah)); /* the split isn't degenerate */ |
4127 | |
|
4128 | 0 | if (a == b) { |
4129 | 0 | bh = (PyLongObject*)Py_NewRef(ah); |
4130 | 0 | bl = (PyLongObject*)Py_NewRef(al); |
4131 | 0 | } |
4132 | 0 | else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; |
4133 | | |
4134 | | /* The plan: |
4135 | | * 1. Allocate result space (asize + bsize digits: that's always |
4136 | | * enough). |
4137 | | * 2. Compute ah*bh, and copy into result at 2*shift. |
4138 | | * 3. Compute al*bl, and copy into result at 0. Note that this |
4139 | | * can't overlap with #2. |
4140 | | * 4. Subtract al*bl from the result, starting at shift. This may |
4141 | | * underflow (borrow out of the high digit), but we don't care: |
4142 | | * we're effectively doing unsigned arithmetic mod |
4143 | | * BASE**(sizea + sizeb), and so long as the *final* result fits, |
4144 | | * borrows and carries out of the high digit can be ignored. |
4145 | | * 5. Subtract ah*bh from the result, starting at shift. |
4146 | | * 6. Compute (ah+al)*(bh+bl), and add it into the result starting |
4147 | | * at shift. |
4148 | | */ |
4149 | | |
4150 | | /* 1. Allocate result space. */ |
4151 | 0 | ret = long_alloc(asize + bsize); |
4152 | 0 | if (ret == NULL) goto fail; |
4153 | | #ifdef Py_DEBUG |
4154 | | /* Fill with trash, to catch reference to uninitialized digits. */ |
4155 | | memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit)); |
4156 | | #endif |
4157 | | |
4158 | | /* 2. t1 <- ah*bh, and copy into high digits of result. */ |
4159 | 0 | if ((t1 = k_mul(ah, bh)) == NULL) goto fail; |
4160 | 0 | assert(!_PyLong_IsNegative(t1)); |
4161 | 0 | assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret)); |
4162 | 0 | memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit, |
4163 | 0 | _PyLong_DigitCount(t1) * sizeof(digit)); |
4164 | | |
4165 | | /* Zero-out the digits higher than the ah*bh copy. */ |
4166 | 0 | i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1); |
4167 | 0 | if (i) |
4168 | 0 | memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0, |
4169 | 0 | i * sizeof(digit)); |
4170 | | |
4171 | | /* 3. t2 <- al*bl, and copy into the low digits. */ |
4172 | 0 | if ((t2 = k_mul(al, bl)) == NULL) { |
4173 | 0 | Py_DECREF(t1); |
4174 | 0 | goto fail; |
4175 | 0 | } |
4176 | 0 | assert(!_PyLong_IsNegative(t2)); |
4177 | 0 | assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */ |
4178 | 0 | memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit)); |
4179 | | |
4180 | | /* Zero out remaining digits. */ |
4181 | 0 | i = 2*shift - _PyLong_DigitCount(t2); /* number of uninitialized digits */ |
4182 | 0 | if (i) |
4183 | 0 | memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit)); |
4184 | | |
4185 | | /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first |
4186 | | * because it's fresher in cache. |
4187 | | */ |
4188 | 0 | i = _PyLong_DigitCount(ret) - shift; /* # digits after shift */ |
4189 | 0 | (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2)); |
4190 | 0 | _Py_DECREF_INT(t2); |
4191 | |
|
4192 | 0 | (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1)); |
4193 | 0 | _Py_DECREF_INT(t1); |
4194 | | |
4195 | | /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ |
4196 | 0 | if ((t1 = x_add(ah, al)) == NULL) goto fail; |
4197 | 0 | _Py_DECREF_INT(ah); |
4198 | 0 | _Py_DECREF_INT(al); |
4199 | 0 | ah = al = NULL; |
4200 | |
|
4201 | 0 | if (a == b) { |
4202 | 0 | t2 = (PyLongObject*)Py_NewRef(t1); |
4203 | 0 | } |
4204 | 0 | else if ((t2 = x_add(bh, bl)) == NULL) { |
4205 | 0 | Py_DECREF(t1); |
4206 | 0 | goto fail; |
4207 | 0 | } |
4208 | 0 | _Py_DECREF_INT(bh); |
4209 | 0 | _Py_DECREF_INT(bl); |
4210 | 0 | bh = bl = NULL; |
4211 | |
|
4212 | 0 | t3 = k_mul(t1, t2); |
4213 | 0 | _Py_DECREF_INT(t1); |
4214 | 0 | _Py_DECREF_INT(t2); |
4215 | 0 | if (t3 == NULL) goto fail; |
4216 | 0 | assert(!_PyLong_IsNegative(t3)); |
4217 | | |
4218 | | /* Add t3. It's not obvious why we can't run out of room here. |
4219 | | * See the (*) comment after this function. |
4220 | | */ |
4221 | 0 | (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3)); |
4222 | 0 | _Py_DECREF_INT(t3); |
4223 | |
|
4224 | 0 | return long_normalize(ret); |
4225 | | |
4226 | 0 | fail: |
4227 | 0 | Py_XDECREF(ret); |
4228 | 0 | Py_XDECREF(ah); |
4229 | 0 | Py_XDECREF(al); |
4230 | 0 | Py_XDECREF(bh); |
4231 | 0 | Py_XDECREF(bl); |
4232 | 0 | return NULL; |
4233 | 0 | } |
4234 | | |
4235 | | /* (*) Why adding t3 can't "run out of room" above. |
4236 | | |
4237 | | Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts |
4238 | | to start with: |
4239 | | |
4240 | | 1. For any integer i, i = c(i/2) + f(i/2). In particular, |
4241 | | bsize = c(bsize/2) + f(bsize/2). |
4242 | | 2. shift = f(bsize/2) |
4243 | | 3. asize <= bsize |
4244 | | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this |
4245 | | routine, so asize > bsize/2 >= f(bsize/2) in this routine. |
4246 | | |
4247 | | We allocated asize + bsize result digits, and add t3 into them at an offset |
4248 | | of shift. This leaves asize+bsize-shift allocated digit positions for t3 |
4249 | | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = |
4250 | | asize + c(bsize/2) available digit positions. |
4251 | | |
4252 | | bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has |
4253 | | at most c(bsize/2) digits + 1 bit. |
4254 | | |
4255 | | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) |
4256 | | digits, and al has at most f(bsize/2) digits in any case. So ah+al has at |
4257 | | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. |
4258 | | |
4259 | | The product (ah+al)*(bh+bl) therefore has at most |
4260 | | |
4261 | | c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits |
4262 | | |
4263 | | and we have asize + c(bsize/2) available digit positions. We need to show |
4264 | | this is always enough. An instance of c(bsize/2) cancels out in both, so |
4265 | | the question reduces to whether asize digits is enough to hold |
4266 | | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, |
4267 | | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, |
4268 | | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 |
4269 | | digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If |
4270 | | asize == bsize, then we're asking whether bsize digits is enough to hold |
4271 | | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits |
4272 | | is enough to hold 2 bits. This is so if bsize >= 2, which holds because |
4273 | | bsize >= KARATSUBA_CUTOFF >= 2. |
4274 | | |
4275 | | Note that since there's always enough room for (ah+al)*(bh+bl), and that's |
4276 | | clearly >= each of ah*bh and al*bl, there's always enough room to subtract |
4277 | | ah*bh and al*bl too. |
4278 | | */ |
4279 | | |
4280 | | /* b has at least twice the digits of a, and a is big enough that Karatsuba |
4281 | | * would pay off *if* the inputs had balanced sizes. View b as a sequence |
4282 | | * of slices, each with the same number of digits as a, and multiply the |
4283 | | * slices by a, one at a time. This gives k_mul balanced inputs to work with, |
4284 | | * and is also cache-friendly (we compute one double-width slice of the result |
4285 | | * at a time, then move on, never backtracking except for the helpful |
4286 | | * single-width slice overlap between successive partial sums). |
4287 | | */ |
4288 | | static PyLongObject * |
4289 | | k_lopsided_mul(PyLongObject *a, PyLongObject *b) |
4290 | 0 | { |
4291 | 0 | const Py_ssize_t asize = _PyLong_DigitCount(a); |
4292 | 0 | Py_ssize_t bsize = _PyLong_DigitCount(b); |
4293 | 0 | Py_ssize_t nbdone; /* # of b digits already multiplied */ |
4294 | 0 | PyLongObject *ret; |
4295 | 0 | PyLongObject *bslice = NULL; |
4296 | |
|
4297 | 0 | assert(asize > KARATSUBA_CUTOFF); |
4298 | 0 | assert(2 * asize <= bsize); |
4299 | | |
4300 | | /* Allocate result space, and zero it out. */ |
4301 | 0 | ret = long_alloc(asize + bsize); |
4302 | 0 | if (ret == NULL) |
4303 | 0 | return NULL; |
4304 | 0 | memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit)); |
4305 | | |
4306 | | /* Successive slices of b are copied into bslice. */ |
4307 | 0 | bslice = long_alloc(asize); |
4308 | 0 | if (bslice == NULL) |
4309 | 0 | goto fail; |
4310 | | |
4311 | 0 | nbdone = 0; |
4312 | 0 | while (bsize > 0) { |
4313 | 0 | PyLongObject *product; |
4314 | 0 | const Py_ssize_t nbtouse = Py_MIN(bsize, asize); |
4315 | | |
4316 | | /* Multiply the next slice of b by a. */ |
4317 | 0 | memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone, |
4318 | 0 | nbtouse * sizeof(digit)); |
4319 | 0 | assert(nbtouse >= 0); |
4320 | 0 | _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse); |
4321 | 0 | product = k_mul(a, bslice); |
4322 | 0 | if (product == NULL) |
4323 | 0 | goto fail; |
4324 | | |
4325 | | /* Add into result. */ |
4326 | 0 | (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone, |
4327 | 0 | product->long_value.ob_digit, _PyLong_DigitCount(product)); |
4328 | 0 | _Py_DECREF_INT(product); |
4329 | |
|
4330 | 0 | bsize -= nbtouse; |
4331 | 0 | nbdone += nbtouse; |
4332 | 0 | } |
4333 | | |
4334 | 0 | _Py_DECREF_INT(bslice); |
4335 | 0 | return long_normalize(ret); |
4336 | | |
4337 | 0 | fail: |
4338 | 0 | Py_DECREF(ret); |
4339 | 0 | Py_XDECREF(bslice); |
4340 | 0 | return NULL; |
4341 | 0 | } |
4342 | | |
4343 | | |
4344 | | static PyLongObject* |
4345 | | long_mul(PyLongObject *a, PyLongObject *b) |
4346 | 173k | { |
4347 | | /* fast path for single-digit multiplication */ |
4348 | 173k | if (_PyLong_BothAreCompact(a, b)) { |
4349 | 42.7k | stwodigits v = medium_value(a) * medium_value(b); |
4350 | 42.7k | return _PyLong_FromSTwoDigits(v); |
4351 | 42.7k | } |
4352 | | |
4353 | 131k | PyLongObject *z = k_mul(a, b); |
4354 | | /* Negate if exactly one of the inputs is negative. */ |
4355 | 131k | if (!_PyLong_SameSign(a, b) && z) { |
4356 | 18 | _PyLong_Negate(&z); |
4357 | 18 | } |
4358 | 131k | return z; |
4359 | 173k | } |
4360 | | |
4361 | | /* This function returns NULL if the result is not compact, |
4362 | | * or if it fails to allocate, but never raises */ |
4363 | | _PyStackRef |
4364 | | _PyCompactLong_Multiply(PyLongObject *a, PyLongObject *b) |
4365 | 1.96M | { |
4366 | 1.96M | assert(_PyLong_BothAreCompact(a, b)); |
4367 | 1.96M | stwodigits v = medium_value(a) * medium_value(b); |
4368 | 1.96M | return medium_from_stwodigits(v); |
4369 | 1.96M | } |
4370 | | |
4371 | | static PyObject * |
4372 | | long_mul_method(PyObject *a, PyObject *b) |
4373 | 587k | { |
4374 | 587k | CHECK_BINOP(a, b); |
4375 | 173k | return (PyObject*)long_mul((PyLongObject*)a, (PyLongObject*)b); |
4376 | 587k | } |
4377 | | |
4378 | | /* Fast modulo division for single-digit longs. */ |
4379 | | static PyObject * |
4380 | | fast_mod(PyLongObject *a, PyLongObject *b) |
4381 | 999k | { |
4382 | 999k | sdigit left = a->long_value.ob_digit[0]; |
4383 | 999k | sdigit right = b->long_value.ob_digit[0]; |
4384 | 999k | sdigit mod; |
4385 | | |
4386 | 999k | assert(_PyLong_DigitCount(a) == 1); |
4387 | 999k | assert(_PyLong_DigitCount(b) == 1); |
4388 | 999k | sdigit sign = _PyLong_CompactSign(b); |
4389 | 999k | if (_PyLong_SameSign(a, b)) { |
4390 | 999k | mod = left % right; |
4391 | 999k | } |
4392 | 0 | else { |
4393 | | /* Either 'a' or 'b' is negative. */ |
4394 | 0 | mod = right - 1 - (left - 1) % right; |
4395 | 0 | } |
4396 | | |
4397 | 999k | return PyLong_FromLong(mod * sign); |
4398 | 999k | } |
4399 | | |
4400 | | /* Fast floor division for single-digit longs. */ |
4401 | | static PyObject * |
4402 | | fast_floor_div(PyLongObject *a, PyLongObject *b) |
4403 | 1.86M | { |
4404 | 1.86M | sdigit left = a->long_value.ob_digit[0]; |
4405 | 1.86M | sdigit right = b->long_value.ob_digit[0]; |
4406 | 1.86M | sdigit div; |
4407 | | |
4408 | 1.86M | assert(_PyLong_DigitCount(a) == 1); |
4409 | 1.86M | assert(_PyLong_DigitCount(b) == 1); |
4410 | | |
4411 | 1.86M | if (_PyLong_SameSign(a, b)) { |
4412 | 1.86M | div = left / right; |
4413 | 1.86M | } |
4414 | 0 | else { |
4415 | | /* Either 'a' or 'b' is negative. */ |
4416 | 0 | div = -1 - (left - 1) / right; |
4417 | 0 | } |
4418 | | |
4419 | 1.86M | return PyLong_FromLong(div); |
4420 | 1.86M | } |
4421 | | |
4422 | | #ifdef WITH_PYLONG_MODULE |
4423 | | /* asymptotically faster divmod, using _pylong.py */ |
4424 | | static int |
4425 | | pylong_int_divmod(PyLongObject *v, PyLongObject *w, |
4426 | | PyLongObject **pdiv, PyLongObject **pmod) |
4427 | 0 | { |
4428 | 0 | PyObject *mod = PyImport_ImportModule("_pylong"); |
4429 | 0 | if (mod == NULL) { |
4430 | 0 | return -1; |
4431 | 0 | } |
4432 | 0 | PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w); |
4433 | 0 | Py_DECREF(mod); |
4434 | 0 | if (result == NULL) { |
4435 | 0 | return -1; |
4436 | 0 | } |
4437 | 0 | if (!PyTuple_Check(result)) { |
4438 | 0 | Py_DECREF(result); |
4439 | 0 | PyErr_SetString(PyExc_ValueError, |
4440 | 0 | "tuple is required from int_divmod()"); |
4441 | 0 | return -1; |
4442 | 0 | } |
4443 | 0 | PyObject *q = PyTuple_GET_ITEM(result, 0); |
4444 | 0 | PyObject *r = PyTuple_GET_ITEM(result, 1); |
4445 | 0 | if (!PyLong_Check(q) || !PyLong_Check(r)) { |
4446 | 0 | Py_DECREF(result); |
4447 | 0 | PyErr_SetString(PyExc_ValueError, |
4448 | 0 | "tuple of int is required from int_divmod()"); |
4449 | 0 | return -1; |
4450 | 0 | } |
4451 | 0 | if (pdiv != NULL) { |
4452 | 0 | *pdiv = (PyLongObject *)Py_NewRef(q); |
4453 | 0 | } |
4454 | 0 | if (pmod != NULL) { |
4455 | 0 | *pmod = (PyLongObject *)Py_NewRef(r); |
4456 | 0 | } |
4457 | 0 | Py_DECREF(result); |
4458 | 0 | return 0; |
4459 | 0 | } |
4460 | | #endif /* WITH_PYLONG_MODULE */ |
4461 | | |
4462 | | /* The / and % operators are now defined in terms of divmod(). |
4463 | | The expression a mod b has the value a - b*floor(a/b). |
4464 | | The long_divrem function gives the remainder after division of |
4465 | | |a| by |b|, with the sign of a. This is also expressed |
4466 | | as a - b*trunc(a/b), if trunc truncates towards zero. |
4467 | | Some examples: |
4468 | | a b a rem b a mod b |
4469 | | 13 10 3 3 |
4470 | | -13 10 -3 7 |
4471 | | 13 -10 3 -7 |
4472 | | -13 -10 -3 -3 |
4473 | | So, to get from rem to mod, we have to add b if a and b |
4474 | | have different signs. We then subtract one from the 'div' |
4475 | | part of the outcome to keep the invariant intact. */ |
4476 | | |
4477 | | /* Compute |
4478 | | * *pdiv, *pmod = divmod(v, w) |
4479 | | * NULL can be passed for pdiv or pmod, in which case that part of |
4480 | | * the result is simply thrown away. The caller owns a reference to |
4481 | | * each of these it requests (does not pass NULL for). |
4482 | | */ |
4483 | | static int |
4484 | | l_divmod(PyLongObject *v, PyLongObject *w, |
4485 | | PyLongObject **pdiv, PyLongObject **pmod) |
4486 | 376k | { |
4487 | 376k | PyLongObject *div, *mod; |
4488 | | |
4489 | 376k | if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) { |
4490 | | /* Fast path for single-digit longs */ |
4491 | 0 | div = NULL; |
4492 | 0 | if (pdiv != NULL) { |
4493 | 0 | div = (PyLongObject *)fast_floor_div(v, w); |
4494 | 0 | if (div == NULL) { |
4495 | 0 | return -1; |
4496 | 0 | } |
4497 | 0 | } |
4498 | 0 | if (pmod != NULL) { |
4499 | 0 | mod = (PyLongObject *)fast_mod(v, w); |
4500 | 0 | if (mod == NULL) { |
4501 | 0 | Py_XDECREF(div); |
4502 | 0 | return -1; |
4503 | 0 | } |
4504 | 0 | *pmod = mod; |
4505 | 0 | } |
4506 | 0 | if (pdiv != NULL) { |
4507 | | /* We only want to set `*pdiv` when `*pmod` is |
4508 | | set successfully. */ |
4509 | 0 | *pdiv = div; |
4510 | 0 | } |
4511 | 0 | return 0; |
4512 | 0 | } |
4513 | 376k | #if WITH_PYLONG_MODULE |
4514 | 376k | Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */ |
4515 | 376k | Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */ |
4516 | 376k | if (size_w > 300 && (size_v - size_w) > 150) { |
4517 | | /* Switch to _pylong.int_divmod(). If the quotient is small then |
4518 | | "schoolbook" division is linear-time so don't use in that case. |
4519 | | These limits are empirically determined and should be slightly |
4520 | | conservative so that _pylong is used in cases it is likely |
4521 | | to be faster. See Tools/scripts/divmod_threshold.py. */ |
4522 | 0 | return pylong_int_divmod(v, w, pdiv, pmod); |
4523 | 0 | } |
4524 | 376k | #endif |
4525 | 376k | if (long_divrem(v, w, &div, &mod) < 0) |
4526 | 0 | return -1; |
4527 | 376k | if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) || |
4528 | 376k | (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) { |
4529 | 0 | PyLongObject *temp; |
4530 | 0 | temp = long_add(mod, w); |
4531 | 0 | Py_SETREF(mod, temp); |
4532 | 0 | if (mod == NULL) { |
4533 | 0 | Py_DECREF(div); |
4534 | 0 | return -1; |
4535 | 0 | } |
4536 | 0 | temp = long_sub(div, (PyLongObject *)_PyLong_GetOne()); |
4537 | 0 | if (temp == NULL) { |
4538 | 0 | Py_DECREF(mod); |
4539 | 0 | Py_DECREF(div); |
4540 | 0 | return -1; |
4541 | 0 | } |
4542 | 0 | Py_SETREF(div, temp); |
4543 | 0 | } |
4544 | 376k | if (pdiv != NULL) |
4545 | 376k | *pdiv = div; |
4546 | 0 | else |
4547 | 0 | Py_DECREF(div); |
4548 | | |
4549 | 376k | if (pmod != NULL) |
4550 | 0 | *pmod = mod; |
4551 | 376k | else |
4552 | 376k | Py_DECREF(mod); |
4553 | | |
4554 | 376k | return 0; |
4555 | 376k | } |
4556 | | |
4557 | | /* Compute |
4558 | | * *pmod = v % w |
4559 | | * pmod cannot be NULL. The caller owns a reference to pmod. |
4560 | | */ |
4561 | | static int |
4562 | | l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod) |
4563 | 5.10M | { |
4564 | 5.10M | PyLongObject *mod; |
4565 | | |
4566 | 5.10M | assert(pmod); |
4567 | 5.10M | if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) { |
4568 | | /* Fast path for single-digit longs */ |
4569 | 999k | *pmod = (PyLongObject *)fast_mod(v, w); |
4570 | 999k | return -(*pmod == NULL); |
4571 | 999k | } |
4572 | 4.10M | if (long_rem(v, w, &mod) < 0) |
4573 | 0 | return -1; |
4574 | 4.10M | if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) || |
4575 | 4.10M | (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) { |
4576 | 0 | PyLongObject *temp; |
4577 | 0 | temp = long_add(mod, w); |
4578 | 0 | Py_SETREF(mod, temp); |
4579 | 0 | if (mod == NULL) |
4580 | 0 | return -1; |
4581 | 0 | } |
4582 | 4.10M | *pmod = mod; |
4583 | | |
4584 | 4.10M | return 0; |
4585 | 4.10M | } |
4586 | | |
4587 | | static PyObject * |
4588 | | long_div(PyObject *a, PyObject *b) |
4589 | 2.24M | { |
4590 | 2.24M | PyLongObject *div; |
4591 | | |
4592 | 2.24M | CHECK_BINOP(a, b); |
4593 | | |
4594 | 2.24M | if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) { |
4595 | 1.86M | return fast_floor_div((PyLongObject*)a, (PyLongObject*)b); |
4596 | 1.86M | } |
4597 | | |
4598 | 376k | if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) |
4599 | 0 | div = NULL; |
4600 | 376k | return (PyObject *)div; |
4601 | 2.24M | } |
4602 | | |
4603 | | /* PyLong/PyLong -> float, with correctly rounded result. */ |
4604 | | |
4605 | 51.8k | #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) |
4606 | 0 | #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) |
4607 | | |
4608 | | static PyObject * |
4609 | | long_true_divide(PyObject *v, PyObject *w) |
4610 | 12.9k | { |
4611 | 12.9k | PyLongObject *a, *b, *x; |
4612 | 12.9k | Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; |
4613 | 12.9k | digit mask, low; |
4614 | 12.9k | int inexact, negate, a_is_small, b_is_small; |
4615 | 12.9k | double dx, result; |
4616 | | |
4617 | 12.9k | CHECK_BINOP(v, w); |
4618 | 12.9k | a = (PyLongObject *)v; |
4619 | 12.9k | b = (PyLongObject *)w; |
4620 | | |
4621 | | /* |
4622 | | Method in a nutshell: |
4623 | | |
4624 | | 0. reduce to case a, b > 0; filter out obvious underflow/overflow |
4625 | | 1. choose a suitable integer 'shift' |
4626 | | 2. use integer arithmetic to compute x = floor(2**-shift*a/b) |
4627 | | 3. adjust x for correct rounding |
4628 | | 4. convert x to a double dx with the same value |
4629 | | 5. return ldexp(dx, shift). |
4630 | | |
4631 | | In more detail: |
4632 | | |
4633 | | 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b |
4634 | | returns either 0.0 or -0.0, depending on the sign of b. For a and |
4635 | | b both nonzero, ignore signs of a and b, and add the sign back in |
4636 | | at the end. Now write a_bits and b_bits for the bit lengths of a |
4637 | | and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise |
4638 | | for b). Then |
4639 | | |
4640 | | 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). |
4641 | | |
4642 | | So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and |
4643 | | so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - |
4644 | | DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of |
4645 | | the way, we can assume that |
4646 | | |
4647 | | DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. |
4648 | | |
4649 | | 1. The integer 'shift' is chosen so that x has the right number of |
4650 | | bits for a double, plus two or three extra bits that will be used |
4651 | | in the rounding decisions. Writing a_bits and b_bits for the |
4652 | | number of significant bits in a and b respectively, a |
4653 | | straightforward formula for shift is: |
4654 | | |
4655 | | shift = a_bits - b_bits - DBL_MANT_DIG - 2 |
4656 | | |
4657 | | This is fine in the usual case, but if a/b is smaller than the |
4658 | | smallest normal float then it can lead to double rounding on an |
4659 | | IEEE 754 platform, giving incorrectly rounded results. So we |
4660 | | adjust the formula slightly. The actual formula used is: |
4661 | | |
4662 | | shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 |
4663 | | |
4664 | | 2. The quantity x is computed by first shifting a (left -shift bits |
4665 | | if shift <= 0, right shift bits if shift > 0) and then dividing by |
4666 | | b. For both the shift and the division, we keep track of whether |
4667 | | the result is inexact, in a flag 'inexact'; this information is |
4668 | | needed at the rounding stage. |
4669 | | |
4670 | | With the choice of shift above, together with our assumption that |
4671 | | a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows |
4672 | | that x >= 1. |
4673 | | |
4674 | | 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace |
4675 | | this with an exactly representable float of the form |
4676 | | |
4677 | | round(x/2**extra_bits) * 2**(extra_bits+shift). |
4678 | | |
4679 | | For float representability, we need x/2**extra_bits < |
4680 | | 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - |
4681 | | DBL_MANT_DIG. This translates to the condition: |
4682 | | |
4683 | | extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG |
4684 | | |
4685 | | To round, we just modify the bottom digit of x in-place; this can |
4686 | | end up giving a digit with value > PyLONG_MASK, but that's not a |
4687 | | problem since digits can hold values up to 2*PyLONG_MASK+1. |
4688 | | |
4689 | | With the original choices for shift above, extra_bits will always |
4690 | | be 2 or 3. Then rounding under the round-half-to-even rule, we |
4691 | | round up iff the most significant of the extra bits is 1, and |
4692 | | either: (a) the computation of x in step 2 had an inexact result, |
4693 | | or (b) at least one other of the extra bits is 1, or (c) the least |
4694 | | significant bit of x (above those to be rounded) is 1. |
4695 | | |
4696 | | 4. Conversion to a double is straightforward; all floating-point |
4697 | | operations involved in the conversion are exact, so there's no |
4698 | | danger of rounding errors. |
4699 | | |
4700 | | 5. Use ldexp(x, shift) to compute x*2**shift, the final result. |
4701 | | The result will always be exactly representable as a double, except |
4702 | | in the case that it overflows. To avoid dependence on the exact |
4703 | | behaviour of ldexp on overflow, we check for overflow before |
4704 | | applying ldexp. The result of ldexp is adjusted for sign before |
4705 | | returning. |
4706 | | */ |
4707 | | |
4708 | | /* Reduce to case where a and b are both positive. */ |
4709 | 12.9k | a_size = _PyLong_DigitCount(a); |
4710 | 12.9k | b_size = _PyLong_DigitCount(b); |
4711 | 12.9k | negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b)); |
4712 | 12.9k | if (b_size == 0) { |
4713 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
4714 | 0 | "division by zero"); |
4715 | 0 | goto error; |
4716 | 0 | } |
4717 | 12.9k | if (a_size == 0) |
4718 | 0 | goto underflow_or_zero; |
4719 | | |
4720 | | /* Fast path for a and b small (exactly representable in a double). |
4721 | | Relies on floating-point division being correctly rounded; results |
4722 | | may be subject to double rounding on x86 machines that operate with |
4723 | | the x87 FPU set to 64-bit precision. */ |
4724 | 12.9k | a_is_small = a_size <= MANT_DIG_DIGITS || |
4725 | 0 | (a_size == MANT_DIG_DIGITS+1 && |
4726 | 0 | a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); |
4727 | 12.9k | b_is_small = b_size <= MANT_DIG_DIGITS || |
4728 | 0 | (b_size == MANT_DIG_DIGITS+1 && |
4729 | 0 | b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); |
4730 | 12.9k | if (a_is_small && b_is_small) { |
4731 | 12.9k | double da, db; |
4732 | 12.9k | da = a->long_value.ob_digit[--a_size]; |
4733 | 12.9k | while (a_size > 0) |
4734 | 0 | da = da * PyLong_BASE + a->long_value.ob_digit[--a_size]; |
4735 | 12.9k | db = b->long_value.ob_digit[--b_size]; |
4736 | 12.9k | while (b_size > 0) |
4737 | 0 | db = db * PyLong_BASE + b->long_value.ob_digit[--b_size]; |
4738 | 12.9k | result = da / db; |
4739 | 12.9k | goto success; |
4740 | 12.9k | } |
4741 | | |
4742 | | /* Catch obvious cases of underflow and overflow */ |
4743 | 0 | diff = a_size - b_size; |
4744 | 0 | if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) |
4745 | | /* Extreme overflow */ |
4746 | 0 | goto overflow; |
4747 | 0 | else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) |
4748 | | /* Extreme underflow */ |
4749 | 0 | goto underflow_or_zero; |
4750 | | /* Next line is now safe from overflowing a Py_ssize_t */ |
4751 | 0 | diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) - |
4752 | 0 | bit_length_digit(b->long_value.ob_digit[b_size - 1]); |
4753 | | /* Now diff = a_bits - b_bits. */ |
4754 | 0 | if (diff > DBL_MAX_EXP) |
4755 | 0 | goto overflow; |
4756 | 0 | else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) |
4757 | 0 | goto underflow_or_zero; |
4758 | | |
4759 | | /* Choose value for shift; see comments for step 1 above. */ |
4760 | 0 | shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; |
4761 | |
|
4762 | 0 | inexact = 0; |
4763 | | |
4764 | | /* x = abs(a * 2**-shift) */ |
4765 | 0 | if (shift <= 0) { |
4766 | 0 | Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; |
4767 | 0 | digit rem; |
4768 | | /* x = a << -shift */ |
4769 | 0 | if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { |
4770 | | /* In practice, it's probably impossible to end up |
4771 | | here. Both a and b would have to be enormous, |
4772 | | using close to SIZE_T_MAX bytes of memory each. */ |
4773 | 0 | PyErr_SetString(PyExc_OverflowError, |
4774 | 0 | "intermediate overflow during division"); |
4775 | 0 | goto error; |
4776 | 0 | } |
4777 | 0 | x = long_alloc(a_size + shift_digits + 1); |
4778 | 0 | if (x == NULL) |
4779 | 0 | goto error; |
4780 | 0 | for (i = 0; i < shift_digits; i++) |
4781 | 0 | x->long_value.ob_digit[i] = 0; |
4782 | 0 | rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit, |
4783 | 0 | a_size, -shift % PyLong_SHIFT); |
4784 | 0 | x->long_value.ob_digit[a_size + shift_digits] = rem; |
4785 | 0 | } |
4786 | 0 | else { |
4787 | 0 | Py_ssize_t shift_digits = shift / PyLong_SHIFT; |
4788 | 0 | digit rem; |
4789 | | /* x = a >> shift */ |
4790 | 0 | assert(a_size >= shift_digits); |
4791 | 0 | x = long_alloc(a_size - shift_digits); |
4792 | 0 | if (x == NULL) |
4793 | 0 | goto error; |
4794 | 0 | rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits, |
4795 | 0 | a_size - shift_digits, shift % PyLong_SHIFT); |
4796 | | /* set inexact if any of the bits shifted out is nonzero */ |
4797 | 0 | if (rem) |
4798 | 0 | inexact = 1; |
4799 | 0 | while (!inexact && shift_digits > 0) |
4800 | 0 | if (a->long_value.ob_digit[--shift_digits]) |
4801 | 0 | inexact = 1; |
4802 | 0 | } |
4803 | 0 | long_normalize(x); |
4804 | 0 | x_size = _PyLong_SignedDigitCount(x); |
4805 | | |
4806 | | /* x //= b. If the remainder is nonzero, set inexact. We own the only |
4807 | | reference to x, so it's safe to modify it in-place. */ |
4808 | 0 | if (b_size == 1) { |
4809 | 0 | digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size, |
4810 | 0 | b->long_value.ob_digit[0]); |
4811 | 0 | long_normalize(x); |
4812 | 0 | if (rem) |
4813 | 0 | inexact = 1; |
4814 | 0 | } |
4815 | 0 | else { |
4816 | 0 | PyLongObject *div, *rem; |
4817 | 0 | div = x_divrem(x, b, &rem); |
4818 | 0 | Py_SETREF(x, div); |
4819 | 0 | if (x == NULL) |
4820 | 0 | goto error; |
4821 | 0 | if (!_PyLong_IsZero(rem)) |
4822 | 0 | inexact = 1; |
4823 | 0 | Py_DECREF(rem); |
4824 | 0 | } |
4825 | 0 | x_size = _PyLong_DigitCount(x); |
4826 | 0 | assert(x_size > 0); /* result of division is never zero */ |
4827 | 0 | x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]); |
4828 | | |
4829 | | /* The number of extra bits that have to be rounded away. */ |
4830 | 0 | extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; |
4831 | 0 | assert(extra_bits == 2 || extra_bits == 3); |
4832 | | |
4833 | | /* Round by directly modifying the low digit of x. */ |
4834 | 0 | mask = (digit)1 << (extra_bits - 1); |
4835 | 0 | low = x->long_value.ob_digit[0] | inexact; |
4836 | 0 | if ((low & mask) && (low & (3U*mask-1U))) |
4837 | 0 | low += mask; |
4838 | 0 | x->long_value.ob_digit[0] = low & ~(2U*mask-1U); |
4839 | | |
4840 | | /* Convert x to a double dx; the conversion is exact. */ |
4841 | 0 | dx = x->long_value.ob_digit[--x_size]; |
4842 | 0 | while (x_size > 0) |
4843 | 0 | dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size]; |
4844 | 0 | Py_DECREF(x); |
4845 | | |
4846 | | /* Check whether ldexp result will overflow a double. */ |
4847 | 0 | if (shift + x_bits >= DBL_MAX_EXP && |
4848 | 0 | (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) |
4849 | 0 | goto overflow; |
4850 | 0 | result = ldexp(dx, (int)shift); |
4851 | |
|
4852 | 12.9k | success: |
4853 | 12.9k | return PyFloat_FromDouble(negate ? -result : result); |
4854 | | |
4855 | 0 | underflow_or_zero: |
4856 | 0 | return PyFloat_FromDouble(negate ? -0.0 : 0.0); |
4857 | | |
4858 | 0 | overflow: |
4859 | 0 | PyErr_SetString(PyExc_OverflowError, |
4860 | 0 | "integer division result too large for a float"); |
4861 | 0 | error: |
4862 | 0 | return NULL; |
4863 | 0 | } |
4864 | | |
4865 | | static PyObject * |
4866 | | long_mod(PyObject *a, PyObject *b) |
4867 | 5.10M | { |
4868 | 5.10M | PyLongObject *mod; |
4869 | | |
4870 | 5.10M | CHECK_BINOP(a, b); |
4871 | | |
4872 | 5.10M | if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0) |
4873 | 0 | mod = NULL; |
4874 | 5.10M | return (PyObject *)mod; |
4875 | 5.10M | } |
4876 | | |
4877 | | static PyObject * |
4878 | | long_divmod(PyObject *a, PyObject *b) |
4879 | 0 | { |
4880 | 0 | PyLongObject *div, *mod; |
4881 | 0 | PyObject *z; |
4882 | |
|
4883 | 0 | CHECK_BINOP(a, b); |
4884 | | |
4885 | 0 | if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { |
4886 | 0 | return NULL; |
4887 | 0 | } |
4888 | 0 | z = PyTuple_New(2); |
4889 | 0 | if (z != NULL) { |
4890 | 0 | PyTuple_SET_ITEM(z, 0, (PyObject *) div); |
4891 | 0 | PyTuple_SET_ITEM(z, 1, (PyObject *) mod); |
4892 | 0 | } |
4893 | 0 | else { |
4894 | 0 | Py_DECREF(div); |
4895 | 0 | Py_DECREF(mod); |
4896 | 0 | } |
4897 | 0 | return z; |
4898 | 0 | } |
4899 | | |
4900 | | |
4901 | | /* Compute an inverse to a modulo n, or raise ValueError if a is not |
4902 | | invertible modulo n. Assumes n is positive. The inverse returned |
4903 | | is whatever falls out of the extended Euclidean algorithm: it may |
4904 | | be either positive or negative, but will be smaller than n in |
4905 | | absolute value. |
4906 | | |
4907 | | Pure Python equivalent for long_invmod: |
4908 | | |
4909 | | def invmod(a, n): |
4910 | | b, c = 1, 0 |
4911 | | while n: |
4912 | | q, r = divmod(a, n) |
4913 | | a, b, c, n = n, c, b - q*c, r |
4914 | | |
4915 | | # at this point a is the gcd of the original inputs |
4916 | | if a == 1: |
4917 | | return b |
4918 | | raise ValueError("Not invertible") |
4919 | | */ |
4920 | | |
4921 | | static PyLongObject * |
4922 | | long_invmod(PyLongObject *a, PyLongObject *n) |
4923 | 0 | { |
4924 | | /* Should only ever be called for positive n */ |
4925 | 0 | assert(_PyLong_IsPositive(n)); |
4926 | |
|
4927 | 0 | Py_INCREF(a); |
4928 | 0 | PyLongObject *b = (PyLongObject *)Py_NewRef(_PyLong_GetOne()); |
4929 | 0 | PyLongObject *c = (PyLongObject *)Py_NewRef(_PyLong_GetZero()); |
4930 | 0 | Py_INCREF(n); |
4931 | | |
4932 | | /* references now owned: a, b, c, n */ |
4933 | 0 | while (!_PyLong_IsZero(n)) { |
4934 | 0 | PyLongObject *q, *r, *s, *t; |
4935 | |
|
4936 | 0 | if (l_divmod(a, n, &q, &r) == -1) { |
4937 | 0 | goto Error; |
4938 | 0 | } |
4939 | 0 | Py_SETREF(a, n); |
4940 | 0 | n = r; |
4941 | 0 | t = (PyLongObject *)long_mul(q, c); |
4942 | 0 | Py_DECREF(q); |
4943 | 0 | if (t == NULL) { |
4944 | 0 | goto Error; |
4945 | 0 | } |
4946 | 0 | s = long_sub(b, t); |
4947 | 0 | Py_DECREF(t); |
4948 | 0 | if (s == NULL) { |
4949 | 0 | goto Error; |
4950 | 0 | } |
4951 | 0 | Py_SETREF(b, c); |
4952 | 0 | c = s; |
4953 | 0 | } |
4954 | | /* references now owned: a, b, c, n */ |
4955 | | |
4956 | 0 | Py_DECREF(c); |
4957 | 0 | Py_DECREF(n); |
4958 | 0 | if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) { |
4959 | | /* a != 1; we don't have an inverse. */ |
4960 | 0 | Py_DECREF(a); |
4961 | 0 | Py_DECREF(b); |
4962 | 0 | PyErr_SetString(PyExc_ValueError, |
4963 | 0 | "base is not invertible for the given modulus"); |
4964 | 0 | return NULL; |
4965 | 0 | } |
4966 | 0 | else { |
4967 | | /* a == 1; b gives an inverse modulo n */ |
4968 | 0 | Py_DECREF(a); |
4969 | 0 | return b; |
4970 | 0 | } |
4971 | | |
4972 | 0 | Error: |
4973 | 0 | Py_DECREF(a); |
4974 | 0 | Py_DECREF(b); |
4975 | 0 | Py_DECREF(c); |
4976 | 0 | Py_DECREF(n); |
4977 | 0 | return NULL; |
4978 | 0 | } |
4979 | | |
4980 | | |
4981 | | /* pow(v, w, x) */ |
4982 | | static PyObject * |
4983 | | long_pow(PyObject *v, PyObject *w, PyObject *x) |
4984 | 90 | { |
4985 | 90 | PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ |
4986 | 90 | int negativeOutput = 0; /* if x<0 return negative output */ |
4987 | | |
4988 | 90 | PyLongObject *z = NULL; /* accumulated result */ |
4989 | 90 | Py_ssize_t i, j; /* counters */ |
4990 | 90 | PyLongObject *temp = NULL; |
4991 | 90 | PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */ |
4992 | | |
4993 | | /* k-ary values. If the exponent is large enough, table is |
4994 | | * precomputed so that table[i] == a**(2*i+1) % c for i in |
4995 | | * range(EXP_TABLE_LEN). |
4996 | | * Note: this is uninitialized stack trash: don't pay to set it to known |
4997 | | * values unless it's needed. Instead ensure that num_table_entries is |
4998 | | * set to the number of entries actually filled whenever a branch to the |
4999 | | * Error or Done labels is possible. |
5000 | | */ |
5001 | 90 | PyLongObject *table[EXP_TABLE_LEN]; |
5002 | 90 | Py_ssize_t num_table_entries = 0; |
5003 | | |
5004 | | /* a, b, c = v, w, x */ |
5005 | 90 | CHECK_BINOP(v, w); |
5006 | 90 | a = (PyLongObject*)Py_NewRef(v); |
5007 | 90 | b = (PyLongObject*)Py_NewRef(w); |
5008 | 90 | if (PyLong_Check(x)) { |
5009 | 0 | c = (PyLongObject *)Py_NewRef(x); |
5010 | 0 | } |
5011 | 90 | else if (x == Py_None) |
5012 | 90 | c = NULL; |
5013 | 0 | else { |
5014 | 0 | Py_DECREF(a); |
5015 | 0 | Py_DECREF(b); |
5016 | 0 | Py_RETURN_NOTIMPLEMENTED; |
5017 | 0 | } |
5018 | | |
5019 | 90 | if (_PyLong_IsNegative(b) && c == NULL) { |
5020 | | /* if exponent is negative and there's no modulus: |
5021 | | return a float. This works because we know |
5022 | | that this calls float_pow() which converts its |
5023 | | arguments to double. */ |
5024 | 2 | Py_DECREF(a); |
5025 | 2 | Py_DECREF(b); |
5026 | 2 | return PyFloat_Type.tp_as_number->nb_power(v, w, x); |
5027 | 2 | } |
5028 | | |
5029 | 88 | if (c) { |
5030 | | /* if modulus == 0: |
5031 | | raise ValueError() */ |
5032 | 0 | if (_PyLong_IsZero(c)) { |
5033 | 0 | PyErr_SetString(PyExc_ValueError, |
5034 | 0 | "pow() 3rd argument cannot be 0"); |
5035 | 0 | goto Error; |
5036 | 0 | } |
5037 | | |
5038 | | /* if modulus < 0: |
5039 | | negativeOutput = True |
5040 | | modulus = -modulus */ |
5041 | 0 | if (_PyLong_IsNegative(c)) { |
5042 | 0 | negativeOutput = 1; |
5043 | 0 | temp = (PyLongObject *)_PyLong_Copy(c); |
5044 | 0 | if (temp == NULL) |
5045 | 0 | goto Error; |
5046 | 0 | Py_SETREF(c, temp); |
5047 | 0 | temp = NULL; |
5048 | 0 | _PyLong_Negate(&c); |
5049 | 0 | if (c == NULL) |
5050 | 0 | goto Error; |
5051 | 0 | } |
5052 | | |
5053 | | /* if modulus == 1: |
5054 | | return 0 */ |
5055 | 0 | if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) { |
5056 | 0 | z = (PyLongObject *)PyLong_FromLong(0L); |
5057 | 0 | goto Done; |
5058 | 0 | } |
5059 | | |
5060 | | /* if exponent is negative, negate the exponent and |
5061 | | replace the base with a modular inverse */ |
5062 | 0 | if (_PyLong_IsNegative(b)) { |
5063 | 0 | temp = (PyLongObject *)_PyLong_Copy(b); |
5064 | 0 | if (temp == NULL) |
5065 | 0 | goto Error; |
5066 | 0 | Py_SETREF(b, temp); |
5067 | 0 | temp = NULL; |
5068 | 0 | _PyLong_Negate(&b); |
5069 | 0 | if (b == NULL) |
5070 | 0 | goto Error; |
5071 | | |
5072 | 0 | temp = long_invmod(a, c); |
5073 | 0 | if (temp == NULL) |
5074 | 0 | goto Error; |
5075 | 0 | Py_SETREF(a, temp); |
5076 | 0 | temp = NULL; |
5077 | 0 | } |
5078 | | |
5079 | | /* Reduce base by modulus in some cases: |
5080 | | 1. If base < 0. Forcing the base non-negative makes things easier. |
5081 | | 2. If base is obviously larger than the modulus. The "small |
5082 | | exponent" case later can multiply directly by base repeatedly, |
5083 | | while the "large exponent" case multiplies directly by base 31 |
5084 | | times. It can be unboundedly faster to multiply by |
5085 | | base % modulus instead. |
5086 | | We could _always_ do this reduction, but l_mod() isn't cheap, |
5087 | | so we only do it when it buys something. */ |
5088 | 0 | if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) { |
5089 | 0 | if (l_mod(a, c, &temp) < 0) |
5090 | 0 | goto Error; |
5091 | 0 | Py_SETREF(a, temp); |
5092 | 0 | temp = NULL; |
5093 | 0 | } |
5094 | 0 | } |
5095 | | |
5096 | | /* At this point a, b, and c are guaranteed non-negative UNLESS |
5097 | | c is NULL, in which case a may be negative. */ |
5098 | | |
5099 | 88 | z = (PyLongObject *)PyLong_FromLong(1L); |
5100 | 88 | if (z == NULL) |
5101 | 0 | goto Error; |
5102 | | |
5103 | | /* Perform a modular reduction, X = X % c, but leave X alone if c |
5104 | | * is NULL. |
5105 | | */ |
5106 | 88 | #define REDUCE(X) \ |
5107 | 400 | do { \ |
5108 | 400 | if (c != NULL) { \ |
5109 | 0 | if (l_mod(X, c, &temp) < 0) \ |
5110 | 0 | goto Error; \ |
5111 | 0 | Py_XDECREF(X); \ |
5112 | 0 | X = temp; \ |
5113 | 0 | temp = NULL; \ |
5114 | 0 | } \ |
5115 | 400 | } while(0) |
5116 | | |
5117 | | /* Multiply two values, then reduce the result: |
5118 | | result = X*Y % c. If c is NULL, skip the mod. */ |
5119 | 88 | #define MULT(X, Y, result) \ |
5120 | 400 | do { \ |
5121 | 400 | temp = (PyLongObject *)long_mul(X, Y); \ |
5122 | 400 | if (temp == NULL) \ |
5123 | 400 | goto Error; \ |
5124 | 400 | Py_XDECREF(result); \ |
5125 | 400 | result = temp; \ |
5126 | 400 | temp = NULL; \ |
5127 | 400 | REDUCE(result); \ |
5128 | 400 | } while(0) |
5129 | | |
5130 | 88 | i = _PyLong_SignedDigitCount(b); |
5131 | 88 | digit bi = i ? b->long_value.ob_digit[i-1] : 0; |
5132 | 88 | digit bit; |
5133 | 88 | if (i <= 1 && bi <= 3) { |
5134 | | /* aim for minimal overhead */ |
5135 | 6 | if (bi >= 2) { |
5136 | 2 | MULT(a, a, z); |
5137 | 2 | if (bi == 3) { |
5138 | 2 | MULT(z, a, z); |
5139 | 2 | } |
5140 | 2 | } |
5141 | 4 | else if (bi == 1) { |
5142 | | /* Multiplying by 1 serves two purposes: if `a` is of an int |
5143 | | * subclass, makes the result an int (e.g., pow(False, 1) returns |
5144 | | * 0 instead of False), and potentially reduces `a` by the modulus. |
5145 | | */ |
5146 | 2 | MULT(a, z, z); |
5147 | 2 | } |
5148 | | /* else bi is 0, and z==1 is correct */ |
5149 | 6 | } |
5150 | 82 | else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) { |
5151 | | /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ |
5152 | | /* https://cacr.uwaterloo.ca/hac/about/chap14.pdf */ |
5153 | | |
5154 | | /* Find the first significant exponent bit. Search right to left |
5155 | | * because we're primarily trying to cut overhead for small powers. |
5156 | | */ |
5157 | 82 | assert(bi); /* else there is no significant bit */ |
5158 | 82 | Py_SETREF(z, (PyLongObject*)Py_NewRef(a)); |
5159 | 385 | for (bit = 2; ; bit <<= 1) { |
5160 | 385 | if (bit > bi) { /* found the first bit */ |
5161 | 82 | assert((bi & bit) == 0); |
5162 | 82 | bit >>= 1; |
5163 | 82 | assert(bi & bit); |
5164 | 82 | break; |
5165 | 82 | } |
5166 | 385 | } |
5167 | 82 | for (--i, bit >>= 1;;) { |
5168 | 385 | for (; bit != 0; bit >>= 1) { |
5169 | 303 | MULT(z, z, z); |
5170 | 303 | if (bi & bit) { |
5171 | 91 | MULT(z, a, z); |
5172 | 91 | } |
5173 | 303 | } |
5174 | 82 | if (--i < 0) { |
5175 | 82 | break; |
5176 | 82 | } |
5177 | 0 | bi = b->long_value.ob_digit[i]; |
5178 | 0 | bit = (digit)1 << (PyLong_SHIFT-1); |
5179 | 0 | } |
5180 | 82 | } |
5181 | 0 | else { |
5182 | | /* Left-to-right k-ary sliding window exponentiation |
5183 | | * (Handbook of Applied Cryptography (HAC) Algorithm 14.85) |
5184 | | */ |
5185 | 0 | table[0] = (PyLongObject*)Py_NewRef(a); |
5186 | 0 | num_table_entries = 1; |
5187 | 0 | MULT(a, a, a2); |
5188 | | /* table[i] == a**(2*i + 1) % c */ |
5189 | 0 | for (i = 1; i < EXP_TABLE_LEN; ++i) { |
5190 | 0 | table[i] = NULL; /* must set to known value for MULT */ |
5191 | 0 | MULT(table[i-1], a2, table[i]); |
5192 | 0 | ++num_table_entries; /* incremented iff MULT succeeded */ |
5193 | 0 | } |
5194 | 0 | Py_CLEAR(a2); |
5195 | | |
5196 | | /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits |
5197 | | * into `pending`, starting with the next 1 bit. The current bit |
5198 | | * length of `pending` is `blen`. |
5199 | | */ |
5200 | 0 | int pending = 0, blen = 0; |
5201 | 0 | #define ABSORB_PENDING do { \ |
5202 | 0 | int ntz = 0; /* number of trailing zeroes in `pending` */ \ |
5203 | 0 | assert(pending && blen); \ |
5204 | 0 | assert(pending >> (blen - 1)); \ |
5205 | 0 | assert(pending >> blen == 0); \ |
5206 | 0 | while ((pending & 1) == 0) { \ |
5207 | 0 | ++ntz; \ |
5208 | 0 | pending >>= 1; \ |
5209 | 0 | } \ |
5210 | 0 | assert(ntz < blen); \ |
5211 | 0 | blen -= ntz; \ |
5212 | 0 | do { \ |
5213 | 0 | MULT(z, z, z); \ |
5214 | 0 | } while (--blen); \ |
5215 | 0 | MULT(z, table[pending >> 1], z); \ |
5216 | 0 | while (ntz-- > 0) \ |
5217 | 0 | MULT(z, z, z); \ |
5218 | 0 | assert(blen == 0); \ |
5219 | 0 | pending = 0; \ |
5220 | 0 | } while(0) |
5221 | |
|
5222 | 0 | for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) { |
5223 | 0 | const digit bi = b->long_value.ob_digit[i]; |
5224 | 0 | for (j = PyLong_SHIFT - 1; j >= 0; --j) { |
5225 | 0 | const int bit = (bi >> j) & 1; |
5226 | 0 | pending = (pending << 1) | bit; |
5227 | 0 | if (pending) { |
5228 | 0 | ++blen; |
5229 | 0 | if (blen == EXP_WINDOW_SIZE) |
5230 | 0 | ABSORB_PENDING; |
5231 | 0 | } |
5232 | 0 | else /* absorb strings of 0 bits */ |
5233 | 0 | MULT(z, z, z); |
5234 | 0 | } |
5235 | 0 | } |
5236 | 0 | if (pending) |
5237 | 0 | ABSORB_PENDING; |
5238 | 0 | } |
5239 | | |
5240 | 88 | if (negativeOutput && !_PyLong_IsZero(z)) { |
5241 | 0 | temp = long_sub(z, c); |
5242 | 0 | if (temp == NULL) |
5243 | 0 | goto Error; |
5244 | 0 | Py_SETREF(z, temp); |
5245 | 0 | temp = NULL; |
5246 | 0 | } |
5247 | 88 | goto Done; |
5248 | | |
5249 | 88 | Error: |
5250 | 0 | Py_CLEAR(z); |
5251 | | /* fall through */ |
5252 | 88 | Done: |
5253 | 88 | for (i = 0; i < num_table_entries; ++i) |
5254 | 0 | Py_DECREF(table[i]); |
5255 | 88 | Py_DECREF(a); |
5256 | 88 | Py_DECREF(b); |
5257 | 88 | Py_XDECREF(c); |
5258 | 88 | Py_XDECREF(a2); |
5259 | 88 | Py_XDECREF(temp); |
5260 | 88 | return (PyObject *)z; |
5261 | 0 | } |
5262 | | |
5263 | | static PyObject * |
5264 | | long_invert(PyObject *self) |
5265 | 276 | { |
5266 | 276 | PyLongObject *v = _PyLong_CAST(self); |
5267 | | |
5268 | | /* Implement ~x as -(x+1) */ |
5269 | 276 | if (_PyLong_IsCompact(v)) |
5270 | 276 | return (PyObject*)_PyLong_FromSTwoDigits(~medium_value(v)); |
5271 | | |
5272 | 0 | PyLongObject *x = long_add(v, (PyLongObject *)_PyLong_GetOne()); |
5273 | 0 | if (x == NULL) |
5274 | 0 | return NULL; |
5275 | 0 | _PyLong_Negate(&x); |
5276 | | /* No need for maybe_small_long here, since any small longs |
5277 | | will have been caught in the _PyLong_IsCompact() fast path. */ |
5278 | 0 | return (PyObject *)x; |
5279 | 0 | } |
5280 | | |
5281 | | static PyLongObject * |
5282 | | long_neg(PyLongObject *v) |
5283 | 8.57k | { |
5284 | 8.57k | if (_PyLong_IsCompact(v)) { |
5285 | 8.57k | return _PyLong_FromSTwoDigits(-medium_value(v)); |
5286 | 8.57k | } |
5287 | | |
5288 | 0 | PyLongObject *z = (PyLongObject *)_PyLong_Copy(v); |
5289 | 0 | if (z != NULL) { |
5290 | 0 | _PyLong_FlipSign(z); |
5291 | 0 | } |
5292 | 0 | return z; |
5293 | 8.57k | } |
5294 | | |
5295 | | static PyObject * |
5296 | | long_neg_method(PyObject *v) |
5297 | 8.57k | { |
5298 | 8.57k | return (PyObject*)long_neg(_PyLong_CAST(v)); |
5299 | 8.57k | } |
5300 | | |
5301 | | static PyLongObject* |
5302 | | long_abs(PyLongObject *v) |
5303 | 0 | { |
5304 | 0 | if (_PyLong_IsNegative(v)) |
5305 | 0 | return long_neg(v); |
5306 | 0 | else |
5307 | 0 | return (PyLongObject*)long_long((PyObject *)v); |
5308 | 0 | } |
5309 | | |
5310 | | static PyObject * |
5311 | | long_abs_method(PyObject *v) |
5312 | 0 | { |
5313 | 0 | return (PyObject*)long_abs(_PyLong_CAST(v)); |
5314 | 0 | } |
5315 | | |
5316 | | static int |
5317 | | long_bool(PyObject *v) |
5318 | 746k | { |
5319 | 746k | return !_PyLong_IsZero(_PyLong_CAST(v)); |
5320 | 746k | } |
5321 | | |
5322 | | /* Inner function for both long_rshift and _PyLong_Rshift, shifting an |
5323 | | integer right by PyLong_SHIFT*wordshift + remshift bits. |
5324 | | wordshift should be nonnegative. */ |
5325 | | |
5326 | | static PyObject * |
5327 | | long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift) |
5328 | 156 | { |
5329 | 156 | PyLongObject *z = NULL; |
5330 | 156 | Py_ssize_t newsize, hishift, size_a; |
5331 | 156 | twodigits accum; |
5332 | 156 | int a_negative; |
5333 | | |
5334 | | /* Total number of bits shifted must be nonnegative. */ |
5335 | 156 | assert(wordshift >= 0); |
5336 | 156 | assert(remshift < PyLong_SHIFT); |
5337 | | |
5338 | | /* Fast path for small a. */ |
5339 | 156 | if (_PyLong_IsCompact(a)) { |
5340 | 0 | stwodigits m, x; |
5341 | 0 | digit shift; |
5342 | 0 | m = medium_value(a); |
5343 | 0 | shift = wordshift == 0 ? remshift : PyLong_SHIFT; |
5344 | 0 | x = m < 0 ? ~(~m >> shift) : m >> shift; |
5345 | 0 | return (PyObject*)_PyLong_FromSTwoDigits(x); |
5346 | 0 | } |
5347 | | |
5348 | 156 | a_negative = _PyLong_IsNegative(a); |
5349 | 156 | size_a = _PyLong_DigitCount(a); |
5350 | | |
5351 | 156 | if (a_negative) { |
5352 | | /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT, |
5353 | | while keeping PyLong_SHIFT*wordshift + remshift the same. This |
5354 | | ensures that 'newsize' is computed correctly below. */ |
5355 | 0 | if (remshift == 0) { |
5356 | 0 | if (wordshift == 0) { |
5357 | | /* Can only happen if the original shift was 0. */ |
5358 | 0 | return long_long((PyObject *)a); |
5359 | 0 | } |
5360 | 0 | remshift = PyLong_SHIFT; |
5361 | 0 | --wordshift; |
5362 | 0 | } |
5363 | 0 | } |
5364 | | |
5365 | 156 | assert(wordshift >= 0); |
5366 | 156 | newsize = size_a - wordshift; |
5367 | 156 | if (newsize <= 0) { |
5368 | | /* Shifting all the bits of 'a' out gives either -1 or 0. */ |
5369 | 0 | return PyLong_FromLong(-a_negative); |
5370 | 0 | } |
5371 | 156 | z = long_alloc(newsize); |
5372 | 156 | if (z == NULL) { |
5373 | 0 | return NULL; |
5374 | 0 | } |
5375 | 156 | hishift = PyLong_SHIFT - remshift; |
5376 | | |
5377 | 156 | accum = a->long_value.ob_digit[wordshift]; |
5378 | 156 | if (a_negative) { |
5379 | | /* |
5380 | | For a positive integer a and nonnegative shift, we have: |
5381 | | |
5382 | | (-a) >> shift == -((a + 2**shift - 1) >> shift). |
5383 | | |
5384 | | In the addition `a + (2**shift - 1)`, the low `wordshift` digits of |
5385 | | `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out |
5386 | | from the bottom `wordshift` digits when at least one of the least |
5387 | | significant `wordshift` digits of `a` is nonzero. Digit `wordshift` |
5388 | | of `2**shift - 1` has value `PyLong_MASK >> hishift`. |
5389 | | */ |
5390 | 0 | _PyLong_SetSignAndDigitCount(z, -1, newsize); |
5391 | |
|
5392 | 0 | digit sticky = 0; |
5393 | 0 | for (Py_ssize_t j = 0; j < wordshift; j++) { |
5394 | 0 | sticky |= a->long_value.ob_digit[j]; |
5395 | 0 | } |
5396 | 0 | accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0); |
5397 | 0 | } |
5398 | | |
5399 | 156 | accum >>= remshift; |
5400 | 540 | for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) { |
5401 | 384 | accum += (twodigits)a->long_value.ob_digit[j] << hishift; |
5402 | 384 | z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK); |
5403 | 384 | accum >>= PyLong_SHIFT; |
5404 | 384 | } |
5405 | 156 | assert(accum <= PyLong_MASK); |
5406 | 156 | z->long_value.ob_digit[newsize - 1] = (digit)accum; |
5407 | | |
5408 | 156 | z = maybe_small_long(long_normalize(z)); |
5409 | 156 | return (PyObject *)z; |
5410 | 156 | } |
5411 | | |
5412 | | static PyObject * |
5413 | | long_rshift(PyObject *a, PyObject *b) |
5414 | 156 | { |
5415 | 156 | int64_t shiftby; |
5416 | | |
5417 | 156 | CHECK_BINOP(a, b); |
5418 | | |
5419 | 156 | if (_PyLong_IsNegative((PyLongObject *)b)) { |
5420 | 0 | PyErr_SetString(PyExc_ValueError, "negative shift count"); |
5421 | 0 | return NULL; |
5422 | 0 | } |
5423 | 156 | if (_PyLong_IsZero((PyLongObject *)a)) { |
5424 | 0 | return PyLong_FromLong(0); |
5425 | 0 | } |
5426 | 156 | if (PyLong_AsInt64(b, &shiftby) < 0) { |
5427 | 0 | if (!PyErr_ExceptionMatches(PyExc_OverflowError)) { |
5428 | 0 | return NULL; |
5429 | 0 | } |
5430 | 0 | PyErr_Clear(); |
5431 | 0 | if (_PyLong_IsNegative((PyLongObject *)a)) { |
5432 | 0 | return PyLong_FromLong(-1); |
5433 | 0 | } |
5434 | 0 | else { |
5435 | 0 | return PyLong_FromLong(0); |
5436 | 0 | } |
5437 | 0 | } |
5438 | 156 | return _PyLong_Rshift(a, shiftby); |
5439 | 156 | } |
5440 | | |
5441 | | /* Return a >> shiftby. */ |
5442 | | PyObject * |
5443 | | _PyLong_Rshift(PyObject *a, int64_t shiftby) |
5444 | 156 | { |
5445 | 156 | Py_ssize_t wordshift; |
5446 | 156 | digit remshift; |
5447 | | |
5448 | 156 | assert(PyLong_Check(a)); |
5449 | 156 | assert(shiftby >= 0); |
5450 | 156 | if (_PyLong_IsZero((PyLongObject *)a)) { |
5451 | 0 | return PyLong_FromLong(0); |
5452 | 0 | } |
5453 | | #if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT |
5454 | | if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) { |
5455 | | if (_PyLong_IsNegative((PyLongObject *)a)) { |
5456 | | return PyLong_FromLong(-1); |
5457 | | } |
5458 | | else { |
5459 | | return PyLong_FromLong(0); |
5460 | | } |
5461 | | } |
5462 | | #endif |
5463 | 156 | wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT); |
5464 | 156 | remshift = (digit)(shiftby % PyLong_SHIFT); |
5465 | 156 | return long_rshift1((PyLongObject *)a, wordshift, remshift); |
5466 | 156 | } |
5467 | | |
5468 | | static PyObject * |
5469 | | long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift) |
5470 | 309 | { |
5471 | 309 | PyLongObject *z = NULL; |
5472 | 309 | Py_ssize_t oldsize, newsize, i, j; |
5473 | 309 | twodigits accum; |
5474 | | |
5475 | 309 | if (wordshift == 0 && _PyLong_IsCompact(a)) { |
5476 | 70 | stwodigits m = medium_value(a); |
5477 | | // bypass undefined shift operator behavior |
5478 | 70 | stwodigits x = m < 0 ? -(-m << remshift) : m << remshift; |
5479 | 70 | return (PyObject*)_PyLong_FromSTwoDigits(x); |
5480 | 70 | } |
5481 | | |
5482 | 239 | oldsize = _PyLong_DigitCount(a); |
5483 | 239 | newsize = oldsize + wordshift; |
5484 | 239 | if (remshift) |
5485 | 239 | ++newsize; |
5486 | 239 | z = long_alloc(newsize); |
5487 | 239 | if (z == NULL) |
5488 | 0 | return NULL; |
5489 | 239 | if (_PyLong_IsNegative(a)) { |
5490 | 0 | assert(Py_REFCNT(z) == 1); |
5491 | 0 | _PyLong_FlipSign(z); |
5492 | 0 | } |
5493 | 1.32k | for (i = 0; i < wordshift; i++) |
5494 | 1.08k | z->long_value.ob_digit[i] = 0; |
5495 | 239 | accum = 0; |
5496 | 532 | for (j = 0; j < oldsize; i++, j++) { |
5497 | 293 | accum |= (twodigits)a->long_value.ob_digit[j] << remshift; |
5498 | 293 | z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK); |
5499 | 293 | accum >>= PyLong_SHIFT; |
5500 | 293 | } |
5501 | 239 | if (remshift) |
5502 | 239 | z->long_value.ob_digit[newsize-1] = (digit)accum; |
5503 | 0 | else |
5504 | 239 | assert(!accum); |
5505 | 239 | z = long_normalize(z); |
5506 | 239 | return (PyObject *) maybe_small_long(z); |
5507 | 239 | } |
5508 | | |
5509 | | |
5510 | | static PyObject * |
5511 | | long_lshift_method(PyObject *aa, PyObject *bb) |
5512 | 531 | { |
5513 | 531 | CHECK_BINOP(aa, bb); |
5514 | 531 | PyLongObject *a = (PyLongObject*)aa; |
5515 | 531 | PyLongObject *b = (PyLongObject*)bb; |
5516 | | |
5517 | 531 | if (_PyLong_IsNegative(b)) { |
5518 | 0 | PyErr_SetString(PyExc_ValueError, "negative shift count"); |
5519 | 0 | return NULL; |
5520 | 0 | } |
5521 | 531 | if (_PyLong_IsZero(a)) { |
5522 | 222 | return PyLong_FromLong(0); |
5523 | 222 | } |
5524 | | |
5525 | 309 | int64_t shiftby; |
5526 | 309 | if (PyLong_AsInt64(bb, &shiftby) < 0) { |
5527 | 0 | if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
5528 | 0 | PyErr_SetString(PyExc_OverflowError, |
5529 | 0 | "too many digits in integer"); |
5530 | 0 | } |
5531 | 0 | return NULL; |
5532 | 0 | } |
5533 | 309 | return long_lshift_int64(a, shiftby); |
5534 | 309 | } |
5535 | | |
5536 | | /* Return a << shiftby. */ |
5537 | | static PyObject * |
5538 | | long_lshift_int64(PyLongObject *a, int64_t shiftby) |
5539 | 309 | { |
5540 | 309 | assert(shiftby >= 0); |
5541 | | |
5542 | 309 | if (_PyLong_IsZero(a)) { |
5543 | 0 | return PyLong_FromLong(0); |
5544 | 0 | } |
5545 | | #if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT |
5546 | | if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) { |
5547 | | PyErr_SetString(PyExc_OverflowError, |
5548 | | "too many digits in integer"); |
5549 | | return NULL; |
5550 | | } |
5551 | | #endif |
5552 | 309 | Py_ssize_t wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT); |
5553 | 309 | digit remshift = (digit)(shiftby % PyLong_SHIFT); |
5554 | 309 | return long_lshift1(a, wordshift, remshift); |
5555 | 309 | } |
5556 | | |
5557 | | PyObject * |
5558 | | _PyLong_Lshift(PyObject *a, int64_t shiftby) |
5559 | 0 | { |
5560 | 0 | return long_lshift_int64(_PyLong_CAST(a), shiftby); |
5561 | 0 | } |
5562 | | |
5563 | | |
5564 | | /* Compute two's complement of digit vector a[0:m], writing result to |
5565 | | z[0:m]. The digit vector a need not be normalized, but should not |
5566 | | be entirely zero. a and z may point to the same digit vector. */ |
5567 | | |
5568 | | static void |
5569 | | v_complement(digit *z, digit *a, Py_ssize_t m) |
5570 | 0 | { |
5571 | 0 | Py_ssize_t i; |
5572 | 0 | digit carry = 1; |
5573 | 0 | for (i = 0; i < m; ++i) { |
5574 | 0 | carry += a[i] ^ PyLong_MASK; |
5575 | 0 | z[i] = carry & PyLong_MASK; |
5576 | 0 | carry >>= PyLong_SHIFT; |
5577 | 0 | } |
5578 | 0 | assert(carry == 0); |
5579 | 0 | } |
5580 | | |
5581 | | /* Bitwise and/xor/or operations */ |
5582 | | |
5583 | | static PyObject * |
5584 | | long_bitwise(PyLongObject *a, |
5585 | | char op, /* '&', '|', '^' */ |
5586 | | PyLongObject *b) |
5587 | 2.66k | { |
5588 | 2.66k | int nega, negb, negz; |
5589 | 2.66k | Py_ssize_t size_a, size_b, size_z, i; |
5590 | 2.66k | PyLongObject *z; |
5591 | | |
5592 | | /* Bitwise operations for negative numbers operate as though |
5593 | | on a two's complement representation. So convert arguments |
5594 | | from sign-magnitude to two's complement, and convert the |
5595 | | result back to sign-magnitude at the end. */ |
5596 | | |
5597 | | /* If a is negative, replace it by its two's complement. */ |
5598 | 2.66k | size_a = _PyLong_DigitCount(a); |
5599 | 2.66k | nega = _PyLong_IsNegative(a); |
5600 | 2.66k | if (nega) { |
5601 | 0 | z = long_alloc(size_a); |
5602 | 0 | if (z == NULL) |
5603 | 0 | return NULL; |
5604 | 0 | v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a); |
5605 | 0 | a = z; |
5606 | 0 | } |
5607 | 2.66k | else |
5608 | | /* Keep reference count consistent. */ |
5609 | 2.66k | Py_INCREF(a); |
5610 | | |
5611 | | /* Same for b. */ |
5612 | 2.66k | size_b = _PyLong_DigitCount(b); |
5613 | 2.66k | negb = _PyLong_IsNegative(b); |
5614 | 2.66k | if (negb) { |
5615 | 0 | z = long_alloc(size_b); |
5616 | 0 | if (z == NULL) { |
5617 | 0 | Py_DECREF(a); |
5618 | 0 | return NULL; |
5619 | 0 | } |
5620 | 0 | v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b); |
5621 | 0 | b = z; |
5622 | 0 | } |
5623 | 2.66k | else |
5624 | 2.66k | Py_INCREF(b); |
5625 | | |
5626 | | /* Swap a and b if necessary to ensure size_a >= size_b. */ |
5627 | 2.66k | if (size_a < size_b) { |
5628 | 1.10k | z = a; a = b; b = z; |
5629 | 1.10k | size_z = size_a; size_a = size_b; size_b = size_z; |
5630 | 1.10k | negz = nega; nega = negb; negb = negz; |
5631 | 1.10k | } |
5632 | | |
5633 | | /* JRH: The original logic here was to allocate the result value (z) |
5634 | | as the longer of the two operands. However, there are some cases |
5635 | | where the result is guaranteed to be shorter than that: AND of two |
5636 | | positives, OR of two negatives: use the shorter number. AND with |
5637 | | mixed signs: use the positive number. OR with mixed signs: use the |
5638 | | negative number. |
5639 | | */ |
5640 | 2.66k | switch (op) { |
5641 | 156 | case '^': |
5642 | 156 | negz = nega ^ negb; |
5643 | 156 | size_z = size_a; |
5644 | 156 | break; |
5645 | 2.44k | case '&': |
5646 | 2.44k | negz = nega & negb; |
5647 | 2.44k | size_z = negb ? size_a : size_b; |
5648 | 2.44k | break; |
5649 | 64 | case '|': |
5650 | 64 | negz = nega | negb; |
5651 | 64 | size_z = negb ? size_b : size_a; |
5652 | 64 | break; |
5653 | 0 | default: |
5654 | 0 | Py_UNREACHABLE(); |
5655 | 2.66k | } |
5656 | | |
5657 | | /* We allow an extra digit if z is negative, to make sure that |
5658 | | the final two's complement of z doesn't overflow. */ |
5659 | 2.66k | z = long_alloc(size_z + negz); |
5660 | 2.66k | if (z == NULL) { |
5661 | 0 | Py_DECREF(a); |
5662 | 0 | Py_DECREF(b); |
5663 | 0 | return NULL; |
5664 | 0 | } |
5665 | | |
5666 | | /* Compute digits for overlap of a and b. */ |
5667 | 2.66k | switch(op) { |
5668 | 2.44k | case '&': |
5669 | 6.52k | for (i = 0; i < size_b; ++i) |
5670 | 4.07k | z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i]; |
5671 | 2.44k | break; |
5672 | 64 | case '|': |
5673 | 112 | for (i = 0; i < size_b; ++i) |
5674 | 48 | z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i]; |
5675 | 64 | break; |
5676 | 156 | case '^': |
5677 | 594 | for (i = 0; i < size_b; ++i) |
5678 | 438 | z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i]; |
5679 | 156 | break; |
5680 | 0 | default: |
5681 | 0 | Py_UNREACHABLE(); |
5682 | 2.66k | } |
5683 | | |
5684 | | /* Copy any remaining digits of a, inverting if necessary. */ |
5685 | 2.66k | if (op == '^' && negb) |
5686 | 0 | for (; i < size_z; ++i) |
5687 | 0 | z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK; |
5688 | 2.66k | else if (i < size_z) |
5689 | 182 | memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i], |
5690 | 182 | (size_z-i)*sizeof(digit)); |
5691 | | |
5692 | | /* Complement result if negative. */ |
5693 | 2.66k | if (negz) { |
5694 | 0 | _PyLong_FlipSign(z); |
5695 | 0 | z->long_value.ob_digit[size_z] = PyLong_MASK; |
5696 | 0 | v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1); |
5697 | 0 | } |
5698 | | |
5699 | 2.66k | Py_DECREF(a); |
5700 | 2.66k | Py_DECREF(b); |
5701 | 2.66k | return (PyObject *)maybe_small_long(long_normalize(z)); |
5702 | 2.66k | } |
5703 | | |
5704 | | static PyObject * |
5705 | | long_and(PyObject *a, PyObject *b) |
5706 | 2.87k | { |
5707 | 2.87k | CHECK_BINOP(a, b); |
5708 | 2.87k | PyLongObject *x = (PyLongObject*)a; |
5709 | 2.87k | PyLongObject *y = (PyLongObject*)b; |
5710 | 2.87k | if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) { |
5711 | 426 | return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) & medium_value(y)); |
5712 | 426 | } |
5713 | 2.44k | return long_bitwise(x, '&', y); |
5714 | 2.87k | } |
5715 | | |
5716 | | static PyObject * |
5717 | | long_xor(PyObject *a, PyObject *b) |
5718 | 180 | { |
5719 | 180 | CHECK_BINOP(a, b); |
5720 | 180 | PyLongObject *x = (PyLongObject*)a; |
5721 | 180 | PyLongObject *y = (PyLongObject*)b; |
5722 | 180 | if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) { |
5723 | 24 | return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y)); |
5724 | 24 | } |
5725 | 156 | return long_bitwise(x, '^', y); |
5726 | 180 | } |
5727 | | |
5728 | | static PyObject * |
5729 | | long_or(PyObject *a, PyObject *b) |
5730 | 348 | { |
5731 | 348 | CHECK_BINOP(a, b); |
5732 | 348 | PyLongObject *x = (PyLongObject*)a; |
5733 | 348 | PyLongObject *y = (PyLongObject*)b; |
5734 | 348 | if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) { |
5735 | 284 | return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) | medium_value(y)); |
5736 | 284 | } |
5737 | 64 | return long_bitwise(x, '|', y); |
5738 | 348 | } |
5739 | | |
5740 | | static PyObject * |
5741 | | long_long(PyObject *v) |
5742 | 4.47M | { |
5743 | 4.47M | if (PyLong_CheckExact(v)) { |
5744 | 4.47M | return Py_NewRef(v); |
5745 | 4.47M | } |
5746 | 0 | else { |
5747 | 0 | return _PyLong_Copy((PyLongObject *)v); |
5748 | 0 | } |
5749 | 4.47M | } |
5750 | | |
5751 | | PyObject * |
5752 | | _PyLong_GCD(PyObject *aarg, PyObject *barg) |
5753 | 0 | { |
5754 | 0 | PyLongObject *a, *b, *c = NULL, *d = NULL, *r; |
5755 | 0 | stwodigits x, y, q, s, t, c_carry, d_carry; |
5756 | 0 | stwodigits A, B, C, D, T; |
5757 | 0 | int nbits, k; |
5758 | 0 | digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end; |
5759 | |
|
5760 | 0 | a = (PyLongObject *)aarg; |
5761 | 0 | b = (PyLongObject *)barg; |
5762 | 0 | if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) { |
5763 | 0 | Py_INCREF(a); |
5764 | 0 | Py_INCREF(b); |
5765 | 0 | goto simple; |
5766 | 0 | } |
5767 | | |
5768 | | /* Initial reduction: make sure that 0 <= b <= a. */ |
5769 | 0 | a = long_abs(a); |
5770 | 0 | if (a == NULL) |
5771 | 0 | return NULL; |
5772 | 0 | b = long_abs(b); |
5773 | 0 | if (b == NULL) { |
5774 | 0 | Py_DECREF(a); |
5775 | 0 | return NULL; |
5776 | 0 | } |
5777 | 0 | if (long_compare(a, b) < 0) { |
5778 | 0 | r = a; |
5779 | 0 | a = b; |
5780 | 0 | b = r; |
5781 | 0 | } |
5782 | | /* We now own references to a and b */ |
5783 | |
|
5784 | 0 | Py_ssize_t size_a, size_b, alloc_a, alloc_b; |
5785 | 0 | alloc_a = _PyLong_DigitCount(a); |
5786 | 0 | alloc_b = _PyLong_DigitCount(b); |
5787 | | /* reduce until a fits into 2 digits */ |
5788 | 0 | while ((size_a = _PyLong_DigitCount(a)) > 2) { |
5789 | 0 | nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]); |
5790 | | /* extract top 2*PyLong_SHIFT bits of a into x, along with |
5791 | | corresponding bits of b into y */ |
5792 | 0 | size_b = _PyLong_DigitCount(b); |
5793 | 0 | assert(size_b <= size_a); |
5794 | 0 | if (size_b == 0) { |
5795 | 0 | if (size_a < alloc_a) { |
5796 | 0 | r = (PyLongObject *)_PyLong_Copy(a); |
5797 | 0 | Py_DECREF(a); |
5798 | 0 | } |
5799 | 0 | else |
5800 | 0 | r = a; |
5801 | 0 | Py_DECREF(b); |
5802 | 0 | Py_XDECREF(c); |
5803 | 0 | Py_XDECREF(d); |
5804 | 0 | return (PyObject *)r; |
5805 | 0 | } |
5806 | 0 | x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) | |
5807 | 0 | ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) | |
5808 | 0 | (a->long_value.ob_digit[size_a-3] >> nbits)); |
5809 | |
|
5810 | 0 | y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) | |
5811 | 0 | (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) | |
5812 | 0 | (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0)); |
5813 | | |
5814 | | /* inner loop of Lehmer's algorithm; A, B, C, D never grow |
5815 | | larger than PyLong_MASK during the algorithm. */ |
5816 | 0 | A = 1; B = 0; C = 0; D = 1; |
5817 | 0 | for (k=0;; k++) { |
5818 | 0 | if (y-C == 0) |
5819 | 0 | break; |
5820 | 0 | q = (x+(A-1))/(y-C); |
5821 | 0 | s = B+q*D; |
5822 | 0 | t = x-q*y; |
5823 | 0 | if (s > t) |
5824 | 0 | break; |
5825 | 0 | x = y; y = t; |
5826 | 0 | t = A+q*C; A = D; B = C; C = s; D = t; |
5827 | 0 | } |
5828 | |
|
5829 | 0 | if (k == 0) { |
5830 | | /* no progress; do a Euclidean step */ |
5831 | 0 | if (l_mod(a, b, &r) < 0) |
5832 | 0 | goto error; |
5833 | 0 | Py_SETREF(a, b); |
5834 | 0 | b = r; |
5835 | 0 | alloc_a = alloc_b; |
5836 | 0 | alloc_b = _PyLong_DigitCount(b); |
5837 | 0 | continue; |
5838 | 0 | } |
5839 | | |
5840 | | /* |
5841 | | a, b = A*b-B*a, D*a-C*b if k is odd |
5842 | | a, b = A*a-B*b, D*b-C*a if k is even |
5843 | | */ |
5844 | 0 | if (k&1) { |
5845 | 0 | T = -A; A = -B; B = T; |
5846 | 0 | T = -C; C = -D; D = T; |
5847 | 0 | } |
5848 | 0 | if (c != NULL) { |
5849 | 0 | assert(size_a >= 0); |
5850 | 0 | _PyLong_SetSignAndDigitCount(c, 1, size_a); |
5851 | 0 | } |
5852 | 0 | else if (Py_REFCNT(a) == 1) { |
5853 | 0 | c = (PyLongObject*)Py_NewRef(a); |
5854 | 0 | } |
5855 | 0 | else { |
5856 | 0 | alloc_a = size_a; |
5857 | 0 | c = long_alloc(size_a); |
5858 | 0 | if (c == NULL) |
5859 | 0 | goto error; |
5860 | 0 | } |
5861 | | |
5862 | 0 | if (d != NULL) { |
5863 | 0 | assert(size_a >= 0); |
5864 | 0 | _PyLong_SetSignAndDigitCount(d, 1, size_a); |
5865 | 0 | } |
5866 | 0 | else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) { |
5867 | 0 | d = (PyLongObject*)Py_NewRef(b); |
5868 | 0 | assert(size_a >= 0); |
5869 | 0 | _PyLong_SetSignAndDigitCount(d, 1, size_a); |
5870 | 0 | } |
5871 | 0 | else { |
5872 | 0 | alloc_b = size_a; |
5873 | 0 | d = long_alloc(size_a); |
5874 | 0 | if (d == NULL) |
5875 | 0 | goto error; |
5876 | 0 | } |
5877 | 0 | a_end = a->long_value.ob_digit + size_a; |
5878 | 0 | b_end = b->long_value.ob_digit + size_b; |
5879 | | |
5880 | | /* compute new a and new b in parallel */ |
5881 | 0 | a_digit = a->long_value.ob_digit; |
5882 | 0 | b_digit = b->long_value.ob_digit; |
5883 | 0 | c_digit = c->long_value.ob_digit; |
5884 | 0 | d_digit = d->long_value.ob_digit; |
5885 | 0 | c_carry = 0; |
5886 | 0 | d_carry = 0; |
5887 | 0 | while (b_digit < b_end) { |
5888 | 0 | c_carry += (A * *a_digit) - (B * *b_digit); |
5889 | 0 | d_carry += (D * *b_digit++) - (C * *a_digit++); |
5890 | 0 | *c_digit++ = (digit)(c_carry & PyLong_MASK); |
5891 | 0 | *d_digit++ = (digit)(d_carry & PyLong_MASK); |
5892 | 0 | c_carry >>= PyLong_SHIFT; |
5893 | 0 | d_carry >>= PyLong_SHIFT; |
5894 | 0 | } |
5895 | 0 | while (a_digit < a_end) { |
5896 | 0 | c_carry += A * *a_digit; |
5897 | 0 | d_carry -= C * *a_digit++; |
5898 | 0 | *c_digit++ = (digit)(c_carry & PyLong_MASK); |
5899 | 0 | *d_digit++ = (digit)(d_carry & PyLong_MASK); |
5900 | 0 | c_carry >>= PyLong_SHIFT; |
5901 | 0 | d_carry >>= PyLong_SHIFT; |
5902 | 0 | } |
5903 | 0 | assert(c_carry == 0); |
5904 | 0 | assert(d_carry == 0); |
5905 | |
|
5906 | 0 | Py_INCREF(c); |
5907 | 0 | Py_INCREF(d); |
5908 | 0 | Py_DECREF(a); |
5909 | 0 | Py_DECREF(b); |
5910 | 0 | a = long_normalize(c); |
5911 | 0 | b = long_normalize(d); |
5912 | 0 | } |
5913 | 0 | Py_XDECREF(c); |
5914 | 0 | Py_XDECREF(d); |
5915 | |
|
5916 | 0 | simple: |
5917 | 0 | assert(Py_REFCNT(a) > 0); |
5918 | 0 | assert(Py_REFCNT(b) > 0); |
5919 | | /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid |
5920 | | undefined behaviour when LONG_MAX type is smaller than 60 bits */ |
5921 | 0 | #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5922 | | /* a fits into a long, so b must too */ |
5923 | 0 | x = PyLong_AsLong((PyObject *)a); |
5924 | 0 | y = PyLong_AsLong((PyObject *)b); |
5925 | | #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5926 | | x = PyLong_AsLongLong((PyObject *)a); |
5927 | | y = PyLong_AsLongLong((PyObject *)b); |
5928 | | #else |
5929 | | # error "_PyLong_GCD" |
5930 | | #endif |
5931 | 0 | x = Py_ABS(x); |
5932 | 0 | y = Py_ABS(y); |
5933 | 0 | Py_DECREF(a); |
5934 | 0 | Py_DECREF(b); |
5935 | | |
5936 | | /* usual Euclidean algorithm for longs */ |
5937 | 0 | while (y != 0) { |
5938 | 0 | t = y; |
5939 | 0 | y = x % y; |
5940 | 0 | x = t; |
5941 | 0 | } |
5942 | 0 | #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5943 | 0 | return PyLong_FromLong(x); |
5944 | | #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5945 | | return PyLong_FromLongLong(x); |
5946 | | #else |
5947 | | # error "_PyLong_GCD" |
5948 | | #endif |
5949 | | |
5950 | 0 | error: |
5951 | 0 | Py_DECREF(a); |
5952 | 0 | Py_DECREF(b); |
5953 | 0 | Py_XDECREF(c); |
5954 | 0 | Py_XDECREF(d); |
5955 | 0 | return NULL; |
5956 | 0 | } |
5957 | | |
5958 | | static PyObject * |
5959 | | long_float(PyObject *v) |
5960 | 0 | { |
5961 | 0 | double result; |
5962 | 0 | result = PyLong_AsDouble(v); |
5963 | 0 | if (result == -1.0 && PyErr_Occurred()) |
5964 | 0 | return NULL; |
5965 | 0 | return PyFloat_FromDouble(result); |
5966 | 0 | } |
5967 | | |
5968 | | static PyObject * |
5969 | | long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase); |
5970 | | |
5971 | | /*[clinic input] |
5972 | | @classmethod |
5973 | | int.__new__ as long_new |
5974 | | x: object(c_default="NULL") = 0 |
5975 | | / |
5976 | | base as obase: object(c_default="NULL") = 10 |
5977 | | [clinic start generated code]*/ |
5978 | | |
5979 | | static PyObject * |
5980 | | long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase) |
5981 | | /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/ |
5982 | 285k | { |
5983 | 285k | Py_ssize_t base; |
5984 | | |
5985 | 285k | if (type != &PyLong_Type) |
5986 | 2.25k | return long_subtype_new(type, x, obase); /* Wimp out */ |
5987 | 282k | if (x == NULL) { |
5988 | 12 | if (obase != NULL) { |
5989 | 0 | PyErr_SetString(PyExc_TypeError, |
5990 | 0 | "int() missing string argument"); |
5991 | 0 | return NULL; |
5992 | 0 | } |
5993 | 12 | return PyLong_FromLong(0L); |
5994 | 12 | } |
5995 | | /* default base and limit, forward to standard implementation */ |
5996 | 282k | if (obase == NULL) |
5997 | 2.23k | return PyNumber_Long(x); |
5998 | | |
5999 | 280k | base = PyNumber_AsSsize_t(obase, NULL); |
6000 | 280k | if (base == -1 && PyErr_Occurred()) |
6001 | 0 | return NULL; |
6002 | 280k | if ((base != 0 && base < 2) || base > 36) { |
6003 | 0 | PyErr_SetString(PyExc_ValueError, |
6004 | 0 | "int() base must be >= 2 and <= 36, or 0"); |
6005 | 0 | return NULL; |
6006 | 0 | } |
6007 | | |
6008 | 280k | if (PyUnicode_Check(x)) |
6009 | 279k | return PyLong_FromUnicodeObject(x, (int)base); |
6010 | 1.24k | else if (PyByteArray_Check(x) || PyBytes_Check(x)) { |
6011 | 1.24k | const char *string; |
6012 | 1.24k | if (PyByteArray_Check(x)) |
6013 | 1.24k | string = PyByteArray_AS_STRING(x); |
6014 | 0 | else |
6015 | 0 | string = PyBytes_AS_STRING(x); |
6016 | 1.24k | return _PyLong_FromBytes(string, Py_SIZE(x), (int)base); |
6017 | 1.24k | } |
6018 | 0 | else { |
6019 | 0 | PyErr_SetString(PyExc_TypeError, |
6020 | 0 | "int() can't convert non-string with explicit base"); |
6021 | 0 | return NULL; |
6022 | 0 | } |
6023 | 280k | } |
6024 | | |
6025 | | /* Wimpy, slow approach to tp_new calls for subtypes of int: |
6026 | | first create a regular int from whatever arguments we got, |
6027 | | then allocate a subtype instance and initialize it from |
6028 | | the regular int. The regular int is then thrown away. |
6029 | | */ |
6030 | | static PyObject * |
6031 | | long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase) |
6032 | 2.25k | { |
6033 | 2.25k | PyLongObject *tmp, *newobj; |
6034 | 2.25k | Py_ssize_t i, n; |
6035 | | |
6036 | 2.25k | assert(PyType_IsSubtype(type, &PyLong_Type)); |
6037 | 2.25k | tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase); |
6038 | 2.25k | if (tmp == NULL) |
6039 | 0 | return NULL; |
6040 | 2.25k | assert(PyLong_Check(tmp)); |
6041 | 2.25k | n = _PyLong_DigitCount(tmp); |
6042 | | /* Fast operations for single digit integers (including zero) |
6043 | | * assume that there is always at least one digit present. */ |
6044 | 2.25k | if (n == 0) { |
6045 | 100 | n = 1; |
6046 | 100 | } |
6047 | 2.25k | newobj = (PyLongObject *)type->tp_alloc(type, n); |
6048 | 2.25k | if (newobj == NULL) { |
6049 | 0 | Py_DECREF(tmp); |
6050 | 0 | return NULL; |
6051 | 0 | } |
6052 | 2.25k | assert(PyLong_Check(newobj)); |
6053 | 2.25k | newobj->long_value.lv_tag = tmp->long_value.lv_tag & ~IMMORTALITY_BIT_MASK; |
6054 | 4.52k | for (i = 0; i < n; i++) { |
6055 | 2.27k | newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i]; |
6056 | 2.27k | } |
6057 | 2.25k | Py_DECREF(tmp); |
6058 | 2.25k | return (PyObject *)newobj; |
6059 | 2.25k | } |
6060 | | |
6061 | | /*[clinic input] |
6062 | | int.__getnewargs__ |
6063 | | [clinic start generated code]*/ |
6064 | | |
6065 | | static PyObject * |
6066 | | int___getnewargs___impl(PyObject *self) |
6067 | | /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/ |
6068 | 0 | { |
6069 | 0 | return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self)); |
6070 | 0 | } |
6071 | | |
6072 | | static PyObject * |
6073 | | long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context)) |
6074 | 0 | { |
6075 | 0 | return PyLong_FromLong(0L); |
6076 | 0 | } |
6077 | | |
6078 | | static PyObject * |
6079 | | long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored)) |
6080 | 0 | { |
6081 | 0 | return PyLong_FromLong(1L); |
6082 | 0 | } |
6083 | | |
6084 | | /*[clinic input] |
6085 | | int.__format__ |
6086 | | |
6087 | | format_spec: unicode |
6088 | | / |
6089 | | |
6090 | | Convert to a string according to format_spec. |
6091 | | [clinic start generated code]*/ |
6092 | | |
6093 | | static PyObject * |
6094 | | int___format___impl(PyObject *self, PyObject *format_spec) |
6095 | | /*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/ |
6096 | 348 | { |
6097 | 348 | _PyUnicodeWriter writer; |
6098 | 348 | int ret; |
6099 | | |
6100 | 348 | _PyUnicodeWriter_Init(&writer); |
6101 | 348 | ret = _PyLong_FormatAdvancedWriter( |
6102 | 348 | &writer, |
6103 | 348 | self, |
6104 | 348 | format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
6105 | 348 | if (ret == -1) { |
6106 | 0 | _PyUnicodeWriter_Dealloc(&writer); |
6107 | 0 | return NULL; |
6108 | 0 | } |
6109 | 348 | return _PyUnicodeWriter_Finish(&writer); |
6110 | 348 | } |
6111 | | |
6112 | | /* Return a pair (q, r) such that a = b * q + r, and |
6113 | | abs(r) <= abs(b)/2, with equality possible only if q is even. |
6114 | | In other words, q == a / b, rounded to the nearest integer using |
6115 | | round-half-to-even. */ |
6116 | | |
6117 | | PyObject * |
6118 | | _PyLong_DivmodNear(PyObject *a, PyObject *b) |
6119 | 0 | { |
6120 | 0 | PyLongObject *quo = NULL, *rem = NULL; |
6121 | 0 | PyObject *twice_rem, *result, *temp; |
6122 | 0 | int quo_is_odd, quo_is_neg; |
6123 | 0 | Py_ssize_t cmp; |
6124 | | |
6125 | | /* Equivalent Python code: |
6126 | | |
6127 | | def divmod_near(a, b): |
6128 | | q, r = divmod(a, b) |
6129 | | # round up if either r / b > 0.5, or r / b == 0.5 and q is odd. |
6130 | | # The expression r / b > 0.5 is equivalent to 2 * r > b if b is |
6131 | | # positive, 2 * r < b if b negative. |
6132 | | greater_than_half = 2*r > b if b > 0 else 2*r < b |
6133 | | exactly_half = 2*r == b |
6134 | | if greater_than_half or exactly_half and q % 2 == 1: |
6135 | | q += 1 |
6136 | | r -= b |
6137 | | return q, r |
6138 | | |
6139 | | */ |
6140 | 0 | if (!PyLong_Check(a) || !PyLong_Check(b)) { |
6141 | 0 | PyErr_SetString(PyExc_TypeError, |
6142 | 0 | "non-integer arguments in division"); |
6143 | 0 | return NULL; |
6144 | 0 | } |
6145 | | |
6146 | | /* Do a and b have different signs? If so, quotient is negative. */ |
6147 | 0 | quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b)); |
6148 | |
|
6149 | 0 | if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0) |
6150 | 0 | goto error; |
6151 | | |
6152 | | /* compare twice the remainder with the divisor, to see |
6153 | | if we need to adjust the quotient and remainder */ |
6154 | 0 | twice_rem = long_lshift_int64(rem, 1); |
6155 | 0 | if (twice_rem == NULL) |
6156 | 0 | goto error; |
6157 | 0 | if (quo_is_neg) { |
6158 | 0 | temp = (PyObject*)long_neg((PyLongObject*)twice_rem); |
6159 | 0 | Py_SETREF(twice_rem, temp); |
6160 | 0 | if (twice_rem == NULL) |
6161 | 0 | goto error; |
6162 | 0 | } |
6163 | 0 | cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b); |
6164 | 0 | Py_DECREF(twice_rem); |
6165 | |
|
6166 | 0 | quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0; |
6167 | 0 | if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) { |
6168 | | /* fix up quotient */ |
6169 | 0 | PyObject *one = _PyLong_GetOne(); // borrowed reference |
6170 | 0 | if (quo_is_neg) |
6171 | 0 | temp = (PyObject*)long_sub(quo, (PyLongObject *)one); |
6172 | 0 | else |
6173 | 0 | temp = (PyObject*)long_add(quo, (PyLongObject *)one); |
6174 | 0 | Py_SETREF(quo, (PyLongObject *)temp); |
6175 | 0 | if (quo == NULL) |
6176 | 0 | goto error; |
6177 | | /* and remainder */ |
6178 | 0 | if (quo_is_neg) |
6179 | 0 | temp = (PyObject*)long_add(rem, (PyLongObject *)b); |
6180 | 0 | else |
6181 | 0 | temp = (PyObject*)long_sub(rem, (PyLongObject *)b); |
6182 | 0 | Py_SETREF(rem, (PyLongObject *)temp); |
6183 | 0 | if (rem == NULL) |
6184 | 0 | goto error; |
6185 | 0 | } |
6186 | | |
6187 | 0 | result = PyTuple_New(2); |
6188 | 0 | if (result == NULL) |
6189 | 0 | goto error; |
6190 | | |
6191 | | /* PyTuple_SET_ITEM steals references */ |
6192 | 0 | PyTuple_SET_ITEM(result, 0, (PyObject *)quo); |
6193 | 0 | PyTuple_SET_ITEM(result, 1, (PyObject *)rem); |
6194 | 0 | return result; |
6195 | | |
6196 | 0 | error: |
6197 | 0 | Py_XDECREF(quo); |
6198 | 0 | Py_XDECREF(rem); |
6199 | 0 | return NULL; |
6200 | 0 | } |
6201 | | |
6202 | | /*[clinic input] |
6203 | | int.__round__ |
6204 | | |
6205 | | ndigits as o_ndigits: object = None |
6206 | | / |
6207 | | |
6208 | | Rounding an Integral returns itself. |
6209 | | |
6210 | | Rounding with an ndigits argument also returns an integer. |
6211 | | [clinic start generated code]*/ |
6212 | | |
6213 | | static PyObject * |
6214 | | int___round___impl(PyObject *self, PyObject *o_ndigits) |
6215 | | /*[clinic end generated code: output=954fda6b18875998 input=30c2aec788263144]*/ |
6216 | 0 | { |
6217 | | /* To round an integer m to the nearest 10**n (n positive), we make use of |
6218 | | * the divmod_near operation, defined by: |
6219 | | * |
6220 | | * divmod_near(a, b) = (q, r) |
6221 | | * |
6222 | | * where q is the nearest integer to the quotient a / b (the |
6223 | | * nearest even integer in the case of a tie) and r == a - q * b. |
6224 | | * Hence q * b = a - r is the nearest multiple of b to a, |
6225 | | * preferring even multiples in the case of a tie. |
6226 | | * |
6227 | | * So the nearest multiple of 10**n to m is: |
6228 | | * |
6229 | | * m - divmod_near(m, 10**n)[1]. |
6230 | | */ |
6231 | 0 | if (o_ndigits == Py_None) |
6232 | 0 | return long_long(self); |
6233 | | |
6234 | 0 | PyObject *ndigits = _PyNumber_Index(o_ndigits); |
6235 | 0 | if (ndigits == NULL) |
6236 | 0 | return NULL; |
6237 | | |
6238 | | /* if ndigits >= 0 then no rounding is necessary; return self unchanged */ |
6239 | 0 | if (!_PyLong_IsNegative((PyLongObject *)ndigits)) { |
6240 | 0 | Py_DECREF(ndigits); |
6241 | 0 | return long_long(self); |
6242 | 0 | } |
6243 | | |
6244 | | /* result = self - divmod_near(self, 10 ** -ndigits)[1] */ |
6245 | 0 | PyObject *temp = (PyObject*)long_neg((PyLongObject*)ndigits); |
6246 | 0 | Py_SETREF(ndigits, temp); |
6247 | 0 | if (ndigits == NULL) |
6248 | 0 | return NULL; |
6249 | | |
6250 | 0 | PyObject *result = PyLong_FromLong(10); |
6251 | 0 | if (result == NULL) { |
6252 | 0 | Py_DECREF(ndigits); |
6253 | 0 | return NULL; |
6254 | 0 | } |
6255 | | |
6256 | 0 | temp = long_pow(result, ndigits, Py_None); |
6257 | 0 | Py_DECREF(ndigits); |
6258 | 0 | Py_SETREF(result, temp); |
6259 | 0 | if (result == NULL) |
6260 | 0 | return NULL; |
6261 | | |
6262 | 0 | temp = _PyLong_DivmodNear(self, result); |
6263 | 0 | Py_SETREF(result, temp); |
6264 | 0 | if (result == NULL) |
6265 | 0 | return NULL; |
6266 | | |
6267 | 0 | temp = (PyObject*)long_sub((PyLongObject*)self, |
6268 | 0 | (PyLongObject*)PyTuple_GET_ITEM(result, 1)); |
6269 | 0 | Py_SETREF(result, temp); |
6270 | |
|
6271 | 0 | return result; |
6272 | 0 | } |
6273 | | |
6274 | | /*[clinic input] |
6275 | | int.__sizeof__ -> Py_ssize_t |
6276 | | |
6277 | | Returns size in memory, in bytes. |
6278 | | [clinic start generated code]*/ |
6279 | | |
6280 | | static Py_ssize_t |
6281 | | int___sizeof___impl(PyObject *self) |
6282 | | /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/ |
6283 | 0 | { |
6284 | | /* using Py_MAX(..., 1) because we always allocate space for at least |
6285 | | one digit, even though the integer zero has a digit count of 0 */ |
6286 | 0 | Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1); |
6287 | 0 | return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits; |
6288 | 0 | } |
6289 | | |
6290 | | /*[clinic input] |
6291 | | int.bit_length |
6292 | | |
6293 | | Number of bits necessary to represent self in binary. |
6294 | | |
6295 | | >>> bin(37) |
6296 | | '0b100101' |
6297 | | >>> (37).bit_length() |
6298 | | 6 |
6299 | | [clinic start generated code]*/ |
6300 | | |
6301 | | static PyObject * |
6302 | | int_bit_length_impl(PyObject *self) |
6303 | | /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/ |
6304 | 66 | { |
6305 | 66 | int64_t nbits = _PyLong_NumBits(self); |
6306 | 66 | assert(nbits >= 0); |
6307 | 66 | assert(!PyErr_Occurred()); |
6308 | 66 | return PyLong_FromInt64(nbits); |
6309 | 66 | } |
6310 | | |
6311 | | static int |
6312 | | popcount_digit(digit d) |
6313 | 0 | { |
6314 | | // digit can be larger than uint32_t, but only PyLong_SHIFT bits |
6315 | | // of it will be ever used. |
6316 | 0 | static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t"); |
6317 | 0 | return _Py_popcount32((uint32_t)d); |
6318 | 0 | } |
6319 | | |
6320 | | /*[clinic input] |
6321 | | @permit_long_summary |
6322 | | int.bit_count |
6323 | | |
6324 | | Number of ones in the binary representation of the absolute value of self. |
6325 | | |
6326 | | Also known as the population count. |
6327 | | |
6328 | | >>> bin(13) |
6329 | | '0b1101' |
6330 | | >>> (13).bit_count() |
6331 | | 3 |
6332 | | [clinic start generated code]*/ |
6333 | | |
6334 | | static PyObject * |
6335 | | int_bit_count_impl(PyObject *self) |
6336 | | /*[clinic end generated code: output=2e571970daf1e5c3 input=f2510a306761db15]*/ |
6337 | 0 | { |
6338 | 0 | assert(self != NULL); |
6339 | 0 | assert(PyLong_Check(self)); |
6340 | |
|
6341 | 0 | PyLongObject *z = (PyLongObject *)self; |
6342 | 0 | Py_ssize_t ndigits = _PyLong_DigitCount(z); |
6343 | 0 | int64_t bit_count = 0; |
6344 | |
|
6345 | 0 | for (Py_ssize_t i = 0; i < ndigits; i++) { |
6346 | 0 | bit_count += popcount_digit(z->long_value.ob_digit[i]); |
6347 | 0 | } |
6348 | |
|
6349 | 0 | return PyLong_FromInt64(bit_count); |
6350 | 0 | } |
6351 | | |
6352 | | /*[clinic input] |
6353 | | int.as_integer_ratio |
6354 | | |
6355 | | Return a pair of integers, whose ratio is equal to the original int. |
6356 | | |
6357 | | The ratio is in lowest terms and has a positive denominator. |
6358 | | |
6359 | | >>> (10).as_integer_ratio() |
6360 | | (10, 1) |
6361 | | >>> (-10).as_integer_ratio() |
6362 | | (-10, 1) |
6363 | | >>> (0).as_integer_ratio() |
6364 | | (0, 1) |
6365 | | [clinic start generated code]*/ |
6366 | | |
6367 | | static PyObject * |
6368 | | int_as_integer_ratio_impl(PyObject *self) |
6369 | | /*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/ |
6370 | 0 | { |
6371 | 0 | PyObject *ratio_tuple; |
6372 | 0 | PyObject *numerator = long_long(self); |
6373 | 0 | if (numerator == NULL) { |
6374 | 0 | return NULL; |
6375 | 0 | } |
6376 | 0 | ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne()); |
6377 | 0 | Py_DECREF(numerator); |
6378 | 0 | return ratio_tuple; |
6379 | 0 | } |
6380 | | |
6381 | | /*[clinic input] |
6382 | | int.to_bytes |
6383 | | |
6384 | | length: Py_ssize_t(allow_negative=False) = 1 |
6385 | | Length of bytes object to use. An OverflowError is raised if the |
6386 | | integer is not representable with the given number of bytes. Default |
6387 | | is length 1. |
6388 | | byteorder: unicode(c_default="NULL") = "big" |
6389 | | The byte order used to represent the integer. If byteorder is 'big', |
6390 | | the most significant byte is at the beginning of the byte array. If |
6391 | | byteorder is 'little', the most significant byte is at the end of the |
6392 | | byte array. To request the native byte order of the host system, use |
6393 | | sys.byteorder as the byte order value. Default is to use 'big'. |
6394 | | * |
6395 | | signed as is_signed: bool = False |
6396 | | Determines whether two's complement is used to represent the integer. |
6397 | | If signed is False and a negative integer is given, an OverflowError |
6398 | | is raised. |
6399 | | |
6400 | | Return an array of bytes representing an integer. |
6401 | | [clinic start generated code]*/ |
6402 | | |
6403 | | static PyObject * |
6404 | | int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder, |
6405 | | int is_signed) |
6406 | | /*[clinic end generated code: output=89c801df114050a3 input=66f9d0c20529b44f]*/ |
6407 | 748 | { |
6408 | 748 | int little_endian; |
6409 | 748 | if (byteorder == NULL) |
6410 | 0 | little_endian = 0; |
6411 | 748 | else if (_PyUnicode_Equal(byteorder, &_Py_ID(little))) |
6412 | 748 | little_endian = 1; |
6413 | 0 | else if (_PyUnicode_Equal(byteorder, &_Py_ID(big))) |
6414 | 0 | little_endian = 0; |
6415 | 0 | else { |
6416 | 0 | PyErr_SetString(PyExc_ValueError, |
6417 | 0 | "byteorder must be either 'little' or 'big'"); |
6418 | 0 | return NULL; |
6419 | 0 | } |
6420 | | |
6421 | 748 | PyBytesWriter *writer = PyBytesWriter_Create(length); |
6422 | 748 | if (writer == NULL) { |
6423 | 0 | return NULL; |
6424 | 0 | } |
6425 | | |
6426 | 748 | if (_PyLong_AsByteArray((PyLongObject *)self, |
6427 | 748 | PyBytesWriter_GetData(writer), |
6428 | 748 | length, little_endian, is_signed, 1) < 0) { |
6429 | 0 | PyBytesWriter_Discard(writer); |
6430 | 0 | return NULL; |
6431 | 0 | } |
6432 | | |
6433 | 748 | return PyBytesWriter_Finish(writer); |
6434 | 748 | } |
6435 | | |
6436 | | /*[clinic input] |
6437 | | @classmethod |
6438 | | int.from_bytes |
6439 | | |
6440 | | bytes as bytes_obj: object |
6441 | | Holds the array of bytes to convert. The argument must either |
6442 | | support the buffer protocol or be an iterable object producing bytes. |
6443 | | Bytes and bytearray are examples of built-in objects that support the |
6444 | | buffer protocol. |
6445 | | byteorder: unicode(c_default="NULL") = "big" |
6446 | | The byte order used to represent the integer. If byteorder is 'big', |
6447 | | the most significant byte is at the beginning of the byte array. If |
6448 | | byteorder is 'little', the most significant byte is at the end of the |
6449 | | byte array. To request the native byte order of the host system, use |
6450 | | sys.byteorder as the byte order value. Default is to use 'big'. |
6451 | | * |
6452 | | signed as is_signed: bool = False |
6453 | | Indicates whether two's complement is used to represent the integer. |
6454 | | |
6455 | | Return the integer represented by the given array of bytes. |
6456 | | [clinic start generated code]*/ |
6457 | | |
6458 | | static PyObject * |
6459 | | int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj, |
6460 | | PyObject *byteorder, int is_signed) |
6461 | | /*[clinic end generated code: output=efc5d68e31f9314f input=2ff527997fe7b0c5]*/ |
6462 | 2.30k | { |
6463 | 2.30k | int little_endian; |
6464 | 2.30k | PyObject *long_obj, *bytes; |
6465 | | |
6466 | 2.30k | if (byteorder == NULL) |
6467 | 0 | little_endian = 0; |
6468 | 2.30k | else if (_PyUnicode_Equal(byteorder, &_Py_ID(little))) |
6469 | 2.16k | little_endian = 1; |
6470 | 132 | else if (_PyUnicode_Equal(byteorder, &_Py_ID(big))) |
6471 | 132 | little_endian = 0; |
6472 | 0 | else { |
6473 | 0 | PyErr_SetString(PyExc_ValueError, |
6474 | 0 | "byteorder must be either 'little' or 'big'"); |
6475 | 0 | return NULL; |
6476 | 0 | } |
6477 | | |
6478 | 2.30k | bytes = PyObject_Bytes(bytes_obj); |
6479 | 2.30k | if (bytes == NULL) |
6480 | 0 | return NULL; |
6481 | | |
6482 | 2.30k | long_obj = _PyLong_FromByteArray( |
6483 | 2.30k | (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), |
6484 | 2.30k | little_endian, is_signed); |
6485 | 2.30k | Py_DECREF(bytes); |
6486 | | |
6487 | 2.30k | if (long_obj != NULL && type != &PyLong_Type) { |
6488 | 0 | Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj)); |
6489 | 0 | } |
6490 | | |
6491 | 2.30k | return long_obj; |
6492 | 2.30k | } |
6493 | | |
6494 | | static PyObject * |
6495 | | long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored)) |
6496 | 0 | { |
6497 | 0 | return long_long(self); |
6498 | 0 | } |
6499 | | |
6500 | | static PyObject * |
6501 | | long_long_getter(PyObject *self, void *Py_UNUSED(ignored)) |
6502 | 0 | { |
6503 | 0 | return long_long(self); |
6504 | 0 | } |
6505 | | |
6506 | | /*[clinic input] |
6507 | | int.is_integer |
6508 | | |
6509 | | Returns True. Exists for duck type compatibility with float.is_integer. |
6510 | | [clinic start generated code]*/ |
6511 | | |
6512 | | static PyObject * |
6513 | | int_is_integer_impl(PyObject *self) |
6514 | | /*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/ |
6515 | 0 | { |
6516 | 0 | Py_RETURN_TRUE; |
6517 | 0 | } |
6518 | | |
6519 | | static PyObject * |
6520 | | long_vectorcall(PyObject *type, PyObject * const*args, |
6521 | | size_t nargsf, PyObject *kwnames) |
6522 | 4.56M | { |
6523 | 4.56M | Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); |
6524 | 4.56M | if (kwnames != NULL) { |
6525 | 0 | PyThreadState *tstate = PyThreadState_GET(); |
6526 | 0 | return _PyObject_MakeTpCall(tstate, type, args, nargs, kwnames); |
6527 | 0 | } |
6528 | 4.56M | switch (nargs) { |
6529 | 0 | case 0: |
6530 | 0 | return _PyLong_GetZero(); |
6531 | 4.27M | case 1: |
6532 | 4.27M | return PyNumber_Long(args[0]); |
6533 | 280k | case 2: |
6534 | 280k | return long_new_impl(_PyType_CAST(type), args[0], args[1]); |
6535 | 0 | default: |
6536 | 0 | return PyErr_Format(PyExc_TypeError, |
6537 | 0 | "int expected at most 2 arguments, got %zd", |
6538 | 0 | nargs); |
6539 | 4.56M | } |
6540 | 4.56M | } |
6541 | | |
6542 | | static PyMethodDef long_methods[] = { |
6543 | | {"conjugate", long_long_meth, METH_NOARGS, |
6544 | | "Returns self, the complex conjugate of any int."}, |
6545 | | INT_BIT_LENGTH_METHODDEF |
6546 | | INT_BIT_COUNT_METHODDEF |
6547 | | INT_TO_BYTES_METHODDEF |
6548 | | INT_FROM_BYTES_METHODDEF |
6549 | | INT_AS_INTEGER_RATIO_METHODDEF |
6550 | | {"__trunc__", long_long_meth, METH_NOARGS, |
6551 | | "Truncating an Integral returns itself."}, |
6552 | | {"__floor__", long_long_meth, METH_NOARGS, |
6553 | | "Flooring an Integral returns itself."}, |
6554 | | {"__ceil__", long_long_meth, METH_NOARGS, |
6555 | | "Ceiling of an Integral returns itself."}, |
6556 | | INT___ROUND___METHODDEF |
6557 | | INT___GETNEWARGS___METHODDEF |
6558 | | INT___FORMAT___METHODDEF |
6559 | | INT___SIZEOF___METHODDEF |
6560 | | INT_IS_INTEGER_METHODDEF |
6561 | | {NULL, NULL} /* sentinel */ |
6562 | | }; |
6563 | | |
6564 | | static PyGetSetDef long_getset[] = { |
6565 | | {"real", |
6566 | | long_long_getter, NULL, |
6567 | | "the real part of a complex number", |
6568 | | NULL}, |
6569 | | {"imag", |
6570 | | long_get0, NULL, |
6571 | | "the imaginary part of a complex number", |
6572 | | NULL}, |
6573 | | {"numerator", |
6574 | | long_long_getter, NULL, |
6575 | | "the numerator of a rational number in lowest terms", |
6576 | | NULL}, |
6577 | | {"denominator", |
6578 | | long_get1, NULL, |
6579 | | "the denominator of a rational number in lowest terms", |
6580 | | NULL}, |
6581 | | {NULL} /* Sentinel */ |
6582 | | }; |
6583 | | |
6584 | | PyDoc_STRVAR(long_doc, |
6585 | | "int([x]) -> integer\n\ |
6586 | | int(x, base=10) -> integer\n\ |
6587 | | \n\ |
6588 | | Convert a number or string to an integer, or return 0 if no arguments\n\ |
6589 | | are given. If x is a number, return x.__int__(). For floating-point\n\ |
6590 | | numbers, this truncates towards zero.\n\ |
6591 | | \n\ |
6592 | | If x is not a number or if base is given, then x must be a string,\n\ |
6593 | | bytes, or bytearray instance representing an integer literal in the\n\ |
6594 | | given base. The literal can be preceded by '+' or '-' and be surrounded\n\ |
6595 | | by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\ |
6596 | | Base 0 means to interpret the base from the string as an integer literal.\n\ |
6597 | | >>> int('0b100', base=0)\n\ |
6598 | | 4"); |
6599 | | |
6600 | | static PyNumberMethods long_as_number = { |
6601 | | long_add_method, /*nb_add*/ |
6602 | | long_sub_method, /*nb_subtract*/ |
6603 | | long_mul_method, /*nb_multiply*/ |
6604 | | long_mod, /*nb_remainder*/ |
6605 | | long_divmod, /*nb_divmod*/ |
6606 | | long_pow, /*nb_power*/ |
6607 | | long_neg_method, /*nb_negative*/ |
6608 | | long_long, /*tp_positive*/ |
6609 | | long_abs_method, /*tp_absolute*/ |
6610 | | long_bool, /*tp_bool*/ |
6611 | | long_invert, /*nb_invert*/ |
6612 | | long_lshift_method, /*nb_lshift*/ |
6613 | | long_rshift, /*nb_rshift*/ |
6614 | | long_and, /*nb_and*/ |
6615 | | long_xor, /*nb_xor*/ |
6616 | | long_or, /*nb_or*/ |
6617 | | long_long, /*nb_int*/ |
6618 | | 0, /*nb_reserved*/ |
6619 | | long_float, /*nb_float*/ |
6620 | | 0, /* nb_inplace_add */ |
6621 | | 0, /* nb_inplace_subtract */ |
6622 | | 0, /* nb_inplace_multiply */ |
6623 | | 0, /* nb_inplace_remainder */ |
6624 | | 0, /* nb_inplace_power */ |
6625 | | 0, /* nb_inplace_lshift */ |
6626 | | 0, /* nb_inplace_rshift */ |
6627 | | 0, /* nb_inplace_and */ |
6628 | | 0, /* nb_inplace_xor */ |
6629 | | 0, /* nb_inplace_or */ |
6630 | | long_div, /* nb_floor_divide */ |
6631 | | long_true_divide, /* nb_true_divide */ |
6632 | | 0, /* nb_inplace_floor_divide */ |
6633 | | 0, /* nb_inplace_true_divide */ |
6634 | | long_long, /* nb_index */ |
6635 | | }; |
6636 | | |
6637 | | PyTypeObject PyLong_Type = { |
6638 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
6639 | | "int", /* tp_name */ |
6640 | | offsetof(PyLongObject, long_value.ob_digit), /* tp_basicsize */ |
6641 | | sizeof(digit), /* tp_itemsize */ |
6642 | | long_dealloc, /* tp_dealloc */ |
6643 | | 0, /* tp_vectorcall_offset */ |
6644 | | 0, /* tp_getattr */ |
6645 | | 0, /* tp_setattr */ |
6646 | | 0, /* tp_as_async */ |
6647 | | long_to_decimal_string, /* tp_repr */ |
6648 | | &long_as_number, /* tp_as_number */ |
6649 | | 0, /* tp_as_sequence */ |
6650 | | 0, /* tp_as_mapping */ |
6651 | | long_hash, /* tp_hash */ |
6652 | | 0, /* tp_call */ |
6653 | | 0, /* tp_str */ |
6654 | | PyObject_GenericGetAttr, /* tp_getattro */ |
6655 | | 0, /* tp_setattro */ |
6656 | | 0, /* tp_as_buffer */ |
6657 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | |
6658 | | Py_TPFLAGS_LONG_SUBCLASS | |
6659 | | _Py_TPFLAGS_MATCH_SELF, /* tp_flags */ |
6660 | | long_doc, /* tp_doc */ |
6661 | | 0, /* tp_traverse */ |
6662 | | 0, /* tp_clear */ |
6663 | | long_richcompare, /* tp_richcompare */ |
6664 | | 0, /* tp_weaklistoffset */ |
6665 | | 0, /* tp_iter */ |
6666 | | 0, /* tp_iternext */ |
6667 | | long_methods, /* tp_methods */ |
6668 | | 0, /* tp_members */ |
6669 | | long_getset, /* tp_getset */ |
6670 | | 0, /* tp_base */ |
6671 | | 0, /* tp_dict */ |
6672 | | 0, /* tp_descr_get */ |
6673 | | 0, /* tp_descr_set */ |
6674 | | 0, /* tp_dictoffset */ |
6675 | | 0, /* tp_init */ |
6676 | | 0, /* tp_alloc */ |
6677 | | long_new, /* tp_new */ |
6678 | | PyObject_Free, /* tp_free */ |
6679 | | .tp_vectorcall = long_vectorcall, |
6680 | | .tp_version_tag = _Py_TYPE_VERSION_INT, |
6681 | | }; |
6682 | | |
6683 | | static PyTypeObject Int_InfoType; |
6684 | | |
6685 | | PyDoc_STRVAR(int_info__doc__, |
6686 | | "sys.int_info\n\ |
6687 | | \n\ |
6688 | | A named tuple that holds information about Python's\n\ |
6689 | | internal representation of integers. The attributes are read only."); |
6690 | | |
6691 | | static PyStructSequence_Field int_info_fields[] = { |
6692 | | {"bits_per_digit", "size of a digit in bits"}, |
6693 | | {"sizeof_digit", "size in bytes of the C type used to represent a digit"}, |
6694 | | {"default_max_str_digits", "maximum string conversion digits limitation"}, |
6695 | | {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"}, |
6696 | | {NULL, NULL} |
6697 | | }; |
6698 | | |
6699 | | static PyStructSequence_Desc int_info_desc = { |
6700 | | "sys.int_info", /* name */ |
6701 | | int_info__doc__, /* doc */ |
6702 | | int_info_fields, /* fields */ |
6703 | | 4 /* number of fields */ |
6704 | | }; |
6705 | | |
6706 | | PyObject * |
6707 | | PyLong_GetInfo(void) |
6708 | 16 | { |
6709 | 16 | PyObject* int_info; |
6710 | 16 | int field = 0; |
6711 | 16 | int_info = PyStructSequence_New(&Int_InfoType); |
6712 | 16 | if (int_info == NULL) |
6713 | 0 | return NULL; |
6714 | 16 | PyStructSequence_SET_ITEM(int_info, field++, |
6715 | 16 | PyLong_FromLong(PyLong_SHIFT)); |
6716 | 16 | PyStructSequence_SET_ITEM(int_info, field++, |
6717 | 16 | PyLong_FromLong(sizeof(digit))); |
6718 | | /* |
6719 | | * The following two fields were added after investigating uses of |
6720 | | * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was |
6721 | | * numba using sys.int_info.bits_per_digit as attribute access rather than |
6722 | | * sequence unpacking. Cython and sympy also refer to sys.int_info but only |
6723 | | * as info for debugging. No concern about adding these in a backport. |
6724 | | */ |
6725 | 16 | PyStructSequence_SET_ITEM(int_info, field++, |
6726 | 16 | PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS)); |
6727 | 16 | PyStructSequence_SET_ITEM(int_info, field++, |
6728 | 16 | PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD)); |
6729 | 16 | if (PyErr_Occurred()) { |
6730 | 0 | Py_CLEAR(int_info); |
6731 | 0 | return NULL; |
6732 | 0 | } |
6733 | 16 | return int_info; |
6734 | 16 | } |
6735 | | |
6736 | | |
6737 | | /* runtime lifecycle */ |
6738 | | |
6739 | | PyStatus |
6740 | | _PyLong_InitTypes(PyInterpreterState *interp) |
6741 | 16 | { |
6742 | | /* initialize int_info */ |
6743 | 16 | if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType, |
6744 | 16 | &int_info_desc) < 0) |
6745 | 0 | { |
6746 | 0 | return _PyStatus_ERR("can't init int info type"); |
6747 | 0 | } |
6748 | | |
6749 | 16 | return _PyStatus_OK(); |
6750 | 16 | } |
6751 | | |
6752 | | |
6753 | | void |
6754 | | _PyLong_FiniTypes(PyInterpreterState *interp) |
6755 | 0 | { |
6756 | 0 | _PyStructSequence_FiniBuiltin(interp, &Int_InfoType); |
6757 | 0 | } |
6758 | | |
6759 | | #undef PyUnstable_Long_IsCompact |
6760 | | |
6761 | | int |
6762 | 0 | PyUnstable_Long_IsCompact(const PyLongObject* op) { |
6763 | 0 | return _PyLong_IsCompact((PyLongObject*)op); |
6764 | 0 | } |
6765 | | |
6766 | | #undef PyUnstable_Long_CompactValue |
6767 | | |
6768 | | Py_ssize_t |
6769 | 0 | PyUnstable_Long_CompactValue(const PyLongObject* op) { |
6770 | 0 | return _PyLong_CompactValue((PyLongObject*)op); |
6771 | 0 | } |
6772 | | |
6773 | | |
6774 | | PyObject* PyLong_FromInt32(int32_t value) |
6775 | 0 | { |
6776 | 0 | PYLONG_FROM_INT(uint32_t, int32_t, value); |
6777 | 0 | } |
6778 | | |
6779 | | PyObject* PyLong_FromUInt32(uint32_t value) |
6780 | 0 | { |
6781 | 0 | PYLONG_FROM_UINT(uint32_t, value); |
6782 | 0 | } |
6783 | | |
6784 | | PyObject* PyLong_FromInt64(int64_t value) |
6785 | 66 | { |
6786 | 66 | PYLONG_FROM_INT(uint64_t, int64_t, value); |
6787 | 66 | } |
6788 | | |
6789 | | PyObject* PyLong_FromUInt64(uint64_t value) |
6790 | 0 | { |
6791 | 0 | PYLONG_FROM_UINT(uint64_t, value); |
6792 | 0 | } |
6793 | | |
6794 | | #define LONG_TO_INT(obj, value, type_name) \ |
6795 | 465 | do { \ |
6796 | 465 | int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \ |
6797 | 465 | | Py_ASNATIVEBYTES_ALLOW_INDEX); \ |
6798 | 465 | Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \ |
6799 | 465 | if (bytes < 0) { \ |
6800 | 0 | return -1; \ |
6801 | 0 | } \ |
6802 | 465 | if ((size_t)bytes > sizeof(*value)) { \ |
6803 | 0 | PyErr_SetString(PyExc_OverflowError, \ |
6804 | 0 | "Python int too large to convert to " type_name); \ |
6805 | 0 | return -1; \ |
6806 | 0 | } \ |
6807 | 465 | return 0; \ |
6808 | 465 | } while (0) |
6809 | | |
6810 | | int PyLong_AsInt32(PyObject *obj, int32_t *value) |
6811 | 0 | { |
6812 | 0 | LONG_TO_INT(obj, value, "C int32_t"); |
6813 | 0 | } |
6814 | | |
6815 | | int PyLong_AsInt64(PyObject *obj, int64_t *value) |
6816 | 465 | { |
6817 | 465 | LONG_TO_INT(obj, value, "C int64_t"); |
6818 | 465 | } |
6819 | | |
6820 | | #define LONG_TO_UINT(obj, value, type_name) \ |
6821 | 0 | do { \ |
6822 | 0 | int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \ |
6823 | 0 | | Py_ASNATIVEBYTES_UNSIGNED_BUFFER \ |
6824 | 0 | | Py_ASNATIVEBYTES_REJECT_NEGATIVE \ |
6825 | 0 | | Py_ASNATIVEBYTES_ALLOW_INDEX); \ |
6826 | 0 | Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \ |
6827 | 0 | if (bytes < 0) { \ |
6828 | 0 | return -1; \ |
6829 | 0 | } \ |
6830 | 0 | if ((size_t)bytes > sizeof(*value)) { \ |
6831 | 0 | PyErr_SetString(PyExc_OverflowError, \ |
6832 | 0 | "Python int too large to convert to " type_name); \ |
6833 | 0 | return -1; \ |
6834 | 0 | } \ |
6835 | 0 | return 0; \ |
6836 | 0 | } while (0) |
6837 | | |
6838 | | int PyLong_AsUInt32(PyObject *obj, uint32_t *value) |
6839 | 0 | { |
6840 | 0 | LONG_TO_UINT(obj, value, "C uint32_t"); |
6841 | 0 | } |
6842 | | |
6843 | | int PyLong_AsUInt64(PyObject *obj, uint64_t *value) |
6844 | 0 | { |
6845 | 0 | LONG_TO_UINT(obj, value, "C uint64_t"); |
6846 | 0 | } |
6847 | | |
6848 | | |
6849 | | static const PyLongLayout PyLong_LAYOUT = { |
6850 | | .bits_per_digit = PyLong_SHIFT, |
6851 | | .digits_order = -1, // least significant first |
6852 | | .digit_endianness = PY_LITTLE_ENDIAN ? -1 : 1, |
6853 | | .digit_size = sizeof(digit), |
6854 | | }; |
6855 | | |
6856 | | |
6857 | | const PyLongLayout* |
6858 | | PyLong_GetNativeLayout(void) |
6859 | 83 | { |
6860 | 83 | return &PyLong_LAYOUT; |
6861 | 83 | } |
6862 | | |
6863 | | |
6864 | | int |
6865 | | PyLong_Export(PyObject *obj, PyLongExport *export_long) |
6866 | 11 | { |
6867 | 11 | if (!PyLong_Check(obj)) { |
6868 | 0 | memset(export_long, 0, sizeof(*export_long)); |
6869 | 0 | PyErr_Format(PyExc_TypeError, "expect int, got %T", obj); |
6870 | 0 | return -1; |
6871 | 0 | } |
6872 | | |
6873 | | // Fast-path: try to convert to a int64_t |
6874 | 11 | int overflow; |
6875 | 11 | #if SIZEOF_LONG == 8 |
6876 | 11 | long value = PyLong_AsLongAndOverflow(obj, &overflow); |
6877 | | #else |
6878 | | // Windows has 32-bit long, so use 64-bit long long instead |
6879 | | long long value = PyLong_AsLongLongAndOverflow(obj, &overflow); |
6880 | | #endif |
6881 | 11 | Py_BUILD_ASSERT(sizeof(value) == sizeof(int64_t)); |
6882 | | // the function cannot fail since obj is a PyLongObject |
6883 | 11 | assert(!(value == -1 && PyErr_Occurred())); |
6884 | | |
6885 | 11 | if (!overflow) { |
6886 | 5 | export_long->value = value; |
6887 | 5 | export_long->negative = 0; |
6888 | 5 | export_long->ndigits = 0; |
6889 | 5 | export_long->digits = NULL; |
6890 | 5 | export_long->_reserved = 0; |
6891 | 5 | } |
6892 | 6 | else { |
6893 | 6 | PyLongObject *self = (PyLongObject*)obj; |
6894 | 6 | export_long->value = 0; |
6895 | 6 | export_long->negative = _PyLong_IsNegative(self); |
6896 | 6 | export_long->ndigits = _PyLong_DigitCount(self); |
6897 | 6 | if (export_long->ndigits == 0) { |
6898 | 0 | export_long->ndigits = 1; |
6899 | 0 | } |
6900 | 6 | export_long->digits = self->long_value.ob_digit; |
6901 | 6 | export_long->_reserved = (Py_uintptr_t)Py_NewRef(obj); |
6902 | 6 | } |
6903 | 11 | return 0; |
6904 | 11 | } |
6905 | | |
6906 | | |
6907 | | void |
6908 | | PyLong_FreeExport(PyLongExport *export_long) |
6909 | 6 | { |
6910 | 6 | PyObject *obj = (PyObject*)export_long->_reserved; |
6911 | 6 | if (obj) { |
6912 | 6 | export_long->_reserved = 0; |
6913 | 6 | Py_DECREF(obj); |
6914 | 6 | } |
6915 | 6 | } |
6916 | | |
6917 | | |
6918 | | /* --- PyLongWriter API --------------------------------------------------- */ |
6919 | | |
6920 | | PyLongWriter* |
6921 | | PyLongWriter_Create(int negative, Py_ssize_t ndigits, void **digits) |
6922 | 77 | { |
6923 | 77 | if (ndigits <= 0) { |
6924 | 0 | PyErr_SetString(PyExc_ValueError, "ndigits must be positive"); |
6925 | 0 | goto error; |
6926 | 0 | } |
6927 | 77 | assert(digits != NULL); |
6928 | | |
6929 | 77 | PyLongObject *obj = long_alloc(ndigits); |
6930 | 77 | if (obj == NULL) { |
6931 | 0 | goto error; |
6932 | 0 | } |
6933 | 77 | if (negative) { |
6934 | 0 | _PyLong_FlipSign(obj); |
6935 | 0 | } |
6936 | | |
6937 | 77 | *digits = obj->long_value.ob_digit; |
6938 | 77 | return (PyLongWriter*)obj; |
6939 | | |
6940 | 0 | error: |
6941 | 0 | *digits = NULL; |
6942 | 0 | return NULL; |
6943 | 77 | } |
6944 | | |
6945 | | |
6946 | | void |
6947 | | PyLongWriter_Discard(PyLongWriter *writer) |
6948 | 0 | { |
6949 | 0 | if (writer == NULL) { |
6950 | 0 | return; |
6951 | 0 | } |
6952 | | |
6953 | 0 | PyLongObject *obj = (PyLongObject *)writer; |
6954 | 0 | assert(Py_REFCNT(obj) == 1); |
6955 | 0 | Py_DECREF(obj); |
6956 | 0 | } |
6957 | | |
6958 | | |
6959 | | PyObject* |
6960 | | PyLongWriter_Finish(PyLongWriter *writer) |
6961 | 77 | { |
6962 | 77 | PyLongObject *obj = (PyLongObject *)writer; |
6963 | 77 | assert(Py_REFCNT(obj) == 1); |
6964 | | |
6965 | | // Normalize and get singleton if possible |
6966 | 77 | obj = maybe_small_long(long_normalize(obj)); |
6967 | | |
6968 | 77 | return (PyObject*)obj; |
6969 | 77 | } |