Coverage Report

Created: 2025-10-10 06:33

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Objects/longobject.c
Line
Count
Source
1
/* Long (arbitrary precision) integer object implementation */
2
3
/* XXX The functional organization of this file is terrible */
4
5
#include "Python.h"
6
#include "pycore_bitutils.h"      // _Py_popcount32()
7
#include "pycore_initconfig.h"    // _PyStatus_OK()
8
#include "pycore_call.h"          // _PyObject_MakeTpCall
9
#include "pycore_freelist.h"      // _Py_FREELIST_FREE, _Py_FREELIST_POP
10
#include "pycore_long.h"          // _Py_SmallInts
11
#include "pycore_object.h"        // _PyObject_Init()
12
#include "pycore_runtime.h"       // _PY_NSMALLPOSINTS
13
#include "pycore_stackref.h"
14
#include "pycore_structseq.h"     // _PyStructSequence_FiniBuiltin()
15
#include "pycore_unicodeobject.h" // _PyUnicode_Equal()
16
17
#include <float.h>                // DBL_MANT_DIG
18
#include <stddef.h>               // offsetof
19
20
#include "clinic/longobject.c.h"
21
/*[clinic input]
22
class int "PyObject *" "&PyLong_Type"
23
[clinic start generated code]*/
24
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
25
26
1.95G
#define medium_value(x) ((stwodigits)_PyLong_CompactValue(x))
27
28
1.63G
#define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
29
2.40M
#define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
30
31
55
#define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
32
2
#define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
33
34
/* If defined, use algorithms from the _pylong.py module */
35
#define WITH_PYLONG_MODULE 1
36
37
// Forward declarations
38
static PyLongObject* long_neg(PyLongObject *v);
39
static PyLongObject *x_divrem(PyLongObject *, PyLongObject *, PyLongObject **);
40
static PyObject* long_long(PyObject *v);
41
static PyObject* long_lshift_int64(PyLongObject *a, int64_t shiftby);
42
43
44
static inline void
45
_Py_DECREF_INT(PyLongObject *op)
46
14.9M
{
47
14.9M
    assert(PyLong_CheckExact(op));
48
14.9M
    _Py_DECREF_SPECIALIZED((PyObject *)op, _PyLong_ExactDealloc);
49
14.9M
}
50
51
static inline int
52
is_medium_int(stwodigits x)
53
473M
{
54
    /* Take care that we are comparing unsigned values. */
55
473M
    twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
56
473M
    return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
57
473M
}
58
59
static PyObject *
60
get_small_int(sdigit ival)
61
742M
{
62
742M
    assert(IS_SMALL_INT(ival));
63
742M
    return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
64
742M
}
65
66
static PyLongObject *
67
maybe_small_long(PyLongObject *v)
68
7.79M
{
69
7.79M
    if (v && _PyLong_IsCompact(v)) {
70
7.48M
        stwodigits ival = medium_value(v);
71
7.48M
        if (IS_SMALL_INT(ival)) {
72
7.41M
            _Py_DECREF_INT(v);
73
7.41M
            return (PyLongObject *)get_small_int((sdigit)ival);
74
7.41M
        }
75
7.48M
    }
76
381k
    return v;
77
7.79M
}
78
79
/* For int multiplication, use the O(N**2) school algorithm unless
80
 * both operands contain more than KARATSUBA_CUTOFF digits (this
81
 * being an internal Python int digit, in base BASE).
82
 */
83
262k
#define KARATSUBA_CUTOFF 70
84
12
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
85
86
/* For exponentiation, use the binary left-to-right algorithm unless the
87
 ^ exponent contains more than HUGE_EXP_CUTOFF bits.  In that case, do
88
 * (no more than) EXP_WINDOW_SIZE bits at a time.  The potential drawback is
89
 * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
90
 * precomputed.
91
 */
92
0
#define EXP_WINDOW_SIZE 5
93
0
#define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
94
/* Suppose the exponent has bit length e. All ways of doing this
95
 * need e squarings. The binary method also needs a multiply for
96
 * each bit set. In a k-ary method with window width w, a multiply
97
 * for each non-zero window, so at worst (and likely!)
98
 * ceiling(e/w). The k-ary sliding window method has the same
99
 * worst case, but the window slides so it can sometimes skip
100
 * over an all-zero window that the fixed-window method can't
101
 * exploit. In addition, the windowing methods need multiplies
102
 * to precompute a table of small powers.
103
 *
104
 * For the sliding window method with width 5, 16 precomputation
105
 * multiplies are needed. Assuming about half the exponent bits
106
 * are set, then, the binary method needs about e/2 extra mults
107
 * and the window method about 16 + e/5.
108
 *
109
 * The latter is smaller for e > 53 1/3. We don't have direct
110
 * access to the bit length, though, so call it 60, which is a
111
 * multiple of a long digit's max bit length (15 or 30 so far).
112
 */
113
82
#define HUGE_EXP_CUTOFF 60
114
115
#define SIGCHECK(PyTryBlock)                    \
116
7.61M
    do {                                        \
117
7.61M
        if (PyErr_CheckSignals()) PyTryBlock    \
118
7.61M
    } while(0)
119
120
/* Normalize (remove leading zeros from) an int object.
121
   Doesn't attempt to free the storage--in most cases, due to the nature
122
   of the algorithms used, this could save at most be one word anyway. */
123
124
static PyLongObject *
125
long_normalize(PyLongObject *v)
126
7.99M
{
127
7.99M
    Py_ssize_t j = _PyLong_DigitCount(v);
128
7.99M
    Py_ssize_t i = j;
129
130
8.18M
    while (i > 0 && v->long_value.ob_digit[i-1] == 0)
131
187k
        --i;
132
7.99M
    if (i != j) {
133
186k
        if (i == 0) {
134
1.77k
            _PyLong_SetSignAndDigitCount(v, 0, 0);
135
1.77k
        }
136
184k
        else {
137
184k
            _PyLong_SetDigitCount(v, i);
138
184k
        }
139
186k
    }
140
7.99M
    return v;
141
7.99M
}
142
143
/* Allocate a new int object with size digits.
144
   Return NULL and set exception if we run out of memory. */
145
146
#if SIZEOF_SIZE_T < 8
147
# define MAX_LONG_DIGITS \
148
    ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit))
149
#else
150
/* Guarantee that the number of bits fits in int64_t.
151
   This is more than an exbibyte, that is more than many of modern
152
   architectures support in principle.
153
   -1 is added to avoid overflow in _PyLong_Frexp(). */
154
25.4M
# define MAX_LONG_DIGITS ((INT64_MAX-1) / PyLong_SHIFT)
155
#endif
156
157
static PyLongObject *
158
long_alloc(Py_ssize_t size)
159
17.9M
{
160
17.9M
    assert(size >= 0);
161
17.9M
    PyLongObject *result = NULL;
162
17.9M
    if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
163
0
        PyErr_SetString(PyExc_OverflowError,
164
0
                        "too many digits in integer");
165
0
        return NULL;
166
0
    }
167
    /* Fast operations for single digit integers (including zero)
168
     * assume that there is always at least one digit present. */
169
17.9M
    Py_ssize_t ndigits = size ? size : 1;
170
171
17.9M
    if (ndigits == 1) {
172
7.57M
        result = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
173
7.57M
    }
174
17.9M
    if (result == NULL) {
175
        /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
176
        sizeof(digit)*size.  Previous incarnations of this code used
177
        sizeof() instead of the offsetof, but this risks being
178
        incorrect in the presence of padding between the header
179
        and the digits. */
180
10.3M
        result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) +
181
10.3M
                                ndigits*sizeof(digit));
182
10.3M
        if (!result) {
183
0
            PyErr_NoMemory();
184
0
            return NULL;
185
0
        }
186
10.3M
        _PyObject_Init((PyObject*)result, &PyLong_Type);
187
10.3M
    }
188
17.9M
    _PyLong_SetSignAndDigitCount(result, size != 0, size);
189
    /* The digit has to be initialized explicitly to avoid
190
     * use-of-uninitialized-value. */
191
17.9M
    result->long_value.ob_digit[0] = 0;
192
17.9M
    return result;
193
17.9M
}
194
195
PyLongObject *
196
_PyLong_New(Py_ssize_t size)
197
0
{
198
0
    return long_alloc(size);
199
0
}
200
201
PyLongObject *
202
_PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits)
203
0
{
204
0
    assert(digit_count >= 0);
205
0
    if (digit_count == 0) {
206
0
        return (PyLongObject *)_PyLong_GetZero();
207
0
    }
208
0
    PyLongObject *result = long_alloc(digit_count);
209
0
    if (result == NULL) {
210
0
        return NULL;
211
0
    }
212
0
    _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count);
213
0
    memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit));
214
0
    return result;
215
0
}
216
217
PyObject *
218
_PyLong_Copy(PyLongObject *src)
219
0
{
220
0
    assert(src != NULL);
221
0
    int sign;
222
223
0
    if (_PyLong_IsCompact(src)) {
224
0
        stwodigits ival = medium_value(src);
225
0
        if (IS_SMALL_INT(ival)) {
226
0
            return get_small_int((sdigit)ival);
227
0
        }
228
0
        sign = _PyLong_CompactSign(src);
229
0
    }
230
0
    else {
231
0
        sign = _PyLong_NonCompactSign(src);
232
0
    }
233
234
0
    Py_ssize_t size = _PyLong_DigitCount(src);
235
0
    PyLongObject *result = long_alloc(size);
236
237
0
    if (result == NULL) {
238
0
        return NULL;
239
0
    }
240
0
    _PyLong_SetSignAndDigitCount(result, sign, size);
241
0
    memcpy(result->long_value.ob_digit, src->long_value.ob_digit,
242
0
           size * sizeof(digit));
243
0
    return (PyObject *)result;
244
0
}
245
246
static PyObject *
247
_PyLong_FromMedium(sdigit x)
248
415M
{
249
415M
    assert(!IS_SMALL_INT(x));
250
415M
    assert(is_medium_int(x));
251
252
415M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
253
415M
    if (v == NULL) {
254
83.8M
        v = PyObject_Malloc(sizeof(PyLongObject));
255
83.8M
        if (v == NULL) {
256
0
            PyErr_NoMemory();
257
0
            return NULL;
258
0
        }
259
83.8M
        _PyObject_Init((PyObject*)v, &PyLong_Type);
260
83.8M
    }
261
415M
    digit abs_x = x < 0 ? -x : x;
262
415M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
263
415M
    v->long_value.ob_digit[0] = abs_x;
264
415M
    return (PyObject*)v;
265
415M
}
266
267
static PyObject *
268
_PyLong_FromLarge(stwodigits ival)
269
836
{
270
836
    twodigits abs_ival;
271
836
    int sign;
272
836
    assert(!is_medium_int(ival));
273
274
836
    if (ival < 0) {
275
        /* negate: can't write this as abs_ival = -ival since that
276
           invokes undefined behaviour when ival is LONG_MIN */
277
0
        abs_ival = 0U-(twodigits)ival;
278
0
        sign = -1;
279
0
    }
280
836
    else {
281
836
        abs_ival = (twodigits)ival;
282
836
        sign = 1;
283
836
    }
284
    /* Must be at least two digits */
285
836
    assert(abs_ival >> PyLong_SHIFT != 0);
286
836
    twodigits t = abs_ival >> (PyLong_SHIFT * 2);
287
836
    Py_ssize_t ndigits = 2;
288
836
    while (t) {
289
0
        ++ndigits;
290
0
        t >>= PyLong_SHIFT;
291
0
    }
292
836
    PyLongObject *v = long_alloc(ndigits);
293
836
    if (v != NULL) {
294
836
        digit *p = v->long_value.ob_digit;
295
836
        _PyLong_SetSignAndDigitCount(v, sign, ndigits);
296
836
        t = abs_ival;
297
2.50k
        while (t) {
298
1.67k
            *p++ = Py_SAFE_DOWNCAST(
299
1.67k
                t & PyLong_MASK, twodigits, digit);
300
1.67k
            t >>= PyLong_SHIFT;
301
1.67k
        }
302
836
    }
303
836
    return (PyObject *)v;
304
836
}
305
306
/* Create a new int object from a C word-sized int */
307
static inline PyLongObject *
308
_PyLong_FromSTwoDigits(stwodigits x)
309
124k
{
310
124k
    if (IS_SMALL_INT(x)) {
311
109k
        return (PyLongObject*)get_small_int((sdigit)x);
312
109k
    }
313
124k
    assert(x != 0);
314
14.9k
    if (is_medium_int(x)) {
315
14.1k
        return (PyLongObject*)_PyLong_FromMedium((sdigit)x);
316
14.1k
    }
317
836
    return (PyLongObject*)_PyLong_FromLarge(x);
318
14.9k
}
319
320
/* Create a new medium int object from a medium int.
321
 * Do not raise. Return NULL if not medium or can't allocate. */
322
static inline _PyStackRef
323
medium_from_stwodigits(stwodigits x)
324
972M
{
325
972M
    if (IS_SMALL_INT(x)) {
326
498M
        return PyStackRef_FromPyObjectBorrow(get_small_int((sdigit)x));
327
498M
    }
328
972M
    assert(x != 0);
329
473M
    if(!is_medium_int(x)) {
330
734
        return PyStackRef_NULL;
331
734
    }
332
473M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
333
473M
    if (v == NULL) {
334
103k
        v = PyObject_Malloc(sizeof(PyLongObject));
335
103k
        if (v == NULL) {
336
0
            return PyStackRef_NULL;
337
0
        }
338
103k
        _PyObject_Init((PyObject*)v, &PyLong_Type);
339
103k
    }
340
473M
    digit abs_x = x < 0 ? (digit)(-x) : (digit)x;
341
473M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
342
473M
    v->long_value.ob_digit[0] = abs_x;
343
473M
    return PyStackRef_FromPyObjectStealMortal((PyObject *)v);
344
473M
}
345
346
347
/* If a freshly-allocated int is already shared, it must
348
   be a small integer, so negating it must go to PyLong_FromLong */
349
Py_LOCAL_INLINE(void)
350
_PyLong_Negate(PyLongObject **x_p)
351
18
{
352
18
    PyLongObject *x;
353
354
18
    x = (PyLongObject *)*x_p;
355
18
    if (Py_REFCNT(x) == 1) {
356
0
         _PyLong_FlipSign(x);
357
0
        return;
358
0
    }
359
360
18
    *x_p = _PyLong_FromSTwoDigits(-medium_value(x));
361
18
    Py_DECREF(x);
362
18
}
363
364
#define PYLONG_FROM_INT(UINT_TYPE, INT_TYPE, ival)                                  \
365
651M
    do {                                                                            \
366
651M
        /* Handle small and medium cases. */                                        \
367
651M
        if (IS_SMALL_INT(ival)) {                                                   \
368
235M
            return get_small_int((sdigit)(ival));                                   \
369
235M
        }                                                                           \
370
651M
        if (-(INT_TYPE)PyLong_MASK <= (ival) && (ival) <= (INT_TYPE)PyLong_MASK) {  \
371
415M
            return _PyLong_FromMedium((sdigit)(ival));                              \
372
415M
        }                                                                           \
373
415M
        UINT_TYPE abs_ival = (ival) < 0 ? 0U-(UINT_TYPE)(ival) : (UINT_TYPE)(ival); \
374
35.5k
        /* Do shift in two steps to avoid possible undefined behavior. */           \
375
35.5k
        UINT_TYPE t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;                     \
376
35.5k
        /* Count digits (at least two - smaller cases were handled above). */       \
377
35.5k
        Py_ssize_t ndigits = 2;                                                     \
378
51.7k
        while (t) {                                                                 \
379
16.2k
            ++ndigits;                                                              \
380
16.2k
            t >>= PyLong_SHIFT;                                                     \
381
16.2k
        }                                                                           \
382
35.5k
        /* Construct output value. */                                               \
383
35.5k
        PyLongObject *v = long_alloc(ndigits);                                      \
384
35.5k
        if (v == NULL) {                                                            \
385
0
            return NULL;                                                            \
386
0
        }                                                                           \
387
35.5k
        digit *p = v->long_value.ob_digit;                                          \
388
35.5k
        _PyLong_SetSignAndDigitCount(v, (ival) < 0 ? -1 : 1, ndigits);              \
389
35.5k
        t = abs_ival;                                                               \
390
122k
        while (t) {                                                                 \
391
87.2k
            *p++ = (digit)(t & PyLong_MASK);                                        \
392
87.2k
            t >>= PyLong_SHIFT;                                                     \
393
87.2k
        }                                                                           \
394
35.5k
        return (PyObject *)v;                                                       \
395
35.5k
    } while(0)
396
397
398
/* Create a new int object from a C long int */
399
400
PyObject *
401
PyLong_FromLong(long ival)
402
378M
{
403
378M
    PYLONG_FROM_INT(unsigned long, long, ival);
404
378M
}
405
406
#define PYLONG_FROM_UINT(INT_TYPE, ival) \
407
2.40M
    do { \
408
2.40M
        /* Handle small and medium cases. */ \
409
2.40M
        if (IS_SMALL_UINT(ival)) { \
410
16.8k
            return get_small_int((sdigit)(ival)); \
411
16.8k
        } \
412
2.40M
        if ((ival) <= PyLong_MASK) { \
413
10.8k
            return _PyLong_FromMedium((sdigit)(ival)); \
414
10.8k
        } \
415
2.38M
        /* Do shift in two steps to avoid possible undefined behavior. */ \
416
2.38M
        INT_TYPE t = (ival) >> PyLong_SHIFT >> PyLong_SHIFT; \
417
2.37M
        /* Count digits (at least two - smaller cases were handled above). */ \
418
2.37M
        Py_ssize_t ndigits = 2; \
419
2.37M
        while (t) { \
420
0
            ++ndigits; \
421
0
            t >>= PyLong_SHIFT; \
422
0
        } \
423
2.37M
        /* Construct output value. */ \
424
2.37M
        PyLongObject *v = long_alloc(ndigits); \
425
2.37M
        if (v == NULL) { \
426
0
            return NULL; \
427
0
        } \
428
2.37M
        digit *p = v->long_value.ob_digit; \
429
7.11M
        while ((ival)) { \
430
4.74M
            *p++ = (digit)((ival) & PyLong_MASK); \
431
4.74M
            (ival) >>= PyLong_SHIFT; \
432
4.74M
        } \
433
2.37M
        return (PyObject *)v; \
434
2.37M
    } while(0)
435
436
/* Create a new int object from a C unsigned long int */
437
438
PyObject *
439
PyLong_FromUnsignedLong(unsigned long ival)
440
2.37M
{
441
2.37M
    PYLONG_FROM_UINT(unsigned long, ival);
442
2.37M
}
443
444
/* Create a new int object from a C unsigned long long int. */
445
446
PyObject *
447
PyLong_FromUnsignedLongLong(unsigned long long ival)
448
22.5k
{
449
22.5k
    PYLONG_FROM_UINT(unsigned long long, ival);
450
22.5k
}
451
452
/* Create a new int object from a C size_t. */
453
454
PyObject *
455
PyLong_FromSize_t(size_t ival)
456
880
{
457
880
    PYLONG_FROM_UINT(size_t, ival);
458
880
}
459
460
/* Create a new int object from a C double */
461
462
PyObject *
463
PyLong_FromDouble(double dval)
464
13.7k
{
465
    /* Try to get out cheap if this fits in a long. When a finite value of real
466
     * floating type is converted to an integer type, the value is truncated
467
     * toward zero. If the value of the integral part cannot be represented by
468
     * the integer type, the behavior is undefined. Thus, we must check that
469
     * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
470
     * of precision than a double, casting LONG_MIN - 1 to double may yield an
471
     * approximation, but LONG_MAX + 1 is a power of two and can be represented
472
     * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
473
     * check against [-(LONG_MAX + 1), LONG_MAX + 1).
474
     */
475
13.7k
    const double int_max = (unsigned long)LONG_MAX + 1;
476
13.7k
    if (-int_max < dval && dval < int_max) {
477
13.7k
        return PyLong_FromLong((long)dval);
478
13.7k
    }
479
480
0
    PyLongObject *v;
481
0
    double frac;
482
0
    int i, ndig, expo, neg;
483
0
    neg = 0;
484
0
    if (isinf(dval)) {
485
0
        PyErr_SetString(PyExc_OverflowError,
486
0
                        "cannot convert float infinity to integer");
487
0
        return NULL;
488
0
    }
489
0
    if (isnan(dval)) {
490
0
        PyErr_SetString(PyExc_ValueError,
491
0
                        "cannot convert float NaN to integer");
492
0
        return NULL;
493
0
    }
494
0
    if (dval < 0.0) {
495
0
        neg = 1;
496
0
        dval = -dval;
497
0
    }
498
0
    frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
499
0
    assert(expo > 0);
500
0
    ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
501
0
    v = long_alloc(ndig);
502
0
    if (v == NULL)
503
0
        return NULL;
504
0
    frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
505
0
    for (i = ndig; --i >= 0; ) {
506
0
        digit bits = (digit)frac;
507
0
        v->long_value.ob_digit[i] = bits;
508
0
        frac = frac - (double)bits;
509
0
        frac = ldexp(frac, PyLong_SHIFT);
510
0
    }
511
0
    if (neg) {
512
0
        _PyLong_FlipSign(v);
513
0
    }
514
0
    return (PyObject *)v;
515
0
}
516
517
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
518
 * anything about what happens when a signed integer operation overflows,
519
 * and some compilers think they're doing you a favor by being "clever"
520
 * then.  The bit pattern for the largest positive signed long is
521
 * (unsigned long)LONG_MAX, and for the smallest negative signed long
522
 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
523
 * However, some other compilers warn about applying unary minus to an
524
 * unsigned operand.  Hence the weird "0-".
525
 */
526
0
#define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
527
0
#define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
528
529
static inline unsigned long
530
unroll_digits_ulong(PyLongObject *v, Py_ssize_t *iptr)
531
538
{
532
538
    assert(ULONG_MAX >= ((1UL << PyLong_SHIFT) - 1));
533
534
538
    Py_ssize_t i = *iptr;
535
538
    assert(i >= 2);
536
537
    /* unroll 1 digit */
538
538
    --i;
539
538
    digit *digits = v->long_value.ob_digit;
540
538
    unsigned long x = digits[i];
541
542
538
#if (ULONG_MAX >> PyLong_SHIFT) >= ((1UL << PyLong_SHIFT) - 1)
543
    /* unroll another digit */
544
538
    x <<= PyLong_SHIFT;
545
538
    --i;
546
538
    x |= digits[i];
547
538
#endif
548
549
538
    *iptr = i;
550
538
    return x;
551
538
}
552
553
static inline size_t
554
unroll_digits_size_t(PyLongObject *v, Py_ssize_t *iptr)
555
961
{
556
961
    assert(SIZE_MAX >= ((1UL << PyLong_SHIFT) - 1));
557
558
961
    Py_ssize_t i = *iptr;
559
961
    assert(i >= 2);
560
561
    /* unroll 1 digit */
562
961
    --i;
563
961
    digit *digits = v->long_value.ob_digit;
564
961
    size_t x = digits[i];
565
566
961
#if (SIZE_MAX >> PyLong_SHIFT) >= ((1 << PyLong_SHIFT) - 1)
567
    /* unroll another digit */
568
961
    x <<= PyLong_SHIFT;
569
961
    --i;
570
961
    x |= digits[i];
571
961
#endif
572
573
961
    *iptr = i;
574
961
    return x;
575
961
}
576
577
/* Get a C long int from an int object or any object that has an __index__
578
   method.
579
580
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
581
   the result.  Otherwise *overflow is 0.
582
583
   For other errors (e.g., TypeError), return -1 and set an error condition.
584
   In this case *overflow will be 0.
585
*/
586
long
587
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
588
60.0M
{
589
    /* This version originally by Tim Peters */
590
60.0M
    PyLongObject *v;
591
60.0M
    long res;
592
60.0M
    Py_ssize_t i;
593
60.0M
    int sign;
594
60.0M
    int do_decref = 0; /* if PyNumber_Index was called */
595
596
60.0M
    *overflow = 0;
597
60.0M
    if (vv == NULL) {
598
0
        PyErr_BadInternalCall();
599
0
        return -1;
600
0
    }
601
602
60.0M
    if (PyLong_Check(vv)) {
603
60.0M
        v = (PyLongObject *)vv;
604
60.0M
    }
605
1.05k
    else {
606
1.05k
        v = (PyLongObject *)_PyNumber_Index(vv);
607
1.05k
        if (v == NULL)
608
1.05k
            return -1;
609
0
        do_decref = 1;
610
0
    }
611
60.0M
    if (_PyLong_IsCompact(v)) {
612
#if SIZEOF_LONG < SIZEOF_SIZE_T
613
        Py_ssize_t tmp = _PyLong_CompactValue(v);
614
        if (tmp < LONG_MIN) {
615
            *overflow = -1;
616
            res = -1;
617
        }
618
        else if (tmp > LONG_MAX) {
619
            *overflow = 1;
620
            res = -1;
621
        }
622
        else {
623
            res = (long)tmp;
624
        }
625
#else
626
60.0M
        res = _PyLong_CompactValue(v);
627
60.0M
#endif
628
60.0M
    }
629
85
    else {
630
85
        res = -1;
631
85
        i = _PyLong_DigitCount(v);
632
85
        sign = _PyLong_NonCompactSign(v);
633
634
85
        unsigned long x = unroll_digits_ulong(v, &i);
635
88
        while (--i >= 0) {
636
50
            if (x > (ULONG_MAX >> PyLong_SHIFT)) {
637
47
                *overflow = sign;
638
47
                goto exit;
639
47
            }
640
3
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
641
3
        }
642
        /* Haven't lost any bits, but casting to long requires extra
643
        * care (see comment above).
644
        */
645
38
        if (x <= (unsigned long)LONG_MAX) {
646
35
            res = (long)x * sign;
647
35
        }
648
3
        else if (sign < 0 && x == PY_ABS_LONG_MIN) {
649
0
            res = LONG_MIN;
650
0
        }
651
3
        else {
652
3
            *overflow = sign;
653
            /* res is already set to -1 */
654
3
        }
655
38
    }
656
60.0M
  exit:
657
60.0M
    if (do_decref) {
658
0
        Py_DECREF(v);
659
0
    }
660
60.0M
    return res;
661
60.0M
}
662
663
/* Get a C long int from an int object or any object that has an __index__
664
   method.  Return -1 and set an error if overflow occurs. */
665
666
long
667
PyLong_AsLong(PyObject *obj)
668
25.9M
{
669
25.9M
    int overflow;
670
25.9M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
671
25.9M
    if (overflow) {
672
        /* XXX: could be cute and give a different
673
           message for overflow == -1 */
674
16
        PyErr_SetString(PyExc_OverflowError,
675
16
                        "Python int too large to convert to C long");
676
16
    }
677
25.9M
    return result;
678
25.9M
}
679
680
/* Get a C int from an int object or any object that has an __index__
681
   method.  Return -1 and set an error if overflow occurs. */
682
683
int
684
PyLong_AsInt(PyObject *obj)
685
6.86M
{
686
6.86M
    int overflow;
687
6.86M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
688
6.86M
    if (overflow || result > INT_MAX || result < INT_MIN) {
689
        /* XXX: could be cute and give a different
690
           message for overflow == -1 */
691
0
        PyErr_SetString(PyExc_OverflowError,
692
0
                        "Python int too large to convert to C int");
693
0
        return -1;
694
0
    }
695
6.86M
    return (int)result;
696
6.86M
}
697
698
/* Get a Py_ssize_t from an int object.
699
   Returns -1 and sets an error condition if overflow occurs. */
700
701
Py_ssize_t
702
435M
PyLong_AsSsize_t(PyObject *vv) {
703
435M
    PyLongObject *v;
704
435M
    Py_ssize_t i;
705
435M
    int sign;
706
707
435M
    if (vv == NULL) {
708
0
        PyErr_BadInternalCall();
709
0
        return -1;
710
0
    }
711
435M
    if (!PyLong_Check(vv)) {
712
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
713
0
        return -1;
714
0
    }
715
716
435M
    v = (PyLongObject *)vv;
717
435M
    if (_PyLong_IsCompact(v)) {
718
435M
        return _PyLong_CompactValue(v);
719
435M
    }
720
961
    i = _PyLong_DigitCount(v);
721
961
    sign = _PyLong_NonCompactSign(v);
722
723
961
    size_t x = unroll_digits_size_t(v, &i);
724
1.12k
    while (--i >= 0) {
725
282
        if (x > (SIZE_MAX >> PyLong_SHIFT)) {
726
114
            goto overflow;
727
114
        }
728
168
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
729
168
    }
730
    /* Haven't lost any bits, but casting to a signed type requires
731
     * extra care (see comment above).
732
     */
733
847
    if (x <= (size_t)PY_SSIZE_T_MAX) {
734
838
        return (Py_ssize_t)x * sign;
735
838
    }
736
9
    else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
737
0
        return PY_SSIZE_T_MIN;
738
0
    }
739
    /* else overflow */
740
741
123
  overflow:
742
123
    PyErr_SetString(PyExc_OverflowError,
743
123
                    "Python int too large to convert to C ssize_t");
744
123
    return -1;
745
847
}
746
747
/* Get a C unsigned long int from an int object.
748
   Returns -1 and sets an error condition if overflow occurs. */
749
750
unsigned long
751
PyLong_AsUnsignedLong(PyObject *vv)
752
9.25k
{
753
9.25k
    PyLongObject *v;
754
9.25k
    Py_ssize_t i;
755
756
9.25k
    if (vv == NULL) {
757
0
        PyErr_BadInternalCall();
758
0
        return (unsigned long)-1;
759
0
    }
760
9.25k
    if (!PyLong_Check(vv)) {
761
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
762
0
        return (unsigned long)-1;
763
0
    }
764
765
9.25k
    v = (PyLongObject *)vv;
766
9.25k
    if (_PyLong_IsNonNegativeCompact(v)) {
767
#if SIZEOF_LONG < SIZEOF_SIZE_T
768
        size_t tmp = (size_t)_PyLong_CompactValue(v);
769
        unsigned long res = (unsigned long)tmp;
770
        if (res != tmp) {
771
            goto overflow;
772
        }
773
        return res;
774
#else
775
8.80k
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
776
8.80k
#endif
777
8.80k
    }
778
453
    if (_PyLong_IsNegative(v)) {
779
0
        PyErr_SetString(PyExc_OverflowError,
780
0
                        "can't convert negative value to unsigned int");
781
0
        return (unsigned long) -1;
782
0
    }
783
453
    i = _PyLong_DigitCount(v);
784
785
453
    unsigned long x = unroll_digits_ulong(v, &i);
786
453
    while (--i >= 0) {
787
0
        if (x > (ULONG_MAX >> PyLong_SHIFT)) {
788
0
            goto overflow;
789
0
        }
790
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
791
0
    }
792
453
    return x;
793
0
overflow:
794
0
    PyErr_SetString(PyExc_OverflowError,
795
0
                    "Python int too large to convert "
796
0
                    "to C unsigned long");
797
0
    return (unsigned long) -1;
798
453
}
799
800
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
801
   an error condition if overflow occurs. */
802
803
size_t
804
PyLong_AsSize_t(PyObject *vv)
805
17
{
806
17
    PyLongObject *v;
807
17
    Py_ssize_t i;
808
809
17
    if (vv == NULL) {
810
0
        PyErr_BadInternalCall();
811
0
        return (size_t) -1;
812
0
    }
813
17
    if (!PyLong_Check(vv)) {
814
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
815
0
        return (size_t)-1;
816
0
    }
817
818
17
    v = (PyLongObject *)vv;
819
17
    if (_PyLong_IsNonNegativeCompact(v)) {
820
17
        return (size_t)_PyLong_CompactValue(v);
821
17
    }
822
0
    if (_PyLong_IsNegative(v)) {
823
0
        PyErr_SetString(PyExc_OverflowError,
824
0
                   "can't convert negative value to size_t");
825
0
        return (size_t) -1;
826
0
    }
827
0
    i = _PyLong_DigitCount(v);
828
829
0
    size_t x = unroll_digits_size_t(v, &i);
830
0
    while (--i >= 0) {
831
0
            if (x > (SIZE_MAX >> PyLong_SHIFT)) {
832
0
                PyErr_SetString(PyExc_OverflowError,
833
0
                    "Python int too large to convert to C size_t");
834
0
                return (size_t) -1;
835
0
            }
836
0
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
837
0
        }
838
0
    return x;
839
0
}
840
841
/* Get a C unsigned long int from an int object, ignoring the high bits.
842
   Returns -1 and sets an error condition if an error occurs. */
843
844
static unsigned long
845
_PyLong_AsUnsignedLongMask(PyObject *vv)
846
0
{
847
0
    PyLongObject *v;
848
0
    Py_ssize_t i;
849
850
0
    if (vv == NULL || !PyLong_Check(vv)) {
851
0
        PyErr_BadInternalCall();
852
0
        return (unsigned long) -1;
853
0
    }
854
0
    v = (PyLongObject *)vv;
855
0
    if (_PyLong_IsCompact(v)) {
856
#if SIZEOF_LONG < SIZEOF_SIZE_T
857
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
858
#else
859
0
        return (unsigned long)(long)_PyLong_CompactValue(v);
860
0
#endif
861
0
    }
862
0
    i = _PyLong_DigitCount(v);
863
0
    int sign = _PyLong_NonCompactSign(v);
864
0
    unsigned long x = unroll_digits_ulong(v, &i);
865
0
    while (--i >= 0) {
866
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
867
0
    }
868
0
    return x * sign;
869
0
}
870
871
unsigned long
872
PyLong_AsUnsignedLongMask(PyObject *op)
873
0
{
874
0
    PyLongObject *lo;
875
0
    unsigned long val;
876
877
0
    if (op == NULL) {
878
0
        PyErr_BadInternalCall();
879
0
        return (unsigned long)-1;
880
0
    }
881
882
0
    if (PyLong_Check(op)) {
883
0
        return _PyLong_AsUnsignedLongMask(op);
884
0
    }
885
886
0
    lo = (PyLongObject *)_PyNumber_Index(op);
887
0
    if (lo == NULL)
888
0
        return (unsigned long)-1;
889
890
0
    val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
891
0
    Py_DECREF(lo);
892
0
    return val;
893
0
}
894
895
int
896
PyLong_IsPositive(PyObject *obj)
897
0
{
898
0
    assert(obj != NULL);
899
0
    if (!PyLong_Check(obj)) {
900
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
901
0
        return -1;
902
0
    }
903
0
    return _PyLong_IsPositive((PyLongObject *)obj);
904
0
}
905
906
int
907
PyLong_IsNegative(PyObject *obj)
908
0
{
909
0
    assert(obj != NULL);
910
0
    if (!PyLong_Check(obj)) {
911
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
912
0
        return -1;
913
0
    }
914
0
    return _PyLong_IsNegative((PyLongObject *)obj);
915
0
}
916
917
int
918
PyLong_IsZero(PyObject *obj)
919
2.49M
{
920
2.49M
    assert(obj != NULL);
921
2.49M
    if (!PyLong_Check(obj)) {
922
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
923
0
        return -1;
924
0
    }
925
2.49M
    return _PyLong_IsZero((PyLongObject *)obj);
926
2.49M
}
927
928
static int
929
long_sign(PyObject *vv)
930
623
{
931
623
    assert(vv != NULL);
932
623
    assert(PyLong_Check(vv));
933
623
    PyLongObject *v = (PyLongObject *)vv;
934
935
623
    if (_PyLong_IsCompact(v)) {
936
623
        return _PyLong_CompactSign(v);
937
623
    }
938
0
    return _PyLong_NonCompactSign(v);
939
623
}
940
941
int
942
_PyLong_Sign(PyObject *vv)
943
0
{
944
0
    return long_sign(vv);
945
0
}
946
947
int
948
PyLong_GetSign(PyObject *vv, int *sign)
949
623
{
950
623
    if (!PyLong_Check(vv)) {
951
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
952
0
        return -1;
953
0
    }
954
955
623
    *sign = long_sign(vv);
956
623
    return 0;
957
623
}
958
959
static int
960
bit_length_digit(digit x)
961
2.02k
{
962
    // digit can be larger than unsigned long, but only PyLong_SHIFT bits
963
    // of it will be ever used.
964
2.02k
    static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
965
2.02k
                  "digit is larger than unsigned long");
966
2.02k
    return _Py_bit_length((unsigned long)x);
967
2.02k
}
968
969
int64_t
970
_PyLong_NumBits(PyObject *vv)
971
89
{
972
89
    PyLongObject *v = (PyLongObject *)vv;
973
89
    int64_t result = 0;
974
89
    Py_ssize_t ndigits;
975
89
    int msd_bits;
976
977
89
    assert(v != NULL);
978
89
    assert(PyLong_Check(v));
979
89
    ndigits = _PyLong_DigitCount(v);
980
89
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
981
89
    if (ndigits > 0) {
982
87
        digit msd = v->long_value.ob_digit[ndigits - 1];
983
87
#if SIZEOF_SIZE_T == 8
984
87
        assert(ndigits <= INT64_MAX / PyLong_SHIFT);
985
87
#endif
986
87
        result = (int64_t)(ndigits - 1) * PyLong_SHIFT;
987
87
        msd_bits = bit_length_digit(msd);
988
87
        result += msd_bits;
989
87
    }
990
89
    return result;
991
89
}
992
993
PyObject *
994
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
995
                      int little_endian, int is_signed)
996
2.30k
{
997
2.30k
    const unsigned char* pstartbyte;    /* LSB of bytes */
998
2.30k
    int incr;                           /* direction to move pstartbyte */
999
2.30k
    const unsigned char* pendbyte;      /* MSB of bytes */
1000
2.30k
    size_t numsignificantbytes;         /* number of bytes that matter */
1001
2.30k
    Py_ssize_t ndigits;                 /* number of Python int digits */
1002
2.30k
    PyLongObject* v;                    /* result */
1003
2.30k
    Py_ssize_t idigit = 0;              /* next free index in v->long_value.ob_digit */
1004
1005
2.30k
    if (n == 0)
1006
0
        return PyLong_FromLong(0L);
1007
1008
2.30k
    if (little_endian) {
1009
2.16k
        pstartbyte = bytes;
1010
2.16k
        pendbyte = bytes + n - 1;
1011
2.16k
        incr = 1;
1012
2.16k
    }
1013
132
    else {
1014
132
        pstartbyte = bytes + n - 1;
1015
132
        pendbyte = bytes;
1016
132
        incr = -1;
1017
132
    }
1018
1019
2.30k
    if (is_signed)
1020
0
        is_signed = *pendbyte >= 0x80;
1021
1022
    /* Compute numsignificantbytes.  This consists of finding the most
1023
       significant byte.  Leading 0 bytes are insignificant if the number
1024
       is positive, and leading 0xff bytes if negative. */
1025
2.30k
    {
1026
2.30k
        size_t i;
1027
2.30k
        const unsigned char* p = pendbyte;
1028
2.30k
        const int pincr = -incr;  /* search MSB to LSB */
1029
2.30k
        const unsigned char insignificant = is_signed ? 0xff : 0x00;
1030
1031
6.68k
        for (i = 0; i < n; ++i, p += pincr) {
1032
5.86k
            if (*p != insignificant)
1033
1.47k
                break;
1034
5.86k
        }
1035
2.30k
        numsignificantbytes = n - i;
1036
        /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
1037
           actually has 2 significant bytes.  OTOH, 0xff0001 ==
1038
           -0x00ffff, so we wouldn't *need* to bump it there; but we
1039
           do for 0xffff = -0x0001.  To be safe without bothering to
1040
           check every case, bump it regardless. */
1041
2.30k
        if (is_signed && numsignificantbytes < n)
1042
0
            ++numsignificantbytes;
1043
2.30k
    }
1044
1045
    /* avoid integer overflow */
1046
2.30k
    ndigits = numsignificantbytes / PyLong_SHIFT * 8
1047
2.30k
        + (numsignificantbytes % PyLong_SHIFT * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
1048
2.30k
    v = long_alloc(ndigits);
1049
2.30k
    if (v == NULL)
1050
0
        return NULL;
1051
1052
    /* Copy the bits over.  The tricky parts are computing 2's-comp on
1053
       the fly for signed numbers, and dealing with the mismatch between
1054
       8-bit bytes and (probably) 15-bit Python digits.*/
1055
2.30k
    {
1056
2.30k
        size_t i;
1057
2.30k
        twodigits carry = 1;                    /* for 2's-comp calculation */
1058
2.30k
        twodigits accum = 0;                    /* sliding register */
1059
2.30k
        unsigned int accumbits = 0;             /* number of bits in accum */
1060
2.30k
        const unsigned char* p = pstartbyte;
1061
1062
7.11k
        for (i = 0; i < numsignificantbytes; ++i, p += incr) {
1063
4.81k
            twodigits thisbyte = *p;
1064
            /* Compute correction for 2's comp, if needed. */
1065
4.81k
            if (is_signed) {
1066
0
                thisbyte = (0xff ^ thisbyte) + carry;
1067
0
                carry = thisbyte >> 8;
1068
0
                thisbyte &= 0xff;
1069
0
            }
1070
            /* Because we're going LSB to MSB, thisbyte is
1071
               more significant than what's already in accum,
1072
               so needs to be prepended to accum. */
1073
4.81k
            accum |= thisbyte << accumbits;
1074
4.81k
            accumbits += 8;
1075
4.81k
            if (accumbits >= PyLong_SHIFT) {
1076
                /* There's enough to fill a Python digit. */
1077
924
                assert(idigit < ndigits);
1078
924
                v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK);
1079
924
                ++idigit;
1080
924
                accum >>= PyLong_SHIFT;
1081
924
                accumbits -= PyLong_SHIFT;
1082
924
                assert(accumbits < PyLong_SHIFT);
1083
924
            }
1084
4.81k
        }
1085
2.30k
        assert(accumbits < PyLong_SHIFT);
1086
2.30k
        if (accumbits) {
1087
1.47k
            assert(idigit < ndigits);
1088
1.47k
            v->long_value.ob_digit[idigit] = (digit)accum;
1089
1.47k
            ++idigit;
1090
1.47k
        }
1091
2.30k
    }
1092
1093
2.30k
    int sign = is_signed ? -1: 1;
1094
2.30k
    if (idigit == 0) {
1095
827
        sign = 0;
1096
827
    }
1097
2.30k
    _PyLong_SetSignAndDigitCount(v, sign, idigit);
1098
2.30k
    return (PyObject *)maybe_small_long(long_normalize(v));
1099
2.30k
}
1100
1101
int
1102
_PyLong_AsByteArray(PyLongObject* v,
1103
                    unsigned char* bytes, size_t n,
1104
                    int little_endian, int is_signed,
1105
                    int with_exceptions)
1106
748
{
1107
748
    Py_ssize_t i;               /* index into v->long_value.ob_digit */
1108
748
    Py_ssize_t ndigits;         /* number of digits */
1109
748
    twodigits accum;            /* sliding register */
1110
748
    unsigned int accumbits;     /* # bits in accum */
1111
748
    int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
1112
748
    digit carry;                /* for computing 2's-comp */
1113
748
    size_t j;                   /* # bytes filled */
1114
748
    unsigned char* p;           /* pointer to next byte in bytes */
1115
748
    int pincr;                  /* direction to move p */
1116
1117
748
    assert(v != NULL && PyLong_Check(v));
1118
1119
748
    ndigits = _PyLong_DigitCount(v);
1120
748
    if (_PyLong_IsNegative(v)) {
1121
0
        if (!is_signed) {
1122
0
            if (with_exceptions) {
1123
0
                PyErr_SetString(PyExc_OverflowError,
1124
0
                                "can't convert negative int to unsigned");
1125
0
            }
1126
0
            return -1;
1127
0
        }
1128
0
        do_twos_comp = 1;
1129
0
    }
1130
748
    else {
1131
748
        do_twos_comp = 0;
1132
748
    }
1133
1134
748
    if (little_endian) {
1135
748
        p = bytes;
1136
748
        pincr = 1;
1137
748
    }
1138
0
    else {
1139
0
        p = bytes + n - 1;
1140
0
        pincr = -1;
1141
0
    }
1142
1143
    /* Copy over all the Python digits.
1144
       It's crucial that every Python digit except for the MSD contribute
1145
       exactly PyLong_SHIFT bits to the total, so first assert that the int is
1146
       normalized.
1147
       NOTE: PyLong_AsNativeBytes() assumes that this function will fill in 'n'
1148
       bytes even if it eventually fails to convert the whole number. Make sure
1149
       you account for that if you are changing this algorithm to return without
1150
       doing that.
1151
       */
1152
748
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
1153
748
    j = 0;
1154
748
    accum = 0;
1155
748
    accumbits = 0;
1156
748
    carry = do_twos_comp ? 1 : 0;
1157
1.49k
    for (i = 0; i < ndigits; ++i) {
1158
745
        digit thisdigit = v->long_value.ob_digit[i];
1159
745
        if (do_twos_comp) {
1160
0
            thisdigit = (thisdigit ^ PyLong_MASK) + carry;
1161
0
            carry = thisdigit >> PyLong_SHIFT;
1162
0
            thisdigit &= PyLong_MASK;
1163
0
        }
1164
        /* Because we're going LSB to MSB, thisdigit is more
1165
           significant than what's already in accum, so needs to be
1166
           prepended to accum. */
1167
745
        accum |= (twodigits)thisdigit << accumbits;
1168
1169
        /* The most-significant digit may be (probably is) at least
1170
           partly empty. */
1171
745
        if (i == ndigits - 1) {
1172
            /* Count # of sign bits -- they needn't be stored,
1173
             * although for signed conversion we need later to
1174
             * make sure at least one sign bit gets stored. */
1175
501
            digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
1176
4.50k
            while (s != 0) {
1177
4.00k
                s >>= 1;
1178
4.00k
                accumbits++;
1179
4.00k
            }
1180
501
        }
1181
244
        else
1182
244
            accumbits += PyLong_SHIFT;
1183
1184
        /* Store as many bytes as possible. */
1185
1.82k
        while (accumbits >= 8) {
1186
1.07k
            if (j >= n)
1187
0
                goto Overflow;
1188
1.07k
            ++j;
1189
1.07k
            *p = (unsigned char)(accum & 0xff);
1190
1.07k
            p += pincr;
1191
1.07k
            accumbits -= 8;
1192
1.07k
            accum >>= 8;
1193
1.07k
        }
1194
745
    }
1195
1196
    /* Store the straggler (if any). */
1197
748
    assert(accumbits < 8);
1198
748
    assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
1199
748
    if (accumbits > 0) {
1200
459
        if (j >= n)
1201
0
            goto Overflow;
1202
459
        ++j;
1203
459
        if (do_twos_comp) {
1204
            /* Fill leading bits of the byte with sign bits
1205
               (appropriately pretending that the int had an
1206
               infinite supply of sign bits). */
1207
0
            accum |= (~(twodigits)0) << accumbits;
1208
0
        }
1209
459
        *p = (unsigned char)(accum & 0xff);
1210
459
        p += pincr;
1211
459
    }
1212
289
    else if (j == n && is_signed) {
1213
        /* The main loop filled the byte array exactly, so the code
1214
           just above didn't get to ensure there's a sign bit, and the
1215
           loop below wouldn't add one either.  Make sure a sign bit
1216
           exists. */
1217
0
        int sign_bit_set;
1218
0
        if (n > 0) {
1219
0
            unsigned char msb = *(p - pincr);
1220
0
            sign_bit_set = msb >= 0x80;
1221
0
        }
1222
0
        else {
1223
0
            sign_bit_set = 0;
1224
0
        }
1225
0
        assert(accumbits == 0);
1226
0
        if (sign_bit_set == do_twos_comp)
1227
0
            return 0;
1228
0
        else
1229
0
            goto Overflow;
1230
0
    }
1231
1232
    /* Fill remaining bytes with copies of the sign bit. */
1233
748
    {
1234
748
        unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
1235
2.20k
        for ( ; j < n; ++j, p += pincr)
1236
1.45k
            *p = signbyte;
1237
748
    }
1238
1239
748
    return 0;
1240
1241
0
  Overflow:
1242
0
    if (with_exceptions) {
1243
0
        PyErr_SetString(PyExc_OverflowError, "int too big to convert");
1244
0
    }
1245
0
    return -1;
1246
1247
748
}
1248
1249
// Refactored out for readability, not reuse
1250
static inline int
1251
_fits_in_n_bits(Py_ssize_t v, Py_ssize_t n)
1252
465
{
1253
465
    if (n >= (Py_ssize_t)sizeof(Py_ssize_t) * 8) {
1254
465
        return 1;
1255
465
    }
1256
    // If all bits above n are the same, we fit.
1257
    // (Use n-1 if we require the sign bit to be consistent.)
1258
0
    Py_ssize_t v_extended = v >> ((int)n - 1);
1259
0
    return v_extended == 0 || v_extended == -1;
1260
465
}
1261
1262
static inline int
1263
_resolve_endianness(int *endianness)
1264
465
{
1265
465
    if (*endianness == -1 || (*endianness & 2)) {
1266
465
        *endianness = PY_LITTLE_ENDIAN;
1267
465
    } else {
1268
0
        *endianness &= 1;
1269
0
    }
1270
465
    assert(*endianness == 0 || *endianness == 1);
1271
465
    return 0;
1272
465
}
1273
1274
Py_ssize_t
1275
PyLong_AsNativeBytes(PyObject* vv, void* buffer, Py_ssize_t n, int flags)
1276
465
{
1277
465
    PyLongObject *v;
1278
465
    union {
1279
465
        Py_ssize_t v;
1280
465
        unsigned char b[sizeof(Py_ssize_t)];
1281
465
    } cv;
1282
465
    int do_decref = 0;
1283
465
    Py_ssize_t res = 0;
1284
1285
465
    if (vv == NULL || n < 0) {
1286
0
        PyErr_BadInternalCall();
1287
0
        return -1;
1288
0
    }
1289
1290
465
    int little_endian = flags;
1291
465
    if (_resolve_endianness(&little_endian) < 0) {
1292
0
        return -1;
1293
0
    }
1294
1295
465
    if (PyLong_Check(vv)) {
1296
465
        v = (PyLongObject *)vv;
1297
465
    }
1298
0
    else if (flags != -1 && (flags & Py_ASNATIVEBYTES_ALLOW_INDEX)) {
1299
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1300
0
        if (v == NULL) {
1301
0
            return -1;
1302
0
        }
1303
0
        do_decref = 1;
1304
0
    }
1305
0
    else {
1306
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
1307
0
        return -1;
1308
0
    }
1309
1310
465
    if ((flags != -1 && (flags & Py_ASNATIVEBYTES_REJECT_NEGATIVE))
1311
0
        && _PyLong_IsNegative(v)) {
1312
0
        PyErr_SetString(PyExc_ValueError, "Cannot convert negative int");
1313
0
        if (do_decref) {
1314
0
            Py_DECREF(v);
1315
0
        }
1316
0
        return -1;
1317
0
    }
1318
1319
465
    if (_PyLong_IsCompact(v)) {
1320
465
        res = 0;
1321
465
        cv.v = _PyLong_CompactValue(v);
1322
        /* Most paths result in res = sizeof(compact value). Only the case
1323
         * where 0 < n < sizeof(compact value) do we need to check and adjust
1324
         * our return value. */
1325
465
        res = sizeof(cv.b);
1326
465
        if (n <= 0) {
1327
            // nothing to do!
1328
0
        }
1329
465
        else if (n <= (Py_ssize_t)sizeof(cv.b)) {
1330
465
#if PY_LITTLE_ENDIAN
1331
465
            if (little_endian) {
1332
465
                memcpy(buffer, cv.b, n);
1333
465
            }
1334
0
            else {
1335
0
                for (Py_ssize_t i = 0; i < n; ++i) {
1336
0
                    ((unsigned char*)buffer)[n - i - 1] = cv.b[i];
1337
0
                }
1338
0
            }
1339
#else
1340
            if (little_endian) {
1341
                for (Py_ssize_t i = 0; i < n; ++i) {
1342
                    ((unsigned char*)buffer)[i] = cv.b[sizeof(cv.b) - i - 1];
1343
                }
1344
            }
1345
            else {
1346
                memcpy(buffer, &cv.b[sizeof(cv.b) - n], n);
1347
            }
1348
#endif
1349
1350
            /* If we fit, return the requested number of bytes */
1351
465
            if (_fits_in_n_bits(cv.v, n * 8)) {
1352
465
                res = n;
1353
465
            } else if (cv.v > 0 && _fits_in_n_bits(cv.v, n * 8 + 1)) {
1354
                /* Positive values with the MSB set do not require an
1355
                 * additional bit when the caller's intent is to treat them
1356
                 * as unsigned. */
1357
0
                if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1358
0
                    res = n;
1359
0
                } else {
1360
0
                    res = n + 1;
1361
0
                }
1362
0
            }
1363
465
        }
1364
0
        else {
1365
0
            unsigned char fill = cv.v < 0 ? 0xFF : 0x00;
1366
0
#if PY_LITTLE_ENDIAN
1367
0
            if (little_endian) {
1368
0
                memcpy(buffer, cv.b, sizeof(cv.b));
1369
0
                memset((char *)buffer + sizeof(cv.b), fill, n - sizeof(cv.b));
1370
0
            }
1371
0
            else {
1372
0
                unsigned char *b = (unsigned char *)buffer;
1373
0
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1374
0
                    *b++ = fill;
1375
0
                }
1376
0
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1377
0
                    *b++ = cv.b[i - 1];
1378
0
                }
1379
0
            }
1380
#else
1381
            if (little_endian) {
1382
                unsigned char *b = (unsigned char *)buffer;
1383
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1384
                    *b++ = cv.b[i - 1];
1385
                }
1386
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1387
                    *b++ = fill;
1388
                }
1389
            }
1390
            else {
1391
                memset(buffer, fill, n - sizeof(cv.b));
1392
                memcpy((char *)buffer + n - sizeof(cv.b), cv.b, sizeof(cv.b));
1393
            }
1394
#endif
1395
0
        }
1396
465
    }
1397
0
    else {
1398
0
        if (n > 0) {
1399
0
            _PyLong_AsByteArray(v, buffer, (size_t)n, little_endian, 1, 0);
1400
0
        }
1401
1402
        /* Calculates the number of bits required for the *absolute* value
1403
         * of v. This does not take sign into account, only magnitude. */
1404
0
        int64_t nb = _PyLong_NumBits((PyObject *)v);
1405
0
        assert(nb >= 0);
1406
        /* Normally this would be ((nb - 1) / 8) + 1 to avoid rounding up
1407
         * multiples of 8 to the next byte, but we add an implied bit for
1408
         * the sign and it cancels out. */
1409
0
        res = (Py_ssize_t)(nb / 8) + 1;
1410
1411
        /* Two edge cases exist that are best handled after extracting the
1412
         * bits. These may result in us reporting overflow when the value
1413
         * actually fits.
1414
         */
1415
0
        if (n > 0 && res == n + 1 && nb % 8 == 0) {
1416
0
            if (_PyLong_IsNegative(v)) {
1417
                /* Values of 0x80...00 from negative values that use every
1418
                 * available bit in the buffer do not require an additional
1419
                 * bit to store the sign. */
1420
0
                int is_edge_case = 1;
1421
0
                unsigned char *b = (unsigned char *)buffer;
1422
0
                for (Py_ssize_t i = 0; i < n && is_edge_case; ++i, ++b) {
1423
0
                    if (i == 0) {
1424
0
                        is_edge_case = (*b == (little_endian ? 0 : 0x80));
1425
0
                    } else if (i < n - 1) {
1426
0
                        is_edge_case = (*b == 0);
1427
0
                    } else {
1428
0
                        is_edge_case = (*b == (little_endian ? 0x80 : 0));
1429
0
                    }
1430
0
                }
1431
0
                if (is_edge_case) {
1432
0
                    res = n;
1433
0
                }
1434
0
            }
1435
0
            else {
1436
                /* Positive values with the MSB set do not require an
1437
                 * additional bit when the caller's intent is to treat them
1438
                 * as unsigned. */
1439
0
                unsigned char *b = (unsigned char *)buffer;
1440
0
                if (b[little_endian ? n - 1 : 0] & 0x80) {
1441
0
                    if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1442
0
                        res = n;
1443
0
                    } else {
1444
0
                        res = n + 1;
1445
0
                    }
1446
0
                }
1447
0
            }
1448
0
        }
1449
0
    }
1450
1451
465
    if (do_decref) {
1452
0
        Py_DECREF(v);
1453
0
    }
1454
1455
465
    return res;
1456
465
}
1457
1458
1459
PyObject *
1460
PyLong_FromNativeBytes(const void* buffer, size_t n, int flags)
1461
0
{
1462
0
    if (!buffer) {
1463
0
        PyErr_BadInternalCall();
1464
0
        return NULL;
1465
0
    }
1466
1467
0
    int little_endian = flags;
1468
0
    if (_resolve_endianness(&little_endian) < 0) {
1469
0
        return NULL;
1470
0
    }
1471
1472
0
    return _PyLong_FromByteArray(
1473
0
        (const unsigned char *)buffer,
1474
0
        n,
1475
0
        little_endian,
1476
0
        (flags == -1 || !(flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) ? 1 : 0
1477
0
    );
1478
0
}
1479
1480
1481
PyObject *
1482
PyLong_FromUnsignedNativeBytes(const void* buffer, size_t n, int flags)
1483
0
{
1484
0
    if (!buffer) {
1485
0
        PyErr_BadInternalCall();
1486
0
        return NULL;
1487
0
    }
1488
1489
0
    int little_endian = flags;
1490
0
    if (_resolve_endianness(&little_endian) < 0) {
1491
0
        return NULL;
1492
0
    }
1493
1494
0
    return _PyLong_FromByteArray((const unsigned char *)buffer, n, little_endian, 0);
1495
0
}
1496
1497
1498
/* Create a new int object from a C pointer */
1499
1500
PyObject *
1501
PyLong_FromVoidPtr(void *p)
1502
2.36M
{
1503
2.36M
#if SIZEOF_VOID_P <= SIZEOF_LONG
1504
2.36M
    return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
1505
#else
1506
1507
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1508
#   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
1509
#endif
1510
    return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
1511
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1512
1513
2.36M
}
1514
1515
/* Get a C pointer from an int object. */
1516
1517
void *
1518
PyLong_AsVoidPtr(PyObject *vv)
1519
51
{
1520
51
#if SIZEOF_VOID_P <= SIZEOF_LONG
1521
51
    long x;
1522
1523
51
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1524
0
        x = PyLong_AsLong(vv);
1525
0
    }
1526
51
    else {
1527
51
        x = PyLong_AsUnsignedLong(vv);
1528
51
    }
1529
#else
1530
1531
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1532
#   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
1533
#endif
1534
    long long x;
1535
1536
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1537
        x = PyLong_AsLongLong(vv);
1538
    }
1539
    else {
1540
        x = PyLong_AsUnsignedLongLong(vv);
1541
    }
1542
1543
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1544
1545
51
    if (x == -1 && PyErr_Occurred())
1546
0
        return NULL;
1547
51
    return (void *)x;
1548
51
}
1549
1550
/* Initial long long support by Chris Herborth (chrish@qnx.com), later
1551
 * rewritten to use the newer PyLong_{As,From}ByteArray API.
1552
 */
1553
1554
0
#define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
1555
1556
/* Create a new int object from a C long long int. */
1557
1558
PyObject *
1559
PyLong_FromLongLong(long long ival)
1560
36.8k
{
1561
36.8k
    PYLONG_FROM_INT(unsigned long long, long long, ival);
1562
36.8k
}
1563
1564
/* Create a new int object from a C Py_ssize_t. */
1565
1566
PyObject *
1567
PyLong_FromSsize_t(Py_ssize_t ival)
1568
272M
{
1569
272M
    PYLONG_FROM_INT(size_t, Py_ssize_t, ival);
1570
272M
}
1571
1572
/* Get a C long long int from an int object or any object that has an
1573
   __index__ method.  Return -1 and set an error if overflow occurs. */
1574
1575
long long
1576
PyLong_AsLongLong(PyObject *vv)
1577
0
{
1578
0
    PyLongObject *v;
1579
0
    long long bytes;
1580
0
    int res;
1581
0
    int do_decref = 0; /* if PyNumber_Index was called */
1582
1583
0
    if (vv == NULL) {
1584
0
        PyErr_BadInternalCall();
1585
0
        return -1;
1586
0
    }
1587
1588
0
    if (PyLong_Check(vv)) {
1589
0
        v = (PyLongObject *)vv;
1590
0
    }
1591
0
    else {
1592
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1593
0
        if (v == NULL)
1594
0
            return -1;
1595
0
        do_decref = 1;
1596
0
    }
1597
1598
0
    if (_PyLong_IsCompact(v)) {
1599
0
        res = 0;
1600
0
        bytes = _PyLong_CompactValue(v);
1601
0
    }
1602
0
    else {
1603
0
        res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
1604
0
                                  SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1, 1);
1605
0
    }
1606
0
    if (do_decref) {
1607
0
        Py_DECREF(v);
1608
0
    }
1609
1610
    /* Plan 9 can't handle long long in ? : expressions */
1611
0
    if (res < 0)
1612
0
        return (long long)-1;
1613
0
    else
1614
0
        return bytes;
1615
0
}
1616
1617
/* Get a C unsigned long long int from an int object.
1618
   Return -1 and set an error if overflow occurs. */
1619
1620
unsigned long long
1621
PyLong_AsUnsignedLongLong(PyObject *vv)
1622
0
{
1623
0
    PyLongObject *v;
1624
0
    unsigned long long bytes;
1625
0
    int res;
1626
1627
0
    if (vv == NULL) {
1628
0
        PyErr_BadInternalCall();
1629
0
        return (unsigned long long)-1;
1630
0
    }
1631
0
    if (!PyLong_Check(vv)) {
1632
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
1633
0
        return (unsigned long long)-1;
1634
0
    }
1635
1636
0
    v = (PyLongObject*)vv;
1637
0
    if (_PyLong_IsNonNegativeCompact(v)) {
1638
0
        res = 0;
1639
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1640
        size_t tmp = (size_t)_PyLong_CompactValue(v);
1641
        bytes = (unsigned long long)tmp;
1642
        if (bytes != tmp) {
1643
            PyErr_SetString(PyExc_OverflowError,
1644
                            "Python int too large to convert "
1645
                            "to C unsigned long long");
1646
            res = -1;
1647
        }
1648
#else
1649
0
        bytes = (unsigned long long)(size_t)_PyLong_CompactValue(v);
1650
0
#endif
1651
0
    }
1652
0
    else {
1653
0
        res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
1654
0
                              SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0, 1);
1655
0
    }
1656
1657
    /* Plan 9 can't handle long long in ? : expressions */
1658
0
    if (res < 0)
1659
0
        return (unsigned long long)res;
1660
0
    else
1661
0
        return bytes;
1662
0
}
1663
1664
/* Get a C unsigned long int from an int object, ignoring the high bits.
1665
   Returns -1 and sets an error condition if an error occurs. */
1666
1667
static unsigned long long
1668
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
1669
0
{
1670
0
    PyLongObject *v;
1671
0
    Py_ssize_t i;
1672
0
    int sign;
1673
1674
0
    if (vv == NULL || !PyLong_Check(vv)) {
1675
0
        PyErr_BadInternalCall();
1676
0
        return (unsigned long long) -1;
1677
0
    }
1678
0
    v = (PyLongObject *)vv;
1679
0
    if (_PyLong_IsCompact(v)) {
1680
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1681
        return (unsigned long long)(size_t)_PyLong_CompactValue(v);
1682
#else
1683
0
        return (unsigned long long)(long long)_PyLong_CompactValue(v);
1684
0
#endif
1685
0
    }
1686
0
    i = _PyLong_DigitCount(v);
1687
0
    sign = _PyLong_NonCompactSign(v);
1688
0
    unsigned long long x = unroll_digits_ulong(v, &i);
1689
0
    while (--i >= 0) {
1690
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
1691
0
    }
1692
0
    return x * sign;
1693
0
}
1694
1695
unsigned long long
1696
PyLong_AsUnsignedLongLongMask(PyObject *op)
1697
0
{
1698
0
    PyLongObject *lo;
1699
0
    unsigned long long val;
1700
1701
0
    if (op == NULL) {
1702
0
        PyErr_BadInternalCall();
1703
0
        return (unsigned long long)-1;
1704
0
    }
1705
1706
0
    if (PyLong_Check(op)) {
1707
0
        return _PyLong_AsUnsignedLongLongMask(op);
1708
0
    }
1709
1710
0
    lo = (PyLongObject *)_PyNumber_Index(op);
1711
0
    if (lo == NULL)
1712
0
        return (unsigned long long)-1;
1713
1714
0
    val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
1715
0
    Py_DECREF(lo);
1716
0
    return val;
1717
0
}
1718
1719
/* Get a C long long int from an int object or any object that has an
1720
   __index__ method.
1721
1722
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
1723
   the result.  Otherwise *overflow is 0.
1724
1725
   For other errors (e.g., TypeError), return -1 and set an error condition.
1726
   In this case *overflow will be 0.
1727
*/
1728
1729
long long
1730
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
1731
0
{
1732
    /* This version by Tim Peters */
1733
0
    PyLongObject *v;
1734
0
    long long res;
1735
0
    Py_ssize_t i;
1736
0
    int sign;
1737
0
    int do_decref = 0; /* if PyNumber_Index was called */
1738
1739
0
    *overflow = 0;
1740
0
    if (vv == NULL) {
1741
0
        PyErr_BadInternalCall();
1742
0
        return -1;
1743
0
    }
1744
1745
0
    if (PyLong_Check(vv)) {
1746
0
        v = (PyLongObject *)vv;
1747
0
    }
1748
0
    else {
1749
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1750
0
        if (v == NULL)
1751
0
            return -1;
1752
0
        do_decref = 1;
1753
0
    }
1754
0
    if (_PyLong_IsCompact(v)) {
1755
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1756
        Py_ssize_t tmp = _PyLong_CompactValue(v);
1757
        if (tmp < LLONG_MIN) {
1758
            *overflow = -1;
1759
            res = -1;
1760
        }
1761
        else if (tmp > LLONG_MAX) {
1762
            *overflow = 1;
1763
            res = -1;
1764
        }
1765
        else {
1766
            res = (long long)tmp;
1767
        }
1768
#else
1769
0
        res = _PyLong_CompactValue(v);
1770
0
#endif
1771
0
    }
1772
0
    else {
1773
0
        i = _PyLong_DigitCount(v);
1774
0
        sign = _PyLong_NonCompactSign(v);
1775
0
        unsigned long long x = unroll_digits_ulong(v, &i);
1776
0
        while (--i >= 0) {
1777
0
            if (x > ULLONG_MAX >> PyLong_SHIFT) {
1778
0
                *overflow = sign;
1779
0
                res = -1;
1780
0
                goto exit;
1781
0
            }
1782
0
            x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i];
1783
0
        }
1784
        /* Haven't lost any bits, but casting to long requires extra
1785
         * care (see comment above).
1786
         */
1787
0
        if (x <= (unsigned long long)LLONG_MAX) {
1788
0
            res = (long long)x * sign;
1789
0
        }
1790
0
        else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
1791
0
            res = LLONG_MIN;
1792
0
        }
1793
0
        else {
1794
0
            *overflow = sign;
1795
0
            res = -1;
1796
0
        }
1797
0
    }
1798
0
  exit:
1799
0
    if (do_decref) {
1800
0
        Py_DECREF(v);
1801
0
    }
1802
0
    return res;
1803
0
}
1804
1805
#define UNSIGNED_INT_CONVERTER(NAME, TYPE)                          \
1806
int                                                                 \
1807
0
_PyLong_##NAME##_Converter(PyObject *obj, void *ptr)                \
1808
0
{                                                                   \
1809
0
    Py_ssize_t bytes = PyLong_AsNativeBytes(obj, ptr, sizeof(TYPE), \
1810
0
            Py_ASNATIVEBYTES_NATIVE_ENDIAN |                        \
1811
0
            Py_ASNATIVEBYTES_ALLOW_INDEX |                          \
1812
0
            Py_ASNATIVEBYTES_REJECT_NEGATIVE |                      \
1813
0
            Py_ASNATIVEBYTES_UNSIGNED_BUFFER);                      \
1814
0
    if (bytes < 0) {                                                \
1815
0
        return 0;                                                   \
1816
0
    }                                                               \
1817
0
    if ((size_t)bytes > sizeof(TYPE)) {                             \
1818
0
        PyErr_SetString(PyExc_OverflowError,                        \
1819
0
                        "Python int too large for C "#TYPE);        \
1820
0
        return 0;                                                   \
1821
0
    }                                                               \
1822
0
    return 1;                                                       \
1823
0
}
Unexecuted instantiation: _PyLong_UnsignedShort_Converter
Unexecuted instantiation: _PyLong_UnsignedInt_Converter
Unexecuted instantiation: _PyLong_UnsignedLong_Converter
Unexecuted instantiation: _PyLong_UnsignedLongLong_Converter
Unexecuted instantiation: _PyLong_Size_t_Converter
Unexecuted instantiation: _PyLong_UInt8_Converter
Unexecuted instantiation: _PyLong_UInt16_Converter
Unexecuted instantiation: _PyLong_UInt32_Converter
Unexecuted instantiation: _PyLong_UInt64_Converter
1824
1825
UNSIGNED_INT_CONVERTER(UnsignedShort, unsigned short)
1826
UNSIGNED_INT_CONVERTER(UnsignedInt, unsigned int)
1827
UNSIGNED_INT_CONVERTER(UnsignedLong, unsigned long)
1828
UNSIGNED_INT_CONVERTER(UnsignedLongLong, unsigned long long)
1829
UNSIGNED_INT_CONVERTER(Size_t, size_t)
1830
UNSIGNED_INT_CONVERTER(UInt8, uint8_t)
1831
UNSIGNED_INT_CONVERTER(UInt16, uint16_t)
1832
UNSIGNED_INT_CONVERTER(UInt32, uint32_t)
1833
UNSIGNED_INT_CONVERTER(UInt64, uint64_t)
1834
1835
1836
#define CHECK_BINOP(v,w)                                \
1837
141M
    do {                                                \
1838
141M
        if (!PyLong_Check(v) || !PyLong_Check(w))       \
1839
141M
            Py_RETURN_NOTIMPLEMENTED;                   \
1840
141M
    } while(0)
1841
1842
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1843
 * is modified in place, by adding y to it.  Carries are propagated as far as
1844
 * x[m-1], and the remaining carry (0 or 1) is returned.
1845
 */
1846
static digit
1847
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1848
0
{
1849
0
    Py_ssize_t i;
1850
0
    digit carry = 0;
1851
1852
0
    assert(m >= n);
1853
0
    for (i = 0; i < n; ++i) {
1854
0
        carry += x[i] + y[i];
1855
0
        x[i] = carry & PyLong_MASK;
1856
0
        carry >>= PyLong_SHIFT;
1857
0
        assert((carry & 1) == carry);
1858
0
    }
1859
0
    for (; carry && i < m; ++i) {
1860
0
        carry += x[i];
1861
0
        x[i] = carry & PyLong_MASK;
1862
0
        carry >>= PyLong_SHIFT;
1863
0
        assert((carry & 1) == carry);
1864
0
    }
1865
0
    return carry;
1866
0
}
1867
1868
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1869
 * is modified in place, by subtracting y from it.  Borrows are propagated as
1870
 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1871
 */
1872
static digit
1873
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1874
0
{
1875
0
    Py_ssize_t i;
1876
0
    digit borrow = 0;
1877
1878
0
    assert(m >= n);
1879
0
    for (i = 0; i < n; ++i) {
1880
0
        borrow = x[i] - y[i] - borrow;
1881
0
        x[i] = borrow & PyLong_MASK;
1882
0
        borrow >>= PyLong_SHIFT;
1883
0
        borrow &= 1;            /* keep only 1 sign bit */
1884
0
    }
1885
0
    for (; borrow && i < m; ++i) {
1886
0
        borrow = x[i] - borrow;
1887
0
        x[i] = borrow & PyLong_MASK;
1888
0
        borrow >>= PyLong_SHIFT;
1889
0
        borrow &= 1;
1890
0
    }
1891
0
    return borrow;
1892
0
}
1893
1894
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
1895
 * result in z[0:m], and return the d bits shifted out of the top.
1896
 */
1897
static digit
1898
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
1899
0
{
1900
0
    Py_ssize_t i;
1901
0
    digit carry = 0;
1902
1903
0
    assert(0 <= d && d < PyLong_SHIFT);
1904
0
    for (i=0; i < m; i++) {
1905
0
        twodigits acc = (twodigits)a[i] << d | carry;
1906
0
        z[i] = (digit)acc & PyLong_MASK;
1907
0
        carry = (digit)(acc >> PyLong_SHIFT);
1908
0
    }
1909
0
    return carry;
1910
0
}
1911
1912
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
1913
 * result in z[0:m], and return the d bits shifted out of the bottom.
1914
 */
1915
static digit
1916
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
1917
0
{
1918
0
    Py_ssize_t i;
1919
0
    digit carry = 0;
1920
0
    digit mask = ((digit)1 << d) - 1U;
1921
1922
0
    assert(0 <= d && d < PyLong_SHIFT);
1923
0
    for (i=m; i-- > 0;) {
1924
0
        twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
1925
0
        carry = (digit)acc & mask;
1926
0
        z[i] = (digit)(acc >> d);
1927
0
    }
1928
0
    return carry;
1929
0
}
1930
1931
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1932
   in pout, and returning the remainder.  pin and pout point at the LSD.
1933
   It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1934
   _PyLong_Format, but that should be done with great care since ints are
1935
   immutable.
1936
1937
   This version of the code can be 20% faster than the pre-2022 version
1938
   on todays compilers on architectures like amd64.  It evolved from Mark
1939
   Dickinson observing that a 128:64 divide instruction was always being
1940
   generated by the compiler despite us working with 30-bit digit values.
1941
   See the thread for full context:
1942
1943
     https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
1944
1945
   If you ever want to change this code, pay attention to performance using
1946
   different compilers, optimization levels, and cpu architectures. Beware of
1947
   PGO/FDO builds doing value specialization such as a fast path for //10. :)
1948
1949
   Verify that 17 isn't specialized and this works as a quick test:
1950
     python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
1951
*/
1952
static digit
1953
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
1954
594
{
1955
594
    digit remainder = 0;
1956
1957
594
    assert(n > 0 && n <= PyLong_MASK);
1958
7.70k
    while (--size >= 0) {
1959
7.11k
        twodigits dividend;
1960
7.11k
        dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
1961
7.11k
        digit quotient;
1962
7.11k
        quotient = (digit)(dividend / n);
1963
7.11k
        remainder = dividend % n;
1964
7.11k
        pout[size] = quotient;
1965
7.11k
    }
1966
594
    return remainder;
1967
594
}
1968
1969
1970
/* Divide an integer by a digit, returning both the quotient
1971
   (as function result) and the remainder (through *prem).
1972
   The sign of a is ignored; n should not be zero. */
1973
1974
static PyLongObject *
1975
divrem1(PyLongObject *a, digit n, digit *prem)
1976
594
{
1977
594
    const Py_ssize_t size = _PyLong_DigitCount(a);
1978
594
    PyLongObject *z;
1979
1980
594
    assert(n > 0 && n <= PyLong_MASK);
1981
594
    z = long_alloc(size);
1982
594
    if (z == NULL)
1983
0
        return NULL;
1984
594
    *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n);
1985
594
    return long_normalize(z);
1986
594
}
1987
1988
/* Remainder of long pin, w/ size digits, by non-zero digit n,
1989
   returning the remainder. pin points at the LSD. */
1990
1991
static digit
1992
inplace_rem1(digit *pin, Py_ssize_t size, digit n)
1993
143
{
1994
143
    twodigits rem = 0;
1995
1996
143
    assert(n > 0 && n <= PyLong_MASK);
1997
429
    while (--size >= 0)
1998
286
        rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
1999
143
    return (digit)rem;
2000
143
}
2001
2002
/* Get the remainder of an integer divided by a digit, returning
2003
   the remainder as the result of the function. The sign of a is
2004
   ignored; n should not be zero. */
2005
2006
static PyLongObject *
2007
rem1(PyLongObject *a, digit n)
2008
143
{
2009
143
    const Py_ssize_t size = _PyLong_DigitCount(a);
2010
2011
143
    assert(n > 0 && n <= PyLong_MASK);
2012
143
    return (PyLongObject *)PyLong_FromLong(
2013
143
        (long)inplace_rem1(a->long_value.ob_digit, size, n)
2014
143
    );
2015
143
}
2016
2017
#ifdef WITH_PYLONG_MODULE
2018
/* asymptotically faster long_to_decimal_string, using _pylong.py */
2019
static int
2020
pylong_int_to_decimal_string(PyObject *aa,
2021
                             PyObject **p_output,
2022
                             _PyUnicodeWriter *writer,
2023
                             PyBytesWriter *bytes_writer,
2024
                             char **bytes_str)
2025
0
{
2026
0
    PyObject *s = NULL;
2027
0
    PyObject *mod = PyImport_ImportModule("_pylong");
2028
0
    if (mod == NULL) {
2029
0
        return -1;
2030
0
    }
2031
0
    s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa);
2032
0
    if (s == NULL) {
2033
0
        goto error;
2034
0
    }
2035
0
    if (!PyUnicode_Check(s)) {
2036
0
        PyErr_SetString(PyExc_TypeError,
2037
0
                        "_pylong.int_to_decimal_string did not return a str");
2038
0
        goto error;
2039
0
    }
2040
0
    if (writer) {
2041
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2042
0
        if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) {
2043
0
            goto error;
2044
0
        }
2045
0
        if (_PyUnicodeWriter_WriteStr(writer, s) < 0) {
2046
0
            goto error;
2047
0
        }
2048
0
        goto success;
2049
0
    }
2050
0
    else if (bytes_writer) {
2051
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2052
0
        const void *data = PyUnicode_DATA(s);
2053
0
        int kind = PyUnicode_KIND(s);
2054
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, size,
2055
0
                                                        *bytes_str);
2056
0
        if (*bytes_str == NULL) {
2057
0
            goto error;
2058
0
        }
2059
0
        char *p = *bytes_str;
2060
0
        for (Py_ssize_t i=0; i < size; i++) {
2061
0
            Py_UCS4 ch = PyUnicode_READ(kind, data, i);
2062
0
            *p++ = (char) ch;
2063
0
        }
2064
0
        (*bytes_str) = p;
2065
0
        goto success;
2066
0
    }
2067
0
    else {
2068
0
        *p_output = Py_NewRef(s);
2069
0
        goto success;
2070
0
    }
2071
2072
0
error:
2073
0
        Py_DECREF(mod);
2074
0
        Py_XDECREF(s);
2075
0
        return -1;
2076
2077
0
success:
2078
0
        Py_DECREF(mod);
2079
0
        Py_DECREF(s);
2080
0
        return 0;
2081
0
}
2082
#endif /* WITH_PYLONG_MODULE */
2083
2084
/* Convert an integer to a base 10 string.  Returns a new non-shared
2085
   string.  (Return value is non-shared so that callers can modify the
2086
   returned value if necessary.) */
2087
2088
static int
2089
long_to_decimal_string_internal(PyObject *aa,
2090
                                PyObject **p_output,
2091
                                _PyUnicodeWriter *writer,
2092
                                PyBytesWriter *bytes_writer,
2093
                                char **bytes_str)
2094
7.52M
{
2095
7.52M
    PyLongObject *scratch, *a;
2096
7.52M
    PyObject *str = NULL;
2097
7.52M
    Py_ssize_t size, strlen, size_a, i, j;
2098
7.52M
    digit *pout, *pin, rem, tenpow;
2099
7.52M
    int negative;
2100
7.52M
    int d;
2101
2102
    // writer or bytes_writer can be used, but not both at the same time.
2103
7.52M
    assert(writer == NULL || bytes_writer == NULL);
2104
2105
7.52M
    a = (PyLongObject *)aa;
2106
7.52M
    if (a == NULL || !PyLong_Check(a)) {
2107
0
        PyErr_BadInternalCall();
2108
0
        return -1;
2109
0
    }
2110
7.52M
    size_a = _PyLong_DigitCount(a);
2111
7.52M
    negative = _PyLong_IsNegative(a);
2112
2113
    /* quick and dirty pre-check for overflowing the decimal digit limit,
2114
       based on the inequality 10/3 >= log2(10)
2115
2116
       explanation in https://github.com/python/cpython/pull/96537
2117
    */
2118
7.52M
    if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
2119
7.52M
                  / (3 * PyLong_SHIFT) + 2) {
2120
309
        PyInterpreterState *interp = _PyInterpreterState_GET();
2121
309
        int max_str_digits = interp->long_state.max_str_digits;
2122
309
        if ((max_str_digits > 0) &&
2123
309
            (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
2124
1
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2125
1
                         max_str_digits);
2126
1
            return -1;
2127
1
        }
2128
309
    }
2129
2130
7.52M
#if WITH_PYLONG_MODULE
2131
7.52M
    if (size_a > 1000) {
2132
        /* Switch to _pylong.int_to_decimal_string(). */
2133
0
        return pylong_int_to_decimal_string(aa,
2134
0
                                         p_output,
2135
0
                                         writer,
2136
0
                                         bytes_writer,
2137
0
                                         bytes_str);
2138
0
    }
2139
7.52M
#endif
2140
2141
    /* quick and dirty upper bound for the number of digits
2142
       required to express a in base _PyLong_DECIMAL_BASE:
2143
2144
         #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
2145
2146
       But log2(a) < size_a * PyLong_SHIFT, and
2147
       log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
2148
                                  > 3.3 * _PyLong_DECIMAL_SHIFT
2149
2150
         size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
2151
             size_a + size_a / d < size_a + size_a / floor(d),
2152
       where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
2153
                 (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
2154
    */
2155
7.52M
    d = (33 * _PyLong_DECIMAL_SHIFT) /
2156
7.52M
        (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
2157
7.52M
    assert(size_a < PY_SSIZE_T_MAX/2);
2158
7.52M
    size = 1 + size_a + size_a / d;
2159
7.52M
    scratch = long_alloc(size);
2160
7.52M
    if (scratch == NULL)
2161
0
        return -1;
2162
2163
    /* convert array of base _PyLong_BASE digits in pin to an array of
2164
       base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
2165
       Volume 2 (3rd edn), section 4.4, Method 1b). */
2166
7.52M
    pin = a->long_value.ob_digit;
2167
7.52M
    pout = scratch->long_value.ob_digit;
2168
7.52M
    size = 0;
2169
15.0M
    for (i = size_a; --i >= 0; ) {
2170
7.48M
        digit hi = pin[i];
2171
9.28M
        for (j = 0; j < size; j++) {
2172
1.80M
            twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
2173
1.80M
            hi = (digit)(z / _PyLong_DECIMAL_BASE);
2174
1.80M
            pout[j] = (digit)(z - (twodigits)hi *
2175
1.80M
                              _PyLong_DECIMAL_BASE);
2176
1.80M
        }
2177
14.9M
        while (hi) {
2178
7.48M
            pout[size++] = hi % _PyLong_DECIMAL_BASE;
2179
7.48M
            hi /= _PyLong_DECIMAL_BASE;
2180
7.48M
        }
2181
        /* check for keyboard interrupt */
2182
7.48M
        SIGCHECK({
2183
7.48M
                Py_DECREF(scratch);
2184
7.48M
                return -1;
2185
7.48M
            });
2186
7.48M
    }
2187
    /* pout should have at least one digit, so that the case when a = 0
2188
       works correctly */
2189
7.52M
    if (size == 0)
2190
94.5k
        pout[size++] = 0;
2191
2192
    /* calculate exact length of output string, and allocate */
2193
7.52M
    strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
2194
7.52M
    tenpow = 10;
2195
7.52M
    rem = pout[size-1];
2196
28.3M
    while (rem >= tenpow) {
2197
20.7M
        tenpow *= 10;
2198
20.7M
        strlen++;
2199
20.7M
    }
2200
7.52M
    if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
2201
340
        PyInterpreterState *interp = _PyInterpreterState_GET();
2202
340
        int max_str_digits = interp->long_state.max_str_digits;
2203
340
        Py_ssize_t strlen_nosign = strlen - negative;
2204
340
        if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
2205
1
            Py_DECREF(scratch);
2206
1
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2207
1
                         max_str_digits);
2208
1
            return -1;
2209
1
        }
2210
340
    }
2211
7.52M
    if (writer) {
2212
7.49M
        if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
2213
0
            Py_DECREF(scratch);
2214
0
            return -1;
2215
0
        }
2216
7.49M
    }
2217
30.1k
    else if (bytes_writer) {
2218
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, strlen,
2219
0
                                                        *bytes_str);
2220
0
        if (*bytes_str == NULL) {
2221
0
            Py_DECREF(scratch);
2222
0
            return -1;
2223
0
        }
2224
0
    }
2225
30.1k
    else {
2226
30.1k
        str = PyUnicode_New(strlen, '9');
2227
30.1k
        if (str == NULL) {
2228
0
            Py_DECREF(scratch);
2229
0
            return -1;
2230
0
        }
2231
30.1k
    }
2232
2233
7.52M
#define WRITE_DIGITS(p)                                               \
2234
7.52M
    do {                                                              \
2235
        /* pout[0] through pout[size-2] contribute exactly            \
2236
           _PyLong_DECIMAL_SHIFT digits each */                       \
2237
7.57M
        for (i=0; i < size - 1; i++) {                                \
2238
47.3k
            rem = pout[i];                                            \
2239
473k
            for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
2240
426k
                *--p = '0' + rem % 10;                                \
2241
426k
                rem /= 10;                                            \
2242
426k
            }                                                         \
2243
47.3k
        }                                                             \
2244
        /* pout[size-1]: always produce at least one decimal digit */ \
2245
7.52M
        rem = pout[i];                                                \
2246
28.3M
        do {                                                          \
2247
28.3M
            *--p = '0' + rem % 10;                                    \
2248
28.3M
            rem /= 10;                                                \
2249
28.3M
        } while (rem != 0);                                           \
2250
7.52M
                                                                      \
2251
        /* and sign */                                                \
2252
7.52M
        if (negative)                                                 \
2253
7.52M
            *--p = '-';                                               \
2254
7.52M
    } while (0)
2255
2256
7.52M
#define WRITE_UNICODE_DIGITS(TYPE)                                    \
2257
7.52M
    do {                                                              \
2258
7.52M
        if (writer)                                                   \
2259
7.52M
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
2260
7.52M
        else                                                          \
2261
7.52M
            p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
2262
7.52M
                                                                      \
2263
7.52M
        WRITE_DIGITS(p);                                              \
2264
7.52M
                                                                      \
2265
        /* check we've counted correctly */                           \
2266
7.52M
        if (writer)                                                   \
2267
7.52M
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2268
7.52M
        else                                                          \
2269
7.52M
            assert(p == (TYPE*)PyUnicode_DATA(str));                  \
2270
7.52M
    } while (0)
2271
2272
    /* fill the string right-to-left */
2273
7.52M
    if (bytes_writer) {
2274
0
        char *p = *bytes_str + strlen;
2275
0
        WRITE_DIGITS(p);
2276
0
        assert(p == *bytes_str);
2277
0
    }
2278
7.52M
    else {
2279
7.52M
        int kind = writer ? writer->kind : PyUnicode_KIND(str);
2280
7.52M
        if (kind == PyUnicode_1BYTE_KIND) {
2281
7.52M
            Py_UCS1 *p;
2282
7.52M
            WRITE_UNICODE_DIGITS(Py_UCS1);
2283
7.52M
        }
2284
0
        else if (kind == PyUnicode_2BYTE_KIND) {
2285
0
            Py_UCS2 *p;
2286
0
            WRITE_UNICODE_DIGITS(Py_UCS2);
2287
0
        }
2288
0
        else {
2289
0
            assert (kind == PyUnicode_4BYTE_KIND);
2290
0
            Py_UCS4 *p;
2291
0
            WRITE_UNICODE_DIGITS(Py_UCS4);
2292
0
        }
2293
7.52M
    }
2294
2295
7.52M
#undef WRITE_DIGITS
2296
7.52M
#undef WRITE_UNICODE_DIGITS
2297
2298
7.52M
    _Py_DECREF_INT(scratch);
2299
7.52M
    if (writer) {
2300
7.49M
        writer->pos += strlen;
2301
7.49M
    }
2302
30.1k
    else if (bytes_writer) {
2303
0
        (*bytes_str) += strlen;
2304
0
    }
2305
30.1k
    else {
2306
30.1k
        assert(_PyUnicode_CheckConsistency(str, 1));
2307
30.1k
        *p_output = (PyObject *)str;
2308
30.1k
    }
2309
7.52M
    return 0;
2310
7.52M
}
2311
2312
static PyObject *
2313
long_to_decimal_string(PyObject *aa)
2314
30.1k
{
2315
30.1k
    PyObject *v;
2316
30.1k
    if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
2317
2
        return NULL;
2318
30.1k
    return v;
2319
30.1k
}
2320
2321
/* Convert an int object to a string, using a given conversion base,
2322
   which should be one of 2, 8 or 16.  Return a string object.
2323
   If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
2324
   if alternate is nonzero. */
2325
2326
static int
2327
long_format_binary(PyObject *aa, int base, int alternate,
2328
                   PyObject **p_output, _PyUnicodeWriter *writer,
2329
                   PyBytesWriter *bytes_writer, char **bytes_str)
2330
1.94k
{
2331
1.94k
    PyLongObject *a = (PyLongObject *)aa;
2332
1.94k
    PyObject *v = NULL;
2333
1.94k
    Py_ssize_t sz;
2334
1.94k
    Py_ssize_t size_a;
2335
1.94k
    int negative;
2336
1.94k
    int bits;
2337
2338
1.94k
    assert(base == 2 || base == 8 || base == 16);
2339
    // writer or bytes_writer can be used, but not both at the same time.
2340
1.94k
    assert(writer == NULL || bytes_writer == NULL);
2341
1.94k
    if (a == NULL || !PyLong_Check(a)) {
2342
0
        PyErr_BadInternalCall();
2343
0
        return -1;
2344
0
    }
2345
1.94k
    size_a = _PyLong_DigitCount(a);
2346
1.94k
    negative = _PyLong_IsNegative(a);
2347
2348
    /* Compute a rough upper bound for the length of the string */
2349
1.94k
    switch (base) {
2350
1.94k
    case 16:
2351
1.94k
        bits = 4;
2352
1.94k
        break;
2353
0
    case 8:
2354
0
        bits = 3;
2355
0
        break;
2356
0
    case 2:
2357
0
        bits = 1;
2358
0
        break;
2359
0
    default:
2360
0
        Py_UNREACHABLE();
2361
1.94k
    }
2362
2363
    /* Compute exact length 'sz' of output string. */
2364
1.94k
    if (size_a == 0) {
2365
8
        sz = 1;
2366
8
    }
2367
1.94k
    else {
2368
1.94k
        Py_ssize_t size_a_in_bits;
2369
        /* Ensure overflow doesn't occur during computation of sz. */
2370
1.94k
        if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
2371
0
            PyErr_SetString(PyExc_OverflowError,
2372
0
                            "int too large to format");
2373
0
            return -1;
2374
0
        }
2375
1.94k
        size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
2376
1.94k
                         bit_length_digit(a->long_value.ob_digit[size_a - 1]);
2377
        /* Allow 1 character for a '-' sign. */
2378
1.94k
        sz = negative + (size_a_in_bits + (bits - 1)) / bits;
2379
1.94k
    }
2380
1.94k
    if (alternate) {
2381
        /* 2 characters for prefix  */
2382
1.60k
        sz += 2;
2383
1.60k
    }
2384
2385
1.94k
    if (writer) {
2386
348
        if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
2387
0
            return -1;
2388
348
    }
2389
1.60k
    else if (bytes_writer) {
2390
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, sz,
2391
0
                                                        *bytes_str);
2392
0
        if (*bytes_str == NULL)
2393
0
            return -1;
2394
0
    }
2395
1.60k
    else {
2396
1.60k
        v = PyUnicode_New(sz, 'x');
2397
1.60k
        if (v == NULL)
2398
0
            return -1;
2399
1.60k
    }
2400
2401
1.94k
#define WRITE_DIGITS(p)                                                 \
2402
1.94k
    do {                                                                \
2403
1.94k
        if (size_a == 0) {                                              \
2404
8
            *--p = '0';                                                 \
2405
8
        }                                                               \
2406
1.94k
        else {                                                          \
2407
            /* JRH: special case for power-of-2 bases */                \
2408
1.94k
            twodigits accum = 0;                                        \
2409
1.94k
            int accumbits = 0;   /* # of bits in accum */               \
2410
1.94k
            Py_ssize_t i;                                               \
2411
9.52k
            for (i = 0; i < size_a; ++i) {                              \
2412
7.58k
                accum |= (twodigits)a->long_value.ob_digit[i] << accumbits;        \
2413
7.58k
                accumbits += PyLong_SHIFT;                              \
2414
7.58k
                assert(accumbits >= bits);                              \
2415
46.8k
                do {                                                    \
2416
46.8k
                    char cdigit;                                        \
2417
46.8k
                    cdigit = (char)(accum & (base - 1));                \
2418
46.8k
                    cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
2419
46.8k
                    *--p = cdigit;                                      \
2420
46.8k
                    accumbits -= bits;                                  \
2421
46.8k
                    accum >>= bits;                                     \
2422
46.8k
                } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
2423
7.58k
            }                                                           \
2424
1.94k
        }                                                               \
2425
1.94k
                                                                        \
2426
1.94k
        if (alternate) {                                                \
2427
1.60k
            if (base == 16)                                             \
2428
1.60k
                *--p = 'x';                                             \
2429
1.60k
            else if (base == 8)                                         \
2430
0
                *--p = 'o';                                             \
2431
0
            else /* (base == 2) */                                      \
2432
0
                *--p = 'b';                                             \
2433
1.60k
            *--p = '0';                                                 \
2434
1.60k
        }                                                               \
2435
1.94k
        if (negative)                                                   \
2436
1.94k
            *--p = '-';                                                 \
2437
1.94k
    } while (0)
2438
2439
1.94k
#define WRITE_UNICODE_DIGITS(TYPE)                                      \
2440
1.94k
    do {                                                                \
2441
1.94k
        if (writer)                                                     \
2442
1.94k
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
2443
1.94k
        else                                                            \
2444
1.94k
            p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
2445
1.94k
                                                                        \
2446
1.94k
        WRITE_DIGITS(p);                                                \
2447
1.94k
                                                                        \
2448
1.94k
        if (writer)                                                     \
2449
1.94k
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2450
1.94k
        else                                                            \
2451
1.94k
            assert(p == (TYPE*)PyUnicode_DATA(v));                      \
2452
1.94k
    } while (0)
2453
2454
1.94k
    if (bytes_writer) {
2455
0
        char *p = *bytes_str + sz;
2456
0
        WRITE_DIGITS(p);
2457
0
        assert(p == *bytes_str);
2458
0
    }
2459
1.94k
    else {
2460
1.94k
        int kind = writer ? writer->kind : PyUnicode_KIND(v);
2461
1.94k
        if (kind == PyUnicode_1BYTE_KIND) {
2462
1.94k
            Py_UCS1 *p;
2463
1.94k
            WRITE_UNICODE_DIGITS(Py_UCS1);
2464
1.94k
        }
2465
0
        else if (kind == PyUnicode_2BYTE_KIND) {
2466
0
            Py_UCS2 *p;
2467
0
            WRITE_UNICODE_DIGITS(Py_UCS2);
2468
0
        }
2469
0
        else {
2470
0
            assert (kind == PyUnicode_4BYTE_KIND);
2471
0
            Py_UCS4 *p;
2472
0
            WRITE_UNICODE_DIGITS(Py_UCS4);
2473
0
        }
2474
1.94k
    }
2475
2476
1.94k
#undef WRITE_DIGITS
2477
1.94k
#undef WRITE_UNICODE_DIGITS
2478
2479
1.94k
    if (writer) {
2480
348
        writer->pos += sz;
2481
348
    }
2482
1.60k
    else if (bytes_writer) {
2483
0
        (*bytes_str) += sz;
2484
0
    }
2485
1.60k
    else {
2486
1.60k
        assert(_PyUnicode_CheckConsistency(v, 1));
2487
1.60k
        *p_output = v;
2488
1.60k
    }
2489
1.94k
    return 0;
2490
1.94k
}
2491
2492
PyObject *
2493
_PyLong_Format(PyObject *obj, int base)
2494
1.60k
{
2495
1.60k
    PyObject *str;
2496
1.60k
    int err;
2497
1.60k
    if (base == 10)
2498
0
        err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
2499
1.60k
    else
2500
1.60k
        err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
2501
1.60k
    if (err == -1)
2502
0
        return NULL;
2503
1.60k
    return str;
2504
1.60k
}
2505
2506
int
2507
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
2508
                     PyObject *obj,
2509
                     int base, int alternate)
2510
7.49M
{
2511
7.49M
    if (base == 10)
2512
7.49M
        return long_to_decimal_string_internal(obj, NULL, writer,
2513
7.49M
                                               NULL, NULL);
2514
348
    else
2515
348
        return long_format_binary(obj, base, alternate, NULL, writer,
2516
348
                                  NULL, NULL);
2517
7.49M
}
2518
2519
char*
2520
_PyLong_FormatBytesWriter(PyBytesWriter *writer, char *str,
2521
                          PyObject *obj,
2522
                          int base, int alternate)
2523
0
{
2524
0
    char *str2;
2525
0
    int res;
2526
0
    str2 = str;
2527
0
    if (base == 10)
2528
0
        res = long_to_decimal_string_internal(obj, NULL, NULL,
2529
0
                                              writer, &str2);
2530
0
    else
2531
0
        res = long_format_binary(obj, base, alternate, NULL, NULL,
2532
0
                                 writer, &str2);
2533
0
    if (res < 0)
2534
0
        return NULL;
2535
0
    assert(str2 != NULL);
2536
0
    return str2;
2537
0
}
2538
2539
/* Table of digit values for 8-bit string -> integer conversion.
2540
 * '0' maps to 0, ..., '9' maps to 9.
2541
 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
2542
 * All other indices map to 37.
2543
 * Note that when converting a base B string, a char c is a legitimate
2544
 * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
2545
 */
2546
unsigned char _PyLong_DigitValue[256] = {
2547
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2548
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2549
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2550
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
2551
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2552
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2553
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2554
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2555
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2556
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2557
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2558
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2559
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2560
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2561
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2562
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2563
};
2564
2565
/* `start` and `end` point to the start and end of a string of base `base`
2566
 * digits.  base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is
2567
 * returned in *res. The string should be already validated by the caller and
2568
 * consists only of valid digit characters and underscores. `digits` gives the
2569
 * number of digit characters.
2570
 *
2571
 * The point to this routine is that it takes time linear in the
2572
 * number of string characters.
2573
 *
2574
 * Return values:
2575
 *   -1 on syntax error (exception needs to be set, *res is untouched)
2576
 *   0 else (exception may be set, in that case *res is set to NULL)
2577
 */
2578
static int
2579
long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2580
281k
{
2581
281k
    const char *p;
2582
281k
    int bits_per_char;
2583
281k
    Py_ssize_t n;
2584
281k
    PyLongObject *z;
2585
281k
    twodigits accum;
2586
281k
    int bits_in_accum;
2587
281k
    digit *pdigit;
2588
2589
281k
    assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
2590
281k
    n = base;
2591
1.68M
    for (bits_per_char = -1; n; ++bits_per_char) {
2592
1.40M
        n >>= 1;
2593
1.40M
    }
2594
2595
    /* n <- the number of Python digits needed,
2596
            = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
2597
281k
    if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
2598
0
        PyErr_SetString(PyExc_ValueError,
2599
0
                        "int string too large to convert");
2600
0
        *res = NULL;
2601
0
        return 0;
2602
0
    }
2603
281k
    n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
2604
281k
    z = long_alloc(n);
2605
281k
    if (z == NULL) {
2606
0
        *res = NULL;
2607
0
        return 0;
2608
0
    }
2609
    /* Read string from right, and fill in int from left; i.e.,
2610
     * from least to most significant in both.
2611
     */
2612
281k
    accum = 0;
2613
281k
    bits_in_accum = 0;
2614
281k
    pdigit = z->long_value.ob_digit;
2615
281k
    p = end;
2616
7.57M
    while (--p >= start) {
2617
7.29M
        int k;
2618
7.29M
        if (*p == '_') {
2619
0
            continue;
2620
0
        }
2621
7.29M
        k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
2622
7.29M
        assert(k >= 0 && k < base);
2623
7.29M
        accum |= (twodigits)k << bits_in_accum;
2624
7.29M
        bits_in_accum += bits_per_char;
2625
7.29M
        if (bits_in_accum >= PyLong_SHIFT) {
2626
922k
            *pdigit++ = (digit)(accum & PyLong_MASK);
2627
922k
            assert(pdigit - z->long_value.ob_digit <= n);
2628
922k
            accum >>= PyLong_SHIFT;
2629
922k
            bits_in_accum -= PyLong_SHIFT;
2630
922k
            assert(bits_in_accum < PyLong_SHIFT);
2631
922k
        }
2632
7.29M
    }
2633
281k
    if (bits_in_accum) {
2634
280k
        assert(bits_in_accum <= PyLong_SHIFT);
2635
280k
        *pdigit++ = (digit)accum;
2636
280k
        assert(pdigit - z->long_value.ob_digit <= n);
2637
280k
    }
2638
281k
    while (pdigit - z->long_value.ob_digit < n)
2639
0
        *pdigit++ = 0;
2640
281k
    *res = z;
2641
281k
    return 0;
2642
281k
}
2643
2644
#ifdef WITH_PYLONG_MODULE
2645
/* asymptotically faster str-to-long conversion for base 10, using _pylong.py */
2646
static int
2647
pylong_int_from_string(const char *start, const char *end, PyLongObject **res)
2648
0
{
2649
0
    PyObject *mod = PyImport_ImportModule("_pylong");
2650
0
    if (mod == NULL) {
2651
0
        goto error;
2652
0
    }
2653
0
    PyObject *s = PyUnicode_FromStringAndSize(start, end-start);
2654
0
    if (s == NULL) {
2655
0
        Py_DECREF(mod);
2656
0
        goto error;
2657
0
    }
2658
0
    PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s);
2659
0
    Py_DECREF(s);
2660
0
    Py_DECREF(mod);
2661
0
    if (result == NULL) {
2662
0
        goto error;
2663
0
    }
2664
0
    if (!PyLong_Check(result)) {
2665
0
        Py_DECREF(result);
2666
0
        PyErr_SetString(PyExc_TypeError,
2667
0
                        "_pylong.int_from_string did not return an int");
2668
0
        goto error;
2669
0
    }
2670
0
    *res = (PyLongObject *)result;
2671
0
    return 0;
2672
0
error:
2673
0
    *res = NULL;
2674
0
    return 0;  // See the long_from_string_base() API comment.
2675
0
}
2676
#endif /* WITH_PYLONG_MODULE */
2677
2678
/***
2679
long_from_non_binary_base: parameters and return values are the same as
2680
long_from_binary_base.
2681
2682
Binary bases can be converted in time linear in the number of digits, because
2683
Python's representation base is binary.  Other bases (including decimal!) use
2684
the simple quadratic-time algorithm below, complicated by some speed tricks.
2685
2686
First some math:  the largest integer that can be expressed in N base-B digits
2687
is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
2688
case number of Python digits needed to hold it is the smallest integer n s.t.
2689
2690
    BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
2691
    BASE**n >= B**N      [taking logs to base BASE]
2692
    n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
2693
2694
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
2695
this quickly.  A Python int with that much space is reserved near the start,
2696
and the result is computed into it.
2697
2698
The input string is actually treated as being in base base**i (i.e., i digits
2699
are processed at a time), where two more static arrays hold:
2700
2701
    convwidth_base[base] = the largest integer i such that base**i <= BASE
2702
    convmultmax_base[base] = base ** convwidth_base[base]
2703
2704
The first of these is the largest i such that i consecutive input digits
2705
must fit in a single Python digit.  The second is effectively the input
2706
base we're really using.
2707
2708
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
2709
convmultmax_base[base], the result is "simply"
2710
2711
   (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
2712
2713
where B = convmultmax_base[base].
2714
2715
Error analysis:  as above, the number of Python digits `n` needed is worst-
2716
case
2717
2718
    n >= N * log(B)/log(BASE)
2719
2720
where `N` is the number of input digits in base `B`.  This is computed via
2721
2722
    size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
2723
2724
below.  Two numeric concerns are how much space this can waste, and whether
2725
the computed result can be too small.  To be concrete, assume BASE = 2**15,
2726
which is the default (and it's unlikely anyone changes that).
2727
2728
Waste isn't a problem:  provided the first input digit isn't 0, the difference
2729
between the worst-case input with N digits and the smallest input with N
2730
digits is about a factor of B, but B is small compared to BASE so at most
2731
one allocated Python digit can remain unused on that count.  If
2732
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
2733
and adding 1 returns a result 1 larger than necessary.  However, that can't
2734
happen:  whenever B is a power of 2, long_from_binary_base() is called
2735
instead, and it's impossible for B**i to be an integer power of 2**15 when
2736
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
2737
an exact integer when B is not a power of 2, since B**i has a prime factor
2738
other than 2 in that case, but (2**15)**j's only prime factor is 2).
2739
2740
The computed result can be too small if the true value of N*log(B)/log(BASE)
2741
is a little bit larger than an exact integer, but due to roundoff errors (in
2742
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
2743
yields a numeric result a little less than that integer.  Unfortunately, "how
2744
close can a transcendental function get to an integer over some range?"
2745
questions are generally theoretically intractable.  Computer analysis via
2746
continued fractions is practical:  expand log(B)/log(BASE) via continued
2747
fractions, giving a sequence i/j of "the best" rational approximations.  Then
2748
j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
2749
we can get very close to being in trouble, but very rarely.  For example,
2750
76573 is a denominator in one of the continued-fraction approximations to
2751
log(10)/log(2**15), and indeed:
2752
2753
    >>> log(10)/log(2**15)*76573
2754
    16958.000000654003
2755
2756
is very close to an integer.  If we were working with IEEE single-precision,
2757
rounding errors could kill us.  Finding worst cases in IEEE double-precision
2758
requires better-than-double-precision log() functions, and Tim didn't bother.
2759
Instead the code checks to see whether the allocated space is enough as each
2760
new Python digit is added, and copies the whole thing to a larger int if not.
2761
This should happen extremely rarely, and in fact I don't have a test case
2762
that triggers it(!).  Instead the code was tested by artificially allocating
2763
just 1 digit at the start, so that the copying code was exercised for every
2764
digit beyond the first.
2765
***/
2766
2767
// Tables are computed by Tools/scripts/long_conv_tables.py
2768
#if PYLONG_BITS_IN_DIGIT == 15
2769
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2770
        0.10566416671474375, 0.0, 0.15479520632582416,
2771
        0.17233083338141042, 0.18715699480384027, 0.0,
2772
        0.2113283334294875, 0.22146187299249084, 0.23062877457581984,
2773
        0.2389975000480771, 0.24669598120940617, 0.25382366147050694,
2774
        0.26045937304056793, 0.0, 0.27249752275002265,
2775
        0.27799500009615413, 0.2831951675629057, 0.28812853965915747,
2776
        0.29282116151858406, 0.2972954412424865, 0.3015707970704675,
2777
        0.3056641667147438, 0.30959041265164833, 0.3133626478760728,
2778
        0.31699250014423125, 0.3204903281371736, 0.3238653996751715,
2779
        0.3271260397072346, 0.3302797540257917, 0.0,
2780
        0.3362929412905636, 0.3391641894166893, 0.34195220112966446,
2781
        0.34466166676282084};
2782
    static const int convwidth_base[37] = {0, 0, 0, 9, 0, 6, 5, 5, 0,
2783
        4, 4, 4, 4, 4, 3, 3, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2784
        3, 3, 0, 2, 2, 2, 2};
2785
    static const twodigits convmultmax_base[37] = {0, 0, 0, 19683, 0,
2786
        15625, 7776, 16807, 0, 6561, 10000, 14641, 20736, 28561, 2744,
2787
        3375, 0, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824,
2788
        15625, 17576, 19683, 21952, 24389, 27000, 29791, 0, 1089,
2789
        1156, 1225, 1296};
2790
#elif PYLONG_BITS_IN_DIGIT == 30
2791
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2792
        0.05283208335737188, 0.0, 0.07739760316291208,
2793
        0.08616541669070521, 0.09357849740192013, 0.0,
2794
        0.10566416671474375, 0.11073093649624542, 0.11531438728790992,
2795
        0.11949875002403855, 0.12334799060470308, 0.12691183073525347,
2796
        0.13022968652028397, 0.0, 0.13624876137501132,
2797
        0.13899750004807707, 0.14159758378145285, 0.14406426982957873,
2798
        0.14641058075929203, 0.14864772062124326, 0.15078539853523376,
2799
        0.1528320833573719, 0.15479520632582416, 0.1566813239380364,
2800
        0.15849625007211562, 0.1602451640685868, 0.16193269983758574,
2801
        0.1635630198536173, 0.16513987701289584, 0.0,
2802
        0.1681464706452818, 0.16958209470834465, 0.17097610056483223,
2803
        0.17233083338141042};
2804
    static const int convwidth_base[37] = {0, 0, 0, 18, 0, 12, 11, 10,
2805
        0, 9, 9, 8, 8, 8, 7, 7, 0, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6,
2806
        6, 6, 6, 0, 5, 5, 5, 5};
2807
    static const twodigits convmultmax_base[37] = {0, 0, 0, 387420489,
2808
        0, 244140625, 362797056, 282475249, 0, 387420489, 1000000000,
2809
        214358881, 429981696, 815730721, 105413504, 170859375, 0,
2810
        410338673, 612220032, 893871739, 64000000, 85766121,
2811
        113379904, 148035889, 191102976, 244140625, 308915776,
2812
        387420489, 481890304, 594823321, 729000000, 887503681, 0,
2813
        39135393, 45435424, 52521875, 60466176};
2814
#else
2815
    #error "invalid PYLONG_BITS_IN_DIGIT value"
2816
#endif
2817
2818
static int
2819
long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2820
7.51M
{
2821
7.51M
    twodigits c;           /* current input character */
2822
7.51M
    Py_ssize_t size_z;
2823
7.51M
    int i;
2824
7.51M
    int convwidth;
2825
7.51M
    twodigits convmultmax, convmult;
2826
7.51M
    digit *pz, *pzstop;
2827
7.51M
    PyLongObject *z;
2828
7.51M
    const char *p;
2829
2830
7.51M
    assert(log_base_BASE[base] != 0.0);
2831
2832
    /* Create an int object that can contain the largest possible
2833
     * integer with this base and length.  Note that there's no
2834
     * need to initialize z->long_value.ob_digit -- no slot is read up before
2835
     * being stored into.
2836
     */
2837
7.51M
    double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
2838
7.51M
    if (fsize_z > (double)MAX_LONG_DIGITS) {
2839
        /* The same exception as in long_alloc(). */
2840
0
        PyErr_SetString(PyExc_OverflowError,
2841
0
                        "too many digits in integer");
2842
0
        *res = NULL;
2843
0
        return 0;
2844
0
    }
2845
7.51M
    size_z = (Py_ssize_t)fsize_z;
2846
    /* Uncomment next line to test exceedingly rare copy code */
2847
    /* size_z = 1; */
2848
7.51M
    assert(size_z > 0);
2849
7.51M
    z = long_alloc(size_z);
2850
7.51M
    if (z == NULL) {
2851
0
        *res = NULL;
2852
0
        return 0;
2853
0
    }
2854
7.51M
    _PyLong_SetSignAndDigitCount(z, 0, 0);
2855
2856
    /* `convwidth` consecutive input digits are treated as a single
2857
     * digit in base `convmultmax`.
2858
     */
2859
7.51M
    convwidth = convwidth_base[base];
2860
7.51M
    convmultmax = convmultmax_base[base];
2861
2862
    /* Work ;-) */
2863
7.51M
    p = start;
2864
15.3M
    while (p < end) {
2865
7.80M
        if (*p == '_') {
2866
111
            p++;
2867
111
            continue;
2868
111
        }
2869
        /* grab up to convwidth digits from the input string */
2870
7.80M
        c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)];
2871
10.6M
        for (i = 1; i < convwidth && p != end; ++p) {
2872
2.79M
            if (*p == '_') {
2873
629
                continue;
2874
629
            }
2875
2.79M
            i++;
2876
2.79M
            c = (twodigits)(c *  base +
2877
2.79M
                            (int)_PyLong_DigitValue[Py_CHARMASK(*p)]);
2878
2.79M
            assert(c < PyLong_BASE);
2879
2.79M
        }
2880
2881
7.80M
        convmult = convmultmax;
2882
        /* Calculate the shift only if we couldn't get
2883
         * convwidth digits.
2884
         */
2885
7.80M
        if (i != convwidth) {
2886
7.50M
            convmult = base;
2887
7.95M
            for ( ; i > 1; --i) {
2888
440k
                convmult *= base;
2889
440k
            }
2890
7.50M
        }
2891
2892
        /* Multiply z by convmult, and add c. */
2893
7.80M
        pz = z->long_value.ob_digit;
2894
7.80M
        pzstop = pz + _PyLong_DigitCount(z);
2895
16.5M
        for (; pz < pzstop; ++pz) {
2896
8.77M
            c += (twodigits)*pz * convmult;
2897
8.77M
            *pz = (digit)(c & PyLong_MASK);
2898
8.77M
            c >>= PyLong_SHIFT;
2899
8.77M
        }
2900
        /* carry off the current end? */
2901
7.80M
        if (c) {
2902
5.80M
            assert(c < PyLong_BASE);
2903
5.80M
            if (_PyLong_DigitCount(z) < size_z) {
2904
5.80M
                *pz = (digit)c;
2905
5.80M
                assert(!_PyLong_IsNegative(z));
2906
5.80M
                _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1);
2907
5.80M
            }
2908
0
            else {
2909
0
                PyLongObject *tmp;
2910
                /* Extremely rare.  Get more space. */
2911
0
                assert(_PyLong_DigitCount(z) == size_z);
2912
0
                tmp = long_alloc(size_z + 1);
2913
0
                if (tmp == NULL) {
2914
0
                    Py_DECREF(z);
2915
0
                    *res = NULL;
2916
0
                    return 0;
2917
0
                }
2918
0
                memcpy(tmp->long_value.ob_digit,
2919
0
                       z->long_value.ob_digit,
2920
0
                       sizeof(digit) * size_z);
2921
0
                Py_SETREF(z, tmp);
2922
0
                z->long_value.ob_digit[size_z] = (digit)c;
2923
0
                ++size_z;
2924
0
            }
2925
5.80M
        }
2926
7.80M
    }
2927
7.51M
    *res = z;
2928
7.51M
    return 0;
2929
7.51M
}
2930
2931
/* *str points to the first digit in a string of base `base` digits. base is an
2932
 * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes
2933
 * like 0x or leading +- signs. The string should be null terminated consisting
2934
 * of ASCII digits and separating underscores possibly with trailing whitespace
2935
 * but we have to validate all of those points here.
2936
 *
2937
 * If base is a power of 2 then the complexity is linear in the number of
2938
 * characters in the string. Otherwise a quadratic algorithm is used for
2939
 * non-binary bases.
2940
 *
2941
 * Return values:
2942
 *
2943
 *   - Returns -1 on syntax error (exception needs to be set, *res is untouched)
2944
 *   - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or
2945
 *     _pylong.int_from_string() errors.
2946
 *   - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!).
2947
 *
2948
 * Afterwards *str is set to point to the first non-digit (which may be *str!).
2949
 */
2950
static int
2951
long_from_string_base(const char **str, int base, PyLongObject **res)
2952
7.79M
{
2953
7.79M
    const char *start, *end, *p;
2954
7.79M
    char prev = 0;
2955
7.79M
    Py_ssize_t digits = 0;
2956
7.79M
    int is_binary_base = (base & (base - 1)) == 0;
2957
2958
    /* Here we do four things:
2959
     *
2960
     * - Find the `end` of the string.
2961
     * - Validate the string.
2962
     * - Count the number of `digits` (rather than underscores)
2963
     * - Point *str to the end-of-string or first invalid character.
2964
     */
2965
7.79M
    start = p = *str;
2966
    /* Leading underscore not allowed. */
2967
7.79M
    if (*start == '_') {
2968
1
        return -1;
2969
1
    }
2970
    /* Verify all characters are digits and underscores. */
2971
32.8M
    while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
2972
25.0M
        if (*p == '_') {
2973
            /* Double underscore not allowed. */
2974
785
            if (prev == '_') {
2975
1
                *str = p - 1;
2976
1
                return -1;
2977
1
            }
2978
25.0M
        } else {
2979
25.0M
            ++digits;
2980
25.0M
        }
2981
25.0M
        prev = *p;
2982
25.0M
        ++p;
2983
25.0M
    }
2984
    /* Trailing underscore not allowed. */
2985
7.79M
    if (prev == '_') {
2986
7
        *str = p - 1;
2987
7
        return -1;
2988
7
    }
2989
7.79M
    *str = end = p;
2990
    /* Reject empty strings */
2991
7.79M
    if (start == end) {
2992
227
        return -1;
2993
227
    }
2994
    /* Allow only trailing whitespace after `end` */
2995
7.80M
    while (*p && Py_ISSPACE(*p)) {
2996
14.0k
        p++;
2997
14.0k
    }
2998
7.79M
    *str = p;
2999
7.79M
    if (*p != '\0') {
3000
39
        return -1;
3001
39
    }
3002
3003
    /*
3004
     * Pass a validated string consisting of only valid digits and underscores
3005
     * to long_from_xxx_base.
3006
     */
3007
7.79M
    if (is_binary_base) {
3008
        /* Use the linear algorithm for binary bases. */
3009
281k
        return long_from_binary_base(start, end, digits, base, res);
3010
281k
    }
3011
7.51M
    else {
3012
        /* Limit the size to avoid excessive computation attacks exploiting the
3013
         * quadratic algorithm. */
3014
7.51M
        if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
3015
1.76k
            PyInterpreterState *interp = _PyInterpreterState_GET();
3016
1.76k
            int max_str_digits = interp->long_state.max_str_digits;
3017
1.76k
            if ((max_str_digits > 0) && (digits > max_str_digits)) {
3018
55
                PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
3019
55
                             max_str_digits, digits);
3020
55
                *res = NULL;
3021
55
                return 0;
3022
55
            }
3023
1.76k
        }
3024
7.51M
#if WITH_PYLONG_MODULE
3025
7.51M
        if (digits > 6000 && base == 10) {
3026
            /* Switch to _pylong.int_from_string() */
3027
0
            return pylong_int_from_string(start, end, res);
3028
0
        }
3029
7.51M
#endif
3030
        /* Use the quadratic algorithm for non binary bases. */
3031
7.51M
        return long_from_non_binary_base(start, end, digits, base, res);
3032
7.51M
    }
3033
7.79M
}
3034
3035
/* Parses an int from a bytestring. Leading and trailing whitespace will be
3036
 * ignored.
3037
 *
3038
 * If successful, a PyLong object will be returned and 'pend' will be pointing
3039
 * to the first unused byte unless it's NULL.
3040
 *
3041
 * If unsuccessful, NULL will be returned.
3042
 */
3043
PyObject *
3044
PyLong_FromString(const char *str, char **pend, int base)
3045
7.79M
{
3046
7.79M
    int sign = 1, error_if_nonzero = 0;
3047
7.79M
    const char *orig_str = str;
3048
7.79M
    PyLongObject *z = NULL;
3049
7.79M
    PyObject *strobj;
3050
7.79M
    Py_ssize_t slen;
3051
3052
7.79M
    if ((base != 0 && base < 2) || base > 36) {
3053
0
        PyErr_SetString(PyExc_ValueError,
3054
0
                        "int() arg 2 must be >= 2 and <= 36");
3055
0
        return NULL;
3056
0
    }
3057
7.79M
    while (*str != '\0' && Py_ISSPACE(*str)) {
3058
589
        ++str;
3059
589
    }
3060
7.79M
    if (*str == '+') {
3061
25
        ++str;
3062
25
    }
3063
7.79M
    else if (*str == '-') {
3064
21.6k
        ++str;
3065
21.6k
        sign = -1;
3066
21.6k
    }
3067
7.79M
    if (base == 0) {
3068
2.81k
        if (str[0] != '0') {
3069
1.46k
            base = 10;
3070
1.46k
        }
3071
1.35k
        else if (str[1] == 'x' || str[1] == 'X') {
3072
1.08k
            base = 16;
3073
1.08k
        }
3074
264
        else if (str[1] == 'o' || str[1] == 'O') {
3075
124
            base = 8;
3076
124
        }
3077
140
        else if (str[1] == 'b' || str[1] == 'B') {
3078
140
            base = 2;
3079
140
        }
3080
0
        else {
3081
            /* "old" (C-style) octal literal, now invalid.
3082
               it might still be zero though */
3083
0
            error_if_nonzero = 1;
3084
0
            base = 10;
3085
0
        }
3086
2.81k
    }
3087
7.79M
    if (str[0] == '0' &&
3088
2.00M
        ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
3089
2.00M
         (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
3090
2.00M
         (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
3091
1.35k
        str += 2;
3092
        /* One underscore allowed here. */
3093
1.35k
        if (*str == '_') {
3094
0
            ++str;
3095
0
        }
3096
1.35k
    }
3097
3098
    /* long_from_string_base is the main workhorse here. */
3099
7.79M
    int ret = long_from_string_base(&str, base, &z);
3100
7.79M
    if (ret == -1) {
3101
        /* Syntax error. */
3102
275
        goto onError;
3103
275
    }
3104
7.79M
    if (z == NULL) {
3105
        /* Error. exception already set. */
3106
55
        return NULL;
3107
55
    }
3108
3109
7.79M
    if (error_if_nonzero) {
3110
        /* reset the base to 0, else the exception message
3111
           doesn't make too much sense */
3112
0
        base = 0;
3113
0
        if (!_PyLong_IsZero(z)) {
3114
0
            goto onError;
3115
0
        }
3116
        /* there might still be other problems, therefore base
3117
           remains zero here for the same reason */
3118
0
    }
3119
3120
    /* Set sign and normalize */
3121
7.79M
    if (sign < 0) {
3122
21.6k
        _PyLong_FlipSign(z);
3123
21.6k
    }
3124
7.79M
    long_normalize(z);
3125
7.79M
    z = maybe_small_long(z);
3126
3127
7.79M
    if (pend != NULL) {
3128
4.54M
        *pend = (char *)str;
3129
4.54M
    }
3130
7.79M
    return (PyObject *) z;
3131
3132
275
  onError:
3133
275
    if (pend != NULL) {
3134
275
        *pend = (char *)str;
3135
275
    }
3136
275
    Py_XDECREF(z);
3137
275
    slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
3138
275
    strobj = PyUnicode_FromStringAndSize(orig_str, slen);
3139
275
    if (strobj == NULL) {
3140
0
        return NULL;
3141
0
    }
3142
275
    PyErr_Format(PyExc_ValueError,
3143
275
                 "invalid literal for int() with base %d: %.200R",
3144
275
                 base, strobj);
3145
275
    Py_DECREF(strobj);
3146
275
    return NULL;
3147
275
}
3148
3149
/* Since PyLong_FromString doesn't have a length parameter,
3150
 * check here for possible NULs in the string.
3151
 *
3152
 * Reports an invalid literal as a bytes object.
3153
 */
3154
PyObject *
3155
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
3156
1.24k
{
3157
1.24k
    PyObject *result, *strobj;
3158
1.24k
    char *end = NULL;
3159
3160
1.24k
    result = PyLong_FromString(s, &end, base);
3161
1.24k
    if (end == NULL || (result != NULL && end == s + len))
3162
1.24k
        return result;
3163
0
    Py_XDECREF(result);
3164
0
    strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
3165
0
    if (strobj != NULL) {
3166
0
        PyErr_Format(PyExc_ValueError,
3167
0
                     "invalid literal for int() with base %d: %.200R",
3168
0
                     base, strobj);
3169
0
        Py_DECREF(strobj);
3170
0
    }
3171
0
    return NULL;
3172
1.24k
}
3173
3174
PyObject *
3175
PyLong_FromUnicodeObject(PyObject *u, int base)
3176
4.54M
{
3177
4.54M
    PyObject *result, *asciidig;
3178
4.54M
    const char *buffer;
3179
4.54M
    char *end = NULL;
3180
4.54M
    Py_ssize_t buflen;
3181
3182
4.54M
    asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
3183
4.54M
    if (asciidig == NULL)
3184
0
        return NULL;
3185
4.54M
    assert(PyUnicode_IS_ASCII(asciidig));
3186
    /* Simply get a pointer to existing ASCII characters. */
3187
4.54M
    buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
3188
4.54M
    assert(buffer != NULL);
3189
3190
4.54M
    result = PyLong_FromString(buffer, &end, base);
3191
4.54M
    if (end == NULL || (result != NULL && end == buffer + buflen)) {
3192
4.54M
        Py_DECREF(asciidig);
3193
4.54M
        return result;
3194
4.54M
    }
3195
290
    Py_DECREF(asciidig);
3196
290
    Py_XDECREF(result);
3197
290
    PyErr_Format(PyExc_ValueError,
3198
290
                 "invalid literal for int() with base %d: %.200R",
3199
290
                 base, u);
3200
290
    return NULL;
3201
4.54M
}
3202
3203
/* Int division with remainder, top-level routine */
3204
3205
static int
3206
long_divrem(PyLongObject *a, PyLongObject *b,
3207
            PyLongObject **pdiv, PyLongObject **prem)
3208
376k
{
3209
376k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3210
376k
    PyLongObject *z;
3211
3212
376k
    if (size_b == 0) {
3213
0
        PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
3214
0
        return -1;
3215
0
    }
3216
376k
    if (size_a < size_b ||
3217
594
        (size_a == size_b &&
3218
375k
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3219
        /* |a| < |b|. */
3220
375k
        *prem = (PyLongObject *)long_long((PyObject *)a);
3221
375k
        if (*prem == NULL) {
3222
0
            return -1;
3223
0
        }
3224
375k
        *pdiv = (PyLongObject*)_PyLong_GetZero();
3225
375k
        return 0;
3226
375k
    }
3227
594
    if (size_b == 1) {
3228
594
        digit rem = 0;
3229
594
        z = divrem1(a, b->long_value.ob_digit[0], &rem);
3230
594
        if (z == NULL)
3231
0
            return -1;
3232
594
        *prem = (PyLongObject *) PyLong_FromLong((long)rem);
3233
594
        if (*prem == NULL) {
3234
0
            Py_DECREF(z);
3235
0
            return -1;
3236
0
        }
3237
594
    }
3238
0
    else {
3239
0
        z = x_divrem(a, b, prem);
3240
0
        *prem = maybe_small_long(*prem);
3241
0
        if (z == NULL)
3242
0
            return -1;
3243
0
    }
3244
    /* Set the signs.
3245
       The quotient z has the sign of a*b;
3246
       the remainder r has the sign of a,
3247
       so a = b*z + r. */
3248
594
    if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) {
3249
0
        _PyLong_Negate(&z);
3250
0
        if (z == NULL) {
3251
0
            Py_CLEAR(*prem);
3252
0
            return -1;
3253
0
        }
3254
0
    }
3255
594
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3256
0
        _PyLong_Negate(prem);
3257
0
        if (*prem == NULL) {
3258
0
            Py_DECREF(z);
3259
0
            Py_CLEAR(*prem);
3260
0
            return -1;
3261
0
        }
3262
0
    }
3263
594
    *pdiv = maybe_small_long(z);
3264
594
    return 0;
3265
594
}
3266
3267
/* Int remainder, top-level routine */
3268
3269
static int
3270
long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
3271
4.10M
{
3272
4.10M
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3273
3274
4.10M
    if (size_b == 0) {
3275
0
        PyErr_SetString(PyExc_ZeroDivisionError,
3276
0
                        "division by zero");
3277
0
        return -1;
3278
0
    }
3279
4.10M
    if (size_a < size_b ||
3280
143
        (size_a == size_b &&
3281
4.10M
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3282
        /* |a| < |b|. */
3283
4.10M
        *prem = (PyLongObject *)long_long((PyObject *)a);
3284
4.10M
        return -(*prem == NULL);
3285
4.10M
    }
3286
143
    if (size_b == 1) {
3287
143
        *prem = rem1(a, b->long_value.ob_digit[0]);
3288
143
        if (*prem == NULL)
3289
0
            return -1;
3290
143
    }
3291
0
    else {
3292
        /* Slow path using divrem. */
3293
0
        Py_XDECREF(x_divrem(a, b, prem));
3294
0
        *prem = maybe_small_long(*prem);
3295
0
        if (*prem == NULL)
3296
0
            return -1;
3297
0
    }
3298
    /* Set the sign. */
3299
143
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3300
0
        _PyLong_Negate(prem);
3301
0
        if (*prem == NULL) {
3302
0
            Py_CLEAR(*prem);
3303
0
            return -1;
3304
0
        }
3305
0
    }
3306
143
    return 0;
3307
143
}
3308
3309
/* Unsigned int division with remainder -- the algorithm.  The arguments v1
3310
   and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */
3311
3312
static PyLongObject *
3313
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
3314
0
{
3315
0
    PyLongObject *v, *w, *a;
3316
0
    Py_ssize_t i, k, size_v, size_w;
3317
0
    int d;
3318
0
    digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
3319
0
    twodigits vv;
3320
0
    sdigit zhi;
3321
0
    stwodigits z;
3322
3323
    /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
3324
       edn.), section 4.3.1, Algorithm D], except that we don't explicitly
3325
       handle the special case when the initial estimate q for a quotient
3326
       digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
3327
       that won't overflow a digit. */
3328
3329
    /* allocate space; w will also be used to hold the final remainder */
3330
0
    size_v = _PyLong_DigitCount(v1);
3331
0
    size_w = _PyLong_DigitCount(w1);
3332
0
    assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
3333
0
    v = long_alloc(size_v+1);
3334
0
    if (v == NULL) {
3335
0
        *prem = NULL;
3336
0
        return NULL;
3337
0
    }
3338
0
    w = long_alloc(size_w);
3339
0
    if (w == NULL) {
3340
0
        Py_DECREF(v);
3341
0
        *prem = NULL;
3342
0
        return NULL;
3343
0
    }
3344
3345
    /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
3346
       shift v1 left by the same amount.  Results go into w and v. */
3347
0
    d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]);
3348
0
    carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d);
3349
0
    assert(carry == 0);
3350
0
    carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d);
3351
0
    if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) {
3352
0
        v->long_value.ob_digit[size_v] = carry;
3353
0
        size_v++;
3354
0
    }
3355
3356
    /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has
3357
       at most (and usually exactly) k = size_v - size_w digits. */
3358
0
    k = size_v - size_w;
3359
0
    assert(k >= 0);
3360
0
    a = long_alloc(k);
3361
0
    if (a == NULL) {
3362
0
        Py_DECREF(w);
3363
0
        Py_DECREF(v);
3364
0
        *prem = NULL;
3365
0
        return NULL;
3366
0
    }
3367
0
    v0 = v->long_value.ob_digit;
3368
0
    w0 = w->long_value.ob_digit;
3369
0
    wm1 = w0[size_w-1];
3370
0
    wm2 = w0[size_w-2];
3371
0
    for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) {
3372
        /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
3373
           single-digit quotient q, remainder in vk[0:size_w]. */
3374
3375
0
        SIGCHECK({
3376
0
                Py_DECREF(a);
3377
0
                Py_DECREF(w);
3378
0
                Py_DECREF(v);
3379
0
                *prem = NULL;
3380
0
                return NULL;
3381
0
            });
3382
3383
        /* estimate quotient digit q; may overestimate by 1 (rare) */
3384
0
        vtop = vk[size_w];
3385
0
        assert(vtop <= wm1);
3386
0
        vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
3387
        /* The code used to compute the remainder via
3388
         *     r = (digit)(vv - (twodigits)wm1 * q);
3389
         * and compilers generally generated code to do the * and -.
3390
         * But modern processors generally compute q and r with a single
3391
         * instruction, and modern optimizing compilers exploit that if we
3392
         * _don't_ try to optimize it.
3393
         */
3394
0
        q = (digit)(vv / wm1);
3395
0
        r = (digit)(vv % wm1);
3396
0
        while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
3397
0
                                     | vk[size_w-2])) {
3398
0
            --q;
3399
0
            r += wm1;
3400
0
            if (r >= PyLong_BASE)
3401
0
                break;
3402
0
        }
3403
0
        assert(q <= PyLong_BASE);
3404
3405
        /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
3406
0
        zhi = 0;
3407
0
        for (i = 0; i < size_w; ++i) {
3408
            /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
3409
               -PyLong_BASE * q <= z < PyLong_BASE */
3410
0
            z = (sdigit)vk[i] + zhi -
3411
0
                (stwodigits)q * (stwodigits)w0[i];
3412
0
            vk[i] = (digit)z & PyLong_MASK;
3413
0
            zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
3414
0
                                                    z, PyLong_SHIFT);
3415
0
        }
3416
3417
        /* add w back if q was too large (this branch taken rarely) */
3418
0
        assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
3419
0
        if ((sdigit)vtop + zhi < 0) {
3420
0
            carry = 0;
3421
0
            for (i = 0; i < size_w; ++i) {
3422
0
                carry += vk[i] + w0[i];
3423
0
                vk[i] = carry & PyLong_MASK;
3424
0
                carry >>= PyLong_SHIFT;
3425
0
            }
3426
0
            --q;
3427
0
        }
3428
3429
        /* store quotient digit */
3430
0
        assert(q < PyLong_BASE);
3431
0
        *--ak = q;
3432
0
    }
3433
3434
    /* unshift remainder; we reuse w to store the result */
3435
0
    carry = v_rshift(w0, v0, size_w, d);
3436
0
    assert(carry==0);
3437
0
    Py_DECREF(v);
3438
3439
0
    *prem = long_normalize(w);
3440
0
    return long_normalize(a);
3441
0
}
3442
3443
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
3444
   abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
3445
   rounded to DBL_MANT_DIG significant bits using round-half-to-even.
3446
   If a == 0, return 0.0 and set *e = 0.  */
3447
3448
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
3449
#if DBL_MANT_DIG == 53
3450
0
#define EXP2_DBL_MANT_DIG 9007199254740992.0
3451
#else
3452
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
3453
#endif
3454
3455
double
3456
_PyLong_Frexp(PyLongObject *a, int64_t *e)
3457
0
{
3458
0
    Py_ssize_t a_size, shift_digits, x_size;
3459
0
    int shift_bits;
3460
0
    int64_t a_bits;
3461
    /* See below for why x_digits is always large enough. */
3462
0
    digit rem;
3463
0
    digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
3464
0
    double dx;
3465
    /* Correction term for round-half-to-even rounding.  For a digit x,
3466
       "x + half_even_correction[x & 7]" gives x rounded to the nearest
3467
       multiple of 4, rounding ties to a multiple of 8. */
3468
0
    static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
3469
3470
0
    a_size = _PyLong_DigitCount(a);
3471
0
    if (a_size == 0) {
3472
        /* Special case for 0: significand 0.0, exponent 0. */
3473
0
        *e = 0;
3474
0
        return 0.0;
3475
0
    }
3476
0
    a_bits = _PyLong_NumBits((PyObject *)a);
3477
3478
    /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
3479
       (shifting left if a_bits <= DBL_MANT_DIG + 2).
3480
3481
       Number of digits needed for result: write // for floor division.
3482
       Then if shifting left, we end up using
3483
3484
         1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
3485
3486
       digits.  If shifting right, we use
3487
3488
         a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
3489
3490
       digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
3491
       the inequalities
3492
3493
         m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
3494
         m // PyLong_SHIFT - n // PyLong_SHIFT <=
3495
                                          1 + (m - n - 1) // PyLong_SHIFT,
3496
3497
       valid for any integers m and n, we find that x_size satisfies
3498
3499
         x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
3500
3501
       in both cases.
3502
    */
3503
0
    if (a_bits <= DBL_MANT_DIG + 2) {
3504
0
        shift_digits = (DBL_MANT_DIG + 2 - (Py_ssize_t)a_bits) / PyLong_SHIFT;
3505
0
        shift_bits = (DBL_MANT_DIG + 2 - (int)a_bits) % PyLong_SHIFT;
3506
0
        x_size = shift_digits;
3507
0
        rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size,
3508
0
                       shift_bits);
3509
0
        x_size += a_size;
3510
0
        x_digits[x_size++] = rem;
3511
0
    }
3512
0
    else {
3513
0
        shift_digits = (Py_ssize_t)((a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT);
3514
0
        shift_bits = (int)((a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT);
3515
0
        rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits,
3516
0
                       a_size - shift_digits, shift_bits);
3517
0
        x_size = a_size - shift_digits;
3518
        /* For correct rounding below, we need the least significant
3519
           bit of x to be 'sticky' for this shift: if any of the bits
3520
           shifted out was nonzero, we set the least significant bit
3521
           of x. */
3522
0
        if (rem)
3523
0
            x_digits[0] |= 1;
3524
0
        else
3525
0
            while (shift_digits > 0)
3526
0
                if (a->long_value.ob_digit[--shift_digits]) {
3527
0
                    x_digits[0] |= 1;
3528
0
                    break;
3529
0
                }
3530
0
    }
3531
0
    assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
3532
3533
    /* Round, and convert to double. */
3534
0
    x_digits[0] += half_even_correction[x_digits[0] & 7];
3535
0
    dx = x_digits[--x_size];
3536
0
    while (x_size > 0)
3537
0
        dx = dx * PyLong_BASE + x_digits[--x_size];
3538
3539
    /* Rescale;  make correction if result is 1.0. */
3540
0
    dx /= 4.0 * EXP2_DBL_MANT_DIG;
3541
0
    if (dx == 1.0) {
3542
0
        assert(a_bits < INT64_MAX);
3543
0
        dx = 0.5;
3544
0
        a_bits += 1;
3545
0
    }
3546
3547
0
    *e = a_bits;
3548
0
    return _PyLong_IsNegative(a) ? -dx : dx;
3549
0
}
3550
3551
/* Get a C double from an int object.  Rounds to the nearest double,
3552
   using the round-half-to-even rule in the case of a tie. */
3553
3554
double
3555
PyLong_AsDouble(PyObject *v)
3556
8
{
3557
8
    int64_t exponent;
3558
8
    double x;
3559
3560
8
    if (v == NULL) {
3561
0
        PyErr_BadInternalCall();
3562
0
        return -1.0;
3563
0
    }
3564
8
    if (!PyLong_Check(v)) {
3565
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
3566
0
        return -1.0;
3567
0
    }
3568
8
    if (_PyLong_IsCompact((PyLongObject *)v)) {
3569
        /* Fast path; single digit long (31 bits) will cast safely
3570
           to double.  This improves performance of FP/long operations
3571
           by 20%.
3572
        */
3573
8
        return (double)medium_value((PyLongObject *)v);
3574
8
    }
3575
0
    x = _PyLong_Frexp((PyLongObject *)v, &exponent);
3576
0
    assert(exponent >= 0);
3577
0
    assert(!PyErr_Occurred());
3578
0
    if (exponent > DBL_MAX_EXP) {
3579
0
        PyErr_SetString(PyExc_OverflowError,
3580
0
                        "int too large to convert to float");
3581
0
        return -1.0;
3582
0
    }
3583
0
    return ldexp(x, (int)exponent);
3584
0
}
3585
3586
/* Methods */
3587
3588
/* if a < b, return a negative number
3589
   if a == b, return 0
3590
   if a > b, return a positive number */
3591
3592
static Py_ssize_t
3593
long_compare(PyLongObject *a, PyLongObject *b)
3594
124M
{
3595
124M
    if (_PyLong_BothAreCompact(a, b)) {
3596
122M
        return _PyLong_CompactValue(a) - _PyLong_CompactValue(b);
3597
122M
    }
3598
2.06M
    Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b);
3599
2.06M
    if (sign == 0) {
3600
644k
        Py_ssize_t i = _PyLong_DigitCount(a);
3601
644k
        sdigit diff = 0;
3602
1.95M
        while (--i >= 0) {
3603
1.32M
            diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i];
3604
1.32M
            if (diff) {
3605
19.3k
                break;
3606
19.3k
            }
3607
1.32M
        }
3608
644k
        sign = _PyLong_IsNegative(a) ? -diff : diff;
3609
644k
    }
3610
2.06M
    return sign;
3611
124M
}
3612
3613
static PyObject *
3614
long_richcompare(PyObject *self, PyObject *other, int op)
3615
133M
{
3616
133M
    Py_ssize_t result;
3617
133M
    CHECK_BINOP(self, other);
3618
132M
    if (self == other)
3619
8.50M
        result = 0;
3620
124M
    else
3621
124M
        result = long_compare((PyLongObject*)self, (PyLongObject*)other);
3622
132M
    Py_RETURN_RICHCOMPARE(result, 0, op);
3623
132M
}
3624
3625
static inline int
3626
/// Return 1 if the object is one of the immortal small ints
3627
_long_is_small_int(PyObject *op)
3628
907M
{
3629
907M
    PyLongObject *long_object = (PyLongObject *)op;
3630
907M
    int is_small_int = (long_object->long_value.lv_tag & IMMORTALITY_BIT_MASK) != 0;
3631
907M
    assert((!is_small_int) || PyLong_CheckExact(op));
3632
907M
    return is_small_int;
3633
907M
}
3634
3635
void
3636
_PyLong_ExactDealloc(PyObject *self)
3637
109M
{
3638
109M
    assert(PyLong_CheckExact(self));
3639
109M
    if (_long_is_small_int(self)) {
3640
        // See PEP 683, section Accidental De-Immortalizing for details
3641
0
        _Py_SetImmortal(self);
3642
0
        return;
3643
0
    }
3644
109M
    if (_PyLong_IsCompact((PyLongObject *)self)) {
3645
102M
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3646
102M
        return;
3647
102M
    }
3648
7.43M
    PyObject_Free(self);
3649
7.43M
}
3650
3651
static void
3652
long_dealloc(PyObject *self)
3653
798M
{
3654
798M
    if (_long_is_small_int(self)) {
3655
        /* This should never get called, but we also don't want to SEGV if
3656
         * we accidentally decref small Ints out of existence. Instead,
3657
         * since small Ints are immortal, re-set the reference count.
3658
         *
3659
         * See PEP 683, section Accidental De-Immortalizing for details
3660
         */
3661
0
        _Py_SetImmortal(self);
3662
0
        return;
3663
0
    }
3664
798M
    if (PyLong_CheckExact(self) && _PyLong_IsCompact((PyLongObject *)self)) {
3665
795M
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3666
795M
        return;
3667
795M
    }
3668
2.91M
    Py_TYPE(self)->tp_free(self);
3669
2.91M
}
3670
3671
static Py_hash_t
3672
long_hash(PyObject *obj)
3673
628M
{
3674
628M
    PyLongObject *v = (PyLongObject *)obj;
3675
628M
    Py_uhash_t x;
3676
628M
    Py_ssize_t i;
3677
628M
    int sign;
3678
3679
628M
    if (_PyLong_IsCompact(v)) {
3680
623M
        x = (Py_uhash_t)_PyLong_CompactValue(v);
3681
623M
        if (x == (Py_uhash_t)-1) {
3682
359k
            x = (Py_uhash_t)-2;
3683
359k
        }
3684
623M
        return x;
3685
623M
    }
3686
5.07M
    i = _PyLong_DigitCount(v);
3687
5.07M
    sign = _PyLong_NonCompactSign(v);
3688
3689
    // unroll first digit
3690
5.07M
    Py_BUILD_ASSERT(PyHASH_BITS > PyLong_SHIFT);
3691
5.07M
    assert(i >= 1);
3692
5.07M
    --i;
3693
5.07M
    x = v->long_value.ob_digit[i];
3694
5.07M
    assert(x < PyHASH_MODULUS);
3695
3696
5.07M
#if PyHASH_BITS >= 2 * PyLong_SHIFT
3697
    // unroll second digit
3698
5.07M
    assert(i >= 1);
3699
5.07M
    --i;
3700
5.07M
    x <<= PyLong_SHIFT;
3701
5.07M
    x += v->long_value.ob_digit[i];
3702
5.07M
    assert(x < PyHASH_MODULUS);
3703
5.07M
#endif
3704
3705
5.77M
    while (--i >= 0) {
3706
        /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
3707
           want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
3708
           _PyHASH_MODULUS.
3709
3710
           The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
3711
           amounts to a rotation of the bits of x.  To see this, write
3712
3713
             x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
3714
3715
           where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
3716
           PyLong_SHIFT bits of x (those that are shifted out of the
3717
           original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
3718
           _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
3719
           bits of x, shifted up.  Then since 2**_PyHASH_BITS is
3720
           congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
3721
           congruent to y modulo _PyHASH_MODULUS.  So
3722
3723
             x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
3724
3725
           The right-hand side is just the result of rotating the
3726
           _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
3727
           not all _PyHASH_BITS bits of x are 1s, the same is true
3728
           after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
3729
           the reduction of x*2**PyLong_SHIFT modulo
3730
           _PyHASH_MODULUS. */
3731
702k
        x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
3732
702k
            (x >> (_PyHASH_BITS - PyLong_SHIFT));
3733
702k
        x += v->long_value.ob_digit[i];
3734
702k
        if (x >= _PyHASH_MODULUS)
3735
6.70k
            x -= _PyHASH_MODULUS;
3736
702k
    }
3737
5.07M
    x = x * sign;
3738
5.07M
    if (x == (Py_uhash_t)-1)
3739
0
        x = (Py_uhash_t)-2;
3740
5.07M
    return (Py_hash_t)x;
3741
628M
}
3742
3743
3744
/* Add the absolute values of two integers. */
3745
3746
static PyLongObject *
3747
x_add(PyLongObject *a, PyLongObject *b)
3748
67.6k
{
3749
67.6k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3750
67.6k
    PyLongObject *z;
3751
67.6k
    Py_ssize_t i;
3752
67.6k
    digit carry = 0;
3753
3754
    /* Ensure a is the larger of the two: */
3755
67.6k
    if (size_a < size_b) {
3756
8.24k
        { PyLongObject *temp = a; a = b; b = temp; }
3757
8.24k
        { Py_ssize_t size_temp = size_a;
3758
8.24k
            size_a = size_b;
3759
8.24k
            size_b = size_temp; }
3760
8.24k
    }
3761
67.6k
    z = long_alloc(size_a+1);
3762
67.6k
    if (z == NULL)
3763
0
        return NULL;
3764
9.88M
    for (i = 0; i < size_b; ++i) {
3765
9.82M
        carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i];
3766
9.82M
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3767
9.82M
        carry >>= PyLong_SHIFT;
3768
9.82M
    }
3769
89.0k
    for (; i < size_a; ++i) {
3770
21.3k
        carry += a->long_value.ob_digit[i];
3771
21.3k
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3772
21.3k
        carry >>= PyLong_SHIFT;
3773
21.3k
    }
3774
67.6k
    z->long_value.ob_digit[i] = carry;
3775
67.6k
    return long_normalize(z);
3776
67.6k
}
3777
3778
/* Subtract the absolute values of two integers. */
3779
3780
static PyLongObject *
3781
x_sub(PyLongObject *a, PyLongObject *b)
3782
688
{
3783
688
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3784
688
    PyLongObject *z;
3785
688
    Py_ssize_t i;
3786
688
    int sign = 1;
3787
688
    digit borrow = 0;
3788
3789
    /* Ensure a is the larger of the two: */
3790
688
    if (size_a < size_b) {
3791
0
        sign = -1;
3792
0
        { PyLongObject *temp = a; a = b; b = temp; }
3793
0
        { Py_ssize_t size_temp = size_a;
3794
0
            size_a = size_b;
3795
0
            size_b = size_temp; }
3796
0
    }
3797
688
    else if (size_a == size_b) {
3798
        /* Find highest digit where a and b differ: */
3799
0
        i = size_a;
3800
0
        while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i])
3801
0
            ;
3802
0
        if (i < 0)
3803
0
            return (PyLongObject *)PyLong_FromLong(0);
3804
0
        if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) {
3805
0
            sign = -1;
3806
0
            { PyLongObject *temp = a; a = b; b = temp; }
3807
0
        }
3808
0
        size_a = size_b = i+1;
3809
0
    }
3810
688
    z = long_alloc(size_a);
3811
688
    if (z == NULL)
3812
0
        return NULL;
3813
1.36k
    for (i = 0; i < size_b; ++i) {
3814
        /* The following assumes unsigned arithmetic
3815
           works module 2**N for some N>PyLong_SHIFT. */
3816
672
        borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow;
3817
672
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3818
672
        borrow >>= PyLong_SHIFT;
3819
672
        borrow &= 1; /* Keep only one sign bit */
3820
672
    }
3821
12.9k
    for (; i < size_a; ++i) {
3822
12.2k
        borrow = a->long_value.ob_digit[i] - borrow;
3823
12.2k
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3824
12.2k
        borrow >>= PyLong_SHIFT;
3825
12.2k
        borrow &= 1; /* Keep only one sign bit */
3826
12.2k
    }
3827
688
    assert(borrow == 0);
3828
688
    if (sign < 0) {
3829
0
        _PyLong_FlipSign(z);
3830
0
    }
3831
688
    return maybe_small_long(long_normalize(z));
3832
688
}
3833
3834
static PyLongObject *
3835
long_add(PyLongObject *a, PyLongObject *b)
3836
139k
{
3837
139k
    if (_PyLong_BothAreCompact(a, b)) {
3838
71.9k
        stwodigits z = medium_value(a) + medium_value(b);
3839
71.9k
        return _PyLong_FromSTwoDigits(z);
3840
71.9k
    }
3841
3842
67.9k
    PyLongObject *z;
3843
67.9k
    if (_PyLong_IsNegative(a)) {
3844
202
        if (_PyLong_IsNegative(b)) {
3845
0
            z = x_add(a, b);
3846
0
            if (z != NULL) {
3847
                /* x_add received at least one multiple-digit int,
3848
                   and thus z must be a multiple-digit int.
3849
                   That also means z is not an element of
3850
                   small_ints, so negating it in-place is safe. */
3851
0
                assert(Py_REFCNT(z) == 1);
3852
0
                _PyLong_FlipSign(z);
3853
0
            }
3854
0
        }
3855
202
        else
3856
202
            z = x_sub(b, a);
3857
202
    }
3858
67.7k
    else {
3859
67.7k
        if (_PyLong_IsNegative(b))
3860
27
            z = x_sub(a, b);
3861
67.6k
        else
3862
67.6k
            z = x_add(a, b);
3863
67.7k
    }
3864
67.9k
    return z;
3865
139k
}
3866
3867
_PyStackRef
3868
_PyCompactLong_Add(PyLongObject *a, PyLongObject *b)
3869
573M
{
3870
573M
    assert(_PyLong_BothAreCompact(a, b));
3871
573M
    stwodigits v = medium_value(a) + medium_value(b);
3872
573M
    return medium_from_stwodigits(v);
3873
573M
}
3874
3875
static PyObject *
3876
long_add_method(PyObject *a, PyObject *b)
3877
139k
{
3878
139k
    CHECK_BINOP(a, b);
3879
139k
    return (PyObject*)long_add((PyLongObject*)a, (PyLongObject*)b);
3880
139k
}
3881
3882
3883
static PyLongObject *
3884
long_sub(PyLongObject *a, PyLongObject *b)
3885
804
{
3886
804
    if (_PyLong_BothAreCompact(a, b)) {
3887
345
        return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
3888
345
    }
3889
3890
459
    PyLongObject *z;
3891
459
    if (_PyLong_IsNegative(a)) {
3892
0
        if (_PyLong_IsNegative(b)) {
3893
0
            z = x_sub(b, a);
3894
0
        }
3895
0
        else {
3896
0
            z = x_add(a, b);
3897
0
            if (z != NULL) {
3898
0
                assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1);
3899
0
                _PyLong_FlipSign(z);
3900
0
            }
3901
0
        }
3902
0
    }
3903
459
    else {
3904
459
        if (_PyLong_IsNegative(b))
3905
0
            z = x_add(a, b);
3906
459
        else
3907
459
            z = x_sub(a, b);
3908
459
    }
3909
459
    return z;
3910
804
}
3911
3912
_PyStackRef
3913
_PyCompactLong_Subtract(PyLongObject *a, PyLongObject *b)
3914
397M
{
3915
397M
    assert(_PyLong_BothAreCompact(a, b));
3916
397M
    stwodigits v = medium_value(a) - medium_value(b);
3917
397M
    return medium_from_stwodigits(v);
3918
397M
}
3919
3920
static PyObject *
3921
long_sub_method(PyObject *a, PyObject *b)
3922
804
{
3923
804
    CHECK_BINOP(a, b);
3924
804
    return (PyObject*)long_sub((PyLongObject*)a, (PyLongObject*)b);
3925
804
}
3926
3927
3928
/* Grade school multiplication, ignoring the signs.
3929
 * Returns the absolute value of the product, or NULL if error.
3930
 */
3931
static PyLongObject *
3932
x_mul(PyLongObject *a, PyLongObject *b)
3933
131k
{
3934
131k
    PyLongObject *z;
3935
131k
    Py_ssize_t size_a = _PyLong_DigitCount(a);
3936
131k
    Py_ssize_t size_b = _PyLong_DigitCount(b);
3937
131k
    Py_ssize_t i;
3938
3939
131k
    z = long_alloc(size_a + size_b);
3940
131k
    if (z == NULL)
3941
0
        return NULL;
3942
3943
131k
    memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit));
3944
131k
    if (a == b) {
3945
        /* Efficient squaring per HAC, Algorithm 14.16:
3946
         * https://cacr.uwaterloo.ca/hac/about/chap14.pdf
3947
         * Gives slightly less than a 2x speedup when a == b,
3948
         * via exploiting that each entry in the multiplication
3949
         * pyramid appears twice (except for the size_a squares).
3950
         */
3951
12
        digit *paend = a->long_value.ob_digit + size_a;
3952
42
        for (i = 0; i < size_a; ++i) {
3953
30
            twodigits carry;
3954
30
            twodigits f = a->long_value.ob_digit[i];
3955
30
            digit *pz = z->long_value.ob_digit + (i << 1);
3956
30
            digit *pa = a->long_value.ob_digit + i + 1;
3957
3958
30
            SIGCHECK({
3959
30
                    Py_DECREF(z);
3960
30
                    return NULL;
3961
30
                });
3962
3963
30
            carry = *pz + f * f;
3964
30
            *pz++ = (digit)(carry & PyLong_MASK);
3965
30
            carry >>= PyLong_SHIFT;
3966
30
            assert(carry <= PyLong_MASK);
3967
3968
            /* Now f is added in twice in each column of the
3969
             * pyramid it appears.  Same as adding f<<1 once.
3970
             */
3971
30
            f <<= 1;
3972
54
            while (pa < paend) {
3973
24
                carry += *pz + *pa++ * f;
3974
24
                *pz++ = (digit)(carry & PyLong_MASK);
3975
24
                carry >>= PyLong_SHIFT;
3976
24
                assert(carry <= (PyLong_MASK << 1));
3977
24
            }
3978
30
            if (carry) {
3979
                /* See comment below. pz points at the highest possible
3980
                 * carry position from the last outer loop iteration, so
3981
                 * *pz is at most 1.
3982
                 */
3983
0
                assert(*pz <= 1);
3984
0
                carry += *pz;
3985
0
                *pz = (digit)(carry & PyLong_MASK);
3986
0
                carry >>= PyLong_SHIFT;
3987
0
                if (carry) {
3988
                    /* If there's still a carry, it must be into a position
3989
                     * that still holds a 0. Where the base
3990
                     ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
3991
                     * more than 2*B - 2 to a stored digit no more than 1.
3992
                     * So the sum was no more than 2*B - 1, so the current
3993
                     * carry no more than floor((2*B - 1)/B) = 1.
3994
                     */
3995
0
                    assert(carry == 1);
3996
0
                    assert(pz[1] == 0);
3997
0
                    pz[1] = (digit)carry;
3998
0
                }
3999
0
            }
4000
30
        }
4001
12
    }
4002
131k
    else {      /* a is not the same as b -- gradeschool int mult */
4003
262k
        for (i = 0; i < size_a; ++i) {
4004
131k
            twodigits carry = 0;
4005
131k
            twodigits f = a->long_value.ob_digit[i];
4006
131k
            digit *pz = z->long_value.ob_digit + i;
4007
131k
            digit *pb = b->long_value.ob_digit;
4008
131k
            digit *pbend = b->long_value.ob_digit + size_b;
4009
4010
131k
            SIGCHECK({
4011
131k
                    Py_DECREF(z);
4012
131k
                    return NULL;
4013
131k
                });
4014
4015
19.7M
            while (pb < pbend) {
4016
19.6M
                carry += *pz + *pb++ * f;
4017
19.6M
                *pz++ = (digit)(carry & PyLong_MASK);
4018
19.6M
                carry >>= PyLong_SHIFT;
4019
19.6M
                assert(carry <= PyLong_MASK);
4020
19.6M
            }
4021
131k
            if (carry)
4022
17.6k
                *pz += (digit)(carry & PyLong_MASK);
4023
131k
            assert((carry >> PyLong_SHIFT) == 0);
4024
131k
        }
4025
131k
    }
4026
131k
    return long_normalize(z);
4027
131k
}
4028
4029
/* A helper for Karatsuba multiplication (k_mul).
4030
   Takes an int "n" and an integer "size" representing the place to
4031
   split, and sets low and high such that abs(n) == (high << size) + low,
4032
   viewing the shift as being by digits.  The sign bit is ignored, and
4033
   the return values are >= 0.
4034
   Returns 0 on success, -1 on failure.
4035
*/
4036
static int
4037
kmul_split(PyLongObject *n,
4038
           Py_ssize_t size,
4039
           PyLongObject **high,
4040
           PyLongObject **low)
4041
0
{
4042
0
    PyLongObject *hi, *lo;
4043
0
    Py_ssize_t size_lo, size_hi;
4044
0
    const Py_ssize_t size_n = _PyLong_DigitCount(n);
4045
4046
0
    size_lo = Py_MIN(size_n, size);
4047
0
    size_hi = size_n - size_lo;
4048
4049
0
    if ((hi = long_alloc(size_hi)) == NULL)
4050
0
        return -1;
4051
0
    if ((lo = long_alloc(size_lo)) == NULL) {
4052
0
        Py_DECREF(hi);
4053
0
        return -1;
4054
0
    }
4055
4056
0
    memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit));
4057
0
    memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit));
4058
4059
0
    *high = long_normalize(hi);
4060
0
    *low = long_normalize(lo);
4061
0
    return 0;
4062
0
}
4063
4064
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
4065
4066
/* Karatsuba multiplication.  Ignores the input signs, and returns the
4067
 * absolute value of the product (or NULL if error).
4068
 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
4069
 */
4070
static PyLongObject *
4071
k_mul(PyLongObject *a, PyLongObject *b)
4072
131k
{
4073
131k
    Py_ssize_t asize = _PyLong_DigitCount(a);
4074
131k
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4075
131k
    PyLongObject *ah = NULL;
4076
131k
    PyLongObject *al = NULL;
4077
131k
    PyLongObject *bh = NULL;
4078
131k
    PyLongObject *bl = NULL;
4079
131k
    PyLongObject *ret = NULL;
4080
131k
    PyLongObject *t1, *t2, *t3;
4081
131k
    Py_ssize_t shift;           /* the number of digits we split off */
4082
131k
    Py_ssize_t i;
4083
4084
    /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
4085
     * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
4086
     * Then the original product is
4087
     *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
4088
     * By picking X to be a power of 2, "*X" is just shifting, and it's
4089
     * been reduced to 3 multiplies on numbers half the size.
4090
     */
4091
4092
    /* We want to split based on the larger number; fiddle so that b
4093
     * is largest.
4094
     */
4095
131k
    if (asize > bsize) {
4096
65.4k
        t1 = a;
4097
65.4k
        a = b;
4098
65.4k
        b = t1;
4099
4100
65.4k
        i = asize;
4101
65.4k
        asize = bsize;
4102
65.4k
        bsize = i;
4103
65.4k
    }
4104
4105
    /* Use gradeschool math when either number is too small. */
4106
131k
    i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
4107
131k
    if (asize <= i) {
4108
131k
        if (asize == 0)
4109
18
            return (PyLongObject *)PyLong_FromLong(0);
4110
131k
        else
4111
131k
            return x_mul(a, b);
4112
131k
    }
4113
4114
    /* If a is small compared to b, splitting on b gives a degenerate
4115
     * case with ah==0, and Karatsuba may be (even much) less efficient
4116
     * than "grade school" then.  However, we can still win, by viewing
4117
     * b as a string of "big digits", each of the same width as a. That
4118
     * leads to a sequence of balanced calls to k_mul.
4119
     */
4120
0
    if (2 * asize <= bsize)
4121
0
        return k_lopsided_mul(a, b);
4122
4123
    /* Split a & b into hi & lo pieces. */
4124
0
    shift = bsize >> 1;
4125
0
    if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
4126
0
    assert(_PyLong_IsPositive(ah));        /* the split isn't degenerate */
4127
4128
0
    if (a == b) {
4129
0
        bh = (PyLongObject*)Py_NewRef(ah);
4130
0
        bl = (PyLongObject*)Py_NewRef(al);
4131
0
    }
4132
0
    else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
4133
4134
    /* The plan:
4135
     * 1. Allocate result space (asize + bsize digits:  that's always
4136
     *    enough).
4137
     * 2. Compute ah*bh, and copy into result at 2*shift.
4138
     * 3. Compute al*bl, and copy into result at 0.  Note that this
4139
     *    can't overlap with #2.
4140
     * 4. Subtract al*bl from the result, starting at shift.  This may
4141
     *    underflow (borrow out of the high digit), but we don't care:
4142
     *    we're effectively doing unsigned arithmetic mod
4143
     *    BASE**(sizea + sizeb), and so long as the *final* result fits,
4144
     *    borrows and carries out of the high digit can be ignored.
4145
     * 5. Subtract ah*bh from the result, starting at shift.
4146
     * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
4147
     *    at shift.
4148
     */
4149
4150
    /* 1. Allocate result space. */
4151
0
    ret = long_alloc(asize + bsize);
4152
0
    if (ret == NULL) goto fail;
4153
#ifdef Py_DEBUG
4154
    /* Fill with trash, to catch reference to uninitialized digits. */
4155
    memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit));
4156
#endif
4157
4158
    /* 2. t1 <- ah*bh, and copy into high digits of result. */
4159
0
    if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
4160
0
    assert(!_PyLong_IsNegative(t1));
4161
0
    assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret));
4162
0
    memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit,
4163
0
           _PyLong_DigitCount(t1) * sizeof(digit));
4164
4165
    /* Zero-out the digits higher than the ah*bh copy. */
4166
0
    i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1);
4167
0
    if (i)
4168
0
        memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0,
4169
0
               i * sizeof(digit));
4170
4171
    /* 3. t2 <- al*bl, and copy into the low digits. */
4172
0
    if ((t2 = k_mul(al, bl)) == NULL) {
4173
0
        Py_DECREF(t1);
4174
0
        goto fail;
4175
0
    }
4176
0
    assert(!_PyLong_IsNegative(t2));
4177
0
    assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */
4178
0
    memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit));
4179
4180
    /* Zero out remaining digits. */
4181
0
    i = 2*shift - _PyLong_DigitCount(t2);          /* number of uninitialized digits */
4182
0
    if (i)
4183
0
        memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit));
4184
4185
    /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
4186
     * because it's fresher in cache.
4187
     */
4188
0
    i = _PyLong_DigitCount(ret) - shift;  /* # digits after shift */
4189
0
    (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2));
4190
0
    _Py_DECREF_INT(t2);
4191
4192
0
    (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1));
4193
0
    _Py_DECREF_INT(t1);
4194
4195
    /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
4196
0
    if ((t1 = x_add(ah, al)) == NULL) goto fail;
4197
0
    _Py_DECREF_INT(ah);
4198
0
    _Py_DECREF_INT(al);
4199
0
    ah = al = NULL;
4200
4201
0
    if (a == b) {
4202
0
        t2 = (PyLongObject*)Py_NewRef(t1);
4203
0
    }
4204
0
    else if ((t2 = x_add(bh, bl)) == NULL) {
4205
0
        Py_DECREF(t1);
4206
0
        goto fail;
4207
0
    }
4208
0
    _Py_DECREF_INT(bh);
4209
0
    _Py_DECREF_INT(bl);
4210
0
    bh = bl = NULL;
4211
4212
0
    t3 = k_mul(t1, t2);
4213
0
    _Py_DECREF_INT(t1);
4214
0
    _Py_DECREF_INT(t2);
4215
0
    if (t3 == NULL) goto fail;
4216
0
    assert(!_PyLong_IsNegative(t3));
4217
4218
    /* Add t3.  It's not obvious why we can't run out of room here.
4219
     * See the (*) comment after this function.
4220
     */
4221
0
    (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3));
4222
0
    _Py_DECREF_INT(t3);
4223
4224
0
    return long_normalize(ret);
4225
4226
0
  fail:
4227
0
    Py_XDECREF(ret);
4228
0
    Py_XDECREF(ah);
4229
0
    Py_XDECREF(al);
4230
0
    Py_XDECREF(bh);
4231
0
    Py_XDECREF(bl);
4232
0
    return NULL;
4233
0
}
4234
4235
/* (*) Why adding t3 can't "run out of room" above.
4236
4237
Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
4238
to start with:
4239
4240
1. For any integer i, i = c(i/2) + f(i/2).  In particular,
4241
   bsize = c(bsize/2) + f(bsize/2).
4242
2. shift = f(bsize/2)
4243
3. asize <= bsize
4244
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
4245
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.
4246
4247
We allocated asize + bsize result digits, and add t3 into them at an offset
4248
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
4249
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
4250
asize + c(bsize/2) available digit positions.
4251
4252
bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
4253
at most c(bsize/2) digits + 1 bit.
4254
4255
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
4256
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
4257
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
4258
4259
The product (ah+al)*(bh+bl) therefore has at most
4260
4261
    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
4262
4263
and we have asize + c(bsize/2) available digit positions.  We need to show
4264
this is always enough.  An instance of c(bsize/2) cancels out in both, so
4265
the question reduces to whether asize digits is enough to hold
4266
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
4267
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
4268
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
4269
digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
4270
asize == bsize, then we're asking whether bsize digits is enough to hold
4271
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
4272
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
4273
bsize >= KARATSUBA_CUTOFF >= 2.
4274
4275
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
4276
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
4277
ah*bh and al*bl too.
4278
*/
4279
4280
/* b has at least twice the digits of a, and a is big enough that Karatsuba
4281
 * would pay off *if* the inputs had balanced sizes.  View b as a sequence
4282
 * of slices, each with the same number of digits as a, and multiply the
4283
 * slices by a, one at a time.  This gives k_mul balanced inputs to work with,
4284
 * and is also cache-friendly (we compute one double-width slice of the result
4285
 * at a time, then move on, never backtracking except for the helpful
4286
 * single-width slice overlap between successive partial sums).
4287
 */
4288
static PyLongObject *
4289
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
4290
0
{
4291
0
    const Py_ssize_t asize = _PyLong_DigitCount(a);
4292
0
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4293
0
    Py_ssize_t nbdone;          /* # of b digits already multiplied */
4294
0
    PyLongObject *ret;
4295
0
    PyLongObject *bslice = NULL;
4296
4297
0
    assert(asize > KARATSUBA_CUTOFF);
4298
0
    assert(2 * asize <= bsize);
4299
4300
    /* Allocate result space, and zero it out. */
4301
0
    ret = long_alloc(asize + bsize);
4302
0
    if (ret == NULL)
4303
0
        return NULL;
4304
0
    memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit));
4305
4306
    /* Successive slices of b are copied into bslice. */
4307
0
    bslice = long_alloc(asize);
4308
0
    if (bslice == NULL)
4309
0
        goto fail;
4310
4311
0
    nbdone = 0;
4312
0
    while (bsize > 0) {
4313
0
        PyLongObject *product;
4314
0
        const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
4315
4316
        /* Multiply the next slice of b by a. */
4317
0
        memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone,
4318
0
               nbtouse * sizeof(digit));
4319
0
        assert(nbtouse >= 0);
4320
0
        _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse);
4321
0
        product = k_mul(a, bslice);
4322
0
        if (product == NULL)
4323
0
            goto fail;
4324
4325
        /* Add into result. */
4326
0
        (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone,
4327
0
                     product->long_value.ob_digit, _PyLong_DigitCount(product));
4328
0
        _Py_DECREF_INT(product);
4329
4330
0
        bsize -= nbtouse;
4331
0
        nbdone += nbtouse;
4332
0
    }
4333
4334
0
    _Py_DECREF_INT(bslice);
4335
0
    return long_normalize(ret);
4336
4337
0
  fail:
4338
0
    Py_DECREF(ret);
4339
0
    Py_XDECREF(bslice);
4340
0
    return NULL;
4341
0
}
4342
4343
4344
static PyLongObject*
4345
long_mul(PyLongObject *a, PyLongObject *b)
4346
173k
{
4347
    /* fast path for single-digit multiplication */
4348
173k
    if (_PyLong_BothAreCompact(a, b)) {
4349
42.7k
        stwodigits v = medium_value(a) * medium_value(b);
4350
42.7k
        return _PyLong_FromSTwoDigits(v);
4351
42.7k
    }
4352
4353
131k
    PyLongObject *z = k_mul(a, b);
4354
    /* Negate if exactly one of the inputs is negative. */
4355
131k
    if (!_PyLong_SameSign(a, b) && z) {
4356
18
        _PyLong_Negate(&z);
4357
18
    }
4358
131k
    return z;
4359
173k
}
4360
4361
/* This function returns NULL if the result is not compact,
4362
 * or if it fails to allocate, but never raises */
4363
_PyStackRef
4364
_PyCompactLong_Multiply(PyLongObject *a, PyLongObject *b)
4365
1.96M
{
4366
1.96M
    assert(_PyLong_BothAreCompact(a, b));
4367
1.96M
    stwodigits v = medium_value(a) * medium_value(b);
4368
1.96M
    return medium_from_stwodigits(v);
4369
1.96M
}
4370
4371
static PyObject *
4372
long_mul_method(PyObject *a, PyObject *b)
4373
587k
{
4374
587k
    CHECK_BINOP(a, b);
4375
173k
    return (PyObject*)long_mul((PyLongObject*)a, (PyLongObject*)b);
4376
587k
}
4377
4378
/* Fast modulo division for single-digit longs. */
4379
static PyObject *
4380
fast_mod(PyLongObject *a, PyLongObject *b)
4381
999k
{
4382
999k
    sdigit left = a->long_value.ob_digit[0];
4383
999k
    sdigit right = b->long_value.ob_digit[0];
4384
999k
    sdigit mod;
4385
4386
999k
    assert(_PyLong_DigitCount(a) == 1);
4387
999k
    assert(_PyLong_DigitCount(b) == 1);
4388
999k
    sdigit sign = _PyLong_CompactSign(b);
4389
999k
    if (_PyLong_SameSign(a, b)) {
4390
999k
        mod = left % right;
4391
999k
    }
4392
0
    else {
4393
        /* Either 'a' or 'b' is negative. */
4394
0
        mod = right - 1 - (left - 1) % right;
4395
0
    }
4396
4397
999k
    return PyLong_FromLong(mod * sign);
4398
999k
}
4399
4400
/* Fast floor division for single-digit longs. */
4401
static PyObject *
4402
fast_floor_div(PyLongObject *a, PyLongObject *b)
4403
1.86M
{
4404
1.86M
    sdigit left = a->long_value.ob_digit[0];
4405
1.86M
    sdigit right = b->long_value.ob_digit[0];
4406
1.86M
    sdigit div;
4407
4408
1.86M
    assert(_PyLong_DigitCount(a) == 1);
4409
1.86M
    assert(_PyLong_DigitCount(b) == 1);
4410
4411
1.86M
    if (_PyLong_SameSign(a, b)) {
4412
1.86M
        div = left / right;
4413
1.86M
    }
4414
0
    else {
4415
        /* Either 'a' or 'b' is negative. */
4416
0
        div = -1 - (left - 1) / right;
4417
0
    }
4418
4419
1.86M
    return PyLong_FromLong(div);
4420
1.86M
}
4421
4422
#ifdef WITH_PYLONG_MODULE
4423
/* asymptotically faster divmod, using _pylong.py */
4424
static int
4425
pylong_int_divmod(PyLongObject *v, PyLongObject *w,
4426
                  PyLongObject **pdiv, PyLongObject **pmod)
4427
0
{
4428
0
    PyObject *mod = PyImport_ImportModule("_pylong");
4429
0
    if (mod == NULL) {
4430
0
        return -1;
4431
0
    }
4432
0
    PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w);
4433
0
    Py_DECREF(mod);
4434
0
    if (result == NULL) {
4435
0
        return -1;
4436
0
    }
4437
0
    if (!PyTuple_Check(result)) {
4438
0
        Py_DECREF(result);
4439
0
        PyErr_SetString(PyExc_ValueError,
4440
0
                        "tuple is required from int_divmod()");
4441
0
        return -1;
4442
0
    }
4443
0
    PyObject *q = PyTuple_GET_ITEM(result, 0);
4444
0
    PyObject *r = PyTuple_GET_ITEM(result, 1);
4445
0
    if (!PyLong_Check(q) || !PyLong_Check(r)) {
4446
0
        Py_DECREF(result);
4447
0
        PyErr_SetString(PyExc_ValueError,
4448
0
                        "tuple of int is required from int_divmod()");
4449
0
        return -1;
4450
0
    }
4451
0
    if (pdiv != NULL) {
4452
0
        *pdiv = (PyLongObject *)Py_NewRef(q);
4453
0
    }
4454
0
    if (pmod != NULL) {
4455
0
        *pmod = (PyLongObject *)Py_NewRef(r);
4456
0
    }
4457
0
    Py_DECREF(result);
4458
0
    return 0;
4459
0
}
4460
#endif /* WITH_PYLONG_MODULE */
4461
4462
/* The / and % operators are now defined in terms of divmod().
4463
   The expression a mod b has the value a - b*floor(a/b).
4464
   The long_divrem function gives the remainder after division of
4465
   |a| by |b|, with the sign of a.  This is also expressed
4466
   as a - b*trunc(a/b), if trunc truncates towards zero.
4467
   Some examples:
4468
     a           b      a rem b         a mod b
4469
     13          10      3               3
4470
    -13          10     -3               7
4471
     13         -10      3              -7
4472
    -13         -10     -3              -3
4473
   So, to get from rem to mod, we have to add b if a and b
4474
   have different signs.  We then subtract one from the 'div'
4475
   part of the outcome to keep the invariant intact. */
4476
4477
/* Compute
4478
 *     *pdiv, *pmod = divmod(v, w)
4479
 * NULL can be passed for pdiv or pmod, in which case that part of
4480
 * the result is simply thrown away.  The caller owns a reference to
4481
 * each of these it requests (does not pass NULL for).
4482
 */
4483
static int
4484
l_divmod(PyLongObject *v, PyLongObject *w,
4485
         PyLongObject **pdiv, PyLongObject **pmod)
4486
376k
{
4487
376k
    PyLongObject *div, *mod;
4488
4489
376k
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4490
        /* Fast path for single-digit longs */
4491
0
        div = NULL;
4492
0
        if (pdiv != NULL) {
4493
0
            div = (PyLongObject *)fast_floor_div(v, w);
4494
0
            if (div == NULL) {
4495
0
                return -1;
4496
0
            }
4497
0
        }
4498
0
        if (pmod != NULL) {
4499
0
            mod = (PyLongObject *)fast_mod(v, w);
4500
0
            if (mod == NULL) {
4501
0
                Py_XDECREF(div);
4502
0
                return -1;
4503
0
            }
4504
0
            *pmod = mod;
4505
0
        }
4506
0
        if (pdiv != NULL) {
4507
            /* We only want to set `*pdiv` when `*pmod` is
4508
               set successfully. */
4509
0
            *pdiv = div;
4510
0
        }
4511
0
        return 0;
4512
0
    }
4513
376k
#if WITH_PYLONG_MODULE
4514
376k
    Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */
4515
376k
    Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */
4516
376k
    if (size_w > 300 && (size_v - size_w) > 150) {
4517
        /* Switch to _pylong.int_divmod().  If the quotient is small then
4518
          "schoolbook" division is linear-time so don't use in that case.
4519
          These limits are empirically determined and should be slightly
4520
          conservative so that _pylong is used in cases it is likely
4521
          to be faster. See Tools/scripts/divmod_threshold.py. */
4522
0
        return pylong_int_divmod(v, w, pdiv, pmod);
4523
0
    }
4524
376k
#endif
4525
376k
    if (long_divrem(v, w, &div, &mod) < 0)
4526
0
        return -1;
4527
376k
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4528
376k
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4529
0
        PyLongObject *temp;
4530
0
        temp = long_add(mod, w);
4531
0
        Py_SETREF(mod, temp);
4532
0
        if (mod == NULL) {
4533
0
            Py_DECREF(div);
4534
0
            return -1;
4535
0
        }
4536
0
        temp = long_sub(div, (PyLongObject *)_PyLong_GetOne());
4537
0
        if (temp == NULL) {
4538
0
            Py_DECREF(mod);
4539
0
            Py_DECREF(div);
4540
0
            return -1;
4541
0
        }
4542
0
        Py_SETREF(div, temp);
4543
0
    }
4544
376k
    if (pdiv != NULL)
4545
376k
        *pdiv = div;
4546
0
    else
4547
0
        Py_DECREF(div);
4548
4549
376k
    if (pmod != NULL)
4550
0
        *pmod = mod;
4551
376k
    else
4552
376k
        Py_DECREF(mod);
4553
4554
376k
    return 0;
4555
376k
}
4556
4557
/* Compute
4558
 *     *pmod = v % w
4559
 * pmod cannot be NULL. The caller owns a reference to pmod.
4560
 */
4561
static int
4562
l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
4563
5.10M
{
4564
5.10M
    PyLongObject *mod;
4565
4566
5.10M
    assert(pmod);
4567
5.10M
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4568
        /* Fast path for single-digit longs */
4569
999k
        *pmod = (PyLongObject *)fast_mod(v, w);
4570
999k
        return -(*pmod == NULL);
4571
999k
    }
4572
4.10M
    if (long_rem(v, w, &mod) < 0)
4573
0
        return -1;
4574
4.10M
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4575
4.10M
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4576
0
        PyLongObject *temp;
4577
0
        temp = long_add(mod, w);
4578
0
        Py_SETREF(mod, temp);
4579
0
        if (mod == NULL)
4580
0
            return -1;
4581
0
    }
4582
4.10M
    *pmod = mod;
4583
4584
4.10M
    return 0;
4585
4.10M
}
4586
4587
static PyObject *
4588
long_div(PyObject *a, PyObject *b)
4589
2.24M
{
4590
2.24M
    PyLongObject *div;
4591
4592
2.24M
    CHECK_BINOP(a, b);
4593
4594
2.24M
    if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) {
4595
1.86M
        return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
4596
1.86M
    }
4597
4598
376k
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
4599
0
        div = NULL;
4600
376k
    return (PyObject *)div;
4601
2.24M
}
4602
4603
/* PyLong/PyLong -> float, with correctly rounded result. */
4604
4605
51.8k
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
4606
0
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
4607
4608
static PyObject *
4609
long_true_divide(PyObject *v, PyObject *w)
4610
12.9k
{
4611
12.9k
    PyLongObject *a, *b, *x;
4612
12.9k
    Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
4613
12.9k
    digit mask, low;
4614
12.9k
    int inexact, negate, a_is_small, b_is_small;
4615
12.9k
    double dx, result;
4616
4617
12.9k
    CHECK_BINOP(v, w);
4618
12.9k
    a = (PyLongObject *)v;
4619
12.9k
    b = (PyLongObject *)w;
4620
4621
    /*
4622
       Method in a nutshell:
4623
4624
         0. reduce to case a, b > 0; filter out obvious underflow/overflow
4625
         1. choose a suitable integer 'shift'
4626
         2. use integer arithmetic to compute x = floor(2**-shift*a/b)
4627
         3. adjust x for correct rounding
4628
         4. convert x to a double dx with the same value
4629
         5. return ldexp(dx, shift).
4630
4631
       In more detail:
4632
4633
       0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
4634
       returns either 0.0 or -0.0, depending on the sign of b.  For a and
4635
       b both nonzero, ignore signs of a and b, and add the sign back in
4636
       at the end.  Now write a_bits and b_bits for the bit lengths of a
4637
       and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
4638
       for b).  Then
4639
4640
          2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
4641
4642
       So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
4643
       so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
4644
       DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
4645
       the way, we can assume that
4646
4647
          DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
4648
4649
       1. The integer 'shift' is chosen so that x has the right number of
4650
       bits for a double, plus two or three extra bits that will be used
4651
       in the rounding decisions.  Writing a_bits and b_bits for the
4652
       number of significant bits in a and b respectively, a
4653
       straightforward formula for shift is:
4654
4655
          shift = a_bits - b_bits - DBL_MANT_DIG - 2
4656
4657
       This is fine in the usual case, but if a/b is smaller than the
4658
       smallest normal float then it can lead to double rounding on an
4659
       IEEE 754 platform, giving incorrectly rounded results.  So we
4660
       adjust the formula slightly.  The actual formula used is:
4661
4662
           shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
4663
4664
       2. The quantity x is computed by first shifting a (left -shift bits
4665
       if shift <= 0, right shift bits if shift > 0) and then dividing by
4666
       b.  For both the shift and the division, we keep track of whether
4667
       the result is inexact, in a flag 'inexact'; this information is
4668
       needed at the rounding stage.
4669
4670
       With the choice of shift above, together with our assumption that
4671
       a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
4672
       that x >= 1.
4673
4674
       3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
4675
       this with an exactly representable float of the form
4676
4677
          round(x/2**extra_bits) * 2**(extra_bits+shift).
4678
4679
       For float representability, we need x/2**extra_bits <
4680
       2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
4681
       DBL_MANT_DIG.  This translates to the condition:
4682
4683
          extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
4684
4685
       To round, we just modify the bottom digit of x in-place; this can
4686
       end up giving a digit with value > PyLONG_MASK, but that's not a
4687
       problem since digits can hold values up to 2*PyLONG_MASK+1.
4688
4689
       With the original choices for shift above, extra_bits will always
4690
       be 2 or 3.  Then rounding under the round-half-to-even rule, we
4691
       round up iff the most significant of the extra bits is 1, and
4692
       either: (a) the computation of x in step 2 had an inexact result,
4693
       or (b) at least one other of the extra bits is 1, or (c) the least
4694
       significant bit of x (above those to be rounded) is 1.
4695
4696
       4. Conversion to a double is straightforward; all floating-point
4697
       operations involved in the conversion are exact, so there's no
4698
       danger of rounding errors.
4699
4700
       5. Use ldexp(x, shift) to compute x*2**shift, the final result.
4701
       The result will always be exactly representable as a double, except
4702
       in the case that it overflows.  To avoid dependence on the exact
4703
       behaviour of ldexp on overflow, we check for overflow before
4704
       applying ldexp.  The result of ldexp is adjusted for sign before
4705
       returning.
4706
    */
4707
4708
    /* Reduce to case where a and b are both positive. */
4709
12.9k
    a_size = _PyLong_DigitCount(a);
4710
12.9k
    b_size = _PyLong_DigitCount(b);
4711
12.9k
    negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b));
4712
12.9k
    if (b_size == 0) {
4713
0
        PyErr_SetString(PyExc_ZeroDivisionError,
4714
0
                        "division by zero");
4715
0
        goto error;
4716
0
    }
4717
12.9k
    if (a_size == 0)
4718
0
        goto underflow_or_zero;
4719
4720
    /* Fast path for a and b small (exactly representable in a double).
4721
       Relies on floating-point division being correctly rounded; results
4722
       may be subject to double rounding on x86 machines that operate with
4723
       the x87 FPU set to 64-bit precision. */
4724
12.9k
    a_is_small = a_size <= MANT_DIG_DIGITS ||
4725
0
        (a_size == MANT_DIG_DIGITS+1 &&
4726
0
         a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4727
12.9k
    b_is_small = b_size <= MANT_DIG_DIGITS ||
4728
0
        (b_size == MANT_DIG_DIGITS+1 &&
4729
0
         b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4730
12.9k
    if (a_is_small && b_is_small) {
4731
12.9k
        double da, db;
4732
12.9k
        da = a->long_value.ob_digit[--a_size];
4733
12.9k
        while (a_size > 0)
4734
0
            da = da * PyLong_BASE + a->long_value.ob_digit[--a_size];
4735
12.9k
        db = b->long_value.ob_digit[--b_size];
4736
12.9k
        while (b_size > 0)
4737
0
            db = db * PyLong_BASE + b->long_value.ob_digit[--b_size];
4738
12.9k
        result = da / db;
4739
12.9k
        goto success;
4740
12.9k
    }
4741
4742
    /* Catch obvious cases of underflow and overflow */
4743
0
    diff = a_size - b_size;
4744
0
    if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
4745
        /* Extreme overflow */
4746
0
        goto overflow;
4747
0
    else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
4748
        /* Extreme underflow */
4749
0
        goto underflow_or_zero;
4750
    /* Next line is now safe from overflowing a Py_ssize_t */
4751
0
    diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) -
4752
0
        bit_length_digit(b->long_value.ob_digit[b_size - 1]);
4753
    /* Now diff = a_bits - b_bits. */
4754
0
    if (diff > DBL_MAX_EXP)
4755
0
        goto overflow;
4756
0
    else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
4757
0
        goto underflow_or_zero;
4758
4759
    /* Choose value for shift; see comments for step 1 above. */
4760
0
    shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
4761
4762
0
    inexact = 0;
4763
4764
    /* x = abs(a * 2**-shift) */
4765
0
    if (shift <= 0) {
4766
0
        Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
4767
0
        digit rem;
4768
        /* x = a << -shift */
4769
0
        if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
4770
            /* In practice, it's probably impossible to end up
4771
               here.  Both a and b would have to be enormous,
4772
               using close to SIZE_T_MAX bytes of memory each. */
4773
0
            PyErr_SetString(PyExc_OverflowError,
4774
0
                            "intermediate overflow during division");
4775
0
            goto error;
4776
0
        }
4777
0
        x = long_alloc(a_size + shift_digits + 1);
4778
0
        if (x == NULL)
4779
0
            goto error;
4780
0
        for (i = 0; i < shift_digits; i++)
4781
0
            x->long_value.ob_digit[i] = 0;
4782
0
        rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit,
4783
0
                       a_size, -shift % PyLong_SHIFT);
4784
0
        x->long_value.ob_digit[a_size + shift_digits] = rem;
4785
0
    }
4786
0
    else {
4787
0
        Py_ssize_t shift_digits = shift / PyLong_SHIFT;
4788
0
        digit rem;
4789
        /* x = a >> shift */
4790
0
        assert(a_size >= shift_digits);
4791
0
        x = long_alloc(a_size - shift_digits);
4792
0
        if (x == NULL)
4793
0
            goto error;
4794
0
        rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits,
4795
0
                       a_size - shift_digits, shift % PyLong_SHIFT);
4796
        /* set inexact if any of the bits shifted out is nonzero */
4797
0
        if (rem)
4798
0
            inexact = 1;
4799
0
        while (!inexact && shift_digits > 0)
4800
0
            if (a->long_value.ob_digit[--shift_digits])
4801
0
                inexact = 1;
4802
0
    }
4803
0
    long_normalize(x);
4804
0
    x_size = _PyLong_SignedDigitCount(x);
4805
4806
    /* x //= b. If the remainder is nonzero, set inexact.  We own the only
4807
       reference to x, so it's safe to modify it in-place. */
4808
0
    if (b_size == 1) {
4809
0
        digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size,
4810
0
                              b->long_value.ob_digit[0]);
4811
0
        long_normalize(x);
4812
0
        if (rem)
4813
0
            inexact = 1;
4814
0
    }
4815
0
    else {
4816
0
        PyLongObject *div, *rem;
4817
0
        div = x_divrem(x, b, &rem);
4818
0
        Py_SETREF(x, div);
4819
0
        if (x == NULL)
4820
0
            goto error;
4821
0
        if (!_PyLong_IsZero(rem))
4822
0
            inexact = 1;
4823
0
        Py_DECREF(rem);
4824
0
    }
4825
0
    x_size = _PyLong_DigitCount(x);
4826
0
    assert(x_size > 0); /* result of division is never zero */
4827
0
    x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]);
4828
4829
    /* The number of extra bits that have to be rounded away. */
4830
0
    extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
4831
0
    assert(extra_bits == 2 || extra_bits == 3);
4832
4833
    /* Round by directly modifying the low digit of x. */
4834
0
    mask = (digit)1 << (extra_bits - 1);
4835
0
    low = x->long_value.ob_digit[0] | inexact;
4836
0
    if ((low & mask) && (low & (3U*mask-1U)))
4837
0
        low += mask;
4838
0
    x->long_value.ob_digit[0] = low & ~(2U*mask-1U);
4839
4840
    /* Convert x to a double dx; the conversion is exact. */
4841
0
    dx = x->long_value.ob_digit[--x_size];
4842
0
    while (x_size > 0)
4843
0
        dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size];
4844
0
    Py_DECREF(x);
4845
4846
    /* Check whether ldexp result will overflow a double. */
4847
0
    if (shift + x_bits >= DBL_MAX_EXP &&
4848
0
        (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
4849
0
        goto overflow;
4850
0
    result = ldexp(dx, (int)shift);
4851
4852
12.9k
  success:
4853
12.9k
    return PyFloat_FromDouble(negate ? -result : result);
4854
4855
0
  underflow_or_zero:
4856
0
    return PyFloat_FromDouble(negate ? -0.0 : 0.0);
4857
4858
0
  overflow:
4859
0
    PyErr_SetString(PyExc_OverflowError,
4860
0
                    "integer division result too large for a float");
4861
0
  error:
4862
0
    return NULL;
4863
0
}
4864
4865
static PyObject *
4866
long_mod(PyObject *a, PyObject *b)
4867
5.10M
{
4868
5.10M
    PyLongObject *mod;
4869
4870
5.10M
    CHECK_BINOP(a, b);
4871
4872
5.10M
    if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
4873
0
        mod = NULL;
4874
5.10M
    return (PyObject *)mod;
4875
5.10M
}
4876
4877
static PyObject *
4878
long_divmod(PyObject *a, PyObject *b)
4879
0
{
4880
0
    PyLongObject *div, *mod;
4881
0
    PyObject *z;
4882
4883
0
    CHECK_BINOP(a, b);
4884
4885
0
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
4886
0
        return NULL;
4887
0
    }
4888
0
    z = PyTuple_New(2);
4889
0
    if (z != NULL) {
4890
0
        PyTuple_SET_ITEM(z, 0, (PyObject *) div);
4891
0
        PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
4892
0
    }
4893
0
    else {
4894
0
        Py_DECREF(div);
4895
0
        Py_DECREF(mod);
4896
0
    }
4897
0
    return z;
4898
0
}
4899
4900
4901
/* Compute an inverse to a modulo n, or raise ValueError if a is not
4902
   invertible modulo n. Assumes n is positive. The inverse returned
4903
   is whatever falls out of the extended Euclidean algorithm: it may
4904
   be either positive or negative, but will be smaller than n in
4905
   absolute value.
4906
4907
   Pure Python equivalent for long_invmod:
4908
4909
        def invmod(a, n):
4910
            b, c = 1, 0
4911
            while n:
4912
                q, r = divmod(a, n)
4913
                a, b, c, n = n, c, b - q*c, r
4914
4915
            # at this point a is the gcd of the original inputs
4916
            if a == 1:
4917
                return b
4918
            raise ValueError("Not invertible")
4919
*/
4920
4921
static PyLongObject *
4922
long_invmod(PyLongObject *a, PyLongObject *n)
4923
0
{
4924
    /* Should only ever be called for positive n */
4925
0
    assert(_PyLong_IsPositive(n));
4926
4927
0
    Py_INCREF(a);
4928
0
    PyLongObject *b = (PyLongObject *)Py_NewRef(_PyLong_GetOne());
4929
0
    PyLongObject *c = (PyLongObject *)Py_NewRef(_PyLong_GetZero());
4930
0
    Py_INCREF(n);
4931
4932
    /* references now owned: a, b, c, n */
4933
0
    while (!_PyLong_IsZero(n)) {
4934
0
        PyLongObject *q, *r, *s, *t;
4935
4936
0
        if (l_divmod(a, n, &q, &r) == -1) {
4937
0
            goto Error;
4938
0
        }
4939
0
        Py_SETREF(a, n);
4940
0
        n = r;
4941
0
        t = (PyLongObject *)long_mul(q, c);
4942
0
        Py_DECREF(q);
4943
0
        if (t == NULL) {
4944
0
            goto Error;
4945
0
        }
4946
0
        s = long_sub(b, t);
4947
0
        Py_DECREF(t);
4948
0
        if (s == NULL) {
4949
0
            goto Error;
4950
0
        }
4951
0
        Py_SETREF(b, c);
4952
0
        c = s;
4953
0
    }
4954
    /* references now owned: a, b, c, n */
4955
4956
0
    Py_DECREF(c);
4957
0
    Py_DECREF(n);
4958
0
    if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
4959
        /* a != 1; we don't have an inverse. */
4960
0
        Py_DECREF(a);
4961
0
        Py_DECREF(b);
4962
0
        PyErr_SetString(PyExc_ValueError,
4963
0
                        "base is not invertible for the given modulus");
4964
0
        return NULL;
4965
0
    }
4966
0
    else {
4967
        /* a == 1; b gives an inverse modulo n */
4968
0
        Py_DECREF(a);
4969
0
        return b;
4970
0
    }
4971
4972
0
  Error:
4973
0
    Py_DECREF(a);
4974
0
    Py_DECREF(b);
4975
0
    Py_DECREF(c);
4976
0
    Py_DECREF(n);
4977
0
    return NULL;
4978
0
}
4979
4980
4981
/* pow(v, w, x) */
4982
static PyObject *
4983
long_pow(PyObject *v, PyObject *w, PyObject *x)
4984
90
{
4985
90
    PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
4986
90
    int negativeOutput = 0;  /* if x<0 return negative output */
4987
4988
90
    PyLongObject *z = NULL;  /* accumulated result */
4989
90
    Py_ssize_t i, j;             /* counters */
4990
90
    PyLongObject *temp = NULL;
4991
90
    PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
4992
4993
    /* k-ary values.  If the exponent is large enough, table is
4994
     * precomputed so that table[i] == a**(2*i+1) % c for i in
4995
     * range(EXP_TABLE_LEN).
4996
     * Note: this is uninitialized stack trash: don't pay to set it to known
4997
     * values unless it's needed. Instead ensure that num_table_entries is
4998
     * set to the number of entries actually filled whenever a branch to the
4999
     * Error or Done labels is possible.
5000
     */
5001
90
    PyLongObject *table[EXP_TABLE_LEN];
5002
90
    Py_ssize_t num_table_entries = 0;
5003
5004
    /* a, b, c = v, w, x */
5005
90
    CHECK_BINOP(v, w);
5006
90
    a = (PyLongObject*)Py_NewRef(v);
5007
90
    b = (PyLongObject*)Py_NewRef(w);
5008
90
    if (PyLong_Check(x)) {
5009
0
        c = (PyLongObject *)Py_NewRef(x);
5010
0
    }
5011
90
    else if (x == Py_None)
5012
90
        c = NULL;
5013
0
    else {
5014
0
        Py_DECREF(a);
5015
0
        Py_DECREF(b);
5016
0
        Py_RETURN_NOTIMPLEMENTED;
5017
0
    }
5018
5019
90
    if (_PyLong_IsNegative(b) && c == NULL) {
5020
        /* if exponent is negative and there's no modulus:
5021
               return a float.  This works because we know
5022
               that this calls float_pow() which converts its
5023
               arguments to double. */
5024
2
        Py_DECREF(a);
5025
2
        Py_DECREF(b);
5026
2
        return PyFloat_Type.tp_as_number->nb_power(v, w, x);
5027
2
    }
5028
5029
88
    if (c) {
5030
        /* if modulus == 0:
5031
               raise ValueError() */
5032
0
        if (_PyLong_IsZero(c)) {
5033
0
            PyErr_SetString(PyExc_ValueError,
5034
0
                            "pow() 3rd argument cannot be 0");
5035
0
            goto Error;
5036
0
        }
5037
5038
        /* if modulus < 0:
5039
               negativeOutput = True
5040
               modulus = -modulus */
5041
0
        if (_PyLong_IsNegative(c)) {
5042
0
            negativeOutput = 1;
5043
0
            temp = (PyLongObject *)_PyLong_Copy(c);
5044
0
            if (temp == NULL)
5045
0
                goto Error;
5046
0
            Py_SETREF(c, temp);
5047
0
            temp = NULL;
5048
0
            _PyLong_Negate(&c);
5049
0
            if (c == NULL)
5050
0
                goto Error;
5051
0
        }
5052
5053
        /* if modulus == 1:
5054
               return 0 */
5055
0
        if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) {
5056
0
            z = (PyLongObject *)PyLong_FromLong(0L);
5057
0
            goto Done;
5058
0
        }
5059
5060
        /* if exponent is negative, negate the exponent and
5061
           replace the base with a modular inverse */
5062
0
        if (_PyLong_IsNegative(b)) {
5063
0
            temp = (PyLongObject *)_PyLong_Copy(b);
5064
0
            if (temp == NULL)
5065
0
                goto Error;
5066
0
            Py_SETREF(b, temp);
5067
0
            temp = NULL;
5068
0
            _PyLong_Negate(&b);
5069
0
            if (b == NULL)
5070
0
                goto Error;
5071
5072
0
            temp = long_invmod(a, c);
5073
0
            if (temp == NULL)
5074
0
                goto Error;
5075
0
            Py_SETREF(a, temp);
5076
0
            temp = NULL;
5077
0
        }
5078
5079
        /* Reduce base by modulus in some cases:
5080
           1. If base < 0.  Forcing the base non-negative makes things easier.
5081
           2. If base is obviously larger than the modulus.  The "small
5082
              exponent" case later can multiply directly by base repeatedly,
5083
              while the "large exponent" case multiplies directly by base 31
5084
              times.  It can be unboundedly faster to multiply by
5085
              base % modulus instead.
5086
           We could _always_ do this reduction, but l_mod() isn't cheap,
5087
           so we only do it when it buys something. */
5088
0
        if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) {
5089
0
            if (l_mod(a, c, &temp) < 0)
5090
0
                goto Error;
5091
0
            Py_SETREF(a, temp);
5092
0
            temp = NULL;
5093
0
        }
5094
0
    }
5095
5096
    /* At this point a, b, and c are guaranteed non-negative UNLESS
5097
       c is NULL, in which case a may be negative. */
5098
5099
88
    z = (PyLongObject *)PyLong_FromLong(1L);
5100
88
    if (z == NULL)
5101
0
        goto Error;
5102
5103
    /* Perform a modular reduction, X = X % c, but leave X alone if c
5104
     * is NULL.
5105
     */
5106
88
#define REDUCE(X)                                       \
5107
400
    do {                                                \
5108
400
        if (c != NULL) {                                \
5109
0
            if (l_mod(X, c, &temp) < 0)                 \
5110
0
                goto Error;                             \
5111
0
            Py_XDECREF(X);                              \
5112
0
            X = temp;                                   \
5113
0
            temp = NULL;                                \
5114
0
        }                                               \
5115
400
    } while(0)
5116
5117
    /* Multiply two values, then reduce the result:
5118
       result = X*Y % c.  If c is NULL, skip the mod. */
5119
88
#define MULT(X, Y, result)                      \
5120
400
    do {                                        \
5121
400
        temp = (PyLongObject *)long_mul(X, Y);  \
5122
400
        if (temp == NULL)                       \
5123
400
            goto Error;                         \
5124
400
        Py_XDECREF(result);                     \
5125
400
        result = temp;                          \
5126
400
        temp = NULL;                            \
5127
400
        REDUCE(result);                         \
5128
400
    } while(0)
5129
5130
88
    i = _PyLong_SignedDigitCount(b);
5131
88
    digit bi = i ? b->long_value.ob_digit[i-1] : 0;
5132
88
    digit bit;
5133
88
    if (i <= 1 && bi <= 3) {
5134
        /* aim for minimal overhead */
5135
6
        if (bi >= 2) {
5136
2
            MULT(a, a, z);
5137
2
            if (bi == 3) {
5138
2
                MULT(z, a, z);
5139
2
            }
5140
2
        }
5141
4
        else if (bi == 1) {
5142
            /* Multiplying by 1 serves two purposes: if `a` is of an int
5143
             * subclass, makes the result an int (e.g., pow(False, 1) returns
5144
             * 0 instead of False), and potentially reduces `a` by the modulus.
5145
             */
5146
2
            MULT(a, z, z);
5147
2
        }
5148
        /* else bi is 0, and z==1 is correct */
5149
6
    }
5150
82
    else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
5151
        /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
5152
        /* https://cacr.uwaterloo.ca/hac/about/chap14.pdf            */
5153
5154
        /* Find the first significant exponent bit. Search right to left
5155
         * because we're primarily trying to cut overhead for small powers.
5156
         */
5157
82
        assert(bi);  /* else there is no significant bit */
5158
82
        Py_SETREF(z, (PyLongObject*)Py_NewRef(a));
5159
385
        for (bit = 2; ; bit <<= 1) {
5160
385
            if (bit > bi) { /* found the first bit */
5161
82
                assert((bi & bit) == 0);
5162
82
                bit >>= 1;
5163
82
                assert(bi & bit);
5164
82
                break;
5165
82
            }
5166
385
        }
5167
82
        for (--i, bit >>= 1;;) {
5168
385
            for (; bit != 0; bit >>= 1) {
5169
303
                MULT(z, z, z);
5170
303
                if (bi & bit) {
5171
91
                    MULT(z, a, z);
5172
91
                }
5173
303
            }
5174
82
            if (--i < 0) {
5175
82
                break;
5176
82
            }
5177
0
            bi = b->long_value.ob_digit[i];
5178
0
            bit = (digit)1 << (PyLong_SHIFT-1);
5179
0
        }
5180
82
    }
5181
0
    else {
5182
        /* Left-to-right k-ary sliding window exponentiation
5183
         * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
5184
         */
5185
0
        table[0] = (PyLongObject*)Py_NewRef(a);
5186
0
        num_table_entries = 1;
5187
0
        MULT(a, a, a2);
5188
        /* table[i] == a**(2*i + 1) % c */
5189
0
        for (i = 1; i < EXP_TABLE_LEN; ++i) {
5190
0
            table[i] = NULL; /* must set to known value for MULT */
5191
0
            MULT(table[i-1], a2, table[i]);
5192
0
            ++num_table_entries; /* incremented iff MULT succeeded */
5193
0
        }
5194
0
        Py_CLEAR(a2);
5195
5196
        /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
5197
         * into `pending`, starting with the next 1 bit.  The current bit
5198
         * length of `pending` is `blen`.
5199
         */
5200
0
        int pending = 0, blen = 0;
5201
0
#define ABSORB_PENDING  do { \
5202
0
            int ntz = 0; /* number of trailing zeroes in `pending` */ \
5203
0
            assert(pending && blen); \
5204
0
            assert(pending >> (blen - 1)); \
5205
0
            assert(pending >> blen == 0); \
5206
0
            while ((pending & 1) == 0) { \
5207
0
                ++ntz; \
5208
0
                pending >>= 1; \
5209
0
            } \
5210
0
            assert(ntz < blen); \
5211
0
            blen -= ntz; \
5212
0
            do { \
5213
0
                MULT(z, z, z); \
5214
0
            } while (--blen); \
5215
0
            MULT(z, table[pending >> 1], z); \
5216
0
            while (ntz-- > 0) \
5217
0
                MULT(z, z, z); \
5218
0
            assert(blen == 0); \
5219
0
            pending = 0; \
5220
0
        } while(0)
5221
5222
0
        for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) {
5223
0
            const digit bi = b->long_value.ob_digit[i];
5224
0
            for (j = PyLong_SHIFT - 1; j >= 0; --j) {
5225
0
                const int bit = (bi >> j) & 1;
5226
0
                pending = (pending << 1) | bit;
5227
0
                if (pending) {
5228
0
                    ++blen;
5229
0
                    if (blen == EXP_WINDOW_SIZE)
5230
0
                        ABSORB_PENDING;
5231
0
                }
5232
0
                else /* absorb strings of 0 bits */
5233
0
                    MULT(z, z, z);
5234
0
            }
5235
0
        }
5236
0
        if (pending)
5237
0
            ABSORB_PENDING;
5238
0
    }
5239
5240
88
    if (negativeOutput && !_PyLong_IsZero(z)) {
5241
0
        temp = long_sub(z, c);
5242
0
        if (temp == NULL)
5243
0
            goto Error;
5244
0
        Py_SETREF(z, temp);
5245
0
        temp = NULL;
5246
0
    }
5247
88
    goto Done;
5248
5249
88
  Error:
5250
0
    Py_CLEAR(z);
5251
    /* fall through */
5252
88
  Done:
5253
88
    for (i = 0; i < num_table_entries; ++i)
5254
0
        Py_DECREF(table[i]);
5255
88
    Py_DECREF(a);
5256
88
    Py_DECREF(b);
5257
88
    Py_XDECREF(c);
5258
88
    Py_XDECREF(a2);
5259
88
    Py_XDECREF(temp);
5260
88
    return (PyObject *)z;
5261
0
}
5262
5263
static PyObject *
5264
long_invert(PyObject *self)
5265
276
{
5266
276
    PyLongObject *v = _PyLong_CAST(self);
5267
5268
    /* Implement ~x as -(x+1) */
5269
276
    if (_PyLong_IsCompact(v))
5270
276
        return (PyObject*)_PyLong_FromSTwoDigits(~medium_value(v));
5271
5272
0
    PyLongObject *x = long_add(v, (PyLongObject *)_PyLong_GetOne());
5273
0
    if (x == NULL)
5274
0
        return NULL;
5275
0
    _PyLong_Negate(&x);
5276
    /* No need for maybe_small_long here, since any small longs
5277
       will have been caught in the _PyLong_IsCompact() fast path. */
5278
0
    return (PyObject *)x;
5279
0
}
5280
5281
static PyLongObject *
5282
long_neg(PyLongObject *v)
5283
8.57k
{
5284
8.57k
    if (_PyLong_IsCompact(v)) {
5285
8.57k
        return _PyLong_FromSTwoDigits(-medium_value(v));
5286
8.57k
    }
5287
5288
0
    PyLongObject *z = (PyLongObject *)_PyLong_Copy(v);
5289
0
    if (z != NULL) {
5290
0
        _PyLong_FlipSign(z);
5291
0
    }
5292
0
    return z;
5293
8.57k
}
5294
5295
static PyObject *
5296
long_neg_method(PyObject *v)
5297
8.57k
{
5298
8.57k
    return (PyObject*)long_neg(_PyLong_CAST(v));
5299
8.57k
}
5300
5301
static PyLongObject*
5302
long_abs(PyLongObject *v)
5303
0
{
5304
0
    if (_PyLong_IsNegative(v))
5305
0
        return long_neg(v);
5306
0
    else
5307
0
        return (PyLongObject*)long_long((PyObject *)v);
5308
0
}
5309
5310
static PyObject *
5311
long_abs_method(PyObject *v)
5312
0
{
5313
0
    return (PyObject*)long_abs(_PyLong_CAST(v));
5314
0
}
5315
5316
static int
5317
long_bool(PyObject *v)
5318
746k
{
5319
746k
    return !_PyLong_IsZero(_PyLong_CAST(v));
5320
746k
}
5321
5322
/* Inner function for both long_rshift and _PyLong_Rshift, shifting an
5323
   integer right by PyLong_SHIFT*wordshift + remshift bits.
5324
   wordshift should be nonnegative. */
5325
5326
static PyObject *
5327
long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5328
156
{
5329
156
    PyLongObject *z = NULL;
5330
156
    Py_ssize_t newsize, hishift, size_a;
5331
156
    twodigits accum;
5332
156
    int a_negative;
5333
5334
    /* Total number of bits shifted must be nonnegative. */
5335
156
    assert(wordshift >= 0);
5336
156
    assert(remshift < PyLong_SHIFT);
5337
5338
    /* Fast path for small a. */
5339
156
    if (_PyLong_IsCompact(a)) {
5340
0
        stwodigits m, x;
5341
0
        digit shift;
5342
0
        m = medium_value(a);
5343
0
        shift = wordshift == 0 ? remshift : PyLong_SHIFT;
5344
0
        x = m < 0 ? ~(~m >> shift) : m >> shift;
5345
0
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5346
0
    }
5347
5348
156
    a_negative = _PyLong_IsNegative(a);
5349
156
    size_a = _PyLong_DigitCount(a);
5350
5351
156
    if (a_negative) {
5352
        /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
5353
           while keeping PyLong_SHIFT*wordshift + remshift the same. This
5354
           ensures that 'newsize' is computed correctly below. */
5355
0
        if (remshift == 0) {
5356
0
            if (wordshift == 0) {
5357
                /* Can only happen if the original shift was 0. */
5358
0
                return long_long((PyObject *)a);
5359
0
            }
5360
0
            remshift = PyLong_SHIFT;
5361
0
            --wordshift;
5362
0
        }
5363
0
    }
5364
5365
156
    assert(wordshift >= 0);
5366
156
    newsize = size_a - wordshift;
5367
156
    if (newsize <= 0) {
5368
        /* Shifting all the bits of 'a' out gives either -1 or 0. */
5369
0
        return PyLong_FromLong(-a_negative);
5370
0
    }
5371
156
    z = long_alloc(newsize);
5372
156
    if (z == NULL) {
5373
0
        return NULL;
5374
0
    }
5375
156
    hishift = PyLong_SHIFT - remshift;
5376
5377
156
    accum = a->long_value.ob_digit[wordshift];
5378
156
    if (a_negative) {
5379
        /*
5380
            For a positive integer a and nonnegative shift, we have:
5381
5382
                (-a) >> shift == -((a + 2**shift - 1) >> shift).
5383
5384
            In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
5385
            `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
5386
            from the bottom `wordshift` digits when at least one of the least
5387
            significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
5388
            of `2**shift - 1` has value `PyLong_MASK >> hishift`.
5389
        */
5390
0
        _PyLong_SetSignAndDigitCount(z, -1, newsize);
5391
5392
0
        digit sticky = 0;
5393
0
        for (Py_ssize_t j = 0; j < wordshift; j++) {
5394
0
            sticky |= a->long_value.ob_digit[j];
5395
0
        }
5396
0
        accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
5397
0
    }
5398
5399
156
    accum >>= remshift;
5400
540
    for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
5401
384
        accum += (twodigits)a->long_value.ob_digit[j] << hishift;
5402
384
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5403
384
        accum >>= PyLong_SHIFT;
5404
384
    }
5405
156
    assert(accum <= PyLong_MASK);
5406
156
    z->long_value.ob_digit[newsize - 1] = (digit)accum;
5407
5408
156
    z = maybe_small_long(long_normalize(z));
5409
156
    return (PyObject *)z;
5410
156
}
5411
5412
static PyObject *
5413
long_rshift(PyObject *a, PyObject *b)
5414
156
{
5415
156
    int64_t shiftby;
5416
5417
156
    CHECK_BINOP(a, b);
5418
5419
156
    if (_PyLong_IsNegative((PyLongObject *)b)) {
5420
0
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5421
0
        return NULL;
5422
0
    }
5423
156
    if (_PyLong_IsZero((PyLongObject *)a)) {
5424
0
        return PyLong_FromLong(0);
5425
0
    }
5426
156
    if (PyLong_AsInt64(b, &shiftby) < 0) {
5427
0
        if (!PyErr_ExceptionMatches(PyExc_OverflowError)) {
5428
0
            return NULL;
5429
0
        }
5430
0
        PyErr_Clear();
5431
0
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5432
0
            return PyLong_FromLong(-1);
5433
0
        }
5434
0
        else {
5435
0
            return PyLong_FromLong(0);
5436
0
        }
5437
0
    }
5438
156
    return _PyLong_Rshift(a, shiftby);
5439
156
}
5440
5441
/* Return a >> shiftby. */
5442
PyObject *
5443
_PyLong_Rshift(PyObject *a, int64_t shiftby)
5444
156
{
5445
156
    Py_ssize_t wordshift;
5446
156
    digit remshift;
5447
5448
156
    assert(PyLong_Check(a));
5449
156
    assert(shiftby >= 0);
5450
156
    if (_PyLong_IsZero((PyLongObject *)a)) {
5451
0
        return PyLong_FromLong(0);
5452
0
    }
5453
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5454
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5455
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5456
            return PyLong_FromLong(-1);
5457
        }
5458
        else {
5459
            return PyLong_FromLong(0);
5460
        }
5461
    }
5462
#endif
5463
156
    wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5464
156
    remshift = (digit)(shiftby % PyLong_SHIFT);
5465
156
    return long_rshift1((PyLongObject *)a, wordshift, remshift);
5466
156
}
5467
5468
static PyObject *
5469
long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5470
309
{
5471
309
    PyLongObject *z = NULL;
5472
309
    Py_ssize_t oldsize, newsize, i, j;
5473
309
    twodigits accum;
5474
5475
309
    if (wordshift == 0 && _PyLong_IsCompact(a)) {
5476
70
        stwodigits m = medium_value(a);
5477
        // bypass undefined shift operator behavior
5478
70
        stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
5479
70
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5480
70
    }
5481
5482
239
    oldsize = _PyLong_DigitCount(a);
5483
239
    newsize = oldsize + wordshift;
5484
239
    if (remshift)
5485
239
        ++newsize;
5486
239
    z = long_alloc(newsize);
5487
239
    if (z == NULL)
5488
0
        return NULL;
5489
239
    if (_PyLong_IsNegative(a)) {
5490
0
        assert(Py_REFCNT(z) == 1);
5491
0
        _PyLong_FlipSign(z);
5492
0
    }
5493
1.32k
    for (i = 0; i < wordshift; i++)
5494
1.08k
        z->long_value.ob_digit[i] = 0;
5495
239
    accum = 0;
5496
532
    for (j = 0; j < oldsize; i++, j++) {
5497
293
        accum |= (twodigits)a->long_value.ob_digit[j] << remshift;
5498
293
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5499
293
        accum >>= PyLong_SHIFT;
5500
293
    }
5501
239
    if (remshift)
5502
239
        z->long_value.ob_digit[newsize-1] = (digit)accum;
5503
0
    else
5504
239
        assert(!accum);
5505
239
    z = long_normalize(z);
5506
239
    return (PyObject *) maybe_small_long(z);
5507
239
}
5508
5509
5510
static PyObject *
5511
long_lshift_method(PyObject *aa, PyObject *bb)
5512
531
{
5513
531
    CHECK_BINOP(aa, bb);
5514
531
    PyLongObject *a = (PyLongObject*)aa;
5515
531
    PyLongObject *b = (PyLongObject*)bb;
5516
5517
531
    if (_PyLong_IsNegative(b)) {
5518
0
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5519
0
        return NULL;
5520
0
    }
5521
531
    if (_PyLong_IsZero(a)) {
5522
222
        return PyLong_FromLong(0);
5523
222
    }
5524
5525
309
    int64_t shiftby;
5526
309
    if (PyLong_AsInt64(bb, &shiftby) < 0) {
5527
0
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
5528
0
            PyErr_SetString(PyExc_OverflowError,
5529
0
                            "too many digits in integer");
5530
0
        }
5531
0
        return NULL;
5532
0
    }
5533
309
    return long_lshift_int64(a, shiftby);
5534
309
}
5535
5536
/* Return a << shiftby. */
5537
static PyObject *
5538
long_lshift_int64(PyLongObject *a, int64_t shiftby)
5539
309
{
5540
309
    assert(shiftby >= 0);
5541
5542
309
    if (_PyLong_IsZero(a)) {
5543
0
        return PyLong_FromLong(0);
5544
0
    }
5545
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5546
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5547
        PyErr_SetString(PyExc_OverflowError,
5548
                        "too many digits in integer");
5549
        return NULL;
5550
    }
5551
#endif
5552
309
    Py_ssize_t wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5553
309
    digit remshift = (digit)(shiftby % PyLong_SHIFT);
5554
309
    return long_lshift1(a, wordshift, remshift);
5555
309
}
5556
5557
PyObject *
5558
_PyLong_Lshift(PyObject *a, int64_t shiftby)
5559
0
{
5560
0
    return long_lshift_int64(_PyLong_CAST(a), shiftby);
5561
0
}
5562
5563
5564
/* Compute two's complement of digit vector a[0:m], writing result to
5565
   z[0:m].  The digit vector a need not be normalized, but should not
5566
   be entirely zero.  a and z may point to the same digit vector. */
5567
5568
static void
5569
v_complement(digit *z, digit *a, Py_ssize_t m)
5570
0
{
5571
0
    Py_ssize_t i;
5572
0
    digit carry = 1;
5573
0
    for (i = 0; i < m; ++i) {
5574
0
        carry += a[i] ^ PyLong_MASK;
5575
0
        z[i] = carry & PyLong_MASK;
5576
0
        carry >>= PyLong_SHIFT;
5577
0
    }
5578
0
    assert(carry == 0);
5579
0
}
5580
5581
/* Bitwise and/xor/or operations */
5582
5583
static PyObject *
5584
long_bitwise(PyLongObject *a,
5585
             char op,  /* '&', '|', '^' */
5586
             PyLongObject *b)
5587
2.66k
{
5588
2.66k
    int nega, negb, negz;
5589
2.66k
    Py_ssize_t size_a, size_b, size_z, i;
5590
2.66k
    PyLongObject *z;
5591
5592
    /* Bitwise operations for negative numbers operate as though
5593
       on a two's complement representation.  So convert arguments
5594
       from sign-magnitude to two's complement, and convert the
5595
       result back to sign-magnitude at the end. */
5596
5597
    /* If a is negative, replace it by its two's complement. */
5598
2.66k
    size_a = _PyLong_DigitCount(a);
5599
2.66k
    nega = _PyLong_IsNegative(a);
5600
2.66k
    if (nega) {
5601
0
        z = long_alloc(size_a);
5602
0
        if (z == NULL)
5603
0
            return NULL;
5604
0
        v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a);
5605
0
        a = z;
5606
0
    }
5607
2.66k
    else
5608
        /* Keep reference count consistent. */
5609
2.66k
        Py_INCREF(a);
5610
5611
    /* Same for b. */
5612
2.66k
    size_b = _PyLong_DigitCount(b);
5613
2.66k
    negb = _PyLong_IsNegative(b);
5614
2.66k
    if (negb) {
5615
0
        z = long_alloc(size_b);
5616
0
        if (z == NULL) {
5617
0
            Py_DECREF(a);
5618
0
            return NULL;
5619
0
        }
5620
0
        v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b);
5621
0
        b = z;
5622
0
    }
5623
2.66k
    else
5624
2.66k
        Py_INCREF(b);
5625
5626
    /* Swap a and b if necessary to ensure size_a >= size_b. */
5627
2.66k
    if (size_a < size_b) {
5628
1.10k
        z = a; a = b; b = z;
5629
1.10k
        size_z = size_a; size_a = size_b; size_b = size_z;
5630
1.10k
        negz = nega; nega = negb; negb = negz;
5631
1.10k
    }
5632
5633
    /* JRH: The original logic here was to allocate the result value (z)
5634
       as the longer of the two operands.  However, there are some cases
5635
       where the result is guaranteed to be shorter than that: AND of two
5636
       positives, OR of two negatives: use the shorter number.  AND with
5637
       mixed signs: use the positive number.  OR with mixed signs: use the
5638
       negative number.
5639
    */
5640
2.66k
    switch (op) {
5641
156
    case '^':
5642
156
        negz = nega ^ negb;
5643
156
        size_z = size_a;
5644
156
        break;
5645
2.44k
    case '&':
5646
2.44k
        negz = nega & negb;
5647
2.44k
        size_z = negb ? size_a : size_b;
5648
2.44k
        break;
5649
64
    case '|':
5650
64
        negz = nega | negb;
5651
64
        size_z = negb ? size_b : size_a;
5652
64
        break;
5653
0
    default:
5654
0
        Py_UNREACHABLE();
5655
2.66k
    }
5656
5657
    /* We allow an extra digit if z is negative, to make sure that
5658
       the final two's complement of z doesn't overflow. */
5659
2.66k
    z = long_alloc(size_z + negz);
5660
2.66k
    if (z == NULL) {
5661
0
        Py_DECREF(a);
5662
0
        Py_DECREF(b);
5663
0
        return NULL;
5664
0
    }
5665
5666
    /* Compute digits for overlap of a and b. */
5667
2.66k
    switch(op) {
5668
2.44k
    case '&':
5669
6.52k
        for (i = 0; i < size_b; ++i)
5670
4.07k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i];
5671
2.44k
        break;
5672
64
    case '|':
5673
112
        for (i = 0; i < size_b; ++i)
5674
48
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i];
5675
64
        break;
5676
156
    case '^':
5677
594
        for (i = 0; i < size_b; ++i)
5678
438
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i];
5679
156
        break;
5680
0
    default:
5681
0
        Py_UNREACHABLE();
5682
2.66k
    }
5683
5684
    /* Copy any remaining digits of a, inverting if necessary. */
5685
2.66k
    if (op == '^' && negb)
5686
0
        for (; i < size_z; ++i)
5687
0
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK;
5688
2.66k
    else if (i < size_z)
5689
182
        memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i],
5690
182
               (size_z-i)*sizeof(digit));
5691
5692
    /* Complement result if negative. */
5693
2.66k
    if (negz) {
5694
0
        _PyLong_FlipSign(z);
5695
0
        z->long_value.ob_digit[size_z] = PyLong_MASK;
5696
0
        v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1);
5697
0
    }
5698
5699
2.66k
    Py_DECREF(a);
5700
2.66k
    Py_DECREF(b);
5701
2.66k
    return (PyObject *)maybe_small_long(long_normalize(z));
5702
2.66k
}
5703
5704
static PyObject *
5705
long_and(PyObject *a, PyObject *b)
5706
2.87k
{
5707
2.87k
    CHECK_BINOP(a, b);
5708
2.87k
    PyLongObject *x = (PyLongObject*)a;
5709
2.87k
    PyLongObject *y = (PyLongObject*)b;
5710
2.87k
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5711
426
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
5712
426
    }
5713
2.44k
    return long_bitwise(x, '&', y);
5714
2.87k
}
5715
5716
static PyObject *
5717
long_xor(PyObject *a, PyObject *b)
5718
180
{
5719
180
    CHECK_BINOP(a, b);
5720
180
    PyLongObject *x = (PyLongObject*)a;
5721
180
    PyLongObject *y = (PyLongObject*)b;
5722
180
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5723
24
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
5724
24
    }
5725
156
    return long_bitwise(x, '^', y);
5726
180
}
5727
5728
static PyObject *
5729
long_or(PyObject *a, PyObject *b)
5730
348
{
5731
348
    CHECK_BINOP(a, b);
5732
348
    PyLongObject *x = (PyLongObject*)a;
5733
348
    PyLongObject *y = (PyLongObject*)b;
5734
348
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5735
284
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
5736
284
    }
5737
64
    return long_bitwise(x, '|', y);
5738
348
}
5739
5740
static PyObject *
5741
long_long(PyObject *v)
5742
4.47M
{
5743
4.47M
    if (PyLong_CheckExact(v)) {
5744
4.47M
        return Py_NewRef(v);
5745
4.47M
    }
5746
0
    else {
5747
0
        return _PyLong_Copy((PyLongObject *)v);
5748
0
    }
5749
4.47M
}
5750
5751
PyObject *
5752
_PyLong_GCD(PyObject *aarg, PyObject *barg)
5753
0
{
5754
0
    PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
5755
0
    stwodigits x, y, q, s, t, c_carry, d_carry;
5756
0
    stwodigits A, B, C, D, T;
5757
0
    int nbits, k;
5758
0
    digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
5759
5760
0
    a = (PyLongObject *)aarg;
5761
0
    b = (PyLongObject *)barg;
5762
0
    if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) {
5763
0
        Py_INCREF(a);
5764
0
        Py_INCREF(b);
5765
0
        goto simple;
5766
0
    }
5767
5768
    /* Initial reduction: make sure that 0 <= b <= a. */
5769
0
    a = long_abs(a);
5770
0
    if (a == NULL)
5771
0
        return NULL;
5772
0
    b = long_abs(b);
5773
0
    if (b == NULL) {
5774
0
        Py_DECREF(a);
5775
0
        return NULL;
5776
0
    }
5777
0
    if (long_compare(a, b) < 0) {
5778
0
        r = a;
5779
0
        a = b;
5780
0
        b = r;
5781
0
    }
5782
    /* We now own references to a and b */
5783
5784
0
    Py_ssize_t size_a, size_b, alloc_a, alloc_b;
5785
0
    alloc_a = _PyLong_DigitCount(a);
5786
0
    alloc_b = _PyLong_DigitCount(b);
5787
    /* reduce until a fits into 2 digits */
5788
0
    while ((size_a = _PyLong_DigitCount(a)) > 2) {
5789
0
        nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]);
5790
        /* extract top 2*PyLong_SHIFT bits of a into x, along with
5791
           corresponding bits of b into y */
5792
0
        size_b = _PyLong_DigitCount(b);
5793
0
        assert(size_b <= size_a);
5794
0
        if (size_b == 0) {
5795
0
            if (size_a < alloc_a) {
5796
0
                r = (PyLongObject *)_PyLong_Copy(a);
5797
0
                Py_DECREF(a);
5798
0
            }
5799
0
            else
5800
0
                r = a;
5801
0
            Py_DECREF(b);
5802
0
            Py_XDECREF(c);
5803
0
            Py_XDECREF(d);
5804
0
            return (PyObject *)r;
5805
0
        }
5806
0
        x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
5807
0
             ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
5808
0
             (a->long_value.ob_digit[size_a-3] >> nbits));
5809
5810
0
        y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) |
5811
0
             (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
5812
0
             (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
5813
5814
        /* inner loop of Lehmer's algorithm; A, B, C, D never grow
5815
           larger than PyLong_MASK during the algorithm. */
5816
0
        A = 1; B = 0; C = 0; D = 1;
5817
0
        for (k=0;; k++) {
5818
0
            if (y-C == 0)
5819
0
                break;
5820
0
            q = (x+(A-1))/(y-C);
5821
0
            s = B+q*D;
5822
0
            t = x-q*y;
5823
0
            if (s > t)
5824
0
                break;
5825
0
            x = y; y = t;
5826
0
            t = A+q*C; A = D; B = C; C = s; D = t;
5827
0
        }
5828
5829
0
        if (k == 0) {
5830
            /* no progress; do a Euclidean step */
5831
0
            if (l_mod(a, b, &r) < 0)
5832
0
                goto error;
5833
0
            Py_SETREF(a, b);
5834
0
            b = r;
5835
0
            alloc_a = alloc_b;
5836
0
            alloc_b = _PyLong_DigitCount(b);
5837
0
            continue;
5838
0
        }
5839
5840
        /*
5841
          a, b = A*b-B*a, D*a-C*b if k is odd
5842
          a, b = A*a-B*b, D*b-C*a if k is even
5843
        */
5844
0
        if (k&1) {
5845
0
            T = -A; A = -B; B = T;
5846
0
            T = -C; C = -D; D = T;
5847
0
        }
5848
0
        if (c != NULL) {
5849
0
            assert(size_a >= 0);
5850
0
            _PyLong_SetSignAndDigitCount(c, 1, size_a);
5851
0
        }
5852
0
        else if (Py_REFCNT(a) == 1) {
5853
0
            c = (PyLongObject*)Py_NewRef(a);
5854
0
        }
5855
0
        else {
5856
0
            alloc_a = size_a;
5857
0
            c = long_alloc(size_a);
5858
0
            if (c == NULL)
5859
0
                goto error;
5860
0
        }
5861
5862
0
        if (d != NULL) {
5863
0
            assert(size_a >= 0);
5864
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5865
0
        }
5866
0
        else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
5867
0
            d = (PyLongObject*)Py_NewRef(b);
5868
0
            assert(size_a >= 0);
5869
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5870
0
        }
5871
0
        else {
5872
0
            alloc_b = size_a;
5873
0
            d = long_alloc(size_a);
5874
0
            if (d == NULL)
5875
0
                goto error;
5876
0
        }
5877
0
        a_end = a->long_value.ob_digit + size_a;
5878
0
        b_end = b->long_value.ob_digit + size_b;
5879
5880
        /* compute new a and new b in parallel */
5881
0
        a_digit = a->long_value.ob_digit;
5882
0
        b_digit = b->long_value.ob_digit;
5883
0
        c_digit = c->long_value.ob_digit;
5884
0
        d_digit = d->long_value.ob_digit;
5885
0
        c_carry = 0;
5886
0
        d_carry = 0;
5887
0
        while (b_digit < b_end) {
5888
0
            c_carry += (A * *a_digit) - (B * *b_digit);
5889
0
            d_carry += (D * *b_digit++) - (C * *a_digit++);
5890
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5891
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5892
0
            c_carry >>= PyLong_SHIFT;
5893
0
            d_carry >>= PyLong_SHIFT;
5894
0
        }
5895
0
        while (a_digit < a_end) {
5896
0
            c_carry += A * *a_digit;
5897
0
            d_carry -= C * *a_digit++;
5898
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5899
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5900
0
            c_carry >>= PyLong_SHIFT;
5901
0
            d_carry >>= PyLong_SHIFT;
5902
0
        }
5903
0
        assert(c_carry == 0);
5904
0
        assert(d_carry == 0);
5905
5906
0
        Py_INCREF(c);
5907
0
        Py_INCREF(d);
5908
0
        Py_DECREF(a);
5909
0
        Py_DECREF(b);
5910
0
        a = long_normalize(c);
5911
0
        b = long_normalize(d);
5912
0
    }
5913
0
    Py_XDECREF(c);
5914
0
    Py_XDECREF(d);
5915
5916
0
simple:
5917
0
    assert(Py_REFCNT(a) > 0);
5918
0
    assert(Py_REFCNT(b) > 0);
5919
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
5920
   undefined behaviour when LONG_MAX type is smaller than 60 bits */
5921
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5922
    /* a fits into a long, so b must too */
5923
0
    x = PyLong_AsLong((PyObject *)a);
5924
0
    y = PyLong_AsLong((PyObject *)b);
5925
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5926
    x = PyLong_AsLongLong((PyObject *)a);
5927
    y = PyLong_AsLongLong((PyObject *)b);
5928
#else
5929
# error "_PyLong_GCD"
5930
#endif
5931
0
    x = Py_ABS(x);
5932
0
    y = Py_ABS(y);
5933
0
    Py_DECREF(a);
5934
0
    Py_DECREF(b);
5935
5936
    /* usual Euclidean algorithm for longs */
5937
0
    while (y != 0) {
5938
0
        t = y;
5939
0
        y = x % y;
5940
0
        x = t;
5941
0
    }
5942
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5943
0
    return PyLong_FromLong(x);
5944
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5945
    return PyLong_FromLongLong(x);
5946
#else
5947
# error "_PyLong_GCD"
5948
#endif
5949
5950
0
error:
5951
0
    Py_DECREF(a);
5952
0
    Py_DECREF(b);
5953
0
    Py_XDECREF(c);
5954
0
    Py_XDECREF(d);
5955
0
    return NULL;
5956
0
}
5957
5958
static PyObject *
5959
long_float(PyObject *v)
5960
0
{
5961
0
    double result;
5962
0
    result = PyLong_AsDouble(v);
5963
0
    if (result == -1.0 && PyErr_Occurred())
5964
0
        return NULL;
5965
0
    return PyFloat_FromDouble(result);
5966
0
}
5967
5968
static PyObject *
5969
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
5970
5971
/*[clinic input]
5972
@classmethod
5973
int.__new__ as long_new
5974
    x: object(c_default="NULL") = 0
5975
    /
5976
    base as obase: object(c_default="NULL") = 10
5977
[clinic start generated code]*/
5978
5979
static PyObject *
5980
long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
5981
/*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
5982
285k
{
5983
285k
    Py_ssize_t base;
5984
5985
285k
    if (type != &PyLong_Type)
5986
2.25k
        return long_subtype_new(type, x, obase); /* Wimp out */
5987
282k
    if (x == NULL) {
5988
12
        if (obase != NULL) {
5989
0
            PyErr_SetString(PyExc_TypeError,
5990
0
                            "int() missing string argument");
5991
0
            return NULL;
5992
0
        }
5993
12
        return PyLong_FromLong(0L);
5994
12
    }
5995
    /* default base and limit, forward to standard implementation */
5996
282k
    if (obase == NULL)
5997
2.23k
        return PyNumber_Long(x);
5998
5999
280k
    base = PyNumber_AsSsize_t(obase, NULL);
6000
280k
    if (base == -1 && PyErr_Occurred())
6001
0
        return NULL;
6002
280k
    if ((base != 0 && base < 2) || base > 36) {
6003
0
        PyErr_SetString(PyExc_ValueError,
6004
0
                        "int() base must be >= 2 and <= 36, or 0");
6005
0
        return NULL;
6006
0
    }
6007
6008
280k
    if (PyUnicode_Check(x))
6009
279k
        return PyLong_FromUnicodeObject(x, (int)base);
6010
1.24k
    else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
6011
1.24k
        const char *string;
6012
1.24k
        if (PyByteArray_Check(x))
6013
1.24k
            string = PyByteArray_AS_STRING(x);
6014
0
        else
6015
0
            string = PyBytes_AS_STRING(x);
6016
1.24k
        return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
6017
1.24k
    }
6018
0
    else {
6019
0
        PyErr_SetString(PyExc_TypeError,
6020
0
                        "int() can't convert non-string with explicit base");
6021
0
        return NULL;
6022
0
    }
6023
280k
}
6024
6025
/* Wimpy, slow approach to tp_new calls for subtypes of int:
6026
   first create a regular int from whatever arguments we got,
6027
   then allocate a subtype instance and initialize it from
6028
   the regular int.  The regular int is then thrown away.
6029
*/
6030
static PyObject *
6031
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
6032
2.25k
{
6033
2.25k
    PyLongObject *tmp, *newobj;
6034
2.25k
    Py_ssize_t i, n;
6035
6036
2.25k
    assert(PyType_IsSubtype(type, &PyLong_Type));
6037
2.25k
    tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
6038
2.25k
    if (tmp == NULL)
6039
0
        return NULL;
6040
2.25k
    assert(PyLong_Check(tmp));
6041
2.25k
    n = _PyLong_DigitCount(tmp);
6042
    /* Fast operations for single digit integers (including zero)
6043
     * assume that there is always at least one digit present. */
6044
2.25k
    if (n == 0) {
6045
100
        n = 1;
6046
100
    }
6047
2.25k
    newobj = (PyLongObject *)type->tp_alloc(type, n);
6048
2.25k
    if (newobj == NULL) {
6049
0
        Py_DECREF(tmp);
6050
0
        return NULL;
6051
0
    }
6052
2.25k
    assert(PyLong_Check(newobj));
6053
2.25k
    newobj->long_value.lv_tag = tmp->long_value.lv_tag & ~IMMORTALITY_BIT_MASK;
6054
4.52k
    for (i = 0; i < n; i++) {
6055
2.27k
        newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i];
6056
2.27k
    }
6057
2.25k
    Py_DECREF(tmp);
6058
2.25k
    return (PyObject *)newobj;
6059
2.25k
}
6060
6061
/*[clinic input]
6062
int.__getnewargs__
6063
[clinic start generated code]*/
6064
6065
static PyObject *
6066
int___getnewargs___impl(PyObject *self)
6067
/*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
6068
0
{
6069
0
    return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
6070
0
}
6071
6072
static PyObject *
6073
long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
6074
0
{
6075
0
    return PyLong_FromLong(0L);
6076
0
}
6077
6078
static PyObject *
6079
long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
6080
0
{
6081
0
    return PyLong_FromLong(1L);
6082
0
}
6083
6084
/*[clinic input]
6085
int.__format__
6086
6087
    format_spec: unicode
6088
    /
6089
6090
Convert to a string according to format_spec.
6091
[clinic start generated code]*/
6092
6093
static PyObject *
6094
int___format___impl(PyObject *self, PyObject *format_spec)
6095
/*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/
6096
348
{
6097
348
    _PyUnicodeWriter writer;
6098
348
    int ret;
6099
6100
348
    _PyUnicodeWriter_Init(&writer);
6101
348
    ret = _PyLong_FormatAdvancedWriter(
6102
348
        &writer,
6103
348
        self,
6104
348
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
6105
348
    if (ret == -1) {
6106
0
        _PyUnicodeWriter_Dealloc(&writer);
6107
0
        return NULL;
6108
0
    }
6109
348
    return _PyUnicodeWriter_Finish(&writer);
6110
348
}
6111
6112
/* Return a pair (q, r) such that a = b * q + r, and
6113
   abs(r) <= abs(b)/2, with equality possible only if q is even.
6114
   In other words, q == a / b, rounded to the nearest integer using
6115
   round-half-to-even. */
6116
6117
PyObject *
6118
_PyLong_DivmodNear(PyObject *a, PyObject *b)
6119
0
{
6120
0
    PyLongObject *quo = NULL, *rem = NULL;
6121
0
    PyObject *twice_rem, *result, *temp;
6122
0
    int quo_is_odd, quo_is_neg;
6123
0
    Py_ssize_t cmp;
6124
6125
    /* Equivalent Python code:
6126
6127
       def divmod_near(a, b):
6128
           q, r = divmod(a, b)
6129
           # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
6130
           # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
6131
           # positive, 2 * r < b if b negative.
6132
           greater_than_half = 2*r > b if b > 0 else 2*r < b
6133
           exactly_half = 2*r == b
6134
           if greater_than_half or exactly_half and q % 2 == 1:
6135
               q += 1
6136
               r -= b
6137
           return q, r
6138
6139
    */
6140
0
    if (!PyLong_Check(a) || !PyLong_Check(b)) {
6141
0
        PyErr_SetString(PyExc_TypeError,
6142
0
                        "non-integer arguments in division");
6143
0
        return NULL;
6144
0
    }
6145
6146
    /* Do a and b have different signs?  If so, quotient is negative. */
6147
0
    quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b));
6148
6149
0
    if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
6150
0
        goto error;
6151
6152
    /* compare twice the remainder with the divisor, to see
6153
       if we need to adjust the quotient and remainder */
6154
0
    twice_rem = long_lshift_int64(rem, 1);
6155
0
    if (twice_rem == NULL)
6156
0
        goto error;
6157
0
    if (quo_is_neg) {
6158
0
        temp = (PyObject*)long_neg((PyLongObject*)twice_rem);
6159
0
        Py_SETREF(twice_rem, temp);
6160
0
        if (twice_rem == NULL)
6161
0
            goto error;
6162
0
    }
6163
0
    cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
6164
0
    Py_DECREF(twice_rem);
6165
6166
0
    quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0;
6167
0
    if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
6168
        /* fix up quotient */
6169
0
        PyObject *one = _PyLong_GetOne();  // borrowed reference
6170
0
        if (quo_is_neg)
6171
0
            temp = (PyObject*)long_sub(quo, (PyLongObject *)one);
6172
0
        else
6173
0
            temp = (PyObject*)long_add(quo, (PyLongObject *)one);
6174
0
        Py_SETREF(quo, (PyLongObject *)temp);
6175
0
        if (quo == NULL)
6176
0
            goto error;
6177
        /* and remainder */
6178
0
        if (quo_is_neg)
6179
0
            temp = (PyObject*)long_add(rem, (PyLongObject *)b);
6180
0
        else
6181
0
            temp = (PyObject*)long_sub(rem, (PyLongObject *)b);
6182
0
        Py_SETREF(rem, (PyLongObject *)temp);
6183
0
        if (rem == NULL)
6184
0
            goto error;
6185
0
    }
6186
6187
0
    result = PyTuple_New(2);
6188
0
    if (result == NULL)
6189
0
        goto error;
6190
6191
    /* PyTuple_SET_ITEM steals references */
6192
0
    PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
6193
0
    PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
6194
0
    return result;
6195
6196
0
  error:
6197
0
    Py_XDECREF(quo);
6198
0
    Py_XDECREF(rem);
6199
0
    return NULL;
6200
0
}
6201
6202
/*[clinic input]
6203
int.__round__
6204
6205
    ndigits as o_ndigits: object = None
6206
    /
6207
6208
Rounding an Integral returns itself.
6209
6210
Rounding with an ndigits argument also returns an integer.
6211
[clinic start generated code]*/
6212
6213
static PyObject *
6214
int___round___impl(PyObject *self, PyObject *o_ndigits)
6215
/*[clinic end generated code: output=954fda6b18875998 input=30c2aec788263144]*/
6216
0
{
6217
    /* To round an integer m to the nearest 10**n (n positive), we make use of
6218
     * the divmod_near operation, defined by:
6219
     *
6220
     *   divmod_near(a, b) = (q, r)
6221
     *
6222
     * where q is the nearest integer to the quotient a / b (the
6223
     * nearest even integer in the case of a tie) and r == a - q * b.
6224
     * Hence q * b = a - r is the nearest multiple of b to a,
6225
     * preferring even multiples in the case of a tie.
6226
     *
6227
     * So the nearest multiple of 10**n to m is:
6228
     *
6229
     *   m - divmod_near(m, 10**n)[1].
6230
     */
6231
0
    if (o_ndigits == Py_None)
6232
0
        return long_long(self);
6233
6234
0
    PyObject *ndigits = _PyNumber_Index(o_ndigits);
6235
0
    if (ndigits == NULL)
6236
0
        return NULL;
6237
6238
    /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
6239
0
    if (!_PyLong_IsNegative((PyLongObject *)ndigits)) {
6240
0
        Py_DECREF(ndigits);
6241
0
        return long_long(self);
6242
0
    }
6243
6244
    /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
6245
0
    PyObject *temp = (PyObject*)long_neg((PyLongObject*)ndigits);
6246
0
    Py_SETREF(ndigits, temp);
6247
0
    if (ndigits == NULL)
6248
0
        return NULL;
6249
6250
0
    PyObject *result = PyLong_FromLong(10);
6251
0
    if (result == NULL) {
6252
0
        Py_DECREF(ndigits);
6253
0
        return NULL;
6254
0
    }
6255
6256
0
    temp = long_pow(result, ndigits, Py_None);
6257
0
    Py_DECREF(ndigits);
6258
0
    Py_SETREF(result, temp);
6259
0
    if (result == NULL)
6260
0
        return NULL;
6261
6262
0
    temp = _PyLong_DivmodNear(self, result);
6263
0
    Py_SETREF(result, temp);
6264
0
    if (result == NULL)
6265
0
        return NULL;
6266
6267
0
    temp = (PyObject*)long_sub((PyLongObject*)self,
6268
0
                               (PyLongObject*)PyTuple_GET_ITEM(result, 1));
6269
0
    Py_SETREF(result, temp);
6270
6271
0
    return result;
6272
0
}
6273
6274
/*[clinic input]
6275
int.__sizeof__ -> Py_ssize_t
6276
6277
Returns size in memory, in bytes.
6278
[clinic start generated code]*/
6279
6280
static Py_ssize_t
6281
int___sizeof___impl(PyObject *self)
6282
/*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
6283
0
{
6284
    /* using Py_MAX(..., 1) because we always allocate space for at least
6285
       one digit, even though the integer zero has a digit count of 0 */
6286
0
    Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1);
6287
0
    return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits;
6288
0
}
6289
6290
/*[clinic input]
6291
int.bit_length
6292
6293
Number of bits necessary to represent self in binary.
6294
6295
>>> bin(37)
6296
'0b100101'
6297
>>> (37).bit_length()
6298
6
6299
[clinic start generated code]*/
6300
6301
static PyObject *
6302
int_bit_length_impl(PyObject *self)
6303
/*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
6304
66
{
6305
66
    int64_t nbits = _PyLong_NumBits(self);
6306
66
    assert(nbits >= 0);
6307
66
    assert(!PyErr_Occurred());
6308
66
    return PyLong_FromInt64(nbits);
6309
66
}
6310
6311
static int
6312
popcount_digit(digit d)
6313
0
{
6314
    // digit can be larger than uint32_t, but only PyLong_SHIFT bits
6315
    // of it will be ever used.
6316
0
    static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
6317
0
    return _Py_popcount32((uint32_t)d);
6318
0
}
6319
6320
/*[clinic input]
6321
@permit_long_summary
6322
int.bit_count
6323
6324
Number of ones in the binary representation of the absolute value of self.
6325
6326
Also known as the population count.
6327
6328
>>> bin(13)
6329
'0b1101'
6330
>>> (13).bit_count()
6331
3
6332
[clinic start generated code]*/
6333
6334
static PyObject *
6335
int_bit_count_impl(PyObject *self)
6336
/*[clinic end generated code: output=2e571970daf1e5c3 input=f2510a306761db15]*/
6337
0
{
6338
0
    assert(self != NULL);
6339
0
    assert(PyLong_Check(self));
6340
6341
0
    PyLongObject *z = (PyLongObject *)self;
6342
0
    Py_ssize_t ndigits = _PyLong_DigitCount(z);
6343
0
    int64_t bit_count = 0;
6344
6345
0
    for (Py_ssize_t i = 0; i < ndigits; i++) {
6346
0
        bit_count += popcount_digit(z->long_value.ob_digit[i]);
6347
0
    }
6348
6349
0
    return PyLong_FromInt64(bit_count);
6350
0
}
6351
6352
/*[clinic input]
6353
int.as_integer_ratio
6354
6355
Return a pair of integers, whose ratio is equal to the original int.
6356
6357
The ratio is in lowest terms and has a positive denominator.
6358
6359
>>> (10).as_integer_ratio()
6360
(10, 1)
6361
>>> (-10).as_integer_ratio()
6362
(-10, 1)
6363
>>> (0).as_integer_ratio()
6364
(0, 1)
6365
[clinic start generated code]*/
6366
6367
static PyObject *
6368
int_as_integer_ratio_impl(PyObject *self)
6369
/*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/
6370
0
{
6371
0
    PyObject *ratio_tuple;
6372
0
    PyObject *numerator = long_long(self);
6373
0
    if (numerator == NULL) {
6374
0
        return NULL;
6375
0
    }
6376
0
    ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
6377
0
    Py_DECREF(numerator);
6378
0
    return ratio_tuple;
6379
0
}
6380
6381
/*[clinic input]
6382
int.to_bytes
6383
6384
    length: Py_ssize_t(allow_negative=False) = 1
6385
        Length of bytes object to use.  An OverflowError is raised if the
6386
        integer is not representable with the given number of bytes.  Default
6387
        is length 1.
6388
    byteorder: unicode(c_default="NULL") = "big"
6389
        The byte order used to represent the integer.  If byteorder is 'big',
6390
        the most significant byte is at the beginning of the byte array.  If
6391
        byteorder is 'little', the most significant byte is at the end of the
6392
        byte array.  To request the native byte order of the host system, use
6393
        sys.byteorder as the byte order value.  Default is to use 'big'.
6394
    *
6395
    signed as is_signed: bool = False
6396
        Determines whether two's complement is used to represent the integer.
6397
        If signed is False and a negative integer is given, an OverflowError
6398
        is raised.
6399
6400
Return an array of bytes representing an integer.
6401
[clinic start generated code]*/
6402
6403
static PyObject *
6404
int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
6405
                  int is_signed)
6406
/*[clinic end generated code: output=89c801df114050a3 input=66f9d0c20529b44f]*/
6407
748
{
6408
748
    int little_endian;
6409
748
    if (byteorder == NULL)
6410
0
        little_endian = 0;
6411
748
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6412
748
        little_endian = 1;
6413
0
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6414
0
        little_endian = 0;
6415
0
    else {
6416
0
        PyErr_SetString(PyExc_ValueError,
6417
0
            "byteorder must be either 'little' or 'big'");
6418
0
        return NULL;
6419
0
    }
6420
6421
748
    PyBytesWriter *writer = PyBytesWriter_Create(length);
6422
748
    if (writer == NULL) {
6423
0
        return NULL;
6424
0
    }
6425
6426
748
    if (_PyLong_AsByteArray((PyLongObject *)self,
6427
748
                            PyBytesWriter_GetData(writer),
6428
748
                            length, little_endian, is_signed, 1) < 0) {
6429
0
        PyBytesWriter_Discard(writer);
6430
0
        return NULL;
6431
0
    }
6432
6433
748
    return PyBytesWriter_Finish(writer);
6434
748
}
6435
6436
/*[clinic input]
6437
@classmethod
6438
int.from_bytes
6439
6440
    bytes as bytes_obj: object
6441
        Holds the array of bytes to convert.  The argument must either
6442
        support the buffer protocol or be an iterable object producing bytes.
6443
        Bytes and bytearray are examples of built-in objects that support the
6444
        buffer protocol.
6445
    byteorder: unicode(c_default="NULL") = "big"
6446
        The byte order used to represent the integer.  If byteorder is 'big',
6447
        the most significant byte is at the beginning of the byte array.  If
6448
        byteorder is 'little', the most significant byte is at the end of the
6449
        byte array.  To request the native byte order of the host system, use
6450
        sys.byteorder as the byte order value.  Default is to use 'big'.
6451
    *
6452
    signed as is_signed: bool = False
6453
        Indicates whether two's complement is used to represent the integer.
6454
6455
Return the integer represented by the given array of bytes.
6456
[clinic start generated code]*/
6457
6458
static PyObject *
6459
int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
6460
                    PyObject *byteorder, int is_signed)
6461
/*[clinic end generated code: output=efc5d68e31f9314f input=2ff527997fe7b0c5]*/
6462
2.30k
{
6463
2.30k
    int little_endian;
6464
2.30k
    PyObject *long_obj, *bytes;
6465
6466
2.30k
    if (byteorder == NULL)
6467
0
        little_endian = 0;
6468
2.30k
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6469
2.16k
        little_endian = 1;
6470
132
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6471
132
        little_endian = 0;
6472
0
    else {
6473
0
        PyErr_SetString(PyExc_ValueError,
6474
0
            "byteorder must be either 'little' or 'big'");
6475
0
        return NULL;
6476
0
    }
6477
6478
2.30k
    bytes = PyObject_Bytes(bytes_obj);
6479
2.30k
    if (bytes == NULL)
6480
0
        return NULL;
6481
6482
2.30k
    long_obj = _PyLong_FromByteArray(
6483
2.30k
        (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
6484
2.30k
        little_endian, is_signed);
6485
2.30k
    Py_DECREF(bytes);
6486
6487
2.30k
    if (long_obj != NULL && type != &PyLong_Type) {
6488
0
        Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
6489
0
    }
6490
6491
2.30k
    return long_obj;
6492
2.30k
}
6493
6494
static PyObject *
6495
long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
6496
0
{
6497
0
    return long_long(self);
6498
0
}
6499
6500
static PyObject *
6501
long_long_getter(PyObject *self, void *Py_UNUSED(ignored))
6502
0
{
6503
0
    return long_long(self);
6504
0
}
6505
6506
/*[clinic input]
6507
int.is_integer
6508
6509
Returns True. Exists for duck type compatibility with float.is_integer.
6510
[clinic start generated code]*/
6511
6512
static PyObject *
6513
int_is_integer_impl(PyObject *self)
6514
/*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/
6515
0
{
6516
0
    Py_RETURN_TRUE;
6517
0
}
6518
6519
static PyObject *
6520
long_vectorcall(PyObject *type, PyObject * const*args,
6521
                 size_t nargsf, PyObject *kwnames)
6522
4.56M
{
6523
4.56M
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
6524
4.56M
    if (kwnames != NULL) {
6525
0
        PyThreadState *tstate = PyThreadState_GET();
6526
0
        return _PyObject_MakeTpCall(tstate, type, args, nargs, kwnames);
6527
0
    }
6528
4.56M
    switch (nargs) {
6529
0
        case 0:
6530
0
            return _PyLong_GetZero();
6531
4.27M
        case 1:
6532
4.27M
            return PyNumber_Long(args[0]);
6533
280k
        case 2:
6534
280k
            return long_new_impl(_PyType_CAST(type), args[0], args[1]);
6535
0
        default:
6536
0
            return PyErr_Format(PyExc_TypeError,
6537
0
                                "int expected at most 2 arguments, got %zd",
6538
0
                                nargs);
6539
4.56M
    }
6540
4.56M
}
6541
6542
static PyMethodDef long_methods[] = {
6543
    {"conjugate",       long_long_meth, METH_NOARGS,
6544
     "Returns self, the complex conjugate of any int."},
6545
    INT_BIT_LENGTH_METHODDEF
6546
    INT_BIT_COUNT_METHODDEF
6547
    INT_TO_BYTES_METHODDEF
6548
    INT_FROM_BYTES_METHODDEF
6549
    INT_AS_INTEGER_RATIO_METHODDEF
6550
    {"__trunc__",       long_long_meth, METH_NOARGS,
6551
     "Truncating an Integral returns itself."},
6552
    {"__floor__",       long_long_meth, METH_NOARGS,
6553
     "Flooring an Integral returns itself."},
6554
    {"__ceil__",        long_long_meth, METH_NOARGS,
6555
     "Ceiling of an Integral returns itself."},
6556
    INT___ROUND___METHODDEF
6557
    INT___GETNEWARGS___METHODDEF
6558
    INT___FORMAT___METHODDEF
6559
    INT___SIZEOF___METHODDEF
6560
    INT_IS_INTEGER_METHODDEF
6561
    {NULL,              NULL}           /* sentinel */
6562
};
6563
6564
static PyGetSetDef long_getset[] = {
6565
    {"real",
6566
     long_long_getter, NULL,
6567
     "the real part of a complex number",
6568
     NULL},
6569
    {"imag",
6570
     long_get0, NULL,
6571
     "the imaginary part of a complex number",
6572
     NULL},
6573
    {"numerator",
6574
     long_long_getter, NULL,
6575
     "the numerator of a rational number in lowest terms",
6576
     NULL},
6577
    {"denominator",
6578
     long_get1, NULL,
6579
     "the denominator of a rational number in lowest terms",
6580
     NULL},
6581
    {NULL}  /* Sentinel */
6582
};
6583
6584
PyDoc_STRVAR(long_doc,
6585
"int([x]) -> integer\n\
6586
int(x, base=10) -> integer\n\
6587
\n\
6588
Convert a number or string to an integer, or return 0 if no arguments\n\
6589
are given.  If x is a number, return x.__int__().  For floating-point\n\
6590
numbers, this truncates towards zero.\n\
6591
\n\
6592
If x is not a number or if base is given, then x must be a string,\n\
6593
bytes, or bytearray instance representing an integer literal in the\n\
6594
given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
6595
by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
6596
Base 0 means to interpret the base from the string as an integer literal.\n\
6597
>>> int('0b100', base=0)\n\
6598
4");
6599
6600
static PyNumberMethods long_as_number = {
6601
    long_add_method,            /*nb_add*/
6602
    long_sub_method,            /*nb_subtract*/
6603
    long_mul_method,            /*nb_multiply*/
6604
    long_mod,                   /*nb_remainder*/
6605
    long_divmod,                /*nb_divmod*/
6606
    long_pow,                   /*nb_power*/
6607
    long_neg_method,            /*nb_negative*/
6608
    long_long,                  /*tp_positive*/
6609
    long_abs_method,            /*tp_absolute*/
6610
    long_bool,                  /*tp_bool*/
6611
    long_invert,                /*nb_invert*/
6612
    long_lshift_method,         /*nb_lshift*/
6613
    long_rshift,                /*nb_rshift*/
6614
    long_and,                   /*nb_and*/
6615
    long_xor,                   /*nb_xor*/
6616
    long_or,                    /*nb_or*/
6617
    long_long,                  /*nb_int*/
6618
    0,                          /*nb_reserved*/
6619
    long_float,                 /*nb_float*/
6620
    0,                          /* nb_inplace_add */
6621
    0,                          /* nb_inplace_subtract */
6622
    0,                          /* nb_inplace_multiply */
6623
    0,                          /* nb_inplace_remainder */
6624
    0,                          /* nb_inplace_power */
6625
    0,                          /* nb_inplace_lshift */
6626
    0,                          /* nb_inplace_rshift */
6627
    0,                          /* nb_inplace_and */
6628
    0,                          /* nb_inplace_xor */
6629
    0,                          /* nb_inplace_or */
6630
    long_div,                   /* nb_floor_divide */
6631
    long_true_divide,           /* nb_true_divide */
6632
    0,                          /* nb_inplace_floor_divide */
6633
    0,                          /* nb_inplace_true_divide */
6634
    long_long,                  /* nb_index */
6635
};
6636
6637
PyTypeObject PyLong_Type = {
6638
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
6639
    "int",                                      /* tp_name */
6640
    offsetof(PyLongObject, long_value.ob_digit),  /* tp_basicsize */
6641
    sizeof(digit),                              /* tp_itemsize */
6642
    long_dealloc,                               /* tp_dealloc */
6643
    0,                                          /* tp_vectorcall_offset */
6644
    0,                                          /* tp_getattr */
6645
    0,                                          /* tp_setattr */
6646
    0,                                          /* tp_as_async */
6647
    long_to_decimal_string,                     /* tp_repr */
6648
    &long_as_number,                            /* tp_as_number */
6649
    0,                                          /* tp_as_sequence */
6650
    0,                                          /* tp_as_mapping */
6651
    long_hash,                                  /* tp_hash */
6652
    0,                                          /* tp_call */
6653
    0,                                          /* tp_str */
6654
    PyObject_GenericGetAttr,                    /* tp_getattro */
6655
    0,                                          /* tp_setattro */
6656
    0,                                          /* tp_as_buffer */
6657
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
6658
        Py_TPFLAGS_LONG_SUBCLASS |
6659
        _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
6660
    long_doc,                                   /* tp_doc */
6661
    0,                                          /* tp_traverse */
6662
    0,                                          /* tp_clear */
6663
    long_richcompare,                           /* tp_richcompare */
6664
    0,                                          /* tp_weaklistoffset */
6665
    0,                                          /* tp_iter */
6666
    0,                                          /* tp_iternext */
6667
    long_methods,                               /* tp_methods */
6668
    0,                                          /* tp_members */
6669
    long_getset,                                /* tp_getset */
6670
    0,                                          /* tp_base */
6671
    0,                                          /* tp_dict */
6672
    0,                                          /* tp_descr_get */
6673
    0,                                          /* tp_descr_set */
6674
    0,                                          /* tp_dictoffset */
6675
    0,                                          /* tp_init */
6676
    0,                                          /* tp_alloc */
6677
    long_new,                                   /* tp_new */
6678
    PyObject_Free,                              /* tp_free */
6679
    .tp_vectorcall = long_vectorcall,
6680
    .tp_version_tag = _Py_TYPE_VERSION_INT,
6681
};
6682
6683
static PyTypeObject Int_InfoType;
6684
6685
PyDoc_STRVAR(int_info__doc__,
6686
"sys.int_info\n\
6687
\n\
6688
A named tuple that holds information about Python's\n\
6689
internal representation of integers.  The attributes are read only.");
6690
6691
static PyStructSequence_Field int_info_fields[] = {
6692
    {"bits_per_digit", "size of a digit in bits"},
6693
    {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
6694
    {"default_max_str_digits", "maximum string conversion digits limitation"},
6695
    {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
6696
    {NULL, NULL}
6697
};
6698
6699
static PyStructSequence_Desc int_info_desc = {
6700
    "sys.int_info",   /* name */
6701
    int_info__doc__,  /* doc */
6702
    int_info_fields,  /* fields */
6703
    4                 /* number of fields */
6704
};
6705
6706
PyObject *
6707
PyLong_GetInfo(void)
6708
16
{
6709
16
    PyObject* int_info;
6710
16
    int field = 0;
6711
16
    int_info = PyStructSequence_New(&Int_InfoType);
6712
16
    if (int_info == NULL)
6713
0
        return NULL;
6714
16
    PyStructSequence_SET_ITEM(int_info, field++,
6715
16
                              PyLong_FromLong(PyLong_SHIFT));
6716
16
    PyStructSequence_SET_ITEM(int_info, field++,
6717
16
                              PyLong_FromLong(sizeof(digit)));
6718
    /*
6719
     * The following two fields were added after investigating uses of
6720
     * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
6721
     * numba using sys.int_info.bits_per_digit as attribute access rather than
6722
     * sequence unpacking. Cython and sympy also refer to sys.int_info but only
6723
     * as info for debugging. No concern about adding these in a backport.
6724
     */
6725
16
    PyStructSequence_SET_ITEM(int_info, field++,
6726
16
                              PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
6727
16
    PyStructSequence_SET_ITEM(int_info, field++,
6728
16
                              PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
6729
16
    if (PyErr_Occurred()) {
6730
0
        Py_CLEAR(int_info);
6731
0
        return NULL;
6732
0
    }
6733
16
    return int_info;
6734
16
}
6735
6736
6737
/* runtime lifecycle */
6738
6739
PyStatus
6740
_PyLong_InitTypes(PyInterpreterState *interp)
6741
16
{
6742
    /* initialize int_info */
6743
16
    if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType,
6744
16
                                      &int_info_desc) < 0)
6745
0
    {
6746
0
        return _PyStatus_ERR("can't init int info type");
6747
0
    }
6748
6749
16
    return _PyStatus_OK();
6750
16
}
6751
6752
6753
void
6754
_PyLong_FiniTypes(PyInterpreterState *interp)
6755
0
{
6756
0
    _PyStructSequence_FiniBuiltin(interp, &Int_InfoType);
6757
0
}
6758
6759
#undef PyUnstable_Long_IsCompact
6760
6761
int
6762
0
PyUnstable_Long_IsCompact(const PyLongObject* op) {
6763
0
    return _PyLong_IsCompact((PyLongObject*)op);
6764
0
}
6765
6766
#undef PyUnstable_Long_CompactValue
6767
6768
Py_ssize_t
6769
0
PyUnstable_Long_CompactValue(const PyLongObject* op) {
6770
0
    return _PyLong_CompactValue((PyLongObject*)op);
6771
0
}
6772
6773
6774
PyObject* PyLong_FromInt32(int32_t value)
6775
0
{
6776
0
    PYLONG_FROM_INT(uint32_t, int32_t, value);
6777
0
}
6778
6779
PyObject* PyLong_FromUInt32(uint32_t value)
6780
0
{
6781
0
    PYLONG_FROM_UINT(uint32_t, value);
6782
0
}
6783
6784
PyObject* PyLong_FromInt64(int64_t value)
6785
66
{
6786
66
    PYLONG_FROM_INT(uint64_t, int64_t, value);
6787
66
}
6788
6789
PyObject* PyLong_FromUInt64(uint64_t value)
6790
0
{
6791
0
    PYLONG_FROM_UINT(uint64_t, value);
6792
0
}
6793
6794
#define LONG_TO_INT(obj, value, type_name) \
6795
465
    do { \
6796
465
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6797
465
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6798
465
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6799
465
        if (bytes < 0) { \
6800
0
            return -1; \
6801
0
        } \
6802
465
        if ((size_t)bytes > sizeof(*value)) { \
6803
0
            PyErr_SetString(PyExc_OverflowError, \
6804
0
                            "Python int too large to convert to " type_name); \
6805
0
            return -1; \
6806
0
        } \
6807
465
        return 0; \
6808
465
    } while (0)
6809
6810
int PyLong_AsInt32(PyObject *obj, int32_t *value)
6811
0
{
6812
0
    LONG_TO_INT(obj, value, "C int32_t");
6813
0
}
6814
6815
int PyLong_AsInt64(PyObject *obj, int64_t *value)
6816
465
{
6817
465
    LONG_TO_INT(obj, value, "C int64_t");
6818
465
}
6819
6820
#define LONG_TO_UINT(obj, value, type_name) \
6821
0
    do { \
6822
0
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6823
0
                     | Py_ASNATIVEBYTES_UNSIGNED_BUFFER \
6824
0
                     | Py_ASNATIVEBYTES_REJECT_NEGATIVE \
6825
0
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6826
0
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6827
0
        if (bytes < 0) { \
6828
0
            return -1; \
6829
0
        } \
6830
0
        if ((size_t)bytes > sizeof(*value)) { \
6831
0
            PyErr_SetString(PyExc_OverflowError, \
6832
0
                            "Python int too large to convert to " type_name); \
6833
0
            return -1; \
6834
0
        } \
6835
0
        return 0; \
6836
0
    } while (0)
6837
6838
int PyLong_AsUInt32(PyObject *obj, uint32_t *value)
6839
0
{
6840
0
    LONG_TO_UINT(obj, value, "C uint32_t");
6841
0
}
6842
6843
int PyLong_AsUInt64(PyObject *obj, uint64_t *value)
6844
0
{
6845
0
    LONG_TO_UINT(obj, value, "C uint64_t");
6846
0
}
6847
6848
6849
static const PyLongLayout PyLong_LAYOUT = {
6850
    .bits_per_digit = PyLong_SHIFT,
6851
    .digits_order = -1,  // least significant first
6852
    .digit_endianness = PY_LITTLE_ENDIAN ? -1 : 1,
6853
    .digit_size = sizeof(digit),
6854
};
6855
6856
6857
const PyLongLayout*
6858
PyLong_GetNativeLayout(void)
6859
83
{
6860
83
    return &PyLong_LAYOUT;
6861
83
}
6862
6863
6864
int
6865
PyLong_Export(PyObject *obj, PyLongExport *export_long)
6866
11
{
6867
11
    if (!PyLong_Check(obj)) {
6868
0
        memset(export_long, 0, sizeof(*export_long));
6869
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", obj);
6870
0
        return -1;
6871
0
    }
6872
6873
    // Fast-path: try to convert to a int64_t
6874
11
    int overflow;
6875
11
#if SIZEOF_LONG == 8
6876
11
    long value = PyLong_AsLongAndOverflow(obj, &overflow);
6877
#else
6878
    // Windows has 32-bit long, so use 64-bit long long instead
6879
    long long value = PyLong_AsLongLongAndOverflow(obj, &overflow);
6880
#endif
6881
11
    Py_BUILD_ASSERT(sizeof(value) == sizeof(int64_t));
6882
    // the function cannot fail since obj is a PyLongObject
6883
11
    assert(!(value == -1 && PyErr_Occurred()));
6884
6885
11
    if (!overflow) {
6886
5
        export_long->value = value;
6887
5
        export_long->negative = 0;
6888
5
        export_long->ndigits = 0;
6889
5
        export_long->digits = NULL;
6890
5
        export_long->_reserved = 0;
6891
5
    }
6892
6
    else {
6893
6
        PyLongObject *self = (PyLongObject*)obj;
6894
6
        export_long->value = 0;
6895
6
        export_long->negative = _PyLong_IsNegative(self);
6896
6
        export_long->ndigits = _PyLong_DigitCount(self);
6897
6
        if (export_long->ndigits == 0) {
6898
0
            export_long->ndigits = 1;
6899
0
        }
6900
6
        export_long->digits = self->long_value.ob_digit;
6901
6
        export_long->_reserved = (Py_uintptr_t)Py_NewRef(obj);
6902
6
    }
6903
11
    return 0;
6904
11
}
6905
6906
6907
void
6908
PyLong_FreeExport(PyLongExport *export_long)
6909
6
{
6910
6
    PyObject *obj = (PyObject*)export_long->_reserved;
6911
6
    if (obj) {
6912
6
        export_long->_reserved = 0;
6913
6
        Py_DECREF(obj);
6914
6
    }
6915
6
}
6916
6917
6918
/* --- PyLongWriter API --------------------------------------------------- */
6919
6920
PyLongWriter*
6921
PyLongWriter_Create(int negative, Py_ssize_t ndigits, void **digits)
6922
77
{
6923
77
    if (ndigits <= 0) {
6924
0
        PyErr_SetString(PyExc_ValueError, "ndigits must be positive");
6925
0
        goto error;
6926
0
    }
6927
77
    assert(digits != NULL);
6928
6929
77
    PyLongObject *obj = long_alloc(ndigits);
6930
77
    if (obj == NULL) {
6931
0
        goto error;
6932
0
    }
6933
77
    if (negative) {
6934
0
        _PyLong_FlipSign(obj);
6935
0
    }
6936
6937
77
    *digits = obj->long_value.ob_digit;
6938
77
    return (PyLongWriter*)obj;
6939
6940
0
error:
6941
0
    *digits = NULL;
6942
0
    return NULL;
6943
77
}
6944
6945
6946
void
6947
PyLongWriter_Discard(PyLongWriter *writer)
6948
0
{
6949
0
    if (writer == NULL) {
6950
0
        return;
6951
0
    }
6952
6953
0
    PyLongObject *obj = (PyLongObject *)writer;
6954
0
    assert(Py_REFCNT(obj) == 1);
6955
0
    Py_DECREF(obj);
6956
0
}
6957
6958
6959
PyObject*
6960
PyLongWriter_Finish(PyLongWriter *writer)
6961
77
{
6962
77
    PyLongObject *obj = (PyLongObject *)writer;
6963
77
    assert(Py_REFCNT(obj) == 1);
6964
6965
    // Normalize and get singleton if possible
6966
77
    obj = maybe_small_long(long_normalize(obj));
6967
6968
77
    return (PyObject*)obj;
6969
77
}