Coverage Report

Created: 2025-10-12 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Python/dtoa.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
34
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.69M
#define word0(x) (x)->L[1]
181
1.17M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
4.75M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
72.7k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
723k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
2.36M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
169k
#define Exp_shift  20
235
89.3k
#define Exp_shift1 20
236
455k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
1.06M
#define Exp_mask  0x7ff00000
239
399k
#define P 53
240
#define Nbits 53
241
203k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
299k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
95.9k
#define Exp_1  0x3ff00000
246
39.7k
#define Exp_11 0x3ff00000
247
190k
#define Ebits 11
248
147k
#define Frac_mask  0xfffff
249
41.8k
#define Frac_mask1 0xfffff
250
1.43M
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
66.1k
#define Bndry_mask  0xfffff
253
7.72k
#define Bndry_mask1 0xfffff
254
63.7k
#define Sign_bit 0x80000000
255
5.97k
#define Log2P 1
256
#define Tiny0 0
257
19.5k
#define Tiny1 1
258
44.6k
#define Quick_max 14
259
26.4k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
759k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.35k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.11k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
16.6M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.89M
#define freelist interp->dtoa.freelist
336
206
#define private_mem interp->dtoa.preallocated
337
550
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.47M
{
344
1.47M
    int x;
345
1.47M
    Bigint *rv;
346
1.47M
    unsigned int len;
347
1.47M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.47M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.47M
        freelist[k] = rv->next;
351
206
    else {
352
206
        x = 1 << k;
353
206
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
206
            /sizeof(double);
355
206
        if (k <= Bigint_Kmax &&
356
206
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
206
        ) {
358
172
            rv = (Bigint*)pmem_next;
359
172
            pmem_next += len;
360
172
        }
361
34
        else {
362
34
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
34
            if (rv == NULL)
364
0
                return NULL;
365
34
        }
366
206
        rv->k = k;
367
206
        rv->maxwds = x;
368
206
    }
369
1.47M
    rv->sign = rv->wds = 0;
370
1.47M
    return rv;
371
1.47M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
5.04M
{
378
5.04M
    if (v) {
379
1.47M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.47M
        else {
382
1.47M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.47M
            v->next = freelist[v->k];
384
1.47M
            freelist[v->k] = v;
385
1.47M
        }
386
1.47M
    }
387
5.04M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
98.4k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
98.4k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
658k
{
445
658k
    int i, wds;
446
658k
    ULong *x;
447
658k
    ULLong carry, y;
448
658k
    Bigint *b1;
449
450
658k
    wds = b->wds;
451
658k
    x = b->x;
452
658k
    i = 0;
453
658k
    carry = a;
454
2.53M
    do {
455
2.53M
        y = *x * (ULLong)m + carry;
456
2.53M
        carry = y >> 32;
457
2.53M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.53M
    }
459
2.53M
    while(++i < wds);
460
658k
    if (carry) {
461
43.0k
        if (wds >= b->maxwds) {
462
1.80k
            b1 = Balloc(b->k+1);
463
1.80k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.80k
            Bcopy(b1, b);
468
1.80k
            Bfree(b);
469
1.80k
            b = b1;
470
1.80k
        }
471
43.0k
        b->x[wds++] = (ULong)carry;
472
43.0k
        b->wds = wds;
473
43.0k
    }
474
658k
    return b;
475
658k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
72.7k
{
486
72.7k
    Bigint *b;
487
72.7k
    int i, k;
488
72.7k
    Long x, y;
489
490
72.7k
    x = (nd + 8) / 9;
491
106k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
72.7k
    b = Balloc(k);
493
72.7k
    if (b == NULL)
494
0
        return NULL;
495
72.7k
    b->x[0] = y9;
496
72.7k
    b->wds = 1;
497
498
72.7k
    if (nd <= 9)
499
45.6k
      return b;
500
501
27.1k
    s += 9;
502
211k
    for (i = 9; i < nd0; i++) {
503
184k
        b = multadd(b, 10, *s++ - '0');
504
184k
        if (b == NULL)
505
0
            return NULL;
506
184k
    }
507
27.1k
    s++;
508
83.3k
    for(; i < nd; i++) {
509
56.2k
        b = multadd(b, 10, *s++ - '0');
510
56.2k
        if (b == NULL)
511
0
            return NULL;
512
56.2k
    }
513
27.1k
    return b;
514
27.1k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
121k
{
521
121k
    int k = 0;
522
523
121k
    if (!(x & 0xffff0000)) {
524
72.6k
        k = 16;
525
72.6k
        x <<= 16;
526
72.6k
    }
527
121k
    if (!(x & 0xff000000)) {
528
75.7k
        k += 8;
529
75.7k
        x <<= 8;
530
75.7k
    }
531
121k
    if (!(x & 0xf0000000)) {
532
75.9k
        k += 4;
533
75.9k
        x <<= 4;
534
75.9k
    }
535
121k
    if (!(x & 0xc0000000)) {
536
68.5k
        k += 2;
537
68.5k
        x <<= 2;
538
68.5k
    }
539
121k
    if (!(x & 0x80000000)) {
540
72.2k
        k++;
541
72.2k
        if (!(x & 0x40000000))
542
0
            return 32;
543
72.2k
    }
544
121k
    return k;
545
121k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
44.6k
{
553
44.6k
    int k;
554
44.6k
    ULong x = *y;
555
556
44.6k
    if (x & 7) {
557
25.4k
        if (x & 1)
558
13.8k
            return 0;
559
11.5k
        if (x & 2) {
560
7.30k
            *y = x >> 1;
561
7.30k
            return 1;
562
7.30k
        }
563
4.28k
        *y = x >> 2;
564
4.28k
        return 2;
565
11.5k
    }
566
19.2k
    k = 0;
567
19.2k
    if (!(x & 0xffff)) {
568
7.75k
        k = 16;
569
7.75k
        x >>= 16;
570
7.75k
    }
571
19.2k
    if (!(x & 0xff)) {
572
4.03k
        k += 8;
573
4.03k
        x >>= 8;
574
4.03k
    }
575
19.2k
    if (!(x & 0xf)) {
576
10.3k
        k += 4;
577
10.3k
        x >>= 4;
578
10.3k
    }
579
19.2k
    if (!(x & 0x3)) {
580
9.87k
        k += 2;
581
9.87k
        x >>= 2;
582
9.87k
    }
583
19.2k
    if (!(x & 1)) {
584
13.2k
        k++;
585
13.2k
        x >>= 1;
586
13.2k
        if (!x)
587
0
            return 32;
588
13.2k
    }
589
19.2k
    *y = x;
590
19.2k
    return k;
591
19.2k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
168k
{
598
168k
    Bigint *b;
599
600
168k
    b = Balloc(1);
601
168k
    if (b == NULL)
602
0
        return NULL;
603
168k
    b->x[0] = i;
604
168k
    b->wds = 1;
605
168k
    return b;
606
168k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
406k
{
614
406k
    Bigint *c;
615
406k
    int k, wa, wb, wc;
616
406k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
406k
    ULong y;
618
406k
    ULLong carry, z;
619
620
406k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
5.14k
        c = Balloc(0);
622
5.14k
        if (c == NULL)
623
0
            return NULL;
624
5.14k
        c->wds = 1;
625
5.14k
        c->x[0] = 0;
626
5.14k
        return c;
627
5.14k
    }
628
629
400k
    if (a->wds < b->wds) {
630
188k
        c = a;
631
188k
        a = b;
632
188k
        b = c;
633
188k
    }
634
400k
    k = a->k;
635
400k
    wa = a->wds;
636
400k
    wb = b->wds;
637
400k
    wc = wa + wb;
638
400k
    if (wc > a->maxwds)
639
169k
        k++;
640
400k
    c = Balloc(k);
641
400k
    if (c == NULL)
642
0
        return NULL;
643
3.88M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.48M
        *x = 0;
645
400k
    xa = a->x;
646
400k
    xae = xa + wa;
647
400k
    xb = b->x;
648
400k
    xbe = xb + wb;
649
400k
    xc0 = c->x;
650
1.28M
    for(; xb < xbe; xc0++) {
651
886k
        if ((y = *xb++)) {
652
880k
            x = xa;
653
880k
            xc = xc0;
654
880k
            carry = 0;
655
9.11M
            do {
656
9.11M
                z = *x++ * (ULLong)y + *xc + carry;
657
9.11M
                carry = z >> 32;
658
9.11M
                *xc++ = (ULong)(z & FFFFFFFF);
659
9.11M
            }
660
9.11M
            while(x < xae);
661
880k
            *xc = (ULong)carry;
662
880k
        }
663
886k
    }
664
684k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
400k
    c->wds = wc;
666
400k
    return c;
667
400k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
125k
{
678
125k
    Bigint *b1, *p5, **p5s;
679
125k
    int i;
680
125k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
125k
    assert(0 <= k && k < 1024);
688
689
125k
    if ((i = k & 3)) {
690
85.0k
        b = multadd(b, p05[i-1], 0);
691
85.0k
        if (b == NULL)
692
0
            return NULL;
693
85.0k
    }
694
695
125k
    if (!(k >>= 2))
696
10.3k
        return b;
697
115k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
115k
    p5s = interp->dtoa.p5s;
699
581k
    for(;;) {
700
581k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
581k
        p5 = *p5s;
702
581k
        p5s++;
703
581k
        if (k & 1) {
704
339k
            b1 = mult(b, p5);
705
339k
            Bfree(b);
706
339k
            b = b1;
707
339k
            if (b == NULL)
708
0
                return NULL;
709
339k
        }
710
581k
        if (!(k >>= 1))
711
115k
            break;
712
581k
    }
713
115k
    return b;
714
115k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
312k
{
775
312k
    int i, k1, n, n1;
776
312k
    Bigint *b1;
777
312k
    ULong *x, *x1, *xe, z;
778
779
312k
    if (!k || (!b->x[0] && b->wds == 1))
780
5.58k
        return b;
781
782
307k
    n = k >> 5;
783
307k
    k1 = b->k;
784
307k
    n1 = n + b->wds + 1;
785
755k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
448k
        k1++;
787
307k
    b1 = Balloc(k1);
788
307k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
307k
    x1 = b1->x;
793
1.78M
    for(i = 0; i < n; i++)
794
1.47M
        *x1++ = 0;
795
307k
    x = b->x;
796
307k
    xe = x + b->wds;
797
307k
    if (k &= 0x1f) {
798
305k
        k1 = 32 - k;
799
305k
        z = 0;
800
1.60M
        do {
801
1.60M
            *x1++ = *x << k | z;
802
1.60M
            z = *x++ >> k1;
803
1.60M
        }
804
1.60M
        while(x < xe);
805
305k
        if ((*x1 = z))
806
49.7k
            ++n1;
807
305k
    }
808
1.77k
    else do
809
4.48k
             *x1++ = *x++;
810
4.48k
        while(x < xe);
811
307k
    b1->wds = n1 - 1;
812
307k
    Bfree(b);
813
307k
    return b1;
814
307k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
865k
{
822
865k
    ULong *xa, *xa0, *xb, *xb0;
823
865k
    int i, j;
824
825
865k
    i = a->wds;
826
865k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
865k
    if (i -= j)
834
182k
        return i;
835
683k
    xa0 = a->x;
836
683k
    xa = xa0 + j;
837
683k
    xb0 = b->x;
838
683k
    xb = xb0 + j;
839
832k
    for(;;) {
840
832k
        if (*--xa != *--xb)
841
665k
            return *xa < *xb ? -1 : 1;
842
166k
        if (xa <= xa0)
843
17.6k
            break;
844
166k
    }
845
17.6k
    return 0;
846
683k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
222k
{
855
222k
    Bigint *c;
856
222k
    int i, wa, wb;
857
222k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
222k
    ULLong borrow, y;
859
860
222k
    i = cmp(a,b);
861
222k
    if (!i) {
862
3.26k
        c = Balloc(0);
863
3.26k
        if (c == NULL)
864
0
            return NULL;
865
3.26k
        c->wds = 1;
866
3.26k
        c->x[0] = 0;
867
3.26k
        return c;
868
3.26k
    }
869
218k
    if (i < 0) {
870
44.4k
        c = a;
871
44.4k
        a = b;
872
44.4k
        b = c;
873
44.4k
        i = 1;
874
44.4k
    }
875
174k
    else
876
174k
        i = 0;
877
218k
    c = Balloc(a->k);
878
218k
    if (c == NULL)
879
0
        return NULL;
880
218k
    c->sign = i;
881
218k
    wa = a->wds;
882
218k
    xa = a->x;
883
218k
    xae = xa + wa;
884
218k
    wb = b->wds;
885
218k
    xb = b->x;
886
218k
    xbe = xb + wb;
887
218k
    xc = c->x;
888
218k
    borrow = 0;
889
1.83M
    do {
890
1.83M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.83M
        borrow = y >> 32 & (ULong)1;
892
1.83M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.83M
    }
894
1.83M
    while(xb < xbe);
895
457k
    while(xa < xae) {
896
238k
        y = *xa++ - borrow;
897
238k
        borrow = y >> 32 & (ULong)1;
898
238k
        *xc++ = (ULong)(y & FFFFFFFF);
899
238k
    }
900
336k
    while(!*--xc)
901
117k
        wa--;
902
218k
    c->wds = wa;
903
218k
    return c;
904
218k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
40.8k
{
912
40.8k
    Long L;
913
40.8k
    U u;
914
915
40.8k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
40.8k
    word0(&u) = L;
917
40.8k
    word1(&u) = 0;
918
40.8k
    return dval(&u);
919
40.8k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
76.3k
{
926
76.3k
    ULong *xa, *xa0, w, y, z;
927
76.3k
    int k;
928
76.3k
    U d;
929
930
76.3k
    xa0 = a->x;
931
76.3k
    xa = xa0 + a->wds;
932
76.3k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
76.3k
    k = hi0bits(y);
937
76.3k
    *e = 32 - k;
938
76.3k
    if (k < Ebits) {
939
19.0k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
19.0k
        w = xa > xa0 ? *--xa : 0;
941
19.0k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
19.0k
        goto ret_d;
943
19.0k
    }
944
57.2k
    z = xa > xa0 ? *--xa : 0;
945
57.2k
    if (k -= Ebits) {
946
53.7k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
53.7k
        y = xa > xa0 ? *--xa : 0;
948
53.7k
        word1(&d) = z << k | y >> (32 - k);
949
53.7k
    }
950
3.54k
    else {
951
3.54k
        word0(&d) = Exp_1 | y;
952
3.54k
        word1(&d) = z;
953
3.54k
    }
954
76.3k
  ret_d:
955
76.3k
    return dval(&d);
956
57.2k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
103k
{
982
103k
    Bigint *b;
983
984
103k
    b = Balloc(1);
985
103k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
103k
    b->wds = 2;
990
103k
    b->x[0] = word1(d);
991
103k
    b->x[1] = word0(d) & Frac_mask;
992
103k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
103k
    if (*e < Etiny)
994
5.58k
        *e = Etiny;
995
97.4k
    else
996
97.4k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
103k
    if (scale && (b->x[0] || b->x[1])) {
1000
31.6k
        *e -= scale;
1001
31.6k
        if (*e < Etiny) {
1002
28.0k
            scale = Etiny - *e;
1003
28.0k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
28.0k
            assert(0 < scale && scale <= P - 1);
1006
28.0k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
13.8k
                assert(b->x[0] == 0);
1009
13.8k
                b->x[0] = b->x[1];
1010
13.8k
                b->x[1] = 0;
1011
13.8k
                scale -= 32;
1012
13.8k
            }
1013
28.0k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
26.5k
                assert(b->x[0] << (32 - scale) == 0);
1016
26.5k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
26.5k
                b->x[1] >>= scale;
1018
26.5k
            }
1019
28.0k
        }
1020
31.6k
    }
1021
    /* Ensure b is normalized. */
1022
103k
    if (!b->x[1])
1023
23.5k
        b->wds = 1;
1024
1025
103k
    return b;
1026
103k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
44.6k
{
1040
44.6k
    Bigint *b;
1041
44.6k
    int de, k;
1042
44.6k
    ULong *x, y, z;
1043
44.6k
    int i;
1044
1045
44.6k
    b = Balloc(1);
1046
44.6k
    if (b == NULL)
1047
0
        return NULL;
1048
44.6k
    x = b->x;
1049
1050
44.6k
    z = word0(d) & Frac_mask;
1051
44.6k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
44.6k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
39.7k
        z |= Exp_msk1;
1054
44.6k
    if ((y = word1(d))) {
1055
32.7k
        if ((k = lo0bits(&y))) {
1056
19.5k
            x[0] = y | z << (32 - k);
1057
19.5k
            z >>= k;
1058
19.5k
        }
1059
13.2k
        else
1060
13.2k
            x[0] = y;
1061
32.7k
        i =
1062
32.7k
            b->wds = (x[1] = z) ? 2 : 1;
1063
32.7k
    }
1064
11.9k
    else {
1065
11.9k
        k = lo0bits(&z);
1066
11.9k
        x[0] = z;
1067
11.9k
        i =
1068
11.9k
            b->wds = 1;
1069
11.9k
        k += 32;
1070
11.9k
    }
1071
44.6k
    if (de) {
1072
39.7k
        *e = de - Bias - (P-1) + k;
1073
39.7k
        *bits = P - k;
1074
39.7k
    }
1075
4.88k
    else {
1076
4.88k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.88k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.88k
    }
1079
44.6k
    return b;
1080
44.6k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
38.1k
{
1088
38.1k
    U da, db;
1089
38.1k
    int k, ka, kb;
1090
1091
38.1k
    dval(&da) = b2d(a, &ka);
1092
38.1k
    dval(&db) = b2d(b, &kb);
1093
38.1k
    k = ka - kb + 32*(a->wds - b->wds);
1094
38.1k
    if (k > 0)
1095
24.9k
        word0(&da) += k*Exp_msk1;
1096
13.1k
    else {
1097
13.1k
        k = -k;
1098
13.1k
        word0(&db) += k*Exp_msk1;
1099
13.1k
    }
1100
38.1k
    return dval(&da) / dval(&db);
1101
38.1k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
24.5k
#define Scale_Bit 0x10
1119
25.5k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
40.2k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
40.2k
{
1129
40.2k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
40.2k
    if (p2 > 0)
1131
24.6k
        rv -= p2;
1132
40.2k
    return rv & kmask;
1133
40.2k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
265k
{
1142
265k
    int n;
1143
265k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
265k
    ULLong borrow, carry, y, ys;
1145
1146
265k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
265k
    if (b->wds < n)
1152
6.36k
        return 0;
1153
258k
    sx = S->x;
1154
258k
    sxe = sx + --n;
1155
258k
    bx = b->x;
1156
258k
    bxe = bx + n;
1157
258k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
258k
    if (q) {
1163
211k
        borrow = 0;
1164
211k
        carry = 0;
1165
1.34M
        do {
1166
1.34M
            ys = *sx++ * (ULLong)q + carry;
1167
1.34M
            carry = ys >> 32;
1168
1.34M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.34M
            borrow = y >> 32 & (ULong)1;
1170
1.34M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.34M
        }
1172
1.34M
        while(sx <= sxe);
1173
211k
        if (!*bxe) {
1174
872
            bx = b->x;
1175
872
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
872
            b->wds = n;
1178
872
        }
1179
211k
    }
1180
258k
    if (cmp(b, S) >= 0) {
1181
18.7k
        q++;
1182
18.7k
        borrow = 0;
1183
18.7k
        carry = 0;
1184
18.7k
        bx = b->x;
1185
18.7k
        sx = S->x;
1186
113k
        do {
1187
113k
            ys = *sx++ + carry;
1188
113k
            carry = ys >> 32;
1189
113k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
113k
            borrow = y >> 32 & (ULong)1;
1191
113k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
113k
        }
1193
113k
        while(sx <= sxe);
1194
18.7k
        bx = b->x;
1195
18.7k
        bxe = bx + n;
1196
18.7k
        if (!*bxe) {
1197
19.3k
            while(--bxe > bx && !*bxe)
1198
1.58k
                --n;
1199
17.8k
            b->wds = n;
1200
17.8k
        }
1201
18.7k
    }
1202
258k
    return q;
1203
265k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.12k
{
1214
3.12k
    U u;
1215
1216
3.12k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
400
        word0(&u) = (P+2)*Exp_msk1;
1219
400
        word1(&u) = 0;
1220
400
        return u.d;
1221
400
    }
1222
2.72k
    else {
1223
2.72k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.72k
        return ulp(x);
1225
2.72k
    }
1226
3.12k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
7.49k
{
1277
7.49k
    Bigint *b, *d;
1278
7.49k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
7.49k
    nd = bc->nd;
1281
7.49k
    nd0 = bc->nd0;
1282
7.49k
    p5 = nd + bc->e0;
1283
7.49k
    b = sd2b(rv, bc->scale, &p2);
1284
7.49k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
7.49k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
7.49k
    b = lshift(b, 1);
1294
7.49k
    if (b == NULL)
1295
0
        return -1;
1296
7.49k
    b->x[0] |= 1;
1297
7.49k
    p2--;
1298
1299
7.49k
    p2 -= p5;
1300
7.49k
    d = i2b(1);
1301
7.49k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
7.49k
    if (p5 > 0) {
1309
5.22k
        d = pow5mult(d, p5);
1310
5.22k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
5.22k
    }
1315
2.27k
    else if (p5 < 0) {
1316
1.56k
        b = pow5mult(b, -p5);
1317
1.56k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.56k
    }
1322
7.49k
    if (p2 > 0) {
1323
4.11k
        b2 = p2;
1324
4.11k
        d2 = 0;
1325
4.11k
    }
1326
3.37k
    else {
1327
3.37k
        b2 = 0;
1328
3.37k
        d2 = -p2;
1329
3.37k
    }
1330
7.49k
    i = dshift(d, d2);
1331
7.49k
    if ((b2 += i) > 0) {
1332
7.21k
        b = lshift(b, b2);
1333
7.21k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
7.21k
    }
1338
7.49k
    if ((d2 += i) > 0) {
1339
6.79k
        d = lshift(d, d2);
1340
6.79k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
6.79k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
7.49k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
904
        dd = -1;
1352
6.59k
    else {
1353
6.59k
        i = 0;
1354
138k
        for(;;) {
1355
138k
            b = multadd(b, 10, 0);
1356
138k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
138k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
138k
            i++;
1362
1363
138k
            if (dd)
1364
4.94k
                break;
1365
133k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
809
                dd = i < nd;
1368
809
                break;
1369
809
            }
1370
132k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
836
                dd = -1;
1373
836
                break;
1374
836
            }
1375
132k
        }
1376
6.59k
    }
1377
7.49k
    Bfree(b);
1378
7.49k
    Bfree(d);
1379
7.49k
    if (dd > 0 || (dd == 0 && odd))
1380
1.59k
        dval(rv) += sulp(rv, bc);
1381
7.49k
    return 0;
1382
7.49k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
788k
{
1388
788k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
788k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
788k
    const char *s, *s0, *s1;
1391
788k
    double aadj, aadj1;
1392
788k
    U aadj2, adj, rv, rv0;
1393
788k
    ULong y, z, abs_exp;
1394
788k
    Long L;
1395
788k
    BCinfo bc;
1396
788k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
788k
    size_t ndigits, fraclen;
1398
788k
    double result;
1399
1400
788k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
788k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
788k
    sign = 0;
1407
788k
    switch (c) {
1408
657k
    case '-':
1409
657k
        sign = 1;
1410
657k
        _Py_FALLTHROUGH;
1411
657k
    case '+':
1412
657k
        c = *++s;
1413
788k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
788k
    s1 = s;
1417
807k
    while (c == '0')
1418
19.3k
        c = *++s;
1419
788k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
788k
    s0 = s1 = s;
1426
3.09M
    while ('0' <= c && c <= '9')
1427
2.30M
        c = *++s;
1428
788k
    ndigits = s - s1;
1429
788k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
788k
    if (c == '.') {
1433
63.5k
        c = *++s;
1434
63.5k
        if (!ndigits) {
1435
21.5k
            s1 = s;
1436
86.7k
            while (c == '0')
1437
65.2k
                c = *++s;
1438
21.5k
            lz = lz || s != s1;
1439
21.5k
            fraclen += (s - s1);
1440
21.5k
            s0 = s;
1441
21.5k
        }
1442
63.5k
        s1 = s;
1443
16.2M
        while ('0' <= c && c <= '9')
1444
16.1M
            c = *++s;
1445
63.5k
        ndigits += s - s1;
1446
63.5k
        fraclen += s - s1;
1447
63.5k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
788k
    if (!ndigits && !lz) {
1453
20
        if (se)
1454
20
            *se = (char *)s00;
1455
20
        goto parse_error;
1456
20
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
788k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
788k
    nd = (int)ndigits;
1466
788k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
788k
    e = 0;
1470
788k
    if (c == 'e' || c == 'E') {
1471
723k
        s00 = s;
1472
723k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
723k
        esign = 0;
1476
723k
        switch (c) {
1477
29.2k
        case '-':
1478
29.2k
            esign = 1;
1479
29.2k
            _Py_FALLTHROUGH;
1480
41.5k
        case '+':
1481
41.5k
            c = *++s;
1482
723k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
723k
        s1 = s;
1486
728k
        while (c == '0')
1487
4.67k
            c = *++s;
1488
723k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
723k
        s1 = s;
1492
723k
        abs_exp = 0;
1493
3.13M
        while ('0' <= c && c <= '9') {
1494
2.41M
            abs_exp = 10*abs_exp + (c - '0');
1495
2.41M
            c = *++s;
1496
2.41M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
723k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
4.41k
            e = (int)MAX_ABS_EXP;
1503
719k
        else
1504
719k
            e = (int)abs_exp;
1505
723k
        if (esign)
1506
29.2k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
723k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
723k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
788k
    e -= nd - nd0;
1515
788k
    if (nd0 <= 0)
1516
25.3k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
788k
    if (se)
1520
788k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
788k
    if (!nd)
1525
9.87k
        goto ret;
1526
3.38M
    for (i = nd; i > 0; ) {
1527
3.38M
        --i;
1528
3.38M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
778k
            ++i;
1530
778k
            break;
1531
778k
        }
1532
3.38M
    }
1533
778k
    e += nd - i;
1534
778k
    nd = i;
1535
778k
    if (nd0 > nd)
1536
8.90k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
778k
    bc.e0 = e1 = e;
1575
778k
    y = z = 0;
1576
2.19M
    for (i = 0; i < nd; i++) {
1577
1.44M
        if (i < 9)
1578
1.18M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
251k
        else if (i < DBL_DIG+1)
1580
227k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
23.5k
        else
1582
23.5k
            break;
1583
1.44M
    }
1584
1585
778k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
778k
    dval(&rv) = y;
1587
778k
    if (k > 9) {
1588
40.6k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
40.6k
    }
1590
778k
    if (nd <= DBL_DIG
1591
748k
        && Flt_Rounds == 1
1592
778k
        ) {
1593
748k
        if (!e)
1594
11.0k
            goto ret;
1595
737k
        if (e > 0) {
1596
690k
            if (e <= Ten_pmax) {
1597
24.6k
                dval(&rv) *= tens[e];
1598
24.6k
                goto ret;
1599
24.6k
            }
1600
666k
            i = DBL_DIG - nd;
1601
666k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
2.77k
                e -= i;
1606
2.77k
                dval(&rv) *= tens[i];
1607
2.77k
                dval(&rv) *= tens[e];
1608
2.77k
                goto ret;
1609
2.77k
            }
1610
666k
        }
1611
46.5k
        else if (e >= -Ten_pmax) {
1612
26.7k
            dval(&rv) /= tens[-e];
1613
26.7k
            goto ret;
1614
26.7k
        }
1615
737k
    }
1616
713k
    e1 += nd - k;
1617
1618
713k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
713k
    if (e1 > 0) {
1623
677k
        if ((i = e1 & 15))
1624
664k
            dval(&rv) *= tens[i];
1625
677k
        if (e1 &= ~15) {
1626
670k
            if (e1 > DBL_MAX_10_EXP)
1627
638k
                goto ovfl;
1628
31.6k
            e1 >>= 4;
1629
85.3k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
53.7k
                if (e1 & 1)
1631
24.8k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
31.6k
            word0(&rv) -= P*Exp_msk1;
1634
31.6k
            dval(&rv) *= bigtens[j];
1635
31.6k
            if ((z = word0(&rv) & Exp_mask)
1636
31.6k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
546
                goto ovfl;
1638
31.0k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
499
                word0(&rv) = Big0;
1642
499
                word1(&rv) = Big1;
1643
499
            }
1644
30.5k
            else
1645
30.5k
                word0(&rv) += P*Exp_msk1;
1646
31.0k
        }
1647
677k
    }
1648
35.7k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
32.2k
        e1 = -e1;
1660
32.2k
        if ((i = e1 & 15))
1661
28.2k
            dval(&rv) /= tens[i];
1662
32.2k
        if (e1 >>= 4) {
1663
25.5k
            if (e1 >= 1 << n_bigtens)
1664
941
                goto undfl;
1665
24.5k
            if (e1 & Scale_Bit)
1666
19.6k
                bc.scale = 2*P;
1667
130k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
105k
                if (e1 & 1)
1669
61.1k
                    dval(&rv) *= tinytens[j];
1670
24.5k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
19.6k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
18.3k
                if (j >= 32) {
1674
10.6k
                    word1(&rv) = 0;
1675
10.6k
                    if (j >= 53)
1676
5.63k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.98k
                    else
1678
4.98k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
10.6k
                }
1680
7.70k
                else
1681
7.70k
                    word1(&rv) &= 0xffffffff << j;
1682
18.3k
            }
1683
24.5k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
24.5k
        }
1686
32.2k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
72.7k
    bc.nd = nd;
1693
72.7k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
72.7k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
65.7k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
65.7k
            --i;
1708
65.7k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
10.9k
                ++i;
1710
10.9k
                break;
1711
10.9k
            }
1712
65.7k
        }
1713
10.9k
        e += nd - i;
1714
10.9k
        nd = i;
1715
10.9k
        if (nd0 > nd)
1716
7.79k
            nd0 = nd;
1717
10.9k
        if (nd < 9) { /* must recompute y */
1718
4.32k
            y = 0;
1719
22.3k
            for(i = 0; i < nd0; ++i)
1720
18.0k
                y = 10*y + s0[i] - '0';
1721
14.0k
            for(; i < nd; ++i)
1722
9.72k
                y = 10*y + s0[i+1] - '0';
1723
4.32k
        }
1724
10.9k
    }
1725
72.7k
    bd0 = s2b(s0, nd0, nd, y);
1726
72.7k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
95.5k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
95.5k
        bd = Balloc(bd0->k);
1758
95.5k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
95.5k
        Bcopy(bd, bd0);
1762
95.5k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
95.5k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
95.5k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
95.5k
        bs = i2b(1);
1772
95.5k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
95.5k
        if (e >= 0) {
1777
43.9k
            bb2 = bb5 = 0;
1778
43.9k
            bd2 = bd5 = e;
1779
43.9k
        }
1780
51.6k
        else {
1781
51.6k
            bb2 = bb5 = -e;
1782
51.6k
            bd2 = bd5 = 0;
1783
51.6k
        }
1784
95.5k
        if (bbe >= 0)
1785
45.8k
            bb2 += bbe;
1786
49.7k
        else
1787
49.7k
            bd2 -= bbe;
1788
95.5k
        bs2 = bb2;
1789
95.5k
        bb2++;
1790
95.5k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
95.5k
        i = bb2 < bd2 ? bb2 : bd2;
1811
95.5k
        if (i > bs2)
1812
49.5k
            i = bs2;
1813
95.5k
        if (i > 0) {
1814
94.7k
            bb2 -= i;
1815
94.7k
            bd2 -= i;
1816
94.7k
            bs2 -= i;
1817
94.7k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
95.5k
        if (bb5 > 0) {
1821
51.6k
            bs = pow5mult(bs, bb5);
1822
51.6k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
51.6k
            Bigint *bb1 = mult(bs, bb);
1826
51.6k
            Bfree(bb);
1827
51.6k
            bb = bb1;
1828
51.6k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
51.6k
        }
1832
95.5k
        if (bb2 > 0) {
1833
95.5k
            bb = lshift(bb, bb2);
1834
95.5k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
95.5k
        }
1838
95.5k
        if (bd5 > 0) {
1839
37.1k
            bd = pow5mult(bd, bd5);
1840
37.1k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
37.1k
        }
1844
95.5k
        if (bd2 > 0) {
1845
49.5k
            bd = lshift(bd, bd2);
1846
49.5k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
49.5k
        }
1850
95.5k
        if (bs2 > 0) {
1851
41.7k
            bs = lshift(bs, bs2);
1852
41.7k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
41.7k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
95.5k
        delta = diff(bb, bd);
1862
95.5k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
95.5k
        dsign = delta->sign;
1866
95.5k
        delta->sign = 0;
1867
95.5k
        i = cmp(delta, bs);
1868
95.5k
        if (bc.nd > nd && i <= 0) {
1869
10.9k
            if (dsign)
1870
6.64k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
4.34k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.09k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.09k
                if (j - bc.scale >= 2) {
1890
848
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
848
                    break; /* Use bigcomp. */
1892
848
                }
1893
1.09k
            }
1894
1895
3.49k
            {
1896
3.49k
                bc.nd = nd;
1897
3.49k
                i = -1; /* Discarded digits make delta smaller. */
1898
3.49k
            }
1899
3.49k
        }
1900
1901
88.0k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
46.0k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
5.15k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
46.0k
                ) {
1908
42.6k
                break;
1909
42.6k
            }
1910
3.43k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
543
                break;
1913
543
            }
1914
2.88k
            delta = lshift(delta,Log2P);
1915
2.88k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.88k
            if (cmp(delta, bs) > 0)
1919
1.03k
                goto drop_down;
1920
1.85k
            break;
1921
2.88k
        }
1922
41.9k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.82k
            if (dsign) {
1925
2.23k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
948
                    &&  word1(&rv) == (
1927
948
                        (bc.scale &&
1928
0
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
948
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
462
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
462
                        + Exp_msk1
1934
462
                        ;
1935
462
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
462
                    break;
1938
462
                }
1939
2.23k
            }
1940
1.59k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
1.03k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
1.03k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
1.03k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
1.03k
                word0(&rv) = L | Bndry_mask1;
1958
1.03k
                word1(&rv) = 0xffffffff;
1959
1.03k
                break;
1960
1.03k
            }
1961
3.35k
            if (!odd)
1962
2.68k
                break;
1963
676
            if (dsign)
1964
358
                dval(&rv) += sulp(&rv, &bc);
1965
318
            else {
1966
318
                dval(&rv) -= sulp(&rv, &bc);
1967
318
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
318
            }
1973
            /* dsign = 1 - dsign; */
1974
676
            break;
1975
676
        }
1976
38.1k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
26.7k
            if (dsign)
1978
11.8k
                aadj = aadj1 = 1.;
1979
14.8k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.75k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.75k
                aadj = 1.;
1986
9.75k
                aadj1 = -1.;
1987
9.75k
            }
1988
5.14k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
5.14k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
5.14k
                else
1995
5.14k
                    aadj *= 0.5;
1996
5.14k
                aadj1 = -aadj;
1997
5.14k
            }
1998
26.7k
        }
1999
11.4k
        else {
2000
11.4k
            aadj *= 0.5;
2001
11.4k
            aadj1 = dsign ? aadj : -aadj;
2002
11.4k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
11.4k
        }
2005
38.1k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
38.1k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.76k
            dval(&rv0) = dval(&rv);
2011
1.76k
            word0(&rv) -= P*Exp_msk1;
2012
1.76k
            adj.d = aadj1 * ulp(&rv);
2013
1.76k
            dval(&rv) += adj.d;
2014
1.76k
            if ((word0(&rv) & Exp_mask) >=
2015
1.76k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.24k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
871
                    goto ovfl;
2018
871
                }
2019
372
                word0(&rv) = Big0;
2020
372
                word1(&rv) = Big1;
2021
372
                goto cont;
2022
1.24k
            }
2023
525
            else
2024
525
                word0(&rv) += P*Exp_msk1;
2025
1.76k
        }
2026
36.3k
        else {
2027
36.3k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
15.2k
                if (aadj <= 0x7fffffff) {
2029
15.2k
                    if ((z = (ULong)aadj) <= 0)
2030
757
                        z = 1;
2031
15.2k
                    aadj = z;
2032
15.2k
                    aadj1 = dsign ? aadj : -aadj;
2033
15.2k
                }
2034
15.2k
                dval(&aadj2) = aadj1;
2035
15.2k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
15.2k
                aadj1 = dval(&aadj2);
2037
15.2k
            }
2038
36.3k
            adj.d = aadj1 * ulp(&rv);
2039
36.3k
            dval(&rv) += adj.d;
2040
36.3k
        }
2041
36.9k
        z = word0(&rv) & Exp_mask;
2042
36.9k
        if (bc.nd == nd) {
2043
32.3k
            if (!bc.scale)
2044
17.1k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
15.4k
                    L = (Long)aadj;
2047
15.4k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
15.4k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
15.4k
                        if (aadj < .4999999 || aadj > .5000001)
2051
14.4k
                            break;
2052
15.4k
                    }
2053
15
                    else if (aadj < .4999999/FLT_RADIX)
2054
15
                        break;
2055
15.4k
                }
2056
32.3k
        }
2057
22.7k
      cont:
2058
22.7k
        Bfree(bb); bb = NULL;
2059
22.7k
        Bfree(bd); bd = NULL;
2060
22.7k
        Bfree(bs); bs = NULL;
2061
22.7k
        Bfree(delta); delta = NULL;
2062
22.7k
    }
2063
71.9k
    if (bc.nd > nd) {
2064
7.49k
        error = bigcomp(&rv, s0, &bc);
2065
7.49k
        if (error)
2066
0
            goto failed_malloc;
2067
7.49k
    }
2068
2069
71.9k
    if (bc.scale) {
2070
19.6k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
19.6k
        word1(&rv0) = 0;
2072
19.6k
        dval(&rv) *= dval(&rv0);
2073
19.6k
    }
2074
2075
146k
  ret:
2076
146k
    result = sign ? -dval(&rv) : dval(&rv);
2077
146k
    goto done;
2078
2079
20
  parse_error:
2080
20
    result = 0.0;
2081
20
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
941
  undfl:
2089
941
    result = sign ? -0.0 : 0.0;
2090
941
    goto done;
2091
2092
640k
  ovfl:
2093
640k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
640k
    word0(&rv) = Exp_mask;
2096
640k
    word1(&rv) = 0;
2097
640k
    result = sign ? -dval(&rv) : dval(&rv);
2098
640k
    goto done;
2099
2100
788k
  done:
2101
788k
    Bfree(bb);
2102
788k
    Bfree(bd);
2103
788k
    Bfree(bs);
2104
788k
    Bfree(bd0);
2105
788k
    Bfree(delta);
2106
788k
    return result;
2107
2108
71.9k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
49.9k
{
2113
49.9k
    int j, k, *r;
2114
2115
49.9k
    j = sizeof(ULong);
2116
49.9k
    for(k = 0;
2117
49.9k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
49.9k
        j <<= 1)
2119
0
        k++;
2120
49.9k
    r = (int*)Balloc(k);
2121
49.9k
    if (r == NULL)
2122
0
        return NULL;
2123
49.9k
    *r = k;
2124
49.9k
    return (char *)(r+1);
2125
49.9k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
5.24k
{
2130
5.24k
    char *rv, *t;
2131
2132
5.24k
    rv = rv_alloc(n);
2133
5.24k
    if (rv == NULL)
2134
0
        return NULL;
2135
5.24k
    t = rv;
2136
13.9k
    while((*t = *s++)) t++;
2137
5.24k
    if (rve)
2138
5.24k
        *rve = t;
2139
5.24k
    return rv;
2140
5.24k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
49.9k
{
2151
49.9k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
49.9k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
49.9k
    Bfree(b);
2154
49.9k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
49.9k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
49.9k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
49.9k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
49.9k
        spec_case, try_quick;
2235
49.9k
    Long L;
2236
49.9k
    int denorm;
2237
49.9k
    ULong x;
2238
49.9k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
49.9k
    U d2, eps, u;
2240
49.9k
    double ds;
2241
49.9k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
49.9k
    mlo = mhi = S = 0;
2246
49.9k
    s0 = 0;
2247
2248
49.9k
    u.d = dd;
2249
49.9k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
13.8k
        *sign = 1;
2252
13.8k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
13.8k
    }
2254
36.0k
    else
2255
36.0k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
49.9k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
497
    {
2260
        /* Infinity or NaN */
2261
497
        *decpt = 9999;
2262
497
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
497
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
497
    }
2266
49.4k
    if (!dval(&u)) {
2267
4.75k
        *decpt = 1;
2268
4.75k
        return nrv_alloc("0", rve, 1);
2269
4.75k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
44.6k
    b = d2b(&u, &be, &bbits);
2274
44.6k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
44.6k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
39.7k
        dval(&d2) = dval(&u);
2278
39.7k
        word0(&d2) &= Frac_mask1;
2279
39.7k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
39.7k
        i -= Bias;
2304
39.7k
        denorm = 0;
2305
39.7k
    }
2306
4.88k
    else {
2307
        /* d is denormalized */
2308
2309
4.88k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.88k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.88k
            : word1(&u) << (32 - i);
2312
4.88k
        dval(&d2) = x;
2313
4.88k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.88k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.88k
        denorm = 1;
2316
4.88k
    }
2317
44.6k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
44.6k
        i*0.301029995663981;
2319
44.6k
    k = (int)ds;
2320
44.6k
    if (ds < 0. && ds != k)
2321
13.6k
        k--;    /* want k = floor(ds) */
2322
44.6k
    k_check = 1;
2323
44.6k
    if (k >= 0 && k <= Ten_pmax) {
2324
19.9k
        if (dval(&u) < tens[k])
2325
2.38k
            k--;
2326
19.9k
        k_check = 0;
2327
19.9k
    }
2328
44.6k
    j = bbits - i - 1;
2329
44.6k
    if (j >= 0) {
2330
19.8k
        b2 = 0;
2331
19.8k
        s2 = j;
2332
19.8k
    }
2333
24.7k
    else {
2334
24.7k
        b2 = -j;
2335
24.7k
        s2 = 0;
2336
24.7k
    }
2337
44.6k
    if (k >= 0) {
2338
30.3k
        b5 = 0;
2339
30.3k
        s5 = k;
2340
30.3k
        s2 += k;
2341
30.3k
    }
2342
14.3k
    else {
2343
14.3k
        b2 -= k;
2344
14.3k
        b5 = -k;
2345
14.3k
        s5 = 0;
2346
14.3k
    }
2347
44.6k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
44.6k
    try_quick = 1;
2351
2352
44.6k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
44.6k
    leftright = 1;
2357
44.6k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
44.6k
    switch(mode) {
2360
44.6k
    case 0:
2361
44.6k
    case 1:
2362
44.6k
        i = 18;
2363
44.6k
        ndigits = 0;
2364
44.6k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
44.6k
    }
2383
44.6k
    s0 = rv_alloc(i);
2384
44.6k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
44.6k
    s = s0;
2387
2388
2389
44.6k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
44.6k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
11.8k
        ds = tens[k];
2492
11.8k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
17.9k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
17.9k
            L = (Long)(dval(&u) / ds);
2500
17.9k
            dval(&u) -= L*ds;
2501
17.9k
            *s++ = '0' + (int)L;
2502
17.9k
            if (!dval(&u)) {
2503
11.8k
                break;
2504
11.8k
            }
2505
6.11k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
6.11k
        }
2528
11.8k
        goto ret1;
2529
11.8k
    }
2530
2531
32.8k
    m2 = b2;
2532
32.8k
    m5 = b5;
2533
32.8k
    if (leftright) {
2534
32.8k
        i =
2535
32.8k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
32.8k
            1 + P - bbits;
2537
32.8k
        b2 += i;
2538
32.8k
        s2 += i;
2539
32.8k
        mhi = i2b(1);
2540
32.8k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
32.8k
    }
2543
32.8k
    if (m2 > 0 && s2 > 0) {
2544
28.8k
        i = m2 < s2 ? m2 : s2;
2545
28.8k
        b2 -= i;
2546
28.8k
        m2 -= i;
2547
28.8k
        s2 -= i;
2548
28.8k
    }
2549
32.8k
    if (b5 > 0) {
2550
14.3k
        if (leftright) {
2551
14.3k
            if (m5 > 0) {
2552
14.3k
                mhi = pow5mult(mhi, m5);
2553
14.3k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
14.3k
                b1 = mult(mhi, b);
2556
14.3k
                Bfree(b);
2557
14.3k
                b = b1;
2558
14.3k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
14.3k
            }
2561
14.3k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
14.3k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
14.3k
    }
2573
32.8k
    S = i2b(1);
2574
32.8k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
32.8k
    if (s5 > 0) {
2577
16.0k
        S = pow5mult(S, s5);
2578
16.0k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
16.0k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
32.8k
    spec_case = 0;
2585
32.8k
    if ((mode < 2 || leftright)
2586
32.8k
        ) {
2587
32.8k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
1.43k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
32.8k
            ) {
2590
            /* The special case */
2591
1.02k
            b2 += Log2P;
2592
1.02k
            s2 += Log2P;
2593
1.02k
            spec_case = 1;
2594
1.02k
        }
2595
32.8k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
32.8k
#define iInc 28
2605
32.8k
    i = dshift(S, s2);
2606
32.8k
    b2 += i;
2607
32.8k
    m2 += i;
2608
32.8k
    s2 += i;
2609
32.8k
    if (b2 > 0) {
2610
32.8k
        b = lshift(b, b2);
2611
32.8k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
32.8k
    }
2614
32.8k
    if (s2 > 0) {
2615
32.0k
        S = lshift(S, s2);
2616
32.0k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
32.0k
    }
2619
32.8k
    if (k_check) {
2620
24.6k
        if (cmp(b,S) < 0) {
2621
2.14k
            k--;
2622
2.14k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.14k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.14k
            if (leftright) {
2626
2.14k
                mhi = multadd(mhi, 10, 0);
2627
2.14k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.14k
            }
2630
2.14k
            ilim = ilim1;
2631
2.14k
        }
2632
24.6k
    }
2633
32.8k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
32.8k
    if (leftright) {
2653
32.8k
        if (m2 > 0) {
2654
31.8k
            mhi = lshift(mhi, m2);
2655
31.8k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
31.8k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
32.8k
        mlo = mhi;
2664
32.8k
        if (spec_case) {
2665
1.02k
            mhi = Balloc(mhi->k);
2666
1.02k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.02k
            Bcopy(mhi, mlo);
2669
1.02k
            mhi = lshift(mhi, Log2P);
2670
1.02k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.02k
        }
2673
2674
126k
        for(i = 1;;i++) {
2675
126k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
126k
            j = cmp(b, mlo);
2680
126k
            delta = diff(S, mhi);
2681
126k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
126k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
126k
            Bfree(delta);
2685
126k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
126k
                ) {
2687
2.07k
                if (dig == '9')
2688
396
                    goto round_9_up;
2689
1.68k
                if (j > 0)
2690
769
                    dig++;
2691
1.68k
                *s++ = dig;
2692
1.68k
                goto ret;
2693
2.07k
            }
2694
124k
            if (j < 0 || (j == 0 && mode != 1
2695
1.80k
                          && !(word1(&u) & 1)
2696
105k
                    )) {
2697
19.4k
                if (!b->x[0] && b->wds <= 1) {
2698
2.83k
                    goto accept_dig;
2699
2.83k
                }
2700
16.5k
                if (j1 > 0) {
2701
3.64k
                    b = lshift(b, 1);
2702
3.64k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.64k
                    j1 = cmp(b, S);
2705
3.64k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
2.15k
                        && dig++ == '9')
2707
397
                        goto round_9_up;
2708
3.64k
                }
2709
19.0k
              accept_dig:
2710
19.0k
                *s++ = dig;
2711
19.0k
                goto ret;
2712
16.5k
            }
2713
105k
            if (j1 > 0) {
2714
11.3k
                if (dig == '9') { /* possible if i == 1 */
2715
2.08k
                  round_9_up:
2716
2.08k
                    *s++ = '9';
2717
2.08k
                    goto roundoff;
2718
1.28k
                }
2719
10.0k
                *s++ = dig + 1;
2720
10.0k
                goto ret;
2721
11.3k
            }
2722
93.8k
            *s++ = dig;
2723
93.8k
            if (i == ilim)
2724
0
                break;
2725
93.8k
            b = multadd(b, 10, 0);
2726
93.8k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
93.8k
            if (mlo == mhi) {
2729
90.9k
                mlo = mhi = multadd(mhi, 10, 0);
2730
90.9k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
90.9k
            }
2733
2.89k
            else {
2734
2.89k
                mlo = multadd(mlo, 10, 0);
2735
2.89k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.89k
                mhi = multadd(mhi, 10, 0);
2738
2.89k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.89k
            }
2741
93.8k
        }
2742
32.8k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.08k
      roundoff:
2764
2.08k
        while(*--s == '9')
2765
2.08k
            if (s == s0) {
2766
2.08k
                k++;
2767
2.08k
                *s++ = '1';
2768
2.08k
                goto ret;
2769
2.08k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
32.8k
  ret:
2777
32.8k
    Bfree(S);
2778
32.8k
    if (mhi) {
2779
32.8k
        if (mlo && mlo != mhi)
2780
1.02k
            Bfree(mlo);
2781
32.8k
        Bfree(mhi);
2782
32.8k
    }
2783
44.6k
  ret1:
2784
44.6k
    Bfree(b);
2785
44.6k
    *s = 0;
2786
44.6k
    *decpt = k + 1;
2787
44.6k
    if (rve)
2788
44.6k
        *rve = s;
2789
44.6k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
32.8k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
16
{
2809
16
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
16
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
16
    Bigint *p5 = i2b(625);
2814
16
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
16
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
128
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
112
        p5 = mult(p5, p5);
2822
112
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
112
        p5s[i] = p5;
2826
112
    }
2827
2828
16
#endif
2829
16
    return PyStatus_Ok();
2830
16
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}