Coverage Report

Created: 2025-11-02 06:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Objects/stringlib/fastsearch.h
Line
Count
Source
1
/* stringlib: fastsearch implementation */
2
3
#define STRINGLIB_FASTSEARCH_H
4
5
/* fast search/count implementation, based on a mix between boyer-
6
   moore and horspool, with a few more bells and whistles on the top.
7
   for some more background, see:
8
   https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
9
10
/* note: fastsearch may access s[n], which isn't a problem when using
11
   Python's ordinary string types, but may cause problems if you're
12
   using this code in other contexts.  also, the count mode returns -1
13
   if there cannot possibly be a match in the target string, and 0 if
14
   it has actually checked for matches, but didn't find any.  callers
15
   beware! */
16
17
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
18
   algorithm, which has worst-case O(n) runtime and best-case O(n/k).
19
   Also compute a table of shifts to achieve O(n/k) in more cases,
20
   and often (data dependent) deduce larger shifts than pure C&P can
21
   deduce. See stringlib_find_two_way_notes.txt in this folder for a
22
   detailed explanation. */
23
24
563M
#define FAST_COUNT 0
25
377M
#define FAST_SEARCH 1
26
82.6M
#define FAST_RSEARCH 2
27
28
#if LONG_BIT >= 128
29
#define STRINGLIB_BLOOM_WIDTH 128
30
#elif LONG_BIT >= 64
31
3.84G
#define STRINGLIB_BLOOM_WIDTH 64
32
#elif LONG_BIT >= 32
33
#define STRINGLIB_BLOOM_WIDTH 32
34
#else
35
#error "LONG_BIT is smaller than 32"
36
#endif
37
38
#define STRINGLIB_BLOOM_ADD(mask, ch) \
39
32.2M
    ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
40
#define STRINGLIB_BLOOM(mask, ch)     \
41
3.81G
    ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
42
43
#ifdef STRINGLIB_FAST_MEMCHR
44
198M
#  define MEMCHR_CUT_OFF 15
45
#else
46
66.3M
#  define MEMCHR_CUT_OFF 40
47
#endif
48
49
Py_LOCAL_INLINE(Py_ssize_t)
50
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
51
264M
{
52
264M
    const STRINGLIB_CHAR *p, *e;
53
54
264M
    p = s;
55
264M
    e = s + n;
56
264M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
107M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
107M
        if (p != NULL)
60
105M
            return (p - s);
61
1.88M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
55.4M
        if (needle != 0) {
71
55.0M
            do {
72
55.0M
                void *candidate = memchr(p, needle,
73
55.0M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
55.0M
                if (candidate == NULL)
75
482k
                    return -1;
76
54.5M
                s1 = p;
77
54.5M
                p = (const STRINGLIB_CHAR *)
78
54.5M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
54.5M
                if (*p == ch)
80
54.4M
                    return (p - s);
81
                /* False positive */
82
115k
                p++;
83
115k
                if (p - s1 > MEMCHR_CUT_OFF)
84
54.3k
                    continue;
85
61.3k
                if (e - p <= MEMCHR_CUT_OFF)
86
3.86k
                    break;
87
57.4k
                e1 = p + MEMCHR_CUT_OFF;
88
1.71M
                while (p != e1) {
89
1.68M
                    if (*p == ch)
90
24.5k
                        return (p - s);
91
1.66M
                    p++;
92
1.66M
                }
93
57.4k
            }
94
54.9M
            while (e - p > MEMCHR_CUT_OFF);
95
54.9M
        }
96
#endif
97
162M
    }
98
404M
    while (p < e) {
99
319M
        if (*p == ch)
100
17.7M
            return (p - s);
101
301M
        p++;
102
301M
    }
103
84.6M
    return -1;
104
102M
}
Unexecuted instantiation: bytesobject.c:stringlib_find_char
unicodeobject.c:ucs1lib_find_char
Line
Count
Source
51
112M
{
52
112M
    const STRINGLIB_CHAR *p, *e;
53
54
112M
    p = s;
55
112M
    e = s + n;
56
112M
    if (n > MEMCHR_CUT_OFF) {
57
26.3M
#ifdef STRINGLIB_FAST_MEMCHR
58
26.3M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
26.3M
        if (p != NULL)
60
25.1M
            return (p - s);
61
1.21M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
26.3M
    }
98
245M
    while (p < e) {
99
163M
        if (*p == ch)
100
4.42M
            return (p - s);
101
159M
        p++;
102
159M
    }
103
81.3M
    return -1;
104
85.7M
}
unicodeobject.c:ucs2lib_find_char
Line
Count
Source
51
66.0M
{
52
66.0M
    const STRINGLIB_CHAR *p, *e;
53
54
66.0M
    p = s;
55
66.0M
    e = s + n;
56
66.0M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
        if (p != NULL)
60
            return (p - s);
61
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
55.4M
        const STRINGLIB_CHAR *s1, *e1;
66
55.4M
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
55.4M
        if (needle != 0) {
71
55.0M
            do {
72
55.0M
                void *candidate = memchr(p, needle,
73
55.0M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
55.0M
                if (candidate == NULL)
75
482k
                    return -1;
76
54.5M
                s1 = p;
77
54.5M
                p = (const STRINGLIB_CHAR *)
78
54.5M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
54.5M
                if (*p == ch)
80
54.4M
                    return (p - s);
81
                /* False positive */
82
115k
                p++;
83
115k
                if (p - s1 > MEMCHR_CUT_OFF)
84
54.3k
                    continue;
85
61.3k
                if (e - p <= MEMCHR_CUT_OFF)
86
3.86k
                    break;
87
57.4k
                e1 = p + MEMCHR_CUT_OFF;
88
1.71M
                while (p != e1) {
89
1.68M
                    if (*p == ch)
90
24.5k
                        return (p - s);
91
1.66M
                    p++;
92
1.66M
                }
93
57.4k
            }
94
54.9M
            while (e - p > MEMCHR_CUT_OFF);
95
54.9M
        }
96
55.4M
#endif
97
55.4M
    }
98
144M
    while (p < e) {
99
140M
        if (*p == ch)
100
7.84M
            return (p - s);
101
133M
        p++;
102
133M
    }
103
3.24M
    return -1;
104
11.0M
}
unicodeobject.c:ucs4lib_find_char
Line
Count
Source
51
63.6M
{
52
63.6M
    const STRINGLIB_CHAR *p, *e;
53
54
63.6M
    p = s;
55
63.6M
    e = s + n;
56
63.6M
    if (n > MEMCHR_CUT_OFF) {
57
63.5M
#ifdef STRINGLIB_FAST_MEMCHR
58
63.5M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
63.5M
        if (p != NULL)
60
63.5M
            return (p - s);
61
29.7k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
63.5M
    }
98
307k
    while (p < e) {
99
273k
        if (*p == ch)
100
42.5k
            return (p - s);
101
231k
        p++;
102
231k
    }
103
33.6k
    return -1;
104
76.2k
}
unicodeobject.c:asciilib_find_char
Line
Count
Source
51
22.9M
{
52
22.9M
    const STRINGLIB_CHAR *p, *e;
53
54
22.9M
    p = s;
55
22.9M
    e = s + n;
56
22.9M
    if (n > MEMCHR_CUT_OFF) {
57
17.4M
#ifdef STRINGLIB_FAST_MEMCHR
58
17.4M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
17.4M
        if (p != NULL)
60
16.7M
            return (p - s);
61
636k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
17.4M
    }
98
14.6M
    while (p < e) {
99
14.5M
        if (*p == ch)
100
5.44M
            return (p - s);
101
9.12M
        p++;
102
9.12M
    }
103
49.8k
    return -1;
104
5.49M
}
bytes_methods.c:stringlib_find_char
Line
Count
Source
51
1.71k
{
52
1.71k
    const STRINGLIB_CHAR *p, *e;
53
54
1.71k
    p = s;
55
1.71k
    e = s + n;
56
1.71k
    if (n > MEMCHR_CUT_OFF) {
57
1.71k
#ifdef STRINGLIB_FAST_MEMCHR
58
1.71k
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
1.71k
        if (p != NULL)
60
1.45k
            return (p - s);
61
258
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
1.71k
    }
98
0
    while (p < e) {
99
0
        if (*p == ch)
100
0
            return (p - s);
101
0
        p++;
102
0
    }
103
0
    return -1;
104
0
}
Unexecuted instantiation: bytearrayobject.c:stringlib_find_char
105
106
#undef MEMCHR_CUT_OFF
107
108
#if STRINGLIB_SIZEOF_CHAR == 1
109
39.4k
#  define MEMRCHR_CUT_OFF 15
110
#else
111
146k
#  define MEMRCHR_CUT_OFF 40
112
#endif
113
114
115
Py_LOCAL_INLINE(Py_ssize_t)
116
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
117
150k
{
118
150k
    const STRINGLIB_CHAR *p;
119
150k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
150k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
10.7k
        if (p != NULL)
129
7.55k
            return (p - s);
130
3.23k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
74.2k
        if (needle != 0) {
141
83.2k
            do {
142
83.2k
                void *candidate = memrchr(s, needle,
143
83.2k
                                          n * sizeof(STRINGLIB_CHAR));
144
83.2k
                if (candidate == NULL)
145
640
                    return -1;
146
82.6k
                n1 = n;
147
82.6k
                p = (const STRINGLIB_CHAR *)
148
82.6k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
82.6k
                n = p - s;
150
82.6k
                if (*p == ch)
151
71.2k
                    return n;
152
                /* False positive */
153
11.4k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
4.01k
                    continue;
155
7.43k
                if (n <= MEMRCHR_CUT_OFF)
156
1.08k
                    break;
157
6.35k
                s1 = p - MEMRCHR_CUT_OFF;
158
246k
                while (p > s1) {
159
240k
                    p--;
160
240k
                    if (*p == ch)
161
578
                        return (p - s);
162
240k
                }
163
5.77k
                n = p - s;
164
5.77k
            }
165
74.2k
            while (n > MEMRCHR_CUT_OFF);
166
74.2k
        }
167
#endif
168
84.9k
    }
169
67.6k
#endif  /* HAVE_MEMRCHR */
170
67.6k
    p = s + n;
171
433k
    while (p > s) {
172
414k
        p--;
173
414k
        if (*p == ch)
174
48.8k
            return (p - s);
175
414k
    }
176
18.7k
    return -1;
177
67.6k
}
Unexecuted instantiation: bytesobject.c:stringlib_rfind_char
unicodeobject.c:ucs1lib_rfind_char
Line
Count
Source
117
7.58k
{
118
7.58k
    const STRINGLIB_CHAR *p;
119
7.58k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
7.58k
    if (n > MEMRCHR_CUT_OFF) {
126
4.48k
#if STRINGLIB_SIZEOF_CHAR == 1
127
4.48k
        p = memrchr(s, ch, n);
128
4.48k
        if (p != NULL)
129
3.51k
            return (p - s);
130
976
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
4.48k
    }
169
3.09k
#endif  /* HAVE_MEMRCHR */
170
3.09k
    p = s + n;
171
9.42k
    while (p > s) {
172
8.66k
        p--;
173
8.66k
        if (*p == ch)
174
2.33k
            return (p - s);
175
8.66k
    }
176
764
    return -1;
177
3.09k
}
unicodeobject.c:ucs2lib_rfind_char
Line
Count
Source
117
22.2k
{
118
22.2k
    const STRINGLIB_CHAR *p;
119
22.2k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
22.2k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
14.7k
        const STRINGLIB_CHAR *s1;
135
14.7k
        Py_ssize_t n1;
136
14.7k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
14.7k
        if (needle != 0) {
141
18.7k
            do {
142
18.7k
                void *candidate = memrchr(s, needle,
143
18.7k
                                          n * sizeof(STRINGLIB_CHAR));
144
18.7k
                if (candidate == NULL)
145
377
                    return -1;
146
18.4k
                n1 = n;
147
18.4k
                p = (const STRINGLIB_CHAR *)
148
18.4k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
18.4k
                n = p - s;
150
18.4k
                if (*p == ch)
151
13.3k
                    return n;
152
                /* False positive */
153
5.05k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
1.42k
                    continue;
155
3.62k
                if (n <= MEMRCHR_CUT_OFF)
156
535
                    break;
157
3.09k
                s1 = p - MEMRCHR_CUT_OFF;
158
121k
                while (p > s1) {
159
118k
                    p--;
160
118k
                    if (*p == ch)
161
219
                        return (p - s);
162
118k
                }
163
2.87k
                n = p - s;
164
2.87k
            }
165
14.7k
            while (n > MEMRCHR_CUT_OFF);
166
14.7k
        }
167
14.7k
#endif
168
14.7k
    }
169
8.31k
#endif  /* HAVE_MEMRCHR */
170
8.31k
    p = s + n;
171
67.0k
    while (p > s) {
172
65.4k
        p--;
173
65.4k
        if (*p == ch)
174
6.75k
            return (p - s);
175
65.4k
    }
176
1.55k
    return -1;
177
8.31k
}
unicodeobject.c:ucs4lib_rfind_char
Line
Count
Source
117
89.1k
{
118
89.1k
    const STRINGLIB_CHAR *p;
119
89.1k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
89.1k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
59.4k
        const STRINGLIB_CHAR *s1;
135
59.4k
        Py_ssize_t n1;
136
59.4k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
59.4k
        if (needle != 0) {
141
64.5k
            do {
142
64.5k
                void *candidate = memrchr(s, needle,
143
64.5k
                                          n * sizeof(STRINGLIB_CHAR));
144
64.5k
                if (candidate == NULL)
145
263
                    return -1;
146
64.2k
                n1 = n;
147
64.2k
                p = (const STRINGLIB_CHAR *)
148
64.2k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
64.2k
                n = p - s;
150
64.2k
                if (*p == ch)
151
57.8k
                    return n;
152
                /* False positive */
153
6.40k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
2.59k
                    continue;
155
3.80k
                if (n <= MEMRCHR_CUT_OFF)
156
548
                    break;
157
3.26k
                s1 = p - MEMRCHR_CUT_OFF;
158
124k
                while (p > s1) {
159
121k
                    p--;
160
121k
                    if (*p == ch)
161
359
                        return (p - s);
162
121k
                }
163
2.90k
                n = p - s;
164
2.90k
            }
165
59.4k
            while (n > MEMRCHR_CUT_OFF);
166
59.4k
        }
167
59.4k
#endif
168
59.4k
    }
169
30.6k
#endif  /* HAVE_MEMRCHR */
170
30.6k
    p = s + n;
171
224k
    while (p > s) {
172
223k
        p--;
173
223k
        if (*p == ch)
174
29.4k
            return (p - s);
175
223k
    }
176
1.26k
    return -1;
177
30.6k
}
unicodeobject.c:asciilib_rfind_char
Line
Count
Source
117
10.5k
{
118
10.5k
    const STRINGLIB_CHAR *p;
119
10.5k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
10.5k
    if (n > MEMRCHR_CUT_OFF) {
126
3.28k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.28k
        p = memrchr(s, ch, n);
128
3.28k
        if (p != NULL)
129
3.20k
            return (p - s);
130
86
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.28k
    }
169
7.30k
#endif  /* HAVE_MEMRCHR */
170
7.30k
    p = s + n;
171
38.8k
    while (p > s) {
172
36.7k
        p--;
173
36.7k
        if (*p == ch)
174
5.18k
            return (p - s);
175
36.7k
    }
176
2.12k
    return -1;
177
7.30k
}
bytes_methods.c:stringlib_rfind_char
Line
Count
Source
117
21.2k
{
118
21.2k
    const STRINGLIB_CHAR *p;
119
21.2k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
21.2k
    if (n > MEMRCHR_CUT_OFF) {
126
3.00k
#if STRINGLIB_SIZEOF_CHAR == 1
127
3.00k
        p = memrchr(s, ch, n);
128
3.00k
        if (p != NULL)
129
841
            return (p - s);
130
2.16k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
3.00k
    }
169
18.2k
#endif  /* HAVE_MEMRCHR */
170
18.2k
    p = s + n;
171
93.5k
    while (p > s) {
172
80.5k
        p--;
173
80.5k
        if (*p == ch)
174
5.18k
            return (p - s);
175
80.5k
    }
176
13.0k
    return -1;
177
18.2k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_rfind_char
178
179
#undef MEMRCHR_CUT_OFF
180
181
/* Change to a 1 to see logging comments walk through the algorithm. */
182
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
183
# define LOG(...) printf(__VA_ARGS__)
184
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
185
# define LOG_LINEUP() do {                                         \
186
    LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> ");    \
187
    LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
188
    LOG_STRING(needle, len_needle); LOG("\n");                     \
189
} while(0)
190
#else
191
# define LOG(...)
192
# define LOG_STRING(s, n)
193
# define LOG_LINEUP()
194
#endif
195
196
Py_LOCAL_INLINE(Py_ssize_t)
197
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
198
                       Py_ssize_t *return_period, int invert_alphabet)
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: bytesobject.c:stringlib__lex_search
Unexecuted instantiation: unicodeobject.c:asciilib__lex_search
unicodeobject.c:ucs1lib__lex_search
Line
Count
Source
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__lex_search
Unexecuted instantiation: unicodeobject.c:ucs4lib__lex_search
Unexecuted instantiation: bytes_methods.c:stringlib__lex_search
Unexecuted instantiation: bytearrayobject.c:stringlib__lex_search
247
248
Py_LOCAL_INLINE(Py_ssize_t)
249
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
250
                      Py_ssize_t len_needle,
251
                      Py_ssize_t *return_period)
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: bytesobject.c:stringlib__factorize
Unexecuted instantiation: unicodeobject.c:asciilib__factorize
unicodeobject.c:ucs1lib__factorize
Line
Count
Source
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__factorize
Unexecuted instantiation: unicodeobject.c:ucs4lib__factorize
Unexecuted instantiation: bytes_methods.c:stringlib__factorize
Unexecuted instantiation: bytearrayobject.c:stringlib__factorize
306
307
308
231
#define SHIFT_TYPE uint8_t
309
#define MAX_SHIFT UINT8_MAX
310
311
73.2k
#define TABLE_SIZE_BITS 6u
312
73.2k
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
313
71.8k
#define TABLE_MASK (TABLE_SIZE - 1U)
314
315
typedef struct STRINGLIB(_pre) {
316
    const STRINGLIB_CHAR *needle;
317
    Py_ssize_t len_needle;
318
    Py_ssize_t cut;
319
    Py_ssize_t period;
320
    Py_ssize_t gap;
321
    int is_periodic;
322
    SHIFT_TYPE table[TABLE_SIZE];
323
} STRINGLIB(prework);
324
325
326
static void
327
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
328
                       STRINGLIB(prework) *p)
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: bytesobject.c:stringlib__preprocess
Unexecuted instantiation: unicodeobject.c:asciilib__preprocess
unicodeobject.c:ucs1lib__preprocess
Line
Count
Source
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__preprocess
Unexecuted instantiation: unicodeobject.c:ucs4lib__preprocess
Unexecuted instantiation: bytes_methods.c:stringlib__preprocess
Unexecuted instantiation: bytearrayobject.c:stringlib__preprocess
368
369
static Py_ssize_t
370
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
371
                    STRINGLIB(prework) *p)
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.4k
                LOG("Horspool skip\n");
469
57.4k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way
Unexecuted instantiation: unicodeobject.c:asciilib__two_way
unicodeobject.c:ucs1lib__two_way
Line
Count
Source
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.4k
                LOG("Horspool skip\n");
469
57.4k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way
Unexecuted instantiation: bytes_methods.c:stringlib__two_way
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way
503
504
505
static Py_ssize_t
506
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
507
                         Py_ssize_t len_haystack,
508
                         const STRINGLIB_CHAR *needle,
509
                         Py_ssize_t len_needle)
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_find
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_find
unicodeobject.c:ucs1lib__two_way_find
Line
Count
Source
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_find
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_find
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_find
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_find
516
517
518
static Py_ssize_t
519
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
520
                          Py_ssize_t len_haystack,
521
                          const STRINGLIB_CHAR *needle,
522
                          Py_ssize_t len_needle,
523
                          Py_ssize_t maxcount)
524
0
{
525
0
    LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
526
0
    STRINGLIB(prework) p;
527
0
    STRINGLIB(_preprocess)(needle, len_needle, &p);
528
0
    Py_ssize_t index = 0, count = 0;
529
0
    while (1) {
530
0
        Py_ssize_t result;
531
0
        result = STRINGLIB(_two_way)(haystack + index,
532
0
                                     len_haystack - index, &p);
533
0
        if (result == -1) {
534
0
            return count;
535
0
        }
536
0
        count++;
537
0
        if (count == maxcount) {
538
0
            return maxcount;
539
0
        }
540
0
        index += result + len_needle;
541
0
    }
542
0
    return count;
543
0
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_count
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs1lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_count
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_count
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_count
544
545
#undef SHIFT_TYPE
546
#undef NOT_FOUND
547
#undef SHIFT_OVERFLOW
548
#undef TABLE_SIZE_BITS
549
#undef TABLE_SIZE
550
#undef TABLE_MASK
551
552
#undef LOG
553
#undef LOG_STRING
554
#undef LOG_LINEUP
555
556
static inline Py_ssize_t
557
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
558
                        const STRINGLIB_CHAR* p, Py_ssize_t m,
559
                        Py_ssize_t maxcount, int mode)
560
16.0M
{
561
16.0M
    const Py_ssize_t w = n - m;
562
16.0M
    Py_ssize_t mlast = m - 1, count = 0;
563
16.0M
    Py_ssize_t gap = mlast;
564
16.0M
    const STRINGLIB_CHAR last = p[mlast];
565
16.0M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
16.0M
    unsigned long mask = 0;
568
32.2M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
16.1M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
16.1M
        if (p[i] == last) {
571
492k
            gap = mlast - i - 1;
572
492k
        }
573
16.1M
    }
574
16.0M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
3.84G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
3.83G
        if (ss[i] == last) {
578
            /* candidate match */
579
33.0M
            Py_ssize_t j;
580
55.3M
            for (j = 0; j < mlast; j++) {
581
33.0M
                if (s[i+j] != p[j]) {
582
10.7M
                    break;
583
10.7M
                }
584
33.0M
            }
585
33.0M
            if (j == mlast) {
586
                /* got a match! */
587
22.2M
                if (mode != FAST_COUNT) {
588
11.2M
                    return i;
589
11.2M
                }
590
11.0M
                count++;
591
11.0M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
11.0M
                i = i + mlast;
595
11.0M
                continue;
596
11.0M
            }
597
            /* miss: check if next character is part of pattern */
598
10.7M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
4.39M
                i = i + m;
600
4.39M
            }
601
6.35M
            else {
602
6.35M
                i = i + gap;
603
6.35M
            }
604
10.7M
        }
605
3.80G
        else {
606
            /* skip: check if next character is part of pattern */
607
3.80G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
3.76G
                i = i + m;
609
3.76G
            }
610
3.80G
        }
611
3.83G
    }
612
4.87M
    return mode == FAST_COUNT ? count : -1;
613
16.0M
}
Unexecuted instantiation: bytesobject.c:stringlib_default_find
unicodeobject.c:asciilib_default_find
Line
Count
Source
560
1.51M
{
561
1.51M
    const Py_ssize_t w = n - m;
562
1.51M
    Py_ssize_t mlast = m - 1, count = 0;
563
1.51M
    Py_ssize_t gap = mlast;
564
1.51M
    const STRINGLIB_CHAR last = p[mlast];
565
1.51M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
1.51M
    unsigned long mask = 0;
568
3.04M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
1.52M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
1.52M
        if (p[i] == last) {
571
17.6k
            gap = mlast - i - 1;
572
17.6k
        }
573
1.52M
    }
574
1.51M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
182M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
182M
        if (ss[i] == last) {
578
            /* candidate match */
579
3.10M
            Py_ssize_t j;
580
4.60M
            for (j = 0; j < mlast; j++) {
581
3.10M
                if (s[i+j] != p[j]) {
582
1.60M
                    break;
583
1.60M
                }
584
3.10M
            }
585
3.10M
            if (j == mlast) {
586
                /* got a match! */
587
1.49M
                if (mode != FAST_COUNT) {
588
1.49M
                    return i;
589
1.49M
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
1.60M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
49.3k
                i = i + m;
600
49.3k
            }
601
1.55M
            else {
602
1.55M
                i = i + gap;
603
1.55M
            }
604
1.60M
        }
605
179M
        else {
606
            /* skip: check if next character is part of pattern */
607
179M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
175M
                i = i + m;
609
175M
            }
610
179M
        }
611
182M
    }
612
23.8k
    return mode == FAST_COUNT ? count : -1;
613
1.51M
}
unicodeobject.c:ucs1lib_default_find
Line
Count
Source
560
6.46M
{
561
6.46M
    const Py_ssize_t w = n - m;
562
6.46M
    Py_ssize_t mlast = m - 1, count = 0;
563
6.46M
    Py_ssize_t gap = mlast;
564
6.46M
    const STRINGLIB_CHAR last = p[mlast];
565
6.46M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
6.46M
    unsigned long mask = 0;
568
12.9M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
6.51M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
6.51M
        if (p[i] == last) {
571
413k
            gap = mlast - i - 1;
572
413k
        }
573
6.51M
    }
574
6.46M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
520M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
515M
        if (ss[i] == last) {
578
            /* candidate match */
579
8.99M
            Py_ssize_t j;
580
13.9M
            for (j = 0; j < mlast; j++) {
581
9.00M
                if (s[i+j] != p[j]) {
582
4.07M
                    break;
583
4.07M
                }
584
9.00M
            }
585
8.99M
            if (j == mlast) {
586
                /* got a match! */
587
4.91M
                if (mode != FAST_COUNT) {
588
1.73M
                    return i;
589
1.73M
                }
590
3.17M
                count++;
591
3.17M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.17M
                i = i + mlast;
595
3.17M
                continue;
596
3.17M
            }
597
            /* miss: check if next character is part of pattern */
598
4.07M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.75M
                i = i + m;
600
1.75M
            }
601
2.32M
            else {
602
2.32M
                i = i + gap;
603
2.32M
            }
604
4.07M
        }
605
506M
        else {
606
            /* skip: check if next character is part of pattern */
607
506M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
497M
                i = i + m;
609
497M
            }
610
506M
        }
611
515M
    }
612
4.72M
    return mode == FAST_COUNT ? count : -1;
613
6.46M
}
unicodeobject.c:ucs2lib_default_find
Line
Count
Source
560
3.18M
{
561
3.18M
    const Py_ssize_t w = n - m;
562
3.18M
    Py_ssize_t mlast = m - 1, count = 0;
563
3.18M
    Py_ssize_t gap = mlast;
564
3.18M
    const STRINGLIB_CHAR last = p[mlast];
565
3.18M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.18M
    unsigned long mask = 0;
568
6.38M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
3.20M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
3.20M
        if (p[i] == last) {
571
33.6k
            gap = mlast - i - 1;
572
33.6k
        }
573
3.20M
    }
574
3.18M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.29G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.29G
        if (ss[i] == last) {
578
            /* candidate match */
579
8.52M
            Py_ssize_t j;
580
14.6M
            for (j = 0; j < mlast; j++) {
581
8.54M
                if (s[i+j] != p[j]) {
582
2.43M
                    break;
583
2.43M
                }
584
8.54M
            }
585
8.52M
            if (j == mlast) {
586
                /* got a match! */
587
6.09M
                if (mode != FAST_COUNT) {
588
3.08M
                    return i;
589
3.08M
                }
590
3.00M
                count++;
591
3.00M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.00M
                i = i + mlast;
595
3.00M
                continue;
596
3.00M
            }
597
            /* miss: check if next character is part of pattern */
598
2.43M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
994k
                i = i + m;
600
994k
            }
601
1.44M
            else {
602
1.44M
                i = i + gap;
603
1.44M
            }
604
2.43M
        }
605
1.28G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.28G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.27G
                i = i + m;
609
1.27G
            }
610
1.28G
        }
611
1.29G
    }
612
95.3k
    return mode == FAST_COUNT ? count : -1;
613
3.18M
}
unicodeobject.c:ucs4lib_default_find
Line
Count
Source
560
4.92M
{
561
4.92M
    const Py_ssize_t w = n - m;
562
4.92M
    Py_ssize_t mlast = m - 1, count = 0;
563
4.92M
    Py_ssize_t gap = mlast;
564
4.92M
    const STRINGLIB_CHAR last = p[mlast];
565
4.92M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
4.92M
    unsigned long mask = 0;
568
9.87M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
4.94M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
4.94M
        if (p[i] == last) {
571
24.7k
            gap = mlast - i - 1;
572
24.7k
        }
573
4.94M
    }
574
4.92M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.84G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.84G
        if (ss[i] == last) {
578
            /* candidate match */
579
12.3M
            Py_ssize_t j;
580
22.1M
            for (j = 0; j < mlast; j++) {
581
12.3M
                if (s[i+j] != p[j]) {
582
2.61M
                    break;
583
2.61M
                }
584
12.3M
            }
585
12.3M
            if (j == mlast) {
586
                /* got a match! */
587
9.76M
                if (mode != FAST_COUNT) {
588
4.89M
                    return i;
589
4.89M
                }
590
4.86M
                count++;
591
4.86M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
4.86M
                i = i + mlast;
595
4.86M
                continue;
596
4.86M
            }
597
            /* miss: check if next character is part of pattern */
598
2.61M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.59M
                i = i + m;
600
1.59M
            }
601
1.02M
            else {
602
1.02M
                i = i + gap;
603
1.02M
            }
604
2.61M
        }
605
1.82G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.82G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.81G
                i = i + m;
609
1.81G
            }
610
1.82G
        }
611
1.84G
    }
612
28.8k
    return mode == FAST_COUNT ? count : -1;
613
4.92M
}
bytes_methods.c:stringlib_default_find
Line
Count
Source
560
2.82k
{
561
2.82k
    const Py_ssize_t w = n - m;
562
2.82k
    Py_ssize_t mlast = m - 1, count = 0;
563
2.82k
    Py_ssize_t gap = mlast;
564
2.82k
    const STRINGLIB_CHAR last = p[mlast];
565
2.82k
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
2.82k
    unsigned long mask = 0;
568
11.3k
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
8.48k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
8.48k
        if (p[i] == last) {
571
2.82k
            gap = mlast - i - 1;
572
2.82k
        }
573
8.48k
    }
574
2.82k
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
442k
    for (Py_ssize_t i = 0; i <= w; i++) {
577
442k
        if (ss[i] == last) {
578
            /* candidate match */
579
7.30k
            Py_ssize_t j;
580
15.3k
            for (j = 0; j < mlast; j++) {
581
12.7k
                if (s[i+j] != p[j]) {
582
4.70k
                    break;
583
4.70k
                }
584
12.7k
            }
585
7.30k
            if (j == mlast) {
586
                /* got a match! */
587
2.60k
                if (mode != FAST_COUNT) {
588
2.60k
                    return i;
589
2.60k
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
4.70k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
551
                i = i + m;
600
551
            }
601
4.15k
            else {
602
4.15k
                i = i + gap;
603
4.15k
            }
604
4.70k
        }
605
434k
        else {
606
            /* skip: check if next character is part of pattern */
607
434k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
21.0k
                i = i + m;
609
21.0k
            }
610
434k
        }
611
442k
    }
612
228
    return mode == FAST_COUNT ? count : -1;
613
2.82k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_find
614
615
616
static Py_ssize_t
617
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
618
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
619
                         Py_ssize_t maxcount, int mode)
620
0
{
621
0
    const Py_ssize_t w = n - m;
622
0
    Py_ssize_t mlast = m - 1, count = 0;
623
0
    Py_ssize_t gap = mlast;
624
0
    Py_ssize_t hits = 0, res;
625
0
    const STRINGLIB_CHAR last = p[mlast];
626
0
    const STRINGLIB_CHAR *const ss = &s[mlast];
627
628
0
    unsigned long mask = 0;
629
0
    for (Py_ssize_t i = 0; i < mlast; i++) {
630
0
        STRINGLIB_BLOOM_ADD(mask, p[i]);
631
0
        if (p[i] == last) {
632
0
            gap = mlast - i - 1;
633
0
        }
634
0
    }
635
0
    STRINGLIB_BLOOM_ADD(mask, last);
636
637
0
    for (Py_ssize_t i = 0; i <= w; i++) {
638
0
        if (ss[i] == last) {
639
            /* candidate match */
640
0
            Py_ssize_t j;
641
0
            for (j = 0; j < mlast; j++) {
642
0
                if (s[i+j] != p[j]) {
643
0
                    break;
644
0
                }
645
0
            }
646
0
            if (j == mlast) {
647
                /* got a match! */
648
0
                if (mode != FAST_COUNT) {
649
0
                    return i;
650
0
                }
651
0
                count++;
652
0
                if (count == maxcount) {
653
0
                    return maxcount;
654
0
                }
655
0
                i = i + mlast;
656
0
                continue;
657
0
            }
658
0
            hits += j + 1;
659
0
            if (hits > m / 4 && w - i > 2000) {
660
0
                if (mode == FAST_SEARCH) {
661
0
                    res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
662
0
                    return res == -1 ? -1 : res + i;
663
0
                }
664
0
                else {
665
0
                    res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
666
0
                                                    maxcount - count);
667
0
                    return res + count;
668
0
                }
669
0
            }
670
            /* miss: check if next character is part of pattern */
671
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
672
0
                i = i + m;
673
0
            }
674
0
            else {
675
0
                i = i + gap;
676
0
            }
677
0
        }
678
0
        else {
679
            /* skip: check if next character is part of pattern */
680
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
681
0
                i = i + m;
682
0
            }
683
0
        }
684
0
    }
685
0
    return mode == FAST_COUNT ? count : -1;
686
0
}
Unexecuted instantiation: bytesobject.c:stringlib_adaptive_find
Unexecuted instantiation: unicodeobject.c:asciilib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs1lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs2lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs4lib_adaptive_find
Unexecuted instantiation: bytes_methods.c:stringlib_adaptive_find
Unexecuted instantiation: bytearrayobject.c:stringlib_adaptive_find
687
688
689
static Py_ssize_t
690
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
691
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
692
                         Py_ssize_t maxcount, int mode)
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytesobject.c:stringlib_default_rfind
Unexecuted instantiation: unicodeobject.c:asciilib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs1lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs2lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs4lib_default_rfind
bytes_methods.c:stringlib_default_rfind
Line
Count
Source
693
4
{
694
    /* create compressed boyer-moore delta 1 table */
695
4
    unsigned long mask = 0;
696
4
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
4
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
16
    for (i = mlast; i > 0; i--) {
702
12
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
12
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
12
    }
707
708
356
    for (i = w; i >= 0; i--) {
709
352
        if (s[i] == p[0]) {
710
            /* candidate match */
711
8
            for (j = mlast; j > 0; j--) {
712
8
                if (s[i+j] != p[j]) {
713
8
                    break;
714
8
                }
715
8
            }
716
8
            if (j == 0) {
717
                /* got a match! */
718
0
                return i;
719
0
            }
720
            /* miss: check if previous character is part of pattern */
721
8
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
8
                i = i - m;
723
8
            }
724
0
            else {
725
0
                i = i - skip;
726
0
            }
727
8
        }
728
344
        else {
729
            /* skip: check if previous character is part of pattern */
730
344
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
336
                i = i - m;
732
336
            }
733
344
        }
734
352
    }
735
4
    return -1;
736
4
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_rfind
737
738
739
static inline Py_ssize_t
740
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
741
                      const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
742
0
{
743
0
    Py_ssize_t i, count = 0;
744
0
    for (i = 0; i < n; i++) {
745
0
        if (s[i] == p0) {
746
0
            count++;
747
0
            if (count == maxcount) {
748
0
                return maxcount;
749
0
            }
750
0
        }
751
0
    }
752
0
    return count;
753
0
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char
Unexecuted instantiation: unicodeobject.c:asciilib_count_char
Unexecuted instantiation: unicodeobject.c:ucs1lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs2lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs4lib_count_char
Unexecuted instantiation: bytes_methods.c:stringlib_count_char
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char
754
755
756
static inline Py_ssize_t
757
STRINGLIB(count_char_no_maxcount)(const STRINGLIB_CHAR *s, Py_ssize_t n,
758
                                  const STRINGLIB_CHAR p0)
759
/* A specialized function of count_char that does not cut off at a maximum.
760
   As a result, the compiler is able to vectorize the loop. */
761
66.5M
{
762
66.5M
    Py_ssize_t count = 0;
763
6.59G
    for (Py_ssize_t i = 0; i < n; i++) {
764
6.53G
        if (s[i] == p0) {
765
179M
            count++;
766
179M
        }
767
6.53G
    }
768
66.5M
    return count;
769
66.5M
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: unicodeobject.c:asciilib_count_char_no_maxcount
unicodeobject.c:ucs1lib_count_char_no_maxcount
Line
Count
Source
761
55.8M
{
762
55.8M
    Py_ssize_t count = 0;
763
1.65G
    for (Py_ssize_t i = 0; i < n; i++) {
764
1.59G
        if (s[i] == p0) {
765
42.4M
            count++;
766
42.4M
        }
767
1.59G
    }
768
55.8M
    return count;
769
55.8M
}
unicodeobject.c:ucs2lib_count_char_no_maxcount
Line
Count
Source
761
9.70M
{
762
9.70M
    Py_ssize_t count = 0;
763
2.36G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.35G
        if (s[i] == p0) {
765
66.0M
            count++;
766
66.0M
        }
767
2.35G
    }
768
9.70M
    return count;
769
9.70M
}
unicodeobject.c:ucs4lib_count_char_no_maxcount
Line
Count
Source
761
1.03M
{
762
1.03M
    Py_ssize_t count = 0;
763
2.57G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.57G
        if (s[i] == p0) {
765
70.8M
            count++;
766
70.8M
        }
767
2.57G
    }
768
1.03M
    return count;
769
1.03M
}
Unexecuted instantiation: bytes_methods.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char_no_maxcount
770
771
772
Py_LOCAL_INLINE(Py_ssize_t)
773
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
774
           const STRINGLIB_CHAR* p, Py_ssize_t m,
775
           Py_ssize_t maxcount, int mode)
776
232M
{
777
232M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
23.7k
        return -1;
779
23.7k
    }
780
781
    /* look for special cases */
782
232M
    if (m <= 1) {
783
216M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
216M
        if (mode == FAST_SEARCH)
788
149M
            return STRINGLIB(find_char)(s, n, p[0]);
789
66.5M
        else if (mode == FAST_RSEARCH)
790
10.5k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
66.5M
        else {
792
66.5M
            if (maxcount == PY_SSIZE_T_MAX) {
793
66.5M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
66.5M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
66.5M
        }
797
216M
    }
798
799
16.0M
    if (mode != FAST_RSEARCH) {
800
16.0M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
16.0M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
16.0M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
16.0M
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
16.0M
}
Unexecuted instantiation: bytesobject.c:fastsearch
unicodeobject.c:asciilib_fastsearch
Line
Count
Source
776
24.4M
{
777
24.4M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
24.4M
    if (m <= 1) {
783
22.9M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
22.9M
        if (mode == FAST_SEARCH)
788
22.9M
            return STRINGLIB(find_char)(s, n, p[0]);
789
10.5k
        else if (mode == FAST_RSEARCH)
790
10.5k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
22.9M
    }
798
799
1.51M
    if (mode != FAST_RSEARCH) {
800
1.51M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
1.51M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
1.51M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
1.51M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
1.51M
}
unicodeobject.c:ucs1lib_fastsearch
Line
Count
Source
776
69.2M
{
777
69.2M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
69.2M
    if (m <= 1) {
783
62.8M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
62.8M
        if (mode == FAST_SEARCH)
788
6.98M
            return STRINGLIB(find_char)(s, n, p[0]);
789
55.8M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
55.8M
        else {
792
55.8M
            if (maxcount == PY_SSIZE_T_MAX) {
793
55.8M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
55.8M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
55.8M
        }
797
62.8M
    }
798
799
6.46M
    if (mode != FAST_RSEARCH) {
800
6.46M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
6.46M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
6.46M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
6.46M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
6.46M
}
unicodeobject.c:ucs2lib_fastsearch
Line
Count
Source
776
70.3M
{
777
70.3M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
23.7k
        return -1;
779
23.7k
    }
780
781
    /* look for special cases */
782
70.2M
    if (m <= 1) {
783
67.0M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
67.0M
        if (mode == FAST_SEARCH)
788
57.3M
            return STRINGLIB(find_char)(s, n, p[0]);
789
9.70M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
9.70M
        else {
792
9.70M
            if (maxcount == PY_SSIZE_T_MAX) {
793
9.70M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
9.70M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
9.70M
        }
797
67.0M
    }
798
799
3.18M
    if (mode != FAST_RSEARCH) {
800
3.18M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.18M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.18M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.18M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
3.18M
}
unicodeobject.c:ucs4lib_fastsearch
Line
Count
Source
776
68.4M
{
777
68.4M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
68.4M
    if (m <= 1) {
783
63.5M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
63.5M
        if (mode == FAST_SEARCH)
788
62.5M
            return STRINGLIB(find_char)(s, n, p[0]);
789
1.03M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
1.03M
        else {
792
1.03M
            if (maxcount == PY_SSIZE_T_MAX) {
793
1.03M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
1.03M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
1.03M
        }
797
63.5M
    }
798
799
4.92M
    if (mode != FAST_RSEARCH) {
800
4.92M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
4.92M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
4.92M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
4.92M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
4.92M
}
bytes_methods.c:fastsearch
Line
Count
Source
776
2.84k
{
777
2.84k
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
8
        return -1;
779
8
    }
780
781
    /* look for special cases */
782
2.83k
    if (m <= 1) {
783
0
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
0
        if (mode == FAST_SEARCH)
788
0
            return STRINGLIB(find_char)(s, n, p[0]);
789
0
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
0
    }
798
799
2.83k
    if (mode != FAST_RSEARCH) {
800
2.82k
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
2.82k
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
2.82k
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
2.82k
    }
825
4
    else {
826
        /* FAST_RSEARCH */
827
4
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
4
    }
829
2.83k
}
Unexecuted instantiation: bytearrayobject.c:fastsearch
830