Coverage Report

Created: 2025-11-11 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Python/dtoa.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
33
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.70M
#define word0(x) (x)->L[1]
181
1.18M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
4.89M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
68.7k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
756k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
2.47M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
163k
#define Exp_shift  20
235
92.6k
#define Exp_shift1 20
236
431k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
1.08M
#define Exp_mask  0x7ff00000
239
386k
#define P 53
240
#define Nbits 53
241
199k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
280k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
87.8k
#define Exp_1  0x3ff00000
246
42.0k
#define Exp_11 0x3ff00000
247
173k
#define Ebits 11
248
143k
#define Frac_mask  0xfffff
249
44.5k
#define Frac_mask1 0xfffff
250
1.50M
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
63.9k
#define Bndry_mask  0xfffff
253
6.85k
#define Bndry_mask1 0xfffff
254
67.6k
#define Sign_bit 0x80000000
255
6.32k
#define Log2P 1
256
#define Tiny0 0
257
16.7k
#define Tiny1 1
258
46.3k
#define Quick_max 14
259
27.8k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
797k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.94k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.46k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
14.8M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
5.64M
#define freelist interp->dtoa.freelist
336
254
#define private_mem interp->dtoa.preallocated
337
696
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.41M
{
344
1.41M
    int x;
345
1.41M
    Bigint *rv;
346
1.41M
    unsigned int len;
347
1.41M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.41M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.41M
        freelist[k] = rv->next;
351
254
    else {
352
254
        x = 1 << k;
353
254
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
254
            /sizeof(double);
355
254
        if (k <= Bigint_Kmax &&
356
254
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
254
        ) {
358
221
            rv = (Bigint*)pmem_next;
359
221
            pmem_next += len;
360
221
        }
361
33
        else {
362
33
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
33
            if (rv == NULL)
364
0
                return NULL;
365
33
        }
366
254
        rv->k = k;
367
254
        rv->maxwds = x;
368
254
    }
369
1.41M
    rv->sign = rv->wds = 0;
370
1.41M
    return rv;
371
1.41M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
5.19M
{
378
5.19M
    if (v) {
379
1.41M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.41M
        else {
382
1.41M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.41M
            v->next = freelist[v->k];
384
1.41M
            freelist[v->k] = v;
385
1.41M
        }
386
1.41M
    }
387
5.19M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
92.8k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
92.8k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
604k
{
445
604k
    int i, wds;
446
604k
    ULong *x;
447
604k
    ULLong carry, y;
448
604k
    Bigint *b1;
449
450
604k
    wds = b->wds;
451
604k
    x = b->x;
452
604k
    i = 0;
453
604k
    carry = a;
454
2.02M
    do {
455
2.02M
        y = *x * (ULLong)m + carry;
456
2.02M
        carry = y >> 32;
457
2.02M
        *x++ = (ULong)(y & FFFFFFFF);
458
2.02M
    }
459
2.02M
    while(++i < wds);
460
604k
    if (carry) {
461
38.9k
        if (wds >= b->maxwds) {
462
1.70k
            b1 = Balloc(b->k+1);
463
1.70k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
1.70k
            Bcopy(b1, b);
468
1.70k
            Bfree(b);
469
1.70k
            b = b1;
470
1.70k
        }
471
38.9k
        b->x[wds++] = (ULong)carry;
472
38.9k
        b->wds = wds;
473
38.9k
    }
474
604k
    return b;
475
604k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
68.7k
{
486
68.7k
    Bigint *b;
487
68.7k
    int i, k;
488
68.7k
    Long x, y;
489
490
68.7k
    x = (nd + 8) / 9;
491
98.5k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
68.7k
    b = Balloc(k);
493
68.7k
    if (b == NULL)
494
0
        return NULL;
495
68.7k
    b->x[0] = y9;
496
68.7k
    b->wds = 1;
497
498
68.7k
    if (nd <= 9)
499
44.5k
      return b;
500
501
24.1k
    s += 9;
502
190k
    for (i = 9; i < nd0; i++) {
503
165k
        b = multadd(b, 10, *s++ - '0');
504
165k
        if (b == NULL)
505
0
            return NULL;
506
165k
    }
507
24.1k
    s++;
508
74.6k
    for(; i < nd; i++) {
509
50.4k
        b = multadd(b, 10, *s++ - '0');
510
50.4k
        if (b == NULL)
511
0
            return NULL;
512
50.4k
    }
513
24.1k
    return b;
514
24.1k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
114k
{
521
114k
    int k = 0;
522
523
114k
    if (!(x & 0xffff0000)) {
524
71.4k
        k = 16;
525
71.4k
        x <<= 16;
526
71.4k
    }
527
114k
    if (!(x & 0xff000000)) {
528
70.2k
        k += 8;
529
70.2k
        x <<= 8;
530
70.2k
    }
531
114k
    if (!(x & 0xf0000000)) {
532
71.3k
        k += 4;
533
71.3k
        x <<= 4;
534
71.3k
    }
535
114k
    if (!(x & 0xc0000000)) {
536
64.8k
        k += 2;
537
64.8k
        x <<= 2;
538
64.8k
    }
539
114k
    if (!(x & 0x80000000)) {
540
67.6k
        k++;
541
67.6k
        if (!(x & 0x40000000))
542
0
            return 32;
543
67.6k
    }
544
114k
    return k;
545
114k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
46.3k
{
553
46.3k
    int k;
554
46.3k
    ULong x = *y;
555
556
46.3k
    if (x & 7) {
557
25.4k
        if (x & 1)
558
14.4k
            return 0;
559
10.9k
        if (x & 2) {
560
7.23k
            *y = x >> 1;
561
7.23k
            return 1;
562
7.23k
        }
563
3.74k
        *y = x >> 2;
564
3.74k
        return 2;
565
10.9k
    }
566
20.8k
    k = 0;
567
20.8k
    if (!(x & 0xffff)) {
568
7.77k
        k = 16;
569
7.77k
        x >>= 16;
570
7.77k
    }
571
20.8k
    if (!(x & 0xff)) {
572
4.19k
        k += 8;
573
4.19k
        x >>= 8;
574
4.19k
    }
575
20.8k
    if (!(x & 0xf)) {
576
10.8k
        k += 4;
577
10.8k
        x >>= 4;
578
10.8k
    }
579
20.8k
    if (!(x & 0x3)) {
580
10.8k
        k += 2;
581
10.8k
        x >>= 2;
582
10.8k
    }
583
20.8k
    if (!(x & 1)) {
584
14.7k
        k++;
585
14.7k
        x >>= 1;
586
14.7k
        if (!x)
587
0
            return 32;
588
14.7k
    }
589
20.8k
    *y = x;
590
20.8k
    return k;
591
20.8k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
163k
{
598
163k
    Bigint *b;
599
600
163k
    b = Balloc(1);
601
163k
    if (b == NULL)
602
0
        return NULL;
603
163k
    b->x[0] = i;
604
163k
    b->wds = 1;
605
163k
    return b;
606
163k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
386k
{
614
386k
    Bigint *c;
615
386k
    int k, wa, wb, wc;
616
386k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
386k
    ULong y;
618
386k
    ULLong carry, z;
619
620
386k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
5.30k
        c = Balloc(0);
622
5.30k
        if (c == NULL)
623
0
            return NULL;
624
5.30k
        c->wds = 1;
625
5.30k
        c->x[0] = 0;
626
5.30k
        return c;
627
5.30k
    }
628
629
381k
    if (a->wds < b->wds) {
630
177k
        c = a;
631
177k
        a = b;
632
177k
        b = c;
633
177k
    }
634
381k
    k = a->k;
635
381k
    wa = a->wds;
636
381k
    wb = b->wds;
637
381k
    wc = wa + wb;
638
381k
    if (wc > a->maxwds)
639
163k
        k++;
640
381k
    c = Balloc(k);
641
381k
    if (c == NULL)
642
0
        return NULL;
643
3.63M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.25M
        *x = 0;
645
381k
    xa = a->x;
646
381k
    xae = xa + wa;
647
381k
    xb = b->x;
648
381k
    xbe = xb + wb;
649
381k
    xc0 = c->x;
650
1.22M
    for(; xb < xbe; xc0++) {
651
840k
        if ((y = *xb++)) {
652
835k
            x = xa;
653
835k
            xc = xc0;
654
835k
            carry = 0;
655
8.59M
            do {
656
8.59M
                z = *x++ * (ULLong)y + *xc + carry;
657
8.59M
                carry = z >> 32;
658
8.59M
                *xc++ = (ULong)(z & FFFFFFFF);
659
8.59M
            }
660
8.59M
            while(x < xae);
661
835k
            *xc = (ULong)carry;
662
835k
        }
663
840k
    }
664
652k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
381k
    c->wds = wc;
666
381k
    return c;
667
381k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
120k
{
678
120k
    Bigint *b1, *p5, **p5s;
679
120k
    int i;
680
120k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
120k
    assert(0 <= k && k < 1024);
688
689
120k
    if ((i = k & 3)) {
690
82.2k
        b = multadd(b, p05[i-1], 0);
691
82.2k
        if (b == NULL)
692
0
            return NULL;
693
82.2k
    }
694
695
120k
    if (!(k >>= 2))
696
10.1k
        return b;
697
110k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
110k
    p5s = interp->dtoa.p5s;
699
547k
    for(;;) {
700
547k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
547k
        p5 = *p5s;
702
547k
        p5s++;
703
547k
        if (k & 1) {
704
323k
            b1 = mult(b, p5);
705
323k
            Bfree(b);
706
323k
            b = b1;
707
323k
            if (b == NULL)
708
0
                return NULL;
709
323k
        }
710
547k
        if (!(k >>= 1))
711
110k
            break;
712
547k
    }
713
110k
    return b;
714
110k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
301k
{
775
301k
    int i, k1, n, n1;
776
301k
    Bigint *b1;
777
301k
    ULong *x, *x1, *xe, z;
778
779
301k
    if (!k || (!b->x[0] && b->wds == 1))
780
5.70k
        return b;
781
782
296k
    n = k >> 5;
783
296k
    k1 = b->k;
784
296k
    n1 = n + b->wds + 1;
785
717k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
420k
        k1++;
787
296k
    b1 = Balloc(k1);
788
296k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
296k
    x1 = b1->x;
793
1.65M
    for(i = 0; i < n; i++)
794
1.35M
        *x1++ = 0;
795
296k
    x = b->x;
796
296k
    xe = x + b->wds;
797
296k
    if (k &= 0x1f) {
798
294k
        k1 = 32 - k;
799
294k
        z = 0;
800
1.47M
        do {
801
1.47M
            *x1++ = *x << k | z;
802
1.47M
            z = *x++ >> k1;
803
1.47M
        }
804
1.47M
        while(x < xe);
805
294k
        if ((*x1 = z))
806
45.6k
            ++n1;
807
294k
    }
808
1.75k
    else do
809
4.27k
             *x1++ = *x++;
810
4.27k
        while(x < xe);
811
296k
    b1->wds = n1 - 1;
812
296k
    Bfree(b);
813
296k
    return b1;
814
296k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
810k
{
822
810k
    ULong *xa, *xa0, *xb, *xb0;
823
810k
    int i, j;
824
825
810k
    i = a->wds;
826
810k
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
810k
    if (i -= j)
834
178k
        return i;
835
632k
    xa0 = a->x;
836
632k
    xa = xa0 + j;
837
632k
    xb0 = b->x;
838
632k
    xb = xb0 + j;
839
772k
    for(;;) {
840
772k
        if (*--xa != *--xb)
841
614k
            return *xa < *xb ? -1 : 1;
842
158k
        if (xa <= xa0)
843
17.4k
            break;
844
158k
    }
845
17.4k
    return 0;
846
632k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
208k
{
855
208k
    Bigint *c;
856
208k
    int i, wa, wb;
857
208k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
208k
    ULLong borrow, y;
859
860
208k
    i = cmp(a,b);
861
208k
    if (!i) {
862
3.21k
        c = Balloc(0);
863
3.21k
        if (c == NULL)
864
0
            return NULL;
865
3.21k
        c->wds = 1;
866
3.21k
        c->x[0] = 0;
867
3.21k
        return c;
868
3.21k
    }
869
204k
    if (i < 0) {
870
40.8k
        c = a;
871
40.8k
        a = b;
872
40.8k
        b = c;
873
40.8k
        i = 1;
874
40.8k
    }
875
164k
    else
876
164k
        i = 0;
877
204k
    c = Balloc(a->k);
878
204k
    if (c == NULL)
879
0
        return NULL;
880
204k
    c->sign = i;
881
204k
    wa = a->wds;
882
204k
    xa = a->x;
883
204k
    xae = xa + wa;
884
204k
    wb = b->wds;
885
204k
    xb = b->x;
886
204k
    xbe = xb + wb;
887
204k
    xc = c->x;
888
204k
    borrow = 0;
889
1.52M
    do {
890
1.52M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.52M
        borrow = y >> 32 & (ULong)1;
892
1.52M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.52M
    }
894
1.52M
    while(xb < xbe);
895
445k
    while(xa < xae) {
896
241k
        y = *xa++ - borrow;
897
241k
        borrow = y >> 32 & (ULong)1;
898
241k
        *xc++ = (ULong)(y & FFFFFFFF);
899
241k
    }
900
312k
    while(!*--xc)
901
108k
        wa--;
902
204k
    c->wds = wa;
903
204k
    return c;
904
204k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
37.4k
{
912
37.4k
    Long L;
913
37.4k
    U u;
914
915
37.4k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
37.4k
    word0(&u) = L;
917
37.4k
    word1(&u) = 0;
918
37.4k
    return dval(&u);
919
37.4k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
69.4k
{
926
69.4k
    ULong *xa, *xa0, w, y, z;
927
69.4k
    int k;
928
69.4k
    U d;
929
930
69.4k
    xa0 = a->x;
931
69.4k
    xa = xa0 + a->wds;
932
69.4k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
69.4k
    k = hi0bits(y);
937
69.4k
    *e = 32 - k;
938
69.4k
    if (k < Ebits) {
939
17.4k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
17.4k
        w = xa > xa0 ? *--xa : 0;
941
17.4k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
17.4k
        goto ret_d;
943
17.4k
    }
944
51.9k
    z = xa > xa0 ? *--xa : 0;
945
51.9k
    if (k -= Ebits) {
946
48.4k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
48.4k
        y = xa > xa0 ? *--xa : 0;
948
48.4k
        word1(&d) = z << k | y >> (32 - k);
949
48.4k
    }
950
3.54k
    else {
951
3.54k
        word0(&d) = Exp_1 | y;
952
3.54k
        word1(&d) = z;
953
3.54k
    }
954
69.4k
  ret_d:
955
69.4k
    return dval(&d);
956
51.9k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
97.2k
{
982
97.2k
    Bigint *b;
983
984
97.2k
    b = Balloc(1);
985
97.2k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
97.2k
    b->wds = 2;
990
97.2k
    b->x[0] = word1(d);
991
97.2k
    b->x[1] = word0(d) & Frac_mask;
992
97.2k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
97.2k
    if (*e < Etiny)
994
5.70k
        *e = Etiny;
995
91.4k
    else
996
91.4k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
97.2k
    if (scale && (b->x[0] || b->x[1])) {
1000
29.0k
        *e -= scale;
1001
29.0k
        if (*e < Etiny) {
1002
25.7k
            scale = Etiny - *e;
1003
25.7k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
25.7k
            assert(0 < scale && scale <= P - 1);
1006
25.7k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
13.2k
                assert(b->x[0] == 0);
1009
13.2k
                b->x[0] = b->x[1];
1010
13.2k
                b->x[1] = 0;
1011
13.2k
                scale -= 32;
1012
13.2k
            }
1013
25.7k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
24.2k
                assert(b->x[0] << (32 - scale) == 0);
1016
24.2k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
24.2k
                b->x[1] >>= scale;
1018
24.2k
            }
1019
25.7k
        }
1020
29.0k
    }
1021
    /* Ensure b is normalized. */
1022
97.2k
    if (!b->x[1])
1023
22.7k
        b->wds = 1;
1024
1025
97.2k
    return b;
1026
97.2k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
46.3k
{
1040
46.3k
    Bigint *b;
1041
46.3k
    int de, k;
1042
46.3k
    ULong *x, y, z;
1043
46.3k
    int i;
1044
1045
46.3k
    b = Balloc(1);
1046
46.3k
    if (b == NULL)
1047
0
        return NULL;
1048
46.3k
    x = b->x;
1049
1050
46.3k
    z = word0(d) & Frac_mask;
1051
46.3k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
46.3k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
42.0k
        z |= Exp_msk1;
1054
46.3k
    if ((y = word1(d))) {
1055
33.2k
        if ((k = lo0bits(&y))) {
1056
19.4k
            x[0] = y | z << (32 - k);
1057
19.4k
            z >>= k;
1058
19.4k
        }
1059
13.8k
        else
1060
13.8k
            x[0] = y;
1061
33.2k
        i =
1062
33.2k
            b->wds = (x[1] = z) ? 2 : 1;
1063
33.2k
    }
1064
13.0k
    else {
1065
13.0k
        k = lo0bits(&z);
1066
13.0k
        x[0] = z;
1067
13.0k
        i =
1068
13.0k
            b->wds = 1;
1069
13.0k
        k += 32;
1070
13.0k
    }
1071
46.3k
    if (de) {
1072
42.0k
        *e = de - Bias - (P-1) + k;
1073
42.0k
        *bits = P - k;
1074
42.0k
    }
1075
4.27k
    else {
1076
4.27k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.27k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.27k
    }
1079
46.3k
    return b;
1080
46.3k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
34.7k
{
1088
34.7k
    U da, db;
1089
34.7k
    int k, ka, kb;
1090
1091
34.7k
    dval(&da) = b2d(a, &ka);
1092
34.7k
    dval(&db) = b2d(b, &kb);
1093
34.7k
    k = ka - kb + 32*(a->wds - b->wds);
1094
34.7k
    if (k > 0)
1095
22.9k
        word0(&da) += k*Exp_msk1;
1096
11.7k
    else {
1097
11.7k
        k = -k;
1098
11.7k
        word0(&db) += k*Exp_msk1;
1099
11.7k
    }
1100
34.7k
    return dval(&da) / dval(&db);
1101
34.7k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
23.2k
#define Scale_Bit 0x10
1119
24.2k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
40.4k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
40.4k
{
1129
40.4k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
40.4k
    if (p2 > 0)
1131
24.7k
        rv -= p2;
1132
40.4k
    return rv & kmask;
1133
40.4k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
246k
{
1142
246k
    int n;
1143
246k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
246k
    ULLong borrow, carry, y, ys;
1145
1146
246k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
246k
    if (b->wds < n)
1152
6.88k
        return 0;
1153
239k
    sx = S->x;
1154
239k
    sxe = sx + --n;
1155
239k
    bx = b->x;
1156
239k
    bxe = bx + n;
1157
239k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
239k
    if (q) {
1163
192k
        borrow = 0;
1164
192k
        carry = 0;
1165
1.10M
        do {
1166
1.10M
            ys = *sx++ * (ULLong)q + carry;
1167
1.10M
            carry = ys >> 32;
1168
1.10M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.10M
            borrow = y >> 32 & (ULong)1;
1170
1.10M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.10M
        }
1172
1.10M
        while(sx <= sxe);
1173
192k
        if (!*bxe) {
1174
892
            bx = b->x;
1175
892
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
892
            b->wds = n;
1178
892
        }
1179
192k
    }
1180
239k
    if (cmp(b, S) >= 0) {
1181
19.7k
        q++;
1182
19.7k
        borrow = 0;
1183
19.7k
        carry = 0;
1184
19.7k
        bx = b->x;
1185
19.7k
        sx = S->x;
1186
115k
        do {
1187
115k
            ys = *sx++ + carry;
1188
115k
            carry = ys >> 32;
1189
115k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
115k
            borrow = y >> 32 & (ULong)1;
1191
115k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
115k
        }
1193
115k
        while(sx <= sxe);
1194
19.7k
        bx = b->x;
1195
19.7k
        bxe = bx + n;
1196
19.7k
        if (!*bxe) {
1197
20.4k
            while(--bxe > bx && !*bxe)
1198
1.59k
                --n;
1199
18.8k
            b->wds = n;
1200
18.8k
        }
1201
19.7k
    }
1202
239k
    return q;
1203
246k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.13k
{
1214
3.13k
    U u;
1215
1216
3.13k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
400
        word0(&u) = (P+2)*Exp_msk1;
1219
400
        word1(&u) = 0;
1220
400
        return u.d;
1221
400
    }
1222
2.73k
    else {
1223
2.73k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.73k
        return ulp(x);
1225
2.73k
    }
1226
3.13k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
7.19k
{
1277
7.19k
    Bigint *b, *d;
1278
7.19k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
7.19k
    nd = bc->nd;
1281
7.19k
    nd0 = bc->nd0;
1282
7.19k
    p5 = nd + bc->e0;
1283
7.19k
    b = sd2b(rv, bc->scale, &p2);
1284
7.19k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
7.19k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
7.19k
    b = lshift(b, 1);
1294
7.19k
    if (b == NULL)
1295
0
        return -1;
1296
7.19k
    b->x[0] |= 1;
1297
7.19k
    p2--;
1298
1299
7.19k
    p2 -= p5;
1300
7.19k
    d = i2b(1);
1301
7.19k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
7.19k
    if (p5 > 0) {
1309
4.88k
        d = pow5mult(d, p5);
1310
4.88k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
4.88k
    }
1315
2.31k
    else if (p5 < 0) {
1316
1.49k
        b = pow5mult(b, -p5);
1317
1.49k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.49k
    }
1322
7.19k
    if (p2 > 0) {
1323
3.75k
        b2 = p2;
1324
3.75k
        d2 = 0;
1325
3.75k
    }
1326
3.44k
    else {
1327
3.44k
        b2 = 0;
1328
3.44k
        d2 = -p2;
1329
3.44k
    }
1330
7.19k
    i = dshift(d, d2);
1331
7.19k
    if ((b2 += i) > 0) {
1332
6.93k
        b = lshift(b, b2);
1333
6.93k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
6.93k
    }
1338
7.19k
    if ((d2 += i) > 0) {
1339
6.45k
        d = lshift(d, d2);
1340
6.45k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
6.45k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
7.19k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
830
        dd = -1;
1352
6.36k
    else {
1353
6.36k
        i = 0;
1354
128k
        for(;;) {
1355
128k
            b = multadd(b, 10, 0);
1356
128k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
128k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
128k
            i++;
1362
1363
128k
            if (dd)
1364
4.91k
                break;
1365
123k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
840
                dd = i < nd;
1368
840
                break;
1369
840
            }
1370
123k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
618
                dd = -1;
1373
618
                break;
1374
618
            }
1375
123k
        }
1376
6.36k
    }
1377
7.19k
    Bfree(b);
1378
7.19k
    Bfree(d);
1379
7.19k
    if (dd > 0 || (dd == 0 && odd))
1380
1.60k
        dval(rv) += sulp(rv, bc);
1381
7.19k
    return 0;
1382
7.19k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
824k
{
1388
824k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
824k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
824k
    const char *s, *s0, *s1;
1391
824k
    double aadj, aadj1;
1392
824k
    U aadj2, adj, rv, rv0;
1393
824k
    ULong y, z, abs_exp;
1394
824k
    Long L;
1395
824k
    BCinfo bc;
1396
824k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
824k
    size_t ndigits, fraclen;
1398
824k
    double result;
1399
1400
824k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
824k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
824k
    sign = 0;
1407
824k
    switch (c) {
1408
693k
    case '-':
1409
693k
        sign = 1;
1410
693k
        _Py_FALLTHROUGH;
1411
693k
    case '+':
1412
693k
        c = *++s;
1413
824k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
824k
    s1 = s;
1417
844k
    while (c == '0')
1418
19.9k
        c = *++s;
1419
824k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
824k
    s0 = s1 = s;
1426
4.15M
    while ('0' <= c && c <= '9')
1427
3.33M
        c = *++s;
1428
824k
    ndigits = s - s1;
1429
824k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
824k
    if (c == '.') {
1433
64.9k
        c = *++s;
1434
64.9k
        if (!ndigits) {
1435
23.6k
            s1 = s;
1436
1.60M
            while (c == '0')
1437
1.57M
                c = *++s;
1438
23.6k
            lz = lz || s != s1;
1439
23.6k
            fraclen += (s - s1);
1440
23.6k
            s0 = s;
1441
23.6k
        }
1442
64.9k
        s1 = s;
1443
13.6M
        while ('0' <= c && c <= '9')
1444
13.6M
            c = *++s;
1445
64.9k
        ndigits += s - s1;
1446
64.9k
        fraclen += s - s1;
1447
64.9k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
824k
    if (!ndigits && !lz) {
1453
19
        if (se)
1454
19
            *se = (char *)s00;
1455
19
        goto parse_error;
1456
19
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
824k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
824k
    nd = (int)ndigits;
1466
824k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
824k
    e = 0;
1470
824k
    if (c == 'e' || c == 'E') {
1471
756k
        s00 = s;
1472
756k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
756k
        esign = 0;
1476
756k
        switch (c) {
1477
28.2k
        case '-':
1478
28.2k
            esign = 1;
1479
28.2k
            _Py_FALLTHROUGH;
1480
40.6k
        case '+':
1481
40.6k
            c = *++s;
1482
756k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
756k
        s1 = s;
1486
761k
        while (c == '0')
1487
4.70k
            c = *++s;
1488
756k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
756k
        s1 = s;
1492
756k
        abs_exp = 0;
1493
3.30M
        while ('0' <= c && c <= '9') {
1494
2.54M
            abs_exp = 10*abs_exp + (c - '0');
1495
2.54M
            c = *++s;
1496
2.54M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
756k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
7.33k
            e = (int)MAX_ABS_EXP;
1503
749k
        else
1504
749k
            e = (int)abs_exp;
1505
756k
        if (esign)
1506
28.2k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
756k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
756k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
824k
    e -= nd - nd0;
1515
824k
    if (nd0 <= 0)
1516
27.1k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
824k
    if (se)
1520
824k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
824k
    if (!nd)
1525
10.3k
        goto ret;
1526
2.53M
    for (i = nd; i > 0; ) {
1527
2.53M
        --i;
1528
2.53M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
814k
            ++i;
1530
814k
            break;
1531
814k
        }
1532
2.53M
    }
1533
814k
    e += nd - i;
1534
814k
    nd = i;
1535
814k
    if (nd0 > nd)
1536
9.53k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
814k
    bc.e0 = e1 = e;
1575
814k
    y = z = 0;
1576
2.21M
    for (i = 0; i < nd; i++) {
1577
1.42M
        if (i < 9)
1578
1.19M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
227k
        else if (i < DBL_DIG+1)
1580
206k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
21.0k
        else
1582
21.0k
            break;
1583
1.42M
    }
1584
1585
814k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
814k
    dval(&rv) = y;
1587
814k
    if (k > 9) {
1588
36.9k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
36.9k
    }
1590
814k
    if (nd <= DBL_DIG
1591
786k
        && Flt_Rounds == 1
1592
814k
        ) {
1593
786k
        if (!e)
1594
13.1k
            goto ret;
1595
773k
        if (e > 0) {
1596
726k
            if (e <= Ten_pmax) {
1597
25.6k
                dval(&rv) *= tens[e];
1598
25.6k
                goto ret;
1599
25.6k
            }
1600
701k
            i = DBL_DIG - nd;
1601
701k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
3.09k
                e -= i;
1606
3.09k
                dval(&rv) *= tens[i];
1607
3.09k
                dval(&rv) *= tens[e];
1608
3.09k
                goto ret;
1609
3.09k
            }
1610
701k
        }
1611
46.9k
        else if (e >= -Ten_pmax) {
1612
27.6k
            dval(&rv) /= tens[-e];
1613
27.6k
            goto ret;
1614
27.6k
        }
1615
773k
    }
1616
744k
    e1 += nd - k;
1617
1618
744k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
744k
    if (e1 > 0) {
1623
710k
        if ((i = e1 & 15))
1624
695k
            dval(&rv) *= tens[i];
1625
710k
        if (e1 &= ~15) {
1626
704k
            if (e1 > DBL_MAX_10_EXP)
1627
674k
                goto ovfl;
1628
29.9k
            e1 >>= 4;
1629
79.6k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
49.7k
                if (e1 & 1)
1631
20.9k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
29.9k
            word0(&rv) -= P*Exp_msk1;
1634
29.9k
            dval(&rv) *= bigtens[j];
1635
29.9k
            if ((z = word0(&rv) & Exp_mask)
1636
29.9k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
540
                goto ovfl;
1638
29.3k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
504
                word0(&rv) = Big0;
1642
504
                word1(&rv) = Big1;
1643
504
            }
1644
28.8k
            else
1645
28.8k
                word0(&rv) += P*Exp_msk1;
1646
29.3k
        }
1647
710k
    }
1648
33.9k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
30.4k
        e1 = -e1;
1660
30.4k
        if ((i = e1 & 15))
1661
26.4k
            dval(&rv) /= tens[i];
1662
30.4k
        if (e1 >>= 4) {
1663
24.2k
            if (e1 >= 1 << n_bigtens)
1664
1.04k
                goto undfl;
1665
23.2k
            if (e1 & Scale_Bit)
1666
18.4k
                bc.scale = 2*P;
1667
122k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
99.3k
                if (e1 & 1)
1669
58.9k
                    dval(&rv) *= tinytens[j];
1670
23.2k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
18.4k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
17.0k
                if (j >= 32) {
1674
10.3k
                    word1(&rv) = 0;
1675
10.3k
                    if (j >= 53)
1676
5.82k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.56k
                    else
1678
4.56k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
10.3k
                }
1680
6.63k
                else
1681
6.63k
                    word1(&rv) &= 0xffffffff << j;
1682
17.0k
            }
1683
23.2k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
23.2k
        }
1686
30.4k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
68.7k
    bc.nd = nd;
1693
68.7k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
68.7k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
62.3k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
62.3k
            --i;
1708
62.3k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
10.0k
                ++i;
1710
10.0k
                break;
1711
10.0k
            }
1712
62.3k
        }
1713
10.0k
        e += nd - i;
1714
10.0k
        nd = i;
1715
10.0k
        if (nd0 > nd)
1716
7.13k
            nd0 = nd;
1717
10.0k
        if (nd < 9) { /* must recompute y */
1718
4.02k
            y = 0;
1719
21.3k
            for(i = 0; i < nd0; ++i)
1720
17.3k
                y = 10*y + s0[i] - '0';
1721
11.6k
            for(; i < nd; ++i)
1722
7.63k
                y = 10*y + s0[i+1] - '0';
1723
4.02k
        }
1724
10.0k
    }
1725
68.7k
    bd0 = s2b(s0, nd0, nd, y);
1726
68.7k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
90.0k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
90.0k
        bd = Balloc(bd0->k);
1758
90.0k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
90.0k
        Bcopy(bd, bd0);
1762
90.0k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
90.0k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
90.0k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
90.0k
        bs = i2b(1);
1772
90.0k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
90.0k
        if (e >= 0) {
1777
41.5k
            bb2 = bb5 = 0;
1778
41.5k
            bd2 = bd5 = e;
1779
41.5k
        }
1780
48.4k
        else {
1781
48.4k
            bb2 = bb5 = -e;
1782
48.4k
            bd2 = bd5 = 0;
1783
48.4k
        }
1784
90.0k
        if (bbe >= 0)
1785
43.2k
            bb2 += bbe;
1786
46.8k
        else
1787
46.8k
            bd2 -= bbe;
1788
90.0k
        bs2 = bb2;
1789
90.0k
        bb2++;
1790
90.0k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
90.0k
        i = bb2 < bd2 ? bb2 : bd2;
1811
90.0k
        if (i > bs2)
1812
46.6k
            i = bs2;
1813
90.0k
        if (i > 0) {
1814
89.2k
            bb2 -= i;
1815
89.2k
            bd2 -= i;
1816
89.2k
            bs2 -= i;
1817
89.2k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
90.0k
        if (bb5 > 0) {
1821
48.4k
            bs = pow5mult(bs, bb5);
1822
48.4k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
48.4k
            Bigint *bb1 = mult(bs, bb);
1826
48.4k
            Bfree(bb);
1827
48.4k
            bb = bb1;
1828
48.4k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
48.4k
        }
1832
90.0k
        if (bb2 > 0) {
1833
90.0k
            bb = lshift(bb, bb2);
1834
90.0k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
90.0k
        }
1838
90.0k
        if (bd5 > 0) {
1839
34.9k
            bd = pow5mult(bd, bd5);
1840
34.9k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
34.9k
        }
1844
90.0k
        if (bd2 > 0) {
1845
46.6k
            bd = lshift(bd, bd2);
1846
46.6k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
46.6k
        }
1850
90.0k
        if (bs2 > 0) {
1851
39.3k
            bs = lshift(bs, bs2);
1852
39.3k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
39.3k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
90.0k
        delta = diff(bb, bd);
1862
90.0k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
90.0k
        dsign = delta->sign;
1866
90.0k
        delta->sign = 0;
1867
90.0k
        i = cmp(delta, bs);
1868
90.0k
        if (bc.nd > nd && i <= 0) {
1869
10.0k
            if (dsign)
1870
6.32k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
3.72k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.14k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.14k
                if (j - bc.scale >= 2) {
1890
874
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
874
                    break; /* Use bigcomp. */
1892
874
                }
1893
1.14k
            }
1894
1895
2.84k
            {
1896
2.84k
                bc.nd = nd;
1897
2.84k
                i = -1; /* Discarded digits make delta smaller. */
1898
2.84k
            }
1899
2.84k
        }
1900
1901
82.8k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
44.5k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
4.92k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
44.5k
                ) {
1908
41.0k
                break;
1909
41.0k
            }
1910
3.49k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
516
                break;
1913
516
            }
1914
2.97k
            delta = lshift(delta,Log2P);
1915
2.97k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.97k
            if (cmp(delta, bs) > 0)
1919
985
                goto drop_down;
1920
1.99k
            break;
1921
2.97k
        }
1922
38.2k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.55k
            if (dsign) {
1925
1.95k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
820
                    &&  word1(&rv) == (
1927
820
                        (bc.scale &&
1928
0
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
820
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
462
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
462
                        + Exp_msk1
1934
462
                        ;
1935
462
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
462
                    break;
1938
462
                }
1939
1.95k
            }
1940
1.59k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
985
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
985
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
985
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
985
                word0(&rv) = L | Bndry_mask1;
1958
985
                word1(&rv) = 0xffffffff;
1959
985
                break;
1960
985
            }
1961
3.09k
            if (!odd)
1962
2.44k
                break;
1963
652
            if (dsign)
1964
334
                dval(&rv) += sulp(&rv, &bc);
1965
318
            else {
1966
318
                dval(&rv) -= sulp(&rv, &bc);
1967
318
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
318
            }
1973
            /* dsign = 1 - dsign; */
1974
652
            break;
1975
652
        }
1976
34.7k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
24.4k
            if (dsign)
1978
10.7k
                aadj = aadj1 = 1.;
1979
13.6k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
8.35k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
8.35k
                aadj = 1.;
1986
8.35k
                aadj1 = -1.;
1987
8.35k
            }
1988
5.30k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
5.30k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
5.30k
                else
1995
5.30k
                    aadj *= 0.5;
1996
5.30k
                aadj1 = -aadj;
1997
5.30k
            }
1998
24.4k
        }
1999
10.2k
        else {
2000
10.2k
            aadj *= 0.5;
2001
10.2k
            aadj1 = dsign ? aadj : -aadj;
2002
10.2k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
10.2k
        }
2005
34.7k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
34.7k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
2.01k
            dval(&rv0) = dval(&rv);
2011
2.01k
            word0(&rv) -= P*Exp_msk1;
2012
2.01k
            adj.d = aadj1 * ulp(&rv);
2013
2.01k
            dval(&rv) += adj.d;
2014
2.01k
            if ((word0(&rv) & Exp_mask) >=
2015
2.01k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.47k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
991
                    goto ovfl;
2018
991
                }
2019
487
                word0(&rv) = Big0;
2020
487
                word1(&rv) = Big1;
2021
487
                goto cont;
2022
1.47k
            }
2023
536
            else
2024
536
                word0(&rv) += P*Exp_msk1;
2025
2.01k
        }
2026
32.7k
        else {
2027
32.7k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
14.1k
                if (aadj <= 0x7fffffff) {
2029
14.1k
                    if ((z = (ULong)aadj) <= 0)
2030
764
                        z = 1;
2031
14.1k
                    aadj = z;
2032
14.1k
                    aadj1 = dsign ? aadj : -aadj;
2033
14.1k
                }
2034
14.1k
                dval(&aadj2) = aadj1;
2035
14.1k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
14.1k
                aadj1 = dval(&aadj2);
2037
14.1k
            }
2038
32.7k
            adj.d = aadj1 * ulp(&rv);
2039
32.7k
            dval(&rv) += adj.d;
2040
32.7k
        }
2041
33.2k
        z = word0(&rv) & Exp_mask;
2042
33.2k
        if (bc.nd == nd) {
2043
29.1k
            if (!bc.scale)
2044
14.9k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
13.3k
                    L = (Long)aadj;
2047
13.3k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
13.3k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
13.3k
                        if (aadj < .4999999 || aadj > .5000001)
2051
12.4k
                            break;
2052
13.3k
                    }
2053
15
                    else if (aadj < .4999999/FLT_RADIX)
2054
15
                        break;
2055
13.3k
                }
2056
29.1k
        }
2057
21.2k
      cont:
2058
21.2k
        Bfree(bb); bb = NULL;
2059
21.2k
        Bfree(bd); bd = NULL;
2060
21.2k
        Bfree(bs); bs = NULL;
2061
21.2k
        Bfree(delta); delta = NULL;
2062
21.2k
    }
2063
67.7k
    if (bc.nd > nd) {
2064
7.19k
        error = bigcomp(&rv, s0, &bc);
2065
7.19k
        if (error)
2066
0
            goto failed_malloc;
2067
7.19k
    }
2068
2069
67.7k
    if (bc.scale) {
2070
18.4k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
18.4k
        word1(&rv0) = 0;
2072
18.4k
        dval(&rv) *= dval(&rv0);
2073
18.4k
    }
2074
2075
147k
  ret:
2076
147k
    result = sign ? -dval(&rv) : dval(&rv);
2077
147k
    goto done;
2078
2079
19
  parse_error:
2080
19
    result = 0.0;
2081
19
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
1.04k
  undfl:
2089
1.04k
    result = sign ? -0.0 : 0.0;
2090
1.04k
    goto done;
2091
2092
675k
  ovfl:
2093
675k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
675k
    word0(&rv) = Exp_mask;
2096
675k
    word1(&rv) = 0;
2097
675k
    result = sign ? -dval(&rv) : dval(&rv);
2098
675k
    goto done;
2099
2100
824k
  done:
2101
824k
    Bfree(bb);
2102
824k
    Bfree(bd);
2103
824k
    Bfree(bs);
2104
824k
    Bfree(bd0);
2105
824k
    Bfree(delta);
2106
824k
    return result;
2107
2108
67.7k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
51.9k
{
2113
51.9k
    int j, k, *r;
2114
2115
51.9k
    j = sizeof(ULong);
2116
51.9k
    for(k = 0;
2117
51.9k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
51.9k
        j <<= 1)
2119
0
        k++;
2120
51.9k
    r = (int*)Balloc(k);
2121
51.9k
    if (r == NULL)
2122
0
        return NULL;
2123
51.9k
    *r = k;
2124
51.9k
    return (char *)(r+1);
2125
51.9k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
5.59k
{
2130
5.59k
    char *rv, *t;
2131
2132
5.59k
    rv = rv_alloc(n);
2133
5.59k
    if (rv == NULL)
2134
0
        return NULL;
2135
5.59k
    t = rv;
2136
14.5k
    while((*t = *s++)) t++;
2137
5.59k
    if (rve)
2138
5.59k
        *rve = t;
2139
5.59k
    return rv;
2140
5.59k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
51.9k
{
2151
51.9k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
51.9k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
51.9k
    Bfree(b);
2154
51.9k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
51.9k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
51.9k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
51.9k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
51.9k
        spec_case, try_quick;
2235
51.9k
    Long L;
2236
51.9k
    int denorm;
2237
51.9k
    ULong x;
2238
51.9k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
51.9k
    U d2, eps, u;
2240
51.9k
    double ds;
2241
51.9k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
51.9k
    mlo = mhi = S = 0;
2246
51.9k
    s0 = 0;
2247
2248
51.9k
    u.d = dd;
2249
51.9k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
15.7k
        *sign = 1;
2252
15.7k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
15.7k
    }
2254
36.1k
    else
2255
36.1k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
51.9k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
486
    {
2260
        /* Infinity or NaN */
2261
486
        *decpt = 9999;
2262
486
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
486
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
486
    }
2266
51.4k
    if (!dval(&u)) {
2267
5.10k
        *decpt = 1;
2268
5.10k
        return nrv_alloc("0", rve, 1);
2269
5.10k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
46.3k
    b = d2b(&u, &be, &bbits);
2274
46.3k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
46.3k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
42.0k
        dval(&d2) = dval(&u);
2278
42.0k
        word0(&d2) &= Frac_mask1;
2279
42.0k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
42.0k
        i -= Bias;
2304
42.0k
        denorm = 0;
2305
42.0k
    }
2306
4.27k
    else {
2307
        /* d is denormalized */
2308
2309
4.27k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.27k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.27k
            : word1(&u) << (32 - i);
2312
4.27k
        dval(&d2) = x;
2313
4.27k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.27k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.27k
        denorm = 1;
2316
4.27k
    }
2317
46.3k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
46.3k
        i*0.301029995663981;
2319
46.3k
    k = (int)ds;
2320
46.3k
    if (ds < 0. && ds != k)
2321
13.8k
        k--;    /* want k = floor(ds) */
2322
46.3k
    k_check = 1;
2323
46.3k
    if (k >= 0 && k <= Ten_pmax) {
2324
21.0k
        if (dval(&u) < tens[k])
2325
2.48k
            k--;
2326
21.0k
        k_check = 0;
2327
21.0k
    }
2328
46.3k
    j = bbits - i - 1;
2329
46.3k
    if (j >= 0) {
2330
20.0k
        b2 = 0;
2331
20.0k
        s2 = j;
2332
20.0k
    }
2333
26.2k
    else {
2334
26.2k
        b2 = -j;
2335
26.2k
        s2 = 0;
2336
26.2k
    }
2337
46.3k
    if (k >= 0) {
2338
31.7k
        b5 = 0;
2339
31.7k
        s5 = k;
2340
31.7k
        s2 += k;
2341
31.7k
    }
2342
14.6k
    else {
2343
14.6k
        b2 -= k;
2344
14.6k
        b5 = -k;
2345
14.6k
        s5 = 0;
2346
14.6k
    }
2347
46.3k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
46.3k
    try_quick = 1;
2351
2352
46.3k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
46.3k
    leftright = 1;
2357
46.3k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
46.3k
    switch(mode) {
2360
46.3k
    case 0:
2361
46.3k
    case 1:
2362
46.3k
        i = 18;
2363
46.3k
        ndigits = 0;
2364
46.3k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
46.3k
    }
2383
46.3k
    s0 = rv_alloc(i);
2384
46.3k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
46.3k
    s = s0;
2387
2388
2389
46.3k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
46.3k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
13.0k
        ds = tens[k];
2492
13.0k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
19.2k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
19.2k
            L = (Long)(dval(&u) / ds);
2500
19.2k
            dval(&u) -= L*ds;
2501
19.2k
            *s++ = '0' + (int)L;
2502
19.2k
            if (!dval(&u)) {
2503
13.0k
                break;
2504
13.0k
            }
2505
6.22k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
6.22k
        }
2528
13.0k
        goto ret1;
2529
13.0k
    }
2530
2531
33.2k
    m2 = b2;
2532
33.2k
    m5 = b5;
2533
33.2k
    if (leftright) {
2534
33.2k
        i =
2535
33.2k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
33.2k
            1 + P - bbits;
2537
33.2k
        b2 += i;
2538
33.2k
        s2 += i;
2539
33.2k
        mhi = i2b(1);
2540
33.2k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
33.2k
    }
2543
33.2k
    if (m2 > 0 && s2 > 0) {
2544
29.4k
        i = m2 < s2 ? m2 : s2;
2545
29.4k
        b2 -= i;
2546
29.4k
        m2 -= i;
2547
29.4k
        s2 -= i;
2548
29.4k
    }
2549
33.2k
    if (b5 > 0) {
2550
14.6k
        if (leftright) {
2551
14.6k
            if (m5 > 0) {
2552
14.6k
                mhi = pow5mult(mhi, m5);
2553
14.6k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
14.6k
                b1 = mult(mhi, b);
2556
14.6k
                Bfree(b);
2557
14.6k
                b = b1;
2558
14.6k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
14.6k
            }
2561
14.6k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
14.6k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
14.6k
    }
2573
33.2k
    S = i2b(1);
2574
33.2k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
33.2k
    if (s5 > 0) {
2577
16.3k
        S = pow5mult(S, s5);
2578
16.3k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
16.3k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
33.2k
    spec_case = 0;
2585
33.2k
    if ((mode < 2 || leftright)
2586
33.2k
        ) {
2587
33.2k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
1.37k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
33.2k
            ) {
2590
            /* The special case */
2591
1.11k
            b2 += Log2P;
2592
1.11k
            s2 += Log2P;
2593
1.11k
            spec_case = 1;
2594
1.11k
        }
2595
33.2k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
33.2k
#define iInc 28
2605
33.2k
    i = dshift(S, s2);
2606
33.2k
    b2 += i;
2607
33.2k
    m2 += i;
2608
33.2k
    s2 += i;
2609
33.2k
    if (b2 > 0) {
2610
33.2k
        b = lshift(b, b2);
2611
33.2k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
33.2k
    }
2614
33.2k
    if (s2 > 0) {
2615
32.6k
        S = lshift(S, s2);
2616
32.6k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
32.6k
    }
2619
33.2k
    if (k_check) {
2620
25.2k
        if (cmp(b,S) < 0) {
2621
1.94k
            k--;
2622
1.94k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
1.94k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
1.94k
            if (leftright) {
2626
1.94k
                mhi = multadd(mhi, 10, 0);
2627
1.94k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
1.94k
            }
2630
1.94k
            ilim = ilim1;
2631
1.94k
        }
2632
25.2k
    }
2633
33.2k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
33.2k
    if (leftright) {
2653
33.2k
        if (m2 > 0) {
2654
32.2k
            mhi = lshift(mhi, m2);
2655
32.2k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
32.2k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
33.2k
        mlo = mhi;
2664
33.2k
        if (spec_case) {
2665
1.11k
            mhi = Balloc(mhi->k);
2666
1.11k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.11k
            Bcopy(mhi, mlo);
2669
1.11k
            mhi = lshift(mhi, Log2P);
2670
1.11k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.11k
        }
2673
2674
118k
        for(i = 1;;i++) {
2675
118k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
118k
            j = cmp(b, mlo);
2680
118k
            delta = diff(S, mhi);
2681
118k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
118k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
118k
            Bfree(delta);
2685
118k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
118k
                ) {
2687
2.18k
                if (dig == '9')
2688
395
                    goto round_9_up;
2689
1.78k
                if (j > 0)
2690
911
                    dig++;
2691
1.78k
                *s++ = dig;
2692
1.78k
                goto ret;
2693
2.18k
            }
2694
115k
            if (j < 0 || (j == 0 && mode != 1
2695
1.81k
                          && !(word1(&u) & 1)
2696
97.2k
                    )) {
2697
19.4k
                if (!b->x[0] && b->wds <= 1) {
2698
2.76k
                    goto accept_dig;
2699
2.76k
                }
2700
16.7k
                if (j1 > 0) {
2701
3.02k
                    b = lshift(b, 1);
2702
3.02k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.02k
                    j1 = cmp(b, S);
2705
3.02k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
1.82k
                        && dig++ == '9')
2707
298
                        goto round_9_up;
2708
3.02k
                }
2709
19.1k
              accept_dig:
2710
19.1k
                *s++ = dig;
2711
19.1k
                goto ret;
2712
16.7k
            }
2713
96.3k
            if (j1 > 0) {
2714
11.5k
                if (dig == '9') { /* possible if i == 1 */
2715
1.88k
                  round_9_up:
2716
1.88k
                    *s++ = '9';
2717
1.88k
                    goto roundoff;
2718
1.18k
                }
2719
10.3k
                *s++ = dig + 1;
2720
10.3k
                goto ret;
2721
11.5k
            }
2722
84.8k
            *s++ = dig;
2723
84.8k
            if (i == ilim)
2724
0
                break;
2725
84.8k
            b = multadd(b, 10, 0);
2726
84.8k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
84.8k
            if (mlo == mhi) {
2729
81.7k
                mlo = mhi = multadd(mhi, 10, 0);
2730
81.7k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
81.7k
            }
2733
3.03k
            else {
2734
3.03k
                mlo = multadd(mlo, 10, 0);
2735
3.03k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
3.03k
                mhi = multadd(mhi, 10, 0);
2738
3.03k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
3.03k
            }
2741
84.8k
        }
2742
33.2k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
1.88k
      roundoff:
2764
1.88k
        while(*--s == '9')
2765
1.88k
            if (s == s0) {
2766
1.88k
                k++;
2767
1.88k
                *s++ = '1';
2768
1.88k
                goto ret;
2769
1.88k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
33.2k
  ret:
2777
33.2k
    Bfree(S);
2778
33.2k
    if (mhi) {
2779
33.2k
        if (mlo && mlo != mhi)
2780
1.11k
            Bfree(mlo);
2781
33.2k
        Bfree(mhi);
2782
33.2k
    }
2783
46.3k
  ret1:
2784
46.3k
    Bfree(b);
2785
46.3k
    *s = 0;
2786
46.3k
    *decpt = k + 1;
2787
46.3k
    if (rve)
2788
46.3k
        *rve = s;
2789
46.3k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
33.2k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
22
{
2809
22
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
22
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
22
    Bigint *p5 = i2b(625);
2814
22
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
22
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
176
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
154
        p5 = mult(p5, p5);
2822
154
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
154
        p5s[i] = p5;
2826
154
    }
2827
2828
22
#endif
2829
22
    return PyStatus_Ok();
2830
22
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}