Coverage Report

Created: 2025-11-24 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Objects/stringlib/fastsearch.h
Line
Count
Source
1
/* stringlib: fastsearch implementation */
2
3
#define STRINGLIB_FASTSEARCH_H
4
5
/* fast search/count implementation, based on a mix between boyer-
6
   moore and horspool, with a few more bells and whistles on the top.
7
   for some more background, see:
8
   https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
9
10
/* note: fastsearch may access s[n], which isn't a problem when using
11
   Python's ordinary string types, but may cause problems if you're
12
   using this code in other contexts.  also, the count mode returns -1
13
   if there cannot possibly be a match in the target string, and 0 if
14
   it has actually checked for matches, but didn't find any.  callers
15
   beware! */
16
17
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
18
   algorithm, which has worst-case O(n) runtime and best-case O(n/k).
19
   Also compute a table of shifts to achieve O(n/k) in more cases,
20
   and often (data dependent) deduce larger shifts than pure C&P can
21
   deduce. See stringlib_find_two_way_notes.txt in this folder for a
22
   detailed explanation. */
23
24
628M
#define FAST_COUNT 0
25
425M
#define FAST_SEARCH 1
26
91.1M
#define FAST_RSEARCH 2
27
28
#if LONG_BIT >= 128
29
#define STRINGLIB_BLOOM_WIDTH 128
30
#elif LONG_BIT >= 64
31
3.55G
#define STRINGLIB_BLOOM_WIDTH 64
32
#elif LONG_BIT >= 32
33
#define STRINGLIB_BLOOM_WIDTH 32
34
#else
35
#error "LONG_BIT is smaller than 32"
36
#endif
37
38
#define STRINGLIB_BLOOM_ADD(mask, ch) \
39
112M
    ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
40
#define STRINGLIB_BLOOM(mask, ch)     \
41
3.44G
    ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
42
43
#ifdef STRINGLIB_FAST_MEMCHR
44
341M
#  define MEMCHR_CUT_OFF 15
45
#else
46
83.7M
#  define MEMCHR_CUT_OFF 40
47
#endif
48
49
Py_LOCAL_INLINE(Py_ssize_t)
50
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
51
424M
{
52
424M
    const STRINGLIB_CHAR *p, *e;
53
54
424M
    p = s;
55
424M
    e = s + n;
56
424M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
109M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
109M
        if (p != NULL)
60
107M
            return (p - s);
61
2.52M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
73.3M
        if (needle != 0) {
71
72.9M
            do {
72
72.9M
                void *candidate = memchr(p, needle,
73
72.9M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
72.9M
                if (candidate == NULL)
75
510k
                    return -1;
76
72.4M
                s1 = p;
77
72.4M
                p = (const STRINGLIB_CHAR *)
78
72.4M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
72.4M
                if (*p == ch)
80
72.2M
                    return (p - s);
81
                /* False positive */
82
108k
                p++;
83
108k
                if (p - s1 > MEMCHR_CUT_OFF)
84
50.3k
                    continue;
85
58.0k
                if (e - p <= MEMCHR_CUT_OFF)
86
3.65k
                    break;
87
54.3k
                e1 = p + MEMCHR_CUT_OFF;
88
1.57M
                while (p != e1) {
89
1.54M
                    if (*p == ch)
90
24.8k
                        return (p - s);
91
1.52M
                    p++;
92
1.52M
                }
93
54.3k
            }
94
72.8M
            while (e - p > MEMCHR_CUT_OFF);
95
72.8M
        }
96
#endif
97
183M
    }
98
1.41G
    while (p < e) {
99
1.19G
        if (*p == ch)
100
20.0M
            return (p - s);
101
1.17G
        p++;
102
1.17G
    }
103
221M
    return -1;
104
241M
}
Unexecuted instantiation: bytesobject.c:stringlib_find_char
unicodeobject.c:ucs1lib_find_char
Line
Count
Source
51
245M
{
52
245M
    const STRINGLIB_CHAR *p, *e;
53
54
245M
    p = s;
55
245M
    e = s + n;
56
245M
    if (n > MEMCHR_CUT_OFF) {
57
22.5M
#ifdef STRINGLIB_FAST_MEMCHR
58
22.5M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
22.5M
        if (p != NULL)
60
21.3M
            return (p - s);
61
1.23M
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
22.5M
    }
98
1.21G
    while (p < e) {
99
1.00G
        if (*p == ch)
100
7.94M
            return (p - s);
101
994M
        p++;
102
994M
    }
103
215M
    return -1;
104
222M
}
unicodeobject.c:ucs2lib_find_char
Line
Count
Source
51
83.4M
{
52
83.4M
    const STRINGLIB_CHAR *p, *e;
53
54
83.4M
    p = s;
55
83.4M
    e = s + n;
56
83.4M
    if (n > MEMCHR_CUT_OFF) {
57
#ifdef STRINGLIB_FAST_MEMCHR
58
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
        if (p != NULL)
60
            return (p - s);
61
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
73.3M
        const STRINGLIB_CHAR *s1, *e1;
66
73.3M
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
73.3M
        if (needle != 0) {
71
72.9M
            do {
72
72.9M
                void *candidate = memchr(p, needle,
73
72.9M
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
72.9M
                if (candidate == NULL)
75
510k
                    return -1;
76
72.4M
                s1 = p;
77
72.4M
                p = (const STRINGLIB_CHAR *)
78
72.4M
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
72.4M
                if (*p == ch)
80
72.2M
                    return (p - s);
81
                /* False positive */
82
108k
                p++;
83
108k
                if (p - s1 > MEMCHR_CUT_OFF)
84
50.3k
                    continue;
85
58.0k
                if (e - p <= MEMCHR_CUT_OFF)
86
3.65k
                    break;
87
54.3k
                e1 = p + MEMCHR_CUT_OFF;
88
1.57M
                while (p != e1) {
89
1.54M
                    if (*p == ch)
90
24.8k
                        return (p - s);
91
1.52M
                    p++;
92
1.52M
                }
93
54.3k
            }
94
72.8M
            while (e - p > MEMCHR_CUT_OFF);
95
72.8M
        }
96
73.3M
#endif
97
73.3M
    }
98
154M
    while (p < e) {
99
151M
        if (*p == ch)
100
7.70M
            return (p - s);
101
143M
        p++;
102
143M
    }
103
2.94M
    return -1;
104
10.6M
}
unicodeobject.c:ucs4lib_find_char
Line
Count
Source
51
62.6M
{
52
62.6M
    const STRINGLIB_CHAR *p, *e;
53
54
62.6M
    p = s;
55
62.6M
    e = s + n;
56
62.6M
    if (n > MEMCHR_CUT_OFF) {
57
62.6M
#ifdef STRINGLIB_FAST_MEMCHR
58
62.6M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
62.6M
        if (p != NULL)
60
62.5M
            return (p - s);
61
30.6k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
62.6M
    }
98
315k
    while (p < e) {
99
281k
        if (*p == ch)
100
40.8k
            return (p - s);
101
240k
        p++;
102
240k
    }
103
33.6k
    return -1;
104
74.4k
}
unicodeobject.c:asciilib_find_char
Line
Count
Source
51
26.9M
{
52
26.9M
    const STRINGLIB_CHAR *p, *e;
53
54
26.9M
    p = s;
55
26.9M
    e = s + n;
56
26.9M
    if (n > MEMCHR_CUT_OFF) {
57
22.6M
#ifdef STRINGLIB_FAST_MEMCHR
58
22.6M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
22.6M
        if (p != NULL)
60
21.8M
            return (p - s);
61
783k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
22.6M
    }
98
11.8M
    while (p < e) {
99
11.7M
        if (*p == ch)
100
4.23M
            return (p - s);
101
7.51M
        p++;
102
7.51M
    }
103
69.6k
    return -1;
104
4.30M
}
bytes_methods.c:stringlib_find_char
Line
Count
Source
51
6.10M
{
52
6.10M
    const STRINGLIB_CHAR *p, *e;
53
54
6.10M
    p = s;
55
6.10M
    e = s + n;
56
6.10M
    if (n > MEMCHR_CUT_OFF) {
57
2.19M
#ifdef STRINGLIB_FAST_MEMCHR
58
2.19M
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
59
2.19M
        if (p != NULL)
60
1.72M
            return (p - s);
61
470k
        return -1;
62
#else
63
        /* use memchr if we can choose a needle without too many likely
64
           false positives */
65
        const STRINGLIB_CHAR *s1, *e1;
66
        unsigned char needle = ch & 0xff;
67
        /* If looking for a multiple of 256, we'd have too
68
           many false positives looking for the '\0' byte in UCS2
69
           and UCS4 representations. */
70
        if (needle != 0) {
71
            do {
72
                void *candidate = memchr(p, needle,
73
                                         (e - p) * sizeof(STRINGLIB_CHAR));
74
                if (candidate == NULL)
75
                    return -1;
76
                s1 = p;
77
                p = (const STRINGLIB_CHAR *)
78
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
79
                if (*p == ch)
80
                    return (p - s);
81
                /* False positive */
82
                p++;
83
                if (p - s1 > MEMCHR_CUT_OFF)
84
                    continue;
85
                if (e - p <= MEMCHR_CUT_OFF)
86
                    break;
87
                e1 = p + MEMCHR_CUT_OFF;
88
                while (p != e1) {
89
                    if (*p == ch)
90
                        return (p - s);
91
                    p++;
92
                }
93
            }
94
            while (e - p > MEMCHR_CUT_OFF);
95
        }
96
#endif
97
2.19M
    }
98
34.5M
    while (p < e) {
99
30.7M
        if (*p == ch)
100
99.1k
            return (p - s);
101
30.6M
        p++;
102
30.6M
    }
103
3.81M
    return -1;
104
3.91M
}
Unexecuted instantiation: bytearrayobject.c:stringlib_find_char
105
106
#undef MEMCHR_CUT_OFF
107
108
#if STRINGLIB_SIZEOF_CHAR == 1
109
141k
#  define MEMRCHR_CUT_OFF 15
110
#else
111
353k
#  define MEMRCHR_CUT_OFF 40
112
#endif
113
114
115
Py_LOCAL_INLINE(Py_ssize_t)
116
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
117
462k
{
118
462k
    const STRINGLIB_CHAR *p;
119
462k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
462k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
70.9k
        if (p != NULL)
129
67.6k
            return (p - s);
130
3.37k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
262k
        if (needle != 0) {
141
270k
            do {
142
270k
                void *candidate = memrchr(s, needle,
143
270k
                                          n * sizeof(STRINGLIB_CHAR));
144
270k
                if (candidate == NULL)
145
1.08k
                    return -1;
146
269k
                n1 = n;
147
269k
                p = (const STRINGLIB_CHAR *)
148
269k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
269k
                n = p - s;
150
269k
                if (*p == ch)
151
258k
                    return n;
152
                /* False positive */
153
11.1k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
4.76k
                    continue;
155
6.33k
                if (n <= MEMRCHR_CUT_OFF)
156
1.14k
                    break;
157
5.18k
                s1 = p - MEMRCHR_CUT_OFF;
158
195k
                while (p > s1) {
159
190k
                    p--;
160
190k
                    if (*p == ch)
161
655
                        return (p - s);
162
190k
                }
163
4.53k
                n = p - s;
164
4.53k
            }
165
262k
            while (n > MEMRCHR_CUT_OFF);
166
262k
        }
167
#endif
168
333k
    }
169
131k
#endif  /* HAVE_MEMRCHR */
170
131k
    p = s + n;
171
799k
    while (p > s) {
172
749k
        p--;
173
749k
        if (*p == ch)
174
81.6k
            return (p - s);
175
749k
    }
176
49.5k
    return -1;
177
131k
}
Unexecuted instantiation: bytesobject.c:stringlib_rfind_char
unicodeobject.c:ucs1lib_rfind_char
Line
Count
Source
117
59.9k
{
118
59.9k
    const STRINGLIB_CHAR *p;
119
59.9k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
59.9k
    if (n > MEMRCHR_CUT_OFF) {
126
56.7k
#if STRINGLIB_SIZEOF_CHAR == 1
127
56.7k
        p = memrchr(s, ch, n);
128
56.7k
        if (p != NULL)
129
55.6k
            return (p - s);
130
1.08k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
56.7k
    }
169
3.20k
#endif  /* HAVE_MEMRCHR */
170
3.20k
    p = s + n;
171
10.1k
    while (p > s) {
172
9.28k
        p--;
173
9.28k
        if (*p == ch)
174
2.31k
            return (p - s);
175
9.28k
    }
176
886
    return -1;
177
3.20k
}
unicodeobject.c:ucs2lib_rfind_char
Line
Count
Source
117
218k
{
118
218k
    const STRINGLIB_CHAR *p;
119
218k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
218k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
204k
        const STRINGLIB_CHAR *s1;
135
204k
        Py_ssize_t n1;
136
204k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
204k
        if (needle != 0) {
141
208k
            do {
142
208k
                void *candidate = memrchr(s, needle,
143
208k
                                          n * sizeof(STRINGLIB_CHAR));
144
208k
                if (candidate == NULL)
145
641
                    return -1;
146
207k
                n1 = n;
147
207k
                p = (const STRINGLIB_CHAR *)
148
207k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
207k
                n = p - s;
150
207k
                if (*p == ch)
151
202k
                    return n;
152
                /* False positive */
153
4.67k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
1.60k
                    continue;
155
3.06k
                if (n <= MEMRCHR_CUT_OFF)
156
568
                    break;
157
2.50k
                s1 = p - MEMRCHR_CUT_OFF;
158
95.0k
                while (p > s1) {
159
92.8k
                    p--;
160
92.8k
                    if (*p == ch)
161
275
                        return (p - s);
162
92.8k
                }
163
2.22k
                n = p - s;
164
2.22k
            }
165
204k
            while (n > MEMRCHR_CUT_OFF);
166
204k
        }
167
204k
#endif
168
204k
    }
169
14.5k
#endif  /* HAVE_MEMRCHR */
170
14.5k
    p = s + n;
171
73.6k
    while (p > s) {
172
71.7k
        p--;
173
71.7k
        if (*p == ch)
174
12.6k
            return (p - s);
175
71.7k
    }
176
1.92k
    return -1;
177
14.5k
}
unicodeobject.c:ucs4lib_rfind_char
Line
Count
Source
117
103k
{
118
103k
    const STRINGLIB_CHAR *p;
119
103k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
103k
    if (n > MEMRCHR_CUT_OFF) {
126
#if STRINGLIB_SIZEOF_CHAR == 1
127
        p = memrchr(s, ch, n);
128
        if (p != NULL)
129
            return (p - s);
130
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
57.7k
        const STRINGLIB_CHAR *s1;
135
57.7k
        Py_ssize_t n1;
136
57.7k
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
57.7k
        if (needle != 0) {
141
62.6k
            do {
142
62.6k
                void *candidate = memrchr(s, needle,
143
62.6k
                                          n * sizeof(STRINGLIB_CHAR));
144
62.6k
                if (candidate == NULL)
145
440
                    return -1;
146
62.2k
                n1 = n;
147
62.2k
                p = (const STRINGLIB_CHAR *)
148
62.2k
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
62.2k
                n = p - s;
150
62.2k
                if (*p == ch)
151
55.7k
                    return n;
152
                /* False positive */
153
6.42k
                if (n1 - n > MEMRCHR_CUT_OFF)
154
3.16k
                    continue;
155
3.26k
                if (n <= MEMRCHR_CUT_OFF)
156
581
                    break;
157
2.68k
                s1 = p - MEMRCHR_CUT_OFF;
158
100k
                while (p > s1) {
159
97.8k
                    p--;
160
97.8k
                    if (*p == ch)
161
380
                        return (p - s);
162
97.8k
                }
163
2.30k
                n = p - s;
164
2.30k
            }
165
57.7k
            while (n > MEMRCHR_CUT_OFF);
166
57.7k
        }
167
57.7k
#endif
168
57.7k
    }
169
46.5k
#endif  /* HAVE_MEMRCHR */
170
46.5k
    p = s + n;
171
371k
    while (p > s) {
172
370k
        p--;
173
370k
        if (*p == ch)
174
44.9k
            return (p - s);
175
370k
    }
176
1.57k
    return -1;
177
46.5k
}
unicodeobject.c:asciilib_rfind_char
Line
Count
Source
117
61.5k
{
118
61.5k
    const STRINGLIB_CHAR *p;
119
61.5k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
61.5k
    if (n > MEMRCHR_CUT_OFF) {
126
11.3k
#if STRINGLIB_SIZEOF_CHAR == 1
127
11.3k
        p = memrchr(s, ch, n);
128
11.3k
        if (p != NULL)
129
11.2k
            return (p - s);
130
146
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
11.3k
    }
169
50.1k
#endif  /* HAVE_MEMRCHR */
170
50.1k
    p = s + n;
171
258k
    while (p > s) {
172
224k
        p--;
173
224k
        if (*p == ch)
174
16.7k
            return (p - s);
175
224k
    }
176
33.4k
    return -1;
177
50.1k
}
bytes_methods.c:stringlib_rfind_char
Line
Count
Source
117
19.7k
{
118
19.7k
    const STRINGLIB_CHAR *p;
119
19.7k
#ifdef HAVE_MEMRCHR
120
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
121
       doesn't seem as optimized as memchr(), but is still quite
122
       faster than our hand-written loop below. There is no wmemrchr
123
       for 4-byte chars. */
124
125
19.7k
    if (n > MEMRCHR_CUT_OFF) {
126
2.92k
#if STRINGLIB_SIZEOF_CHAR == 1
127
2.92k
        p = memrchr(s, ch, n);
128
2.92k
        if (p != NULL)
129
784
            return (p - s);
130
2.13k
        return -1;
131
#else
132
        /* use memrchr if we can choose a needle without too many likely
133
           false positives */
134
        const STRINGLIB_CHAR *s1;
135
        Py_ssize_t n1;
136
        unsigned char needle = ch & 0xff;
137
        /* If looking for a multiple of 256, we'd have too
138
           many false positives looking for the '\0' byte in UCS2
139
           and UCS4 representations. */
140
        if (needle != 0) {
141
            do {
142
                void *candidate = memrchr(s, needle,
143
                                          n * sizeof(STRINGLIB_CHAR));
144
                if (candidate == NULL)
145
                    return -1;
146
                n1 = n;
147
                p = (const STRINGLIB_CHAR *)
148
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
149
                n = p - s;
150
                if (*p == ch)
151
                    return n;
152
                /* False positive */
153
                if (n1 - n > MEMRCHR_CUT_OFF)
154
                    continue;
155
                if (n <= MEMRCHR_CUT_OFF)
156
                    break;
157
                s1 = p - MEMRCHR_CUT_OFF;
158
                while (p > s1) {
159
                    p--;
160
                    if (*p == ch)
161
                        return (p - s);
162
                }
163
                n = p - s;
164
            }
165
            while (n > MEMRCHR_CUT_OFF);
166
        }
167
#endif
168
2.92k
    }
169
16.7k
#endif  /* HAVE_MEMRCHR */
170
16.7k
    p = s + n;
171
85.8k
    while (p > s) {
172
74.0k
        p--;
173
74.0k
        if (*p == ch)
174
5.04k
            return (p - s);
175
74.0k
    }
176
11.7k
    return -1;
177
16.7k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_rfind_char
178
179
#undef MEMRCHR_CUT_OFF
180
181
/* Change to a 1 to see logging comments walk through the algorithm. */
182
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
183
# define LOG(...) printf(__VA_ARGS__)
184
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
185
# define LOG_LINEUP() do {                                         \
186
    LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> ");    \
187
    LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
188
    LOG_STRING(needle, len_needle); LOG("\n");                     \
189
} while(0)
190
#else
191
# define LOG(...)
192
# define LOG_STRING(s, n)
193
# define LOG_LINEUP()
194
#endif
195
196
Py_LOCAL_INLINE(Py_ssize_t)
197
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
198
                       Py_ssize_t *return_period, int invert_alphabet)
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: bytesobject.c:stringlib__lex_search
Unexecuted instantiation: unicodeobject.c:asciilib__lex_search
unicodeobject.c:ucs1lib__lex_search
Line
Count
Source
199
42
{
200
    /* Do a lexicographic search. Essentially this:
201
           >>> max(needle[i:] for i in range(len(needle)+1))
202
       Also find the period of the right half.   */
203
42
    Py_ssize_t max_suffix = 0;
204
42
    Py_ssize_t candidate = 1;
205
42
    Py_ssize_t k = 0;
206
    // The period of the right half.
207
42
    Py_ssize_t period = 1;
208
209
420
    while (candidate + k < len_needle) {
210
        // each loop increases candidate + k + max_suffix
211
378
        STRINGLIB_CHAR a = needle[candidate + k];
212
378
        STRINGLIB_CHAR b = needle[max_suffix + k];
213
        // check if the suffix at candidate is better than max_suffix
214
378
        if (invert_alphabet ? (b < a) : (a < b)) {
215
            // Fell short of max_suffix.
216
            // The next k + 1 characters are non-increasing
217
            // from candidate, so they won't start a maximal suffix.
218
273
            candidate += k + 1;
219
273
            k = 0;
220
            // We've ruled out any period smaller than what's
221
            // been scanned since max_suffix.
222
273
            period = candidate - max_suffix;
223
273
        }
224
105
        else if (a == b) {
225
21
            if (k + 1 != period) {
226
                // Keep scanning the equal strings
227
0
                k++;
228
0
            }
229
21
            else {
230
                // Matched a whole period.
231
                // Start matching the next period.
232
21
                candidate += period;
233
21
                k = 0;
234
21
            }
235
21
        }
236
84
        else {
237
            // Did better than max_suffix, so replace it.
238
84
            max_suffix = candidate;
239
84
            candidate++;
240
84
            k = 0;
241
84
            period = 1;
242
84
        }
243
378
    }
244
42
    *return_period = period;
245
42
    return max_suffix;
246
42
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__lex_search
Unexecuted instantiation: unicodeobject.c:ucs4lib__lex_search
Unexecuted instantiation: bytes_methods.c:stringlib__lex_search
Unexecuted instantiation: bytearrayobject.c:stringlib__lex_search
247
248
Py_LOCAL_INLINE(Py_ssize_t)
249
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
250
                      Py_ssize_t len_needle,
251
                      Py_ssize_t *return_period)
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: bytesobject.c:stringlib__factorize
Unexecuted instantiation: unicodeobject.c:asciilib__factorize
unicodeobject.c:ucs1lib__factorize
Line
Count
Source
252
21
{
253
    /* Do a "critical factorization", making it so that:
254
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
255
       where the "local period" of the cut is maximal.
256
257
       The local period of the cut is the minimal length of a string w
258
       such that (left endswith w or w endswith left)
259
       and (right startswith w or w startswith right).
260
261
       The Critical Factorization Theorem says that this maximal local
262
       period is the global period of the string.
263
264
       Crochemore and Perrin (1991) show that this cut can be computed
265
       as the later of two cuts: one that gives a lexicographically
266
       maximal right half, and one that gives the same with the
267
       with respect to a reversed alphabet-ordering.
268
269
       This is what we want to happen:
270
           >>> x = "GCAGAGAG"
271
           >>> cut, period = factorize(x)
272
           >>> x[:cut], (right := x[cut:])
273
           ('GC', 'AGAGAG')
274
           >>> period  # right half period
275
           2
276
           >>> right[period:] == right[:-period]
277
           True
278
279
       This is how the local period lines up in the above example:
280
                GC | AGAGAG
281
           AGAGAGC = AGAGAGC
282
       The length of this minimal repetition is 7, which is indeed the
283
       period of the original string. */
284
285
21
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
286
21
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
287
21
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
288
289
    // Take the later cut.
290
21
    if (cut1 > cut2) {
291
21
        period = period1;
292
21
        cut = cut1;
293
21
    }
294
0
    else {
295
0
        period = period2;
296
0
        cut = cut2;
297
0
    }
298
299
21
    LOG("split: "); LOG_STRING(needle, cut);
300
21
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
301
21
    LOG("\n");
302
303
21
    *return_period = period;
304
21
    return cut;
305
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__factorize
Unexecuted instantiation: unicodeobject.c:ucs4lib__factorize
Unexecuted instantiation: bytes_methods.c:stringlib__factorize
Unexecuted instantiation: bytearrayobject.c:stringlib__factorize
306
307
308
231
#define SHIFT_TYPE uint8_t
309
#define MAX_SHIFT UINT8_MAX
310
311
73.1k
#define TABLE_SIZE_BITS 6u
312
73.1k
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
313
71.8k
#define TABLE_MASK (TABLE_SIZE - 1U)
314
315
typedef struct STRINGLIB(_pre) {
316
    const STRINGLIB_CHAR *needle;
317
    Py_ssize_t len_needle;
318
    Py_ssize_t cut;
319
    Py_ssize_t period;
320
    Py_ssize_t gap;
321
    int is_periodic;
322
    SHIFT_TYPE table[TABLE_SIZE];
323
} STRINGLIB(prework);
324
325
326
static void
327
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
328
                       STRINGLIB(prework) *p)
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: bytesobject.c:stringlib__preprocess
Unexecuted instantiation: unicodeobject.c:asciilib__preprocess
unicodeobject.c:ucs1lib__preprocess
Line
Count
Source
329
21
{
330
21
    p->needle = needle;
331
21
    p->len_needle = len_needle;
332
21
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
333
21
    assert(p->period + p->cut <= len_needle);
334
21
    p->is_periodic = (0 == memcmp(needle,
335
21
                                  needle + p->period,
336
21
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
337
21
    if (p->is_periodic) {
338
0
        assert(p->cut <= len_needle/2);
339
0
        assert(p->cut < p->period);
340
0
    }
341
21
    else {
342
        // A lower bound on the period
343
21
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
344
21
    }
345
    // The gap between the last character and the previous
346
    // occurrence of an equivalent character (modulo TABLE_SIZE)
347
21
    p->gap = len_needle;
348
21
    STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
349
147
    for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
350
147
        STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
351
147
        if (x == last) {
352
21
            p->gap = len_needle - 1 - i;
353
21
            break;
354
21
        }
355
147
    }
356
    // Fill up a compressed Boyer-Moore "Bad Character" table
357
21
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
358
1.36k
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
359
1.34k
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
360
1.34k
                                       Py_ssize_t, SHIFT_TYPE);
361
1.34k
    }
362
231
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
363
210
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
364
210
                                            Py_ssize_t, SHIFT_TYPE);
365
210
        p->table[needle[i] & TABLE_MASK] = shift;
366
210
    }
367
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__preprocess
Unexecuted instantiation: unicodeobject.c:ucs4lib__preprocess
Unexecuted instantiation: bytes_methods.c:stringlib__preprocess
Unexecuted instantiation: bytearrayobject.c:stringlib__preprocess
368
369
static Py_ssize_t
370
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
371
                    STRINGLIB(prework) *p)
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.3k
                LOG("Horspool skip\n");
469
57.3k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way
Unexecuted instantiation: unicodeobject.c:asciilib__two_way
unicodeobject.c:ucs1lib__two_way
Line
Count
Source
372
21
{
373
    // Crochemore and Perrin's (1991) Two-Way algorithm.
374
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
375
21
    const Py_ssize_t len_needle = p->len_needle;
376
21
    const Py_ssize_t cut = p->cut;
377
21
    Py_ssize_t period = p->period;
378
21
    const STRINGLIB_CHAR *const needle = p->needle;
379
21
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
380
21
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
381
21
    SHIFT_TYPE *table = p->table;
382
21
    const STRINGLIB_CHAR *window;
383
21
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
384
385
21
    Py_ssize_t gap = p->gap;
386
21
    Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
387
21
    if (p->is_periodic) {
388
0
        LOG("Needle is periodic.\n");
389
0
        Py_ssize_t memory = 0;
390
0
      periodicwindowloop:
391
0
        while (window_last < haystack_end) {
392
0
            assert(memory == 0);
393
0
            for (;;) {
394
0
                LOG_LINEUP();
395
0
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
396
0
                window_last += shift;
397
0
                if (shift == 0) {
398
0
                    break;
399
0
                }
400
0
                if (window_last >= haystack_end) {
401
0
                    return -1;
402
0
                }
403
0
                LOG("Horspool skip\n");
404
0
            }
405
0
          no_shift:
406
0
            window = window_last - len_needle + 1;
407
0
            assert((window[len_needle - 1] & TABLE_MASK) ==
408
0
                   (needle[len_needle - 1] & TABLE_MASK));
409
0
            Py_ssize_t i = Py_MAX(cut, memory);
410
0
            for (; i < len_needle; i++) {
411
0
                if (needle[i] != window[i]) {
412
0
                    if (i < gap_jump_end) {
413
0
                        LOG("Early right half mismatch: jump by gap.\n");
414
0
                        assert(gap >= i - cut + 1);
415
0
                        window_last += gap;
416
0
                    }
417
0
                    else {
418
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
419
0
                        assert(i - cut + 1 > gap);
420
0
                        window_last += i - cut + 1;
421
0
                    }
422
0
                    memory = 0;
423
0
                    goto periodicwindowloop;
424
0
                }
425
0
            }
426
0
            for (i = memory; i < cut; i++) {
427
0
                if (needle[i] != window[i]) {
428
0
                    LOG("Left half does not match.\n");
429
0
                    window_last += period;
430
0
                    memory = len_needle - period;
431
0
                    if (window_last >= haystack_end) {
432
0
                        return -1;
433
0
                    }
434
0
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
435
0
                    if (shift) {
436
                        // A mismatch has been identified to the right
437
                        // of where i will next start, so we can jump
438
                        // at least as far as if the mismatch occurred
439
                        // on the first comparison.
440
0
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
441
0
                        LOG("Skip with Memory.\n");
442
0
                        memory = 0;
443
0
                        window_last += Py_MAX(shift, mem_jump);
444
0
                        goto periodicwindowloop;
445
0
                    }
446
0
                    goto no_shift;
447
0
                }
448
0
            }
449
0
            LOG("Found a match!\n");
450
0
            return window - haystack;
451
0
        }
452
0
    }
453
21
    else {
454
21
        period = Py_MAX(gap, period);
455
21
        LOG("Needle is not periodic.\n");
456
14.0k
      windowloop:
457
14.0k
        while (window_last < haystack_end) {
458
71.4k
            for (;;) {
459
71.4k
                LOG_LINEUP();
460
71.4k
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
461
71.4k
                window_last += shift;
462
71.4k
                if (shift == 0) {
463
14.0k
                    break;
464
14.0k
                }
465
57.4k
                if (window_last >= haystack_end) {
466
18
                    return -1;
467
18
                }
468
57.3k
                LOG("Horspool skip\n");
469
57.3k
            }
470
14.0k
            window = window_last - len_needle + 1;
471
14.0k
            assert((window[len_needle - 1] & TABLE_MASK) ==
472
14.0k
                   (needle[len_needle - 1] & TABLE_MASK));
473
14.0k
            Py_ssize_t i = cut;
474
14.2k
            for (; i < len_needle; i++) {
475
14.1k
                if (needle[i] != window[i]) {
476
13.9k
                    if (i < gap_jump_end) {
477
13.9k
                        LOG("Early right half mismatch: jump by gap.\n");
478
13.9k
                        assert(gap >= i - cut + 1);
479
13.9k
                        window_last += gap;
480
13.9k
                    }
481
0
                    else {
482
0
                        LOG("Late right half mismatch: jump by n (>gap)\n");
483
0
                        assert(i - cut + 1 > gap);
484
0
                        window_last += i - cut + 1;
485
0
                    }
486
13.9k
                    goto windowloop;
487
13.9k
                }
488
14.1k
            }
489
104
            for (Py_ssize_t i = 0; i < cut; i++) {
490
102
                if (needle[i] != window[i]) {
491
86
                    LOG("Left half does not match.\n");
492
86
                    window_last += period;
493
86
                    goto windowloop;
494
86
                }
495
102
            }
496
2
            LOG("Found a match!\n");
497
2
            return window - haystack;
498
88
        }
499
14.0k
    }
500
1
    LOG("Not found. Returning -1.\n");
501
1
    return -1;
502
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way
Unexecuted instantiation: bytes_methods.c:stringlib__two_way
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way
503
504
505
static Py_ssize_t
506
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
507
                         Py_ssize_t len_haystack,
508
                         const STRINGLIB_CHAR *needle,
509
                         Py_ssize_t len_needle)
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_find
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_find
unicodeobject.c:ucs1lib__two_way_find
Line
Count
Source
510
21
{
511
21
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
512
21
    STRINGLIB(prework) p;
513
21
    STRINGLIB(_preprocess)(needle, len_needle, &p);
514
21
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
515
21
}
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_find
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_find
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_find
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_find
516
517
518
static Py_ssize_t
519
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
520
                          Py_ssize_t len_haystack,
521
                          const STRINGLIB_CHAR *needle,
522
                          Py_ssize_t len_needle,
523
                          Py_ssize_t maxcount)
524
0
{
525
0
    LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
526
0
    STRINGLIB(prework) p;
527
0
    STRINGLIB(_preprocess)(needle, len_needle, &p);
528
0
    Py_ssize_t index = 0, count = 0;
529
0
    while (1) {
530
0
        Py_ssize_t result;
531
0
        result = STRINGLIB(_two_way)(haystack + index,
532
0
                                     len_haystack - index, &p);
533
0
        if (result == -1) {
534
0
            return count;
535
0
        }
536
0
        count++;
537
0
        if (count == maxcount) {
538
0
            return maxcount;
539
0
        }
540
0
        index += result + len_needle;
541
0
    }
542
0
    return count;
543
0
}
Unexecuted instantiation: bytesobject.c:stringlib__two_way_count
Unexecuted instantiation: unicodeobject.c:asciilib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs1lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs2lib__two_way_count
Unexecuted instantiation: unicodeobject.c:ucs4lib__two_way_count
Unexecuted instantiation: bytes_methods.c:stringlib__two_way_count
Unexecuted instantiation: bytearrayobject.c:stringlib__two_way_count
544
545
#undef SHIFT_TYPE
546
#undef NOT_FOUND
547
#undef SHIFT_OVERFLOW
548
#undef TABLE_SIZE_BITS
549
#undef TABLE_SIZE
550
#undef TABLE_MASK
551
552
#undef LOG
553
#undef LOG_STRING
554
#undef LOG_LINEUP
555
556
static inline Py_ssize_t
557
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
558
                        const STRINGLIB_CHAR* p, Py_ssize_t m,
559
                        Py_ssize_t maxcount, int mode)
560
25.7M
{
561
25.7M
    const Py_ssize_t w = n - m;
562
25.7M
    Py_ssize_t mlast = m - 1, count = 0;
563
25.7M
    Py_ssize_t gap = mlast;
564
25.7M
    const STRINGLIB_CHAR last = p[mlast];
565
25.7M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
25.7M
    unsigned long mask = 0;
568
112M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
86.4M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
86.4M
        if (p[i] == last) {
571
576k
            gap = mlast - i - 1;
572
576k
        }
573
86.4M
    }
574
25.7M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
3.48G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
3.46G
        if (ss[i] == last) {
578
            /* candidate match */
579
45.2M
            Py_ssize_t j;
580
67.8M
            for (j = 0; j < mlast; j++) {
581
45.3M
                if (s[i+j] != p[j]) {
582
22.7M
                    break;
583
22.7M
                }
584
45.3M
            }
585
45.2M
            if (j == mlast) {
586
                /* got a match! */
587
22.5M
                if (mode != FAST_COUNT) {
588
11.3M
                    return i;
589
11.3M
                }
590
11.1M
                count++;
591
11.1M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
11.1M
                i = i + mlast;
595
11.1M
                continue;
596
11.1M
            }
597
            /* miss: check if next character is part of pattern */
598
22.7M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
4.85M
                i = i + m;
600
4.85M
            }
601
17.8M
            else {
602
17.8M
                i = i + gap;
603
17.8M
            }
604
22.7M
        }
605
3.42G
        else {
606
            /* skip: check if next character is part of pattern */
607
3.42G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
3.33G
                i = i + m;
609
3.33G
            }
610
3.42G
        }
611
3.46G
    }
612
14.3M
    return mode == FAST_COUNT ? count : -1;
613
25.7M
}
Unexecuted instantiation: bytesobject.c:stringlib_default_find
unicodeobject.c:asciilib_default_find
Line
Count
Source
560
1.65M
{
561
1.65M
    const Py_ssize_t w = n - m;
562
1.65M
    Py_ssize_t mlast = m - 1, count = 0;
563
1.65M
    Py_ssize_t gap = mlast;
564
1.65M
    const STRINGLIB_CHAR last = p[mlast];
565
1.65M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
1.65M
    unsigned long mask = 0;
568
3.31M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
1.66M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
1.66M
        if (p[i] == last) {
571
28.2k
            gap = mlast - i - 1;
572
28.2k
        }
573
1.66M
    }
574
1.65M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
159M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
159M
        if (ss[i] == last) {
578
            /* candidate match */
579
3.53M
            Py_ssize_t j;
580
5.16M
            for (j = 0; j < mlast; j++) {
581
3.54M
                if (s[i+j] != p[j]) {
582
1.92M
                    break;
583
1.92M
                }
584
3.54M
            }
585
3.53M
            if (j == mlast) {
586
                /* got a match! */
587
1.61M
                if (mode != FAST_COUNT) {
588
1.61M
                    return i;
589
1.61M
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
1.92M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
56.0k
                i = i + m;
600
56.0k
            }
601
1.86M
            else {
602
1.86M
                i = i + gap;
603
1.86M
            }
604
1.92M
        }
605
156M
        else {
606
            /* skip: check if next character is part of pattern */
607
156M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
150M
                i = i + m;
609
150M
            }
610
156M
        }
611
159M
    }
612
37.8k
    return mode == FAST_COUNT ? count : -1;
613
1.65M
}
unicodeobject.c:ucs1lib_default_find
Line
Count
Source
560
15.9M
{
561
15.9M
    const Py_ssize_t w = n - m;
562
15.9M
    Py_ssize_t mlast = m - 1, count = 0;
563
15.9M
    Py_ssize_t gap = mlast;
564
15.9M
    const STRINGLIB_CHAR last = p[mlast];
565
15.9M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
15.9M
    unsigned long mask = 0;
568
92.5M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
76.5M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
76.5M
        if (p[i] == last) {
571
489k
            gap = mlast - i - 1;
572
489k
        }
573
76.5M
    }
574
15.9M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
622M
    for (Py_ssize_t i = 0; i <= w; i++) {
577
608M
        if (ss[i] == last) {
578
            /* candidate match */
579
12.0M
            Py_ssize_t j;
580
17.1M
            for (j = 0; j < mlast; j++) {
581
12.1M
                if (s[i+j] != p[j]) {
582
7.06M
                    break;
583
7.06M
                }
584
12.1M
            }
585
12.0M
            if (j == mlast) {
586
                /* got a match! */
587
5.02M
                if (mode != FAST_COUNT) {
588
1.74M
                    return i;
589
1.74M
                }
590
3.27M
                count++;
591
3.27M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.27M
                i = i + mlast;
595
3.27M
                continue;
596
3.27M
            }
597
            /* miss: check if next character is part of pattern */
598
7.06M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.74M
                i = i + m;
600
1.74M
            }
601
5.32M
            else {
602
5.32M
                i = i + gap;
603
5.32M
            }
604
7.06M
        }
605
596M
        else {
606
            /* skip: check if next character is part of pattern */
607
596M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
543M
                i = i + m;
609
543M
            }
610
596M
        }
611
608M
    }
612
14.2M
    return mode == FAST_COUNT ? count : -1;
613
15.9M
}
unicodeobject.c:ucs2lib_default_find
Line
Count
Source
560
3.82M
{
561
3.82M
    const Py_ssize_t w = n - m;
562
3.82M
    Py_ssize_t mlast = m - 1, count = 0;
563
3.82M
    Py_ssize_t gap = mlast;
564
3.82M
    const STRINGLIB_CHAR last = p[mlast];
565
3.82M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
3.82M
    unsigned long mask = 0;
568
7.70M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
3.88M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
3.88M
        if (p[i] == last) {
571
33.4k
            gap = mlast - i - 1;
572
33.4k
        }
573
3.88M
    }
574
3.82M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.23G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.23G
        if (ss[i] == last) {
578
            /* candidate match */
579
15.5M
            Py_ssize_t j;
580
22.8M
            for (j = 0; j < mlast; j++) {
581
15.5M
                if (s[i+j] != p[j]) {
582
8.20M
                    break;
583
8.20M
                }
584
15.5M
            }
585
15.5M
            if (j == mlast) {
586
                /* got a match! */
587
7.31M
                if (mode != FAST_COUNT) {
588
3.71M
                    return i;
589
3.71M
                }
590
3.59M
                count++;
591
3.59M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
3.59M
                i = i + mlast;
595
3.59M
                continue;
596
3.59M
            }
597
            /* miss: check if next character is part of pattern */
598
8.20M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.19M
                i = i + m;
600
1.19M
            }
601
7.01M
            else {
602
7.01M
                i = i + gap;
603
7.01M
            }
604
8.20M
        }
605
1.21G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.21G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.19G
                i = i + m;
609
1.19G
            }
610
1.21G
        }
611
1.23G
    }
612
105k
    return mode == FAST_COUNT ? count : -1;
613
3.82M
}
unicodeobject.c:ucs4lib_default_find
Line
Count
Source
560
4.31M
{
561
4.31M
    const Py_ssize_t w = n - m;
562
4.31M
    Py_ssize_t mlast = m - 1, count = 0;
563
4.31M
    Py_ssize_t gap = mlast;
564
4.31M
    const STRINGLIB_CHAR last = p[mlast];
565
4.31M
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
4.31M
    unsigned long mask = 0;
568
8.65M
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
4.33M
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
4.33M
        if (p[i] == last) {
571
23.1k
            gap = mlast - i - 1;
572
23.1k
        }
573
4.33M
    }
574
4.31M
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
1.46G
    for (Py_ssize_t i = 0; i <= w; i++) {
577
1.46G
        if (ss[i] == last) {
578
            /* candidate match */
579
14.0M
            Py_ssize_t j;
580
22.6M
            for (j = 0; j < mlast; j++) {
581
14.1M
                if (s[i+j] != p[j]) {
582
5.54M
                    break;
583
5.54M
                }
584
14.1M
            }
585
14.0M
            if (j == mlast) {
586
                /* got a match! */
587
8.54M
                if (mode != FAST_COUNT) {
588
4.29M
                    return i;
589
4.29M
                }
590
4.25M
                count++;
591
4.25M
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
4.25M
                i = i + mlast;
595
4.25M
                continue;
596
4.25M
            }
597
            /* miss: check if next character is part of pattern */
598
5.54M
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
1.86M
                i = i + m;
600
1.86M
            }
601
3.68M
            else {
602
3.68M
                i = i + gap;
603
3.68M
            }
604
5.54M
        }
605
1.45G
        else {
606
            /* skip: check if next character is part of pattern */
607
1.45G
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
1.44G
                i = i + m;
609
1.44G
            }
610
1.45G
        }
611
1.46G
    }
612
26.6k
    return mode == FAST_COUNT ? count : -1;
613
4.31M
}
bytes_methods.c:stringlib_default_find
Line
Count
Source
560
2.79k
{
561
2.79k
    const Py_ssize_t w = n - m;
562
2.79k
    Py_ssize_t mlast = m - 1, count = 0;
563
2.79k
    Py_ssize_t gap = mlast;
564
2.79k
    const STRINGLIB_CHAR last = p[mlast];
565
2.79k
    const STRINGLIB_CHAR *const ss = &s[mlast];
566
567
2.79k
    unsigned long mask = 0;
568
11.1k
    for (Py_ssize_t i = 0; i < mlast; i++) {
569
8.39k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
570
8.39k
        if (p[i] == last) {
571
2.79k
            gap = mlast - i - 1;
572
2.79k
        }
573
8.39k
    }
574
2.79k
    STRINGLIB_BLOOM_ADD(mask, last);
575
576
557k
    for (Py_ssize_t i = 0; i <= w; i++) {
577
557k
        if (ss[i] == last) {
578
            /* candidate match */
579
8.00k
            Py_ssize_t j;
580
15.9k
            for (j = 0; j < mlast; j++) {
581
13.4k
                if (s[i+j] != p[j]) {
582
5.42k
                    break;
583
5.42k
                }
584
13.4k
            }
585
8.00k
            if (j == mlast) {
586
                /* got a match! */
587
2.57k
                if (mode != FAST_COUNT) {
588
2.57k
                    return i;
589
2.57k
                }
590
0
                count++;
591
0
                if (count == maxcount) {
592
0
                    return maxcount;
593
0
                }
594
0
                i = i + mlast;
595
0
                continue;
596
0
            }
597
            /* miss: check if next character is part of pattern */
598
5.42k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
599
556
                i = i + m;
600
556
            }
601
4.87k
            else {
602
4.87k
                i = i + gap;
603
4.87k
            }
604
5.42k
        }
605
549k
        else {
606
            /* skip: check if next character is part of pattern */
607
549k
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
608
26.7k
                i = i + m;
609
26.7k
            }
610
549k
        }
611
557k
    }
612
224
    return mode == FAST_COUNT ? count : -1;
613
2.79k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_find
614
615
616
static Py_ssize_t
617
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
618
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
619
                         Py_ssize_t maxcount, int mode)
620
0
{
621
0
    const Py_ssize_t w = n - m;
622
0
    Py_ssize_t mlast = m - 1, count = 0;
623
0
    Py_ssize_t gap = mlast;
624
0
    Py_ssize_t hits = 0, res;
625
0
    const STRINGLIB_CHAR last = p[mlast];
626
0
    const STRINGLIB_CHAR *const ss = &s[mlast];
627
628
0
    unsigned long mask = 0;
629
0
    for (Py_ssize_t i = 0; i < mlast; i++) {
630
0
        STRINGLIB_BLOOM_ADD(mask, p[i]);
631
0
        if (p[i] == last) {
632
0
            gap = mlast - i - 1;
633
0
        }
634
0
    }
635
0
    STRINGLIB_BLOOM_ADD(mask, last);
636
637
0
    for (Py_ssize_t i = 0; i <= w; i++) {
638
0
        if (ss[i] == last) {
639
            /* candidate match */
640
0
            Py_ssize_t j;
641
0
            for (j = 0; j < mlast; j++) {
642
0
                if (s[i+j] != p[j]) {
643
0
                    break;
644
0
                }
645
0
            }
646
0
            if (j == mlast) {
647
                /* got a match! */
648
0
                if (mode != FAST_COUNT) {
649
0
                    return i;
650
0
                }
651
0
                count++;
652
0
                if (count == maxcount) {
653
0
                    return maxcount;
654
0
                }
655
0
                i = i + mlast;
656
0
                continue;
657
0
            }
658
0
            hits += j + 1;
659
0
            if (hits > m / 4 && w - i > 2000) {
660
0
                if (mode == FAST_SEARCH) {
661
0
                    res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
662
0
                    return res == -1 ? -1 : res + i;
663
0
                }
664
0
                else {
665
0
                    res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
666
0
                                                    maxcount - count);
667
0
                    return res + count;
668
0
                }
669
0
            }
670
            /* miss: check if next character is part of pattern */
671
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
672
0
                i = i + m;
673
0
            }
674
0
            else {
675
0
                i = i + gap;
676
0
            }
677
0
        }
678
0
        else {
679
            /* skip: check if next character is part of pattern */
680
0
            if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
681
0
                i = i + m;
682
0
            }
683
0
        }
684
0
    }
685
0
    return mode == FAST_COUNT ? count : -1;
686
0
}
Unexecuted instantiation: bytesobject.c:stringlib_adaptive_find
Unexecuted instantiation: unicodeobject.c:asciilib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs1lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs2lib_adaptive_find
Unexecuted instantiation: unicodeobject.c:ucs4lib_adaptive_find
Unexecuted instantiation: bytes_methods.c:stringlib_adaptive_find
Unexecuted instantiation: bytearrayobject.c:stringlib_adaptive_find
687
688
689
static Py_ssize_t
690
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
691
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
692
                         Py_ssize_t maxcount, int mode)
693
6.08k
{
694
    /* create compressed boyer-moore delta 1 table */
695
6.08k
    unsigned long mask = 0;
696
6.08k
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
6.08k
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
24.3k
    for (i = mlast; i > 0; i--) {
702
18.2k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
18.2k
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
18.2k
    }
707
708
1.38M
    for (i = w; i >= 0; i--) {
709
1.37M
        if (s[i] == p[0]) {
710
            /* candidate match */
711
45.2k
            for (j = mlast; j > 0; j--) {
712
39.2k
                if (s[i+j] != p[j]) {
713
20.8k
                    break;
714
20.8k
                }
715
39.2k
            }
716
26.7k
            if (j == 0) {
717
                /* got a match! */
718
5.98k
                return i;
719
5.98k
            }
720
            /* miss: check if previous character is part of pattern */
721
20.8k
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
19.3k
                i = i - m;
723
19.3k
            }
724
1.44k
            else {
725
1.44k
                i = i - skip;
726
1.44k
            }
727
20.8k
        }
728
1.35M
        else {
729
            /* skip: check if previous character is part of pattern */
730
1.35M
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
1.25M
                i = i - m;
732
1.25M
            }
733
1.35M
        }
734
1.37M
    }
735
99
    return -1;
736
6.08k
}
Unexecuted instantiation: bytesobject.c:stringlib_default_rfind
Unexecuted instantiation: unicodeobject.c:asciilib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs1lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs2lib_default_rfind
Unexecuted instantiation: unicodeobject.c:ucs4lib_default_rfind
bytes_methods.c:stringlib_default_rfind
Line
Count
Source
693
6.08k
{
694
    /* create compressed boyer-moore delta 1 table */
695
6.08k
    unsigned long mask = 0;
696
6.08k
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
697
698
    /* process pattern[0] outside the loop */
699
6.08k
    STRINGLIB_BLOOM_ADD(mask, p[0]);
700
    /* process pattern[:0:-1] */
701
24.3k
    for (i = mlast; i > 0; i--) {
702
18.2k
        STRINGLIB_BLOOM_ADD(mask, p[i]);
703
18.2k
        if (p[i] == p[0]) {
704
0
            skip = i - 1;
705
0
        }
706
18.2k
    }
707
708
1.38M
    for (i = w; i >= 0; i--) {
709
1.37M
        if (s[i] == p[0]) {
710
            /* candidate match */
711
45.2k
            for (j = mlast; j > 0; j--) {
712
39.2k
                if (s[i+j] != p[j]) {
713
20.8k
                    break;
714
20.8k
                }
715
39.2k
            }
716
26.7k
            if (j == 0) {
717
                /* got a match! */
718
5.98k
                return i;
719
5.98k
            }
720
            /* miss: check if previous character is part of pattern */
721
20.8k
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
722
19.3k
                i = i - m;
723
19.3k
            }
724
1.44k
            else {
725
1.44k
                i = i - skip;
726
1.44k
            }
727
20.8k
        }
728
1.35M
        else {
729
            /* skip: check if previous character is part of pattern */
730
1.35M
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
731
1.25M
                i = i - m;
732
1.25M
            }
733
1.35M
        }
734
1.37M
    }
735
99
    return -1;
736
6.08k
}
Unexecuted instantiation: bytearrayobject.c:stringlib_default_rfind
737
738
739
static inline Py_ssize_t
740
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
741
                      const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
742
0
{
743
0
    Py_ssize_t i, count = 0;
744
0
    for (i = 0; i < n; i++) {
745
0
        if (s[i] == p0) {
746
0
            count++;
747
0
            if (count == maxcount) {
748
0
                return maxcount;
749
0
            }
750
0
        }
751
0
    }
752
0
    return count;
753
0
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char
Unexecuted instantiation: unicodeobject.c:asciilib_count_char
Unexecuted instantiation: unicodeobject.c:ucs1lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs2lib_count_char
Unexecuted instantiation: unicodeobject.c:ucs4lib_count_char
Unexecuted instantiation: bytes_methods.c:stringlib_count_char
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char
754
755
756
static inline Py_ssize_t
757
STRINGLIB(count_char_no_maxcount)(const STRINGLIB_CHAR *s, Py_ssize_t n,
758
                                  const STRINGLIB_CHAR p0)
759
/* A specialized function of count_char that does not cut off at a maximum.
760
   As a result, the compiler is able to vectorize the loop. */
761
65.2M
{
762
65.2M
    Py_ssize_t count = 0;
763
8.68G
    for (Py_ssize_t i = 0; i < n; i++) {
764
8.62G
        if (s[i] == p0) {
765
251M
            count++;
766
251M
        }
767
8.62G
    }
768
65.2M
    return count;
769
65.2M
}
Unexecuted instantiation: bytesobject.c:stringlib_count_char_no_maxcount
Unexecuted instantiation: unicodeobject.c:asciilib_count_char_no_maxcount
unicodeobject.c:ucs1lib_count_char_no_maxcount
Line
Count
Source
761
48.2M
{
762
48.2M
    Py_ssize_t count = 0;
763
1.63G
    for (Py_ssize_t i = 0; i < n; i++) {
764
1.58G
        if (s[i] == p0) {
765
52.1M
            count++;
766
52.1M
        }
767
1.58G
    }
768
48.2M
    return count;
769
48.2M
}
unicodeobject.c:ucs2lib_count_char_no_maxcount
Line
Count
Source
761
10.8M
{
762
10.8M
    Py_ssize_t count = 0;
763
2.38G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.37G
        if (s[i] == p0) {
765
85.8M
            count++;
766
85.8M
        }
767
2.37G
    }
768
10.8M
    return count;
769
10.8M
}
unicodeobject.c:ucs4lib_count_char_no_maxcount
Line
Count
Source
761
1.17M
{
762
1.17M
    Py_ssize_t count = 0;
763
2.12G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.12G
        if (s[i] == p0) {
765
77.1M
            count++;
766
77.1M
        }
767
2.12G
    }
768
1.17M
    return count;
769
1.17M
}
bytes_methods.c:stringlib_count_char_no_maxcount
Line
Count
Source
761
4.95M
{
762
4.95M
    Py_ssize_t count = 0;
763
2.54G
    for (Py_ssize_t i = 0; i < n; i++) {
764
2.53G
        if (s[i] == p0) {
765
36.0M
            count++;
766
36.0M
        }
767
2.53G
    }
768
4.95M
    return count;
769
4.95M
}
Unexecuted instantiation: bytearrayobject.c:stringlib_count_char_no_maxcount
770
771
772
Py_LOCAL_INLINE(Py_ssize_t)
773
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
774
           const STRINGLIB_CHAR* p, Py_ssize_t m,
775
           Py_ssize_t maxcount, int mode)
776
260M
{
777
260M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
14.8k
        return -1;
779
14.8k
    }
780
781
    /* look for special cases */
782
260M
    if (m <= 1) {
783
235M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
235M
        if (mode == FAST_SEARCH)
788
169M
            return STRINGLIB(find_char)(s, n, p[0]);
789
65.2M
        else if (mode == FAST_RSEARCH)
790
61.5k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
65.2M
        else {
792
65.2M
            if (maxcount == PY_SSIZE_T_MAX) {
793
65.2M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
65.2M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
65.2M
        }
797
235M
    }
798
799
25.7M
    if (mode != FAST_RSEARCH) {
800
25.7M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
25.7M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
25.7M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
25.7M
    }
825
6.08k
    else {
826
        /* FAST_RSEARCH */
827
6.08k
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
6.08k
    }
829
25.7M
}
Unexecuted instantiation: bytesobject.c:fastsearch
unicodeobject.c:asciilib_fastsearch
Line
Count
Source
776
28.6M
{
777
28.6M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
28.6M
    if (m <= 1) {
783
26.9M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
26.9M
        if (mode == FAST_SEARCH)
788
26.9M
            return STRINGLIB(find_char)(s, n, p[0]);
789
61.5k
        else if (mode == FAST_RSEARCH)
790
61.5k
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
0
        else {
792
0
            if (maxcount == PY_SSIZE_T_MAX) {
793
0
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
0
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
0
        }
797
26.9M
    }
798
799
1.65M
    if (mode != FAST_RSEARCH) {
800
1.65M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
1.65M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
1.65M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
1.65M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
1.65M
}
unicodeobject.c:ucs1lib_fastsearch
Line
Count
Source
776
72.0M
{
777
72.0M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
72.0M
    if (m <= 1) {
783
56.0M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
56.0M
        if (mode == FAST_SEARCH)
788
7.81M
            return STRINGLIB(find_char)(s, n, p[0]);
789
48.2M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
48.2M
        else {
792
48.2M
            if (maxcount == PY_SSIZE_T_MAX) {
793
48.2M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
48.2M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
48.2M
        }
797
56.0M
    }
798
799
15.9M
    if (mode != FAST_RSEARCH) {
800
15.9M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
15.9M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
15.9M
        }
803
21
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
21
            if (mode == FAST_SEARCH) {
810
21
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
21
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
21
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
15.9M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
15.9M
}
unicodeobject.c:ucs2lib_fastsearch
Line
Count
Source
776
88.2M
{
777
88.2M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
14.8k
        return -1;
779
14.8k
    }
780
781
    /* look for special cases */
782
88.2M
    if (m <= 1) {
783
84.4M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
84.4M
        if (mode == FAST_SEARCH)
788
73.5M
            return STRINGLIB(find_char)(s, n, p[0]);
789
10.8M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
10.8M
        else {
792
10.8M
            if (maxcount == PY_SSIZE_T_MAX) {
793
10.8M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
10.8M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
10.8M
        }
797
84.4M
    }
798
799
3.82M
    if (mode != FAST_RSEARCH) {
800
3.82M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
3.82M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
3.82M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
3.82M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
3.82M
}
unicodeobject.c:ucs4lib_fastsearch
Line
Count
Source
776
66.9M
{
777
66.9M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
0
        return -1;
779
0
    }
780
781
    /* look for special cases */
782
66.9M
    if (m <= 1) {
783
62.5M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
62.5M
        if (mode == FAST_SEARCH)
788
61.4M
            return STRINGLIB(find_char)(s, n, p[0]);
789
1.17M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
1.17M
        else {
792
1.17M
            if (maxcount == PY_SSIZE_T_MAX) {
793
1.17M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
1.17M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
1.17M
        }
797
62.5M
    }
798
799
4.31M
    if (mode != FAST_RSEARCH) {
800
4.31M
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
4.31M
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
4.31M
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
4.31M
    }
825
0
    else {
826
        /* FAST_RSEARCH */
827
0
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
0
    }
829
4.31M
}
bytes_methods.c:fastsearch
Line
Count
Source
776
4.96M
{
777
4.96M
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
778
11
        return -1;
779
11
    }
780
781
    /* look for special cases */
782
4.96M
    if (m <= 1) {
783
4.95M
        if (m <= 0) {
784
0
            return -1;
785
0
        }
786
        /* use special case for 1-character strings */
787
4.95M
        if (mode == FAST_SEARCH)
788
0
            return STRINGLIB(find_char)(s, n, p[0]);
789
4.95M
        else if (mode == FAST_RSEARCH)
790
0
            return STRINGLIB(rfind_char)(s, n, p[0]);
791
4.95M
        else {
792
4.95M
            if (maxcount == PY_SSIZE_T_MAX) {
793
4.95M
                return STRINGLIB(count_char_no_maxcount)(s, n, p[0]);
794
4.95M
            }
795
0
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
796
4.95M
        }
797
4.95M
    }
798
799
8.87k
    if (mode != FAST_RSEARCH) {
800
2.79k
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
801
2.79k
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
802
2.79k
        }
803
0
        else if ((m >> 2) * 3 < (n >> 2)) {
804
            /* 33% threshold, but don't overflow. */
805
            /* For larger problems where the needle isn't a huge
806
               percentage of the size of the haystack, the relatively
807
               expensive O(m) startup cost of the two-way algorithm
808
               will surely pay off. */
809
0
            if (mode == FAST_SEARCH) {
810
0
                return STRINGLIB(_two_way_find)(s, n, p, m);
811
0
            }
812
0
            else {
813
0
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
814
0
            }
815
0
        }
816
0
        else {
817
            /* To ensure that we have good worst-case behavior,
818
               here's an adaptive version of the algorithm, where if
819
               we match O(m) characters without any matches of the
820
               entire needle, then we predict that the startup cost of
821
               the two-way algorithm will probably be worth it. */
822
0
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
823
0
        }
824
2.79k
    }
825
6.08k
    else {
826
        /* FAST_RSEARCH */
827
6.08k
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
828
6.08k
    }
829
8.87k
}
Unexecuted instantiation: bytearrayobject.c:fastsearch
830