Coverage Report

Created: 2025-11-24 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Python/ceval_gil.c
Line
Count
Source
1
#include "Python.h"
2
#include "pycore_ceval.h"         // _PyEval_SignalReceived()
3
#include "pycore_gc.h"            // _Py_RunGC()
4
#include "pycore_initconfig.h"    // _PyStatus_OK()
5
#include "pycore_optimizer.h"     // _Py_Executors_InvalidateCold()
6
#include "pycore_pyerrors.h"      // _PyErr_GetRaisedException()
7
#include "pycore_pylifecycle.h"   // _PyErr_Print()
8
#include "pycore_pystats.h"       // _Py_PrintSpecializationStats()
9
#include "pycore_runtime.h"       // _PyRuntime
10
11
12
/*
13
   Notes about the implementation:
14
15
   - The GIL is just a boolean variable (locked) whose access is protected
16
     by a mutex (gil_mutex), and whose changes are signalled by a condition
17
     variable (gil_cond). gil_mutex is taken for short periods of time,
18
     and therefore mostly uncontended.
19
20
   - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
21
     able to release the GIL on demand by another thread. A volatile boolean
22
     variable (gil_drop_request) is used for that purpose, which is checked
23
     at every turn of the eval loop. That variable is set after a wait of
24
     `interval` microseconds on `gil_cond` has timed out.
25
26
      [Actually, another volatile boolean variable (eval_breaker) is used
27
       which ORs several conditions into one. Volatile booleans are
28
       sufficient as inter-thread signalling means since Python is run
29
       on cache-coherent architectures only.]
30
31
   - A thread wanting to take the GIL will first let pass a given amount of
32
     time (`interval` microseconds) before setting gil_drop_request. This
33
     encourages a defined switching period, but doesn't enforce it since
34
     opcodes can take an arbitrary time to execute.
35
36
     The `interval` value is available for the user to read and modify
37
     using the Python API `sys.{get,set}switchinterval()`.
38
39
   - When a thread releases the GIL and gil_drop_request is set, that thread
40
     ensures that another GIL-awaiting thread gets scheduled.
41
     It does so by waiting on a condition variable (switch_cond) until
42
     the value of last_holder is changed to something else than its
43
     own thread state pointer, indicating that another thread was able to
44
     take the GIL.
45
46
     This is meant to prohibit the latency-adverse behaviour on multi-core
47
     machines where one thread would speculatively release the GIL, but still
48
     run and end up being the first to re-acquire it, making the "timeslices"
49
     much longer than expected.
50
     (Note: this mechanism is enabled with FORCE_SWITCHING above)
51
*/
52
53
// Atomically copy the bits indicated by mask between two values.
54
static inline void
55
copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask)
56
2.37M
{
57
2.37M
    uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask;
58
2.37M
    uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to);
59
2.37M
    uintptr_t to_bits = old_value & mask;
60
2.37M
    if (from_bits == to_bits) {
61
2.37M
        return;
62
2.37M
    }
63
64
0
    uintptr_t new_value;
65
0
    do {
66
0
        new_value = (old_value & ~mask) | from_bits;
67
0
    } while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value));
68
0
}
69
70
// When attaching a thread, set the global instrumentation version and
71
// _PY_CALLS_TO_DO_BIT from the current state of the interpreter.
72
static inline void
73
update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate)
74
2.37M
{
75
#ifdef Py_GIL_DISABLED
76
    // Free-threaded builds eagerly update the eval_breaker on *all* threads as
77
    // needed, so this function doesn't apply.
78
    return;
79
#endif
80
81
2.37M
    int32_t npending = _Py_atomic_load_int32_relaxed(
82
2.37M
        &interp->ceval.pending.npending);
83
2.37M
    if (npending) {
84
0
        _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
85
0
    }
86
2.37M
    else if (_Py_IsMainThread()) {
87
2.37M
        npending = _Py_atomic_load_int32_relaxed(
88
2.37M
            &_PyRuntime.ceval.pending_mainthread.npending);
89
2.37M
        if (npending) {
90
0
            _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
91
0
        }
92
2.37M
    }
93
94
    // _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits
95
    // we copy from our interpreter's state are the instrumentation version.
96
2.37M
    copy_eval_breaker_bits(&interp->ceval.instrumentation_version,
97
2.37M
                           &tstate->eval_breaker,
98
2.37M
                           ~_PY_EVAL_EVENTS_MASK);
99
2.37M
}
100
101
/*
102
 * Implementation of the Global Interpreter Lock (GIL).
103
 */
104
105
#include <stdlib.h>
106
#include <errno.h>
107
108
#include "condvar.h"
109
110
#define MUTEX_INIT(mut) \
111
56
    if (PyMUTEX_INIT(&(mut))) { \
112
56
        Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
113
#define MUTEX_FINI(mut) \
114
0
    if (PyMUTEX_FINI(&(mut))) { \
115
0
        Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
116
#define MUTEX_LOCK(mut) \
117
7.13M
    if (PyMUTEX_LOCK(&(mut))) { \
118
7.13M
        Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
119
#define MUTEX_UNLOCK(mut) \
120
7.13M
    if (PyMUTEX_UNLOCK(&(mut))) { \
121
7.13M
        Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
122
123
#define COND_INIT(cond) \
124
56
    if (PyCOND_INIT(&(cond))) { \
125
56
        Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
126
#define COND_FINI(cond) \
127
0
    if (PyCOND_FINI(&(cond))) { \
128
0
        Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
129
#define COND_SIGNAL(cond) \
130
4.75M
    if (PyCOND_SIGNAL(&(cond))) { \
131
4.75M
        Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
132
#define COND_WAIT(cond, mut) \
133
0
    if (PyCOND_WAIT(&(cond), &(mut))) { \
134
0
        Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
135
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
136
0
    { \
137
0
        int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
138
0
        if (r < 0) \
139
0
            Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
140
0
        if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
141
0
            timeout_result = 1; \
142
0
        else \
143
0
            timeout_result = 0; \
144
0
    } \
145
146
147
28
#define DEFAULT_INTERVAL 5000
148
149
static void _gil_initialize(struct _gil_runtime_state *gil)
150
28
{
151
28
    gil->locked = -1;
152
28
    gil->interval = DEFAULT_INTERVAL;
153
28
}
154
155
static int gil_created(struct _gil_runtime_state *gil)
156
0
{
157
0
    if (gil == NULL) {
158
0
        return 0;
159
0
    }
160
0
    return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
161
0
}
162
163
static void create_gil(struct _gil_runtime_state *gil)
164
28
{
165
28
    MUTEX_INIT(gil->mutex);
166
28
#ifdef FORCE_SWITCHING
167
28
    MUTEX_INIT(gil->switch_mutex);
168
28
#endif
169
28
    COND_INIT(gil->cond);
170
28
#ifdef FORCE_SWITCHING
171
28
    COND_INIT(gil->switch_cond);
172
28
#endif
173
28
    _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
174
28
    _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
175
28
    _Py_atomic_store_int_release(&gil->locked, 0);
176
28
}
177
178
static void destroy_gil(struct _gil_runtime_state *gil)
179
0
{
180
    /* some pthread-like implementations tie the mutex to the cond
181
     * and must have the cond destroyed first.
182
     */
183
0
    COND_FINI(gil->cond);
184
0
    MUTEX_FINI(gil->mutex);
185
0
#ifdef FORCE_SWITCHING
186
0
    COND_FINI(gil->switch_cond);
187
0
    MUTEX_FINI(gil->switch_mutex);
188
0
#endif
189
0
    _Py_atomic_store_int_release(&gil->locked, -1);
190
0
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
191
0
}
192
193
#ifdef HAVE_FORK
194
static void recreate_gil(struct _gil_runtime_state *gil)
195
0
{
196
0
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
197
    /* XXX should we destroy the old OS resources here? */
198
0
    create_gil(gil);
199
0
}
200
#endif
201
202
static inline void
203
drop_gil_impl(PyThreadState *tstate, struct _gil_runtime_state *gil)
204
2.37M
{
205
2.37M
    MUTEX_LOCK(gil->mutex);
206
2.37M
    _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
207
2.37M
    _Py_atomic_store_int_relaxed(&gil->locked, 0);
208
2.37M
    if (tstate != NULL) {
209
2.37M
        tstate->holds_gil = 0;
210
2.37M
        tstate->gil_requested = 0;
211
2.37M
    }
212
2.37M
    COND_SIGNAL(gil->cond);
213
2.37M
    MUTEX_UNLOCK(gil->mutex);
214
2.37M
}
215
216
static void
217
drop_gil(PyInterpreterState *interp, PyThreadState *tstate, int final_release)
218
2.37M
{
219
2.37M
    struct _ceval_state *ceval = &interp->ceval;
220
    /* If final_release is true, the caller is indicating that we're releasing
221
       the GIL for the last time in this thread.  This is particularly
222
       relevant when the current thread state is finalizing or its
223
       interpreter is finalizing (either may be in an inconsistent
224
       state).  In that case the current thread will definitely
225
       never try to acquire the GIL again. */
226
    // XXX It may be more correct to check tstate->_status.finalizing.
227
    // XXX assert(final_release || !tstate->_status.cleared);
228
229
2.37M
    assert(final_release || tstate != NULL);
230
2.37M
    struct _gil_runtime_state *gil = ceval->gil;
231
#ifdef Py_GIL_DISABLED
232
    // Check if we have the GIL before dropping it. tstate will be NULL if
233
    // take_gil() detected that this thread has been destroyed, in which case
234
    // we know we have the GIL.
235
    if (tstate != NULL && !tstate->holds_gil) {
236
        return;
237
    }
238
#endif
239
2.37M
    if (!_Py_atomic_load_int_relaxed(&gil->locked)) {
240
0
        Py_FatalError("drop_gil: GIL is not locked");
241
0
    }
242
243
2.37M
    if (!final_release) {
244
        /* Sub-interpreter support: threads might have been switched
245
           under our feet using PyThreadState_Swap(). Fix the GIL last
246
           holder variable so that our heuristics work. */
247
2.37M
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
248
2.37M
    }
249
250
2.37M
    drop_gil_impl(tstate, gil);
251
252
2.37M
#ifdef FORCE_SWITCHING
253
    /* We might be releasing the GIL for the last time in this thread.  In that
254
       case there's a possible race with tstate->interp getting deleted after
255
       gil->mutex is unlocked and before the following code runs, leading to a
256
       crash.  We can use final_release to indicate the thread is done with the
257
       GIL, and that's the only time we might delete the interpreter.  See
258
       https://github.com/python/cpython/issues/104341. */
259
2.37M
    if (!final_release &&
260
2.37M
        _Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) {
261
0
        MUTEX_LOCK(gil->switch_mutex);
262
        /* Not switched yet => wait */
263
0
        if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
264
0
        {
265
0
            assert(_PyThreadState_CheckConsistency(tstate));
266
0
            _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
267
            /* NOTE: if COND_WAIT does not atomically start waiting when
268
               releasing the mutex, another thread can run through, take
269
               the GIL and drop it again, and reset the condition
270
               before we even had a chance to wait for it. */
271
0
            COND_WAIT(gil->switch_cond, gil->switch_mutex);
272
0
        }
273
0
        MUTEX_UNLOCK(gil->switch_mutex);
274
0
    }
275
2.37M
#endif
276
2.37M
}
277
278
279
/* Take the GIL.
280
281
   The function saves errno at entry and restores its value at exit.
282
   It may hang rather than return if the interpreter has been finalized.
283
284
   tstate must be non-NULL. */
285
static void
286
take_gil(PyThreadState *tstate)
287
2.37M
{
288
2.37M
    int err = errno;
289
290
2.37M
    assert(tstate != NULL);
291
    /* We shouldn't be using a thread state that isn't viable any more. */
292
    // XXX It may be more correct to check tstate->_status.finalizing.
293
    // XXX assert(!tstate->_status.cleared);
294
295
2.37M
    if (_PyThreadState_MustExit(tstate)) {
296
        /* bpo-39877: If Py_Finalize() has been called and tstate is not the
297
           thread which called Py_Finalize(), this thread cannot continue.
298
299
           This code path can be reached by a daemon thread after Py_Finalize()
300
           completes.
301
302
           This used to call a *thread_exit API, but that was not safe as it
303
           lacks stack unwinding and local variable destruction important to
304
           C++. gh-87135: The best that can be done is to hang the thread as
305
           the public APIs calling this have no error reporting mechanism (!).
306
         */
307
0
        _PyThreadState_HangThread(tstate);
308
0
    }
309
310
2.37M
    assert(_PyThreadState_CheckConsistency(tstate));
311
2.37M
    PyInterpreterState *interp = tstate->interp;
312
2.37M
    struct _gil_runtime_state *gil = interp->ceval.gil;
313
#ifdef Py_GIL_DISABLED
314
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
315
        return;
316
    }
317
#endif
318
319
    /* Check that _PyEval_InitThreads() was called to create the lock */
320
2.37M
    assert(gil_created(gil));
321
322
2.37M
    MUTEX_LOCK(gil->mutex);
323
324
2.37M
    tstate->gil_requested = 1;
325
326
2.37M
    int drop_requested = 0;
327
2.37M
    while (_Py_atomic_load_int_relaxed(&gil->locked)) {
328
0
        unsigned long saved_switchnum = gil->switch_number;
329
330
0
        unsigned long interval = _Py_atomic_load_ulong_relaxed(&gil->interval);
331
0
        if (interval < 1) {
332
0
            interval = 1;
333
0
        }
334
0
        int timed_out = 0;
335
0
        COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
336
337
        /* If we timed out and no switch occurred in the meantime, it is time
338
           to ask the GIL-holding thread to drop it. */
339
0
        if (timed_out &&
340
0
            _Py_atomic_load_int_relaxed(&gil->locked) &&
341
0
            gil->switch_number == saved_switchnum)
342
0
        {
343
0
            PyThreadState *holder_tstate =
344
0
                (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
345
0
            if (_PyThreadState_MustExit(tstate)) {
346
0
                MUTEX_UNLOCK(gil->mutex);
347
                // gh-96387: If the loop requested a drop request in a previous
348
                // iteration, reset the request. Otherwise, drop_gil() can
349
                // block forever waiting for the thread which exited. Drop
350
                // requests made by other threads are also reset: these threads
351
                // may have to request again a drop request (iterate one more
352
                // time).
353
0
                if (drop_requested) {
354
0
                    _Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
355
0
                }
356
                // gh-87135: hang the thread as *thread_exit() is not a safe
357
                // API. It lacks stack unwind and local variable destruction.
358
0
                _PyThreadState_HangThread(tstate);
359
0
            }
360
0
            assert(_PyThreadState_CheckConsistency(tstate));
361
362
0
            _Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
363
0
            drop_requested = 1;
364
0
        }
365
0
    }
366
367
#ifdef Py_GIL_DISABLED
368
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
369
        // Another thread disabled the GIL between our check above and
370
        // now. Don't take the GIL, signal any other waiting threads, and
371
        // return.
372
        COND_SIGNAL(gil->cond);
373
        MUTEX_UNLOCK(gil->mutex);
374
        return;
375
    }
376
#endif
377
378
2.37M
#ifdef FORCE_SWITCHING
379
    /* This mutex must be taken before modifying gil->last_holder:
380
       see drop_gil(). */
381
4.75M
    MUTEX_LOCK(gil->switch_mutex);
382
4.75M
#endif
383
    /* We now hold the GIL */
384
4.75M
    _Py_atomic_store_int_relaxed(&gil->locked, 1);
385
4.75M
    _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
386
387
4.75M
    if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
388
28
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
389
28
        ++gil->switch_number;
390
28
    }
391
392
4.75M
#ifdef FORCE_SWITCHING
393
4.75M
    COND_SIGNAL(gil->switch_cond);
394
2.37M
    MUTEX_UNLOCK(gil->switch_mutex);
395
2.37M
#endif
396
397
2.37M
    if (_PyThreadState_MustExit(tstate)) {
398
        /* bpo-36475: If Py_Finalize() has been called and tstate is not
399
           the thread which called Py_Finalize(), gh-87135: hang the
400
           thread.
401
402
           This code path can be reached by a daemon thread which was waiting
403
           in take_gil() while the main thread called
404
           wait_for_thread_shutdown() from Py_Finalize(). */
405
0
        MUTEX_UNLOCK(gil->mutex);
406
        /* tstate could be a dangling pointer, so don't pass it to
407
           drop_gil(). */
408
0
        drop_gil(interp, NULL, 1);
409
0
        _PyThreadState_HangThread(tstate);
410
0
    }
411
2.37M
    assert(_PyThreadState_CheckConsistency(tstate));
412
413
2.37M
    tstate->gil_requested = 0;
414
2.37M
    tstate->holds_gil = 1;
415
2.37M
    _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
416
2.37M
    update_eval_breaker_for_thread(interp, tstate);
417
418
2.37M
    MUTEX_UNLOCK(gil->mutex);
419
420
2.37M
    errno = err;
421
2.37M
    return;
422
2.37M
}
423
424
void _PyEval_SetSwitchInterval(unsigned long microseconds)
425
0
{
426
0
    PyInterpreterState *interp = _PyInterpreterState_GET();
427
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
428
0
    assert(gil != NULL);
429
0
    _Py_atomic_store_ulong_relaxed(&gil->interval, microseconds);
430
0
}
431
432
unsigned long _PyEval_GetSwitchInterval(void)
433
0
{
434
0
    PyInterpreterState *interp = _PyInterpreterState_GET();
435
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
436
0
    assert(gil != NULL);
437
0
    return _Py_atomic_load_ulong_relaxed(&gil->interval);
438
0
}
439
440
441
int
442
_PyEval_ThreadsInitialized(void)
443
0
{
444
    /* XXX This is only needed for an assert in PyGILState_Ensure(),
445
     * which currently does not work with subinterpreters.
446
     * Thus we only use the main interpreter. */
447
0
    PyInterpreterState *interp = _PyInterpreterState_Main();
448
0
    if (interp == NULL) {
449
0
        return 0;
450
0
    }
451
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
452
0
    return gil_created(gil);
453
0
}
454
455
// Function removed in the Python 3.13 API but kept in the stable ABI.
456
PyAPI_FUNC(int)
457
PyEval_ThreadsInitialized(void)
458
0
{
459
0
    return _PyEval_ThreadsInitialized();
460
0
}
461
462
#ifndef NDEBUG
463
static inline int
464
current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
465
{
466
    int holds_gil = tstate->holds_gil;
467
468
    // holds_gil is the source of truth; check that last_holder and gil->locked
469
    // are consistent with it.
470
    int locked = _Py_atomic_load_int_relaxed(&gil->locked);
471
    int is_last_holder =
472
        ((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate;
473
    assert(!holds_gil || locked);
474
    assert(!holds_gil || is_last_holder);
475
476
    return holds_gil;
477
}
478
#endif
479
480
static void
481
init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
482
0
{
483
0
    assert(gil_created(gil));
484
0
    interp->ceval.gil = gil;
485
0
    interp->ceval.own_gil = 0;
486
0
}
487
488
static void
489
init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
490
28
{
491
28
    assert(!gil_created(gil));
492
#ifdef Py_GIL_DISABLED
493
    const PyConfig *config = _PyInterpreterState_GetConfig(interp);
494
    gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0;
495
#endif
496
28
    create_gil(gil);
497
28
    assert(gil_created(gil));
498
28
    interp->ceval.gil = gil;
499
28
    interp->ceval.own_gil = 1;
500
28
}
501
502
void
503
_PyEval_InitGIL(PyThreadState *tstate, int own_gil)
504
28
{
505
28
    assert(tstate->interp->ceval.gil == NULL);
506
28
    if (!own_gil) {
507
        /* The interpreter will share the main interpreter's instead. */
508
0
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
509
0
        assert(tstate->interp != main_interp);
510
0
        struct _gil_runtime_state *gil = main_interp->ceval.gil;
511
0
        init_shared_gil(tstate->interp, gil);
512
0
        assert(!current_thread_holds_gil(gil, tstate));
513
0
    }
514
28
    else {
515
28
        PyThread_init_thread();
516
28
        init_own_gil(tstate->interp, &tstate->interp->_gil);
517
28
    }
518
519
    // Lock the GIL and mark the current thread as attached.
520
28
    _PyThreadState_Attach(tstate);
521
28
}
522
523
void
524
_PyEval_FiniGIL(PyInterpreterState *interp)
525
28
{
526
28
    struct _gil_runtime_state *gil = interp->ceval.gil;
527
28
    if (gil == NULL) {
528
        /* It was already finalized (or hasn't been initialized yet). */
529
28
        assert(!interp->ceval.own_gil);
530
28
        return;
531
28
    }
532
0
    else if (!interp->ceval.own_gil) {
533
#ifdef Py_DEBUG
534
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
535
        assert(main_interp != NULL && interp != main_interp);
536
        assert(interp->ceval.gil == main_interp->ceval.gil);
537
#endif
538
0
        interp->ceval.gil = NULL;
539
0
        return;
540
0
    }
541
542
0
    if (!gil_created(gil)) {
543
        /* First Py_InitializeFromConfig() call: the GIL doesn't exist
544
           yet: do nothing. */
545
0
        return;
546
0
    }
547
548
0
    destroy_gil(gil);
549
0
    assert(!gil_created(gil));
550
0
    interp->ceval.gil = NULL;
551
0
}
552
553
void
554
PyEval_InitThreads(void)
555
0
{
556
    /* Do nothing: kept for backward compatibility */
557
0
}
558
559
void
560
_PyEval_Fini(void)
561
0
{
562
#ifdef Py_STATS
563
    _Py_PrintSpecializationStats(1);
564
#endif
565
0
}
566
567
// Function removed in the Python 3.13 API but kept in the stable ABI.
568
PyAPI_FUNC(void)
569
PyEval_AcquireLock(void)
570
0
{
571
0
    PyThreadState *tstate = _PyThreadState_GET();
572
0
    _Py_EnsureTstateNotNULL(tstate);
573
574
0
    take_gil(tstate);
575
0
}
576
577
// Function removed in the Python 3.13 API but kept in the stable ABI.
578
PyAPI_FUNC(void)
579
PyEval_ReleaseLock(void)
580
0
{
581
0
    PyThreadState *tstate = _PyThreadState_GET();
582
    /* This function must succeed when the current thread state is NULL.
583
       We therefore avoid PyThreadState_Get() which dumps a fatal error
584
       in debug mode. */
585
0
    drop_gil(tstate->interp, tstate, 0);
586
0
}
587
588
void
589
_PyEval_AcquireLock(PyThreadState *tstate)
590
2.37M
{
591
2.37M
    _Py_EnsureTstateNotNULL(tstate);
592
2.37M
    take_gil(tstate);
593
2.37M
}
594
595
void
596
_PyEval_ReleaseLock(PyInterpreterState *interp,
597
                    PyThreadState *tstate,
598
                    int final_release)
599
2.37M
{
600
2.37M
    assert(tstate != NULL);
601
2.37M
    assert(tstate->interp == interp);
602
2.37M
    drop_gil(interp, tstate, final_release);
603
2.37M
}
604
605
void
606
PyEval_AcquireThread(PyThreadState *tstate)
607
0
{
608
0
    _Py_EnsureTstateNotNULL(tstate);
609
0
    _PyThreadState_Attach(tstate);
610
0
}
611
612
void
613
PyEval_ReleaseThread(PyThreadState *tstate)
614
0
{
615
0
    assert(_PyThreadState_CheckConsistency(tstate));
616
0
    _PyThreadState_Detach(tstate);
617
0
}
618
619
#ifdef HAVE_FORK
620
/* This function is called from PyOS_AfterFork_Child to re-initialize the
621
   GIL and pending calls lock. */
622
PyStatus
623
_PyEval_ReInitThreads(PyThreadState *tstate)
624
0
{
625
0
    assert(tstate->interp == _PyInterpreterState_Main());
626
627
0
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
628
0
    if (!gil_created(gil)) {
629
0
        return _PyStatus_OK();
630
0
    }
631
0
    recreate_gil(gil);
632
633
0
    take_gil(tstate);
634
635
0
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
636
0
    _PyMutex_at_fork_reinit(&pending->mutex);
637
638
0
    return _PyStatus_OK();
639
0
}
640
#endif
641
642
PyThreadState *
643
PyEval_SaveThread(void)
644
2.37M
{
645
2.37M
    PyThreadState *tstate = _PyThreadState_GET();
646
2.37M
    _PyThreadState_Detach(tstate);
647
2.37M
    return tstate;
648
2.37M
}
649
650
void
651
PyEval_RestoreThread(PyThreadState *tstate)
652
2.37M
{
653
#ifdef MS_WINDOWS
654
    int err = GetLastError();
655
#endif
656
657
2.37M
    _Py_EnsureTstateNotNULL(tstate);
658
2.37M
    _PyThreadState_Attach(tstate);
659
660
#ifdef MS_WINDOWS
661
    SetLastError(err);
662
#endif
663
2.37M
}
664
665
666
void
667
_PyEval_SignalReceived(void)
668
0
{
669
0
    _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT);
670
0
}
671
672
673
#ifndef Py_GIL_DISABLED
674
static void
675
signal_active_thread(PyInterpreterState *interp, uintptr_t bit)
676
0
{
677
0
    struct _gil_runtime_state *gil = interp->ceval.gil;
678
679
    // If a thread from the targeted interpreter is holding the GIL, signal
680
    // that thread. Otherwise, the next thread to run from the targeted
681
    // interpreter will have its bit set as part of taking the GIL.
682
0
    MUTEX_LOCK(gil->mutex);
683
0
    if (_Py_atomic_load_int_relaxed(&gil->locked)) {
684
0
        PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
685
0
        if (holder->interp == interp) {
686
0
            _Py_set_eval_breaker_bit(holder, bit);
687
0
        }
688
0
    }
689
0
    MUTEX_UNLOCK(gil->mutex);
690
0
}
691
#endif
692
693
694
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
695
   signal handlers or Mac I/O completion routines) can schedule calls
696
   to a function to be called synchronously.
697
   The synchronous function is called with one void* argument.
698
   It should return 0 for success or -1 for failure -- failure should
699
   be accompanied by an exception.
700
701
   If registry succeeds, the registry function returns 0; if it fails
702
   (e.g. due to too many pending calls) it returns -1 (without setting
703
   an exception condition).
704
705
   Note that because registry may occur from within signal handlers,
706
   or other asynchronous events, calling malloc() is unsafe!
707
708
   Any thread can schedule pending calls, but only the main thread
709
   will execute them.
710
   There is no facility to schedule calls to a particular thread, but
711
   that should be easy to change, should that ever be required.  In
712
   that case, the static variables here should go into the python
713
   threadstate.
714
*/
715
716
/* Push one item onto the queue while holding the lock. */
717
static int
718
_push_pending_call(struct _pending_calls *pending,
719
                   _Py_pending_call_func func, void *arg, int flags)
720
0
{
721
0
    if (pending->npending == pending->max) {
722
0
        return _Py_ADD_PENDING_FULL;
723
0
    }
724
0
    assert(pending->npending < pending->max);
725
726
0
    int i = pending->next;
727
0
    assert(pending->calls[i].func == NULL);
728
729
0
    pending->calls[i].func = func;
730
0
    pending->calls[i].arg = arg;
731
0
    pending->calls[i].flags = flags;
732
733
0
    assert(pending->npending < PENDINGCALLSARRAYSIZE);
734
0
    _Py_atomic_add_int32(&pending->npending, 1);
735
736
0
    pending->next = (i + 1) % PENDINGCALLSARRAYSIZE;
737
0
    assert(pending->next != pending->first
738
0
            || pending->npending == pending->max);
739
740
0
    return _Py_ADD_PENDING_SUCCESS;
741
0
}
742
743
static int
744
_next_pending_call(struct _pending_calls *pending,
745
                   int (**func)(void *), void **arg, int *flags)
746
0
{
747
0
    int i = pending->first;
748
0
    if (pending->npending == 0) {
749
        /* Queue empty */
750
0
        assert(i == pending->next);
751
0
        assert(pending->calls[i].func == NULL);
752
0
        return -1;
753
0
    }
754
0
    *func = pending->calls[i].func;
755
0
    *arg = pending->calls[i].arg;
756
0
    *flags = pending->calls[i].flags;
757
0
    return i;
758
0
}
759
760
/* Pop one item off the queue while holding the lock. */
761
static void
762
_pop_pending_call(struct _pending_calls *pending,
763
                  int (**func)(void *), void **arg, int *flags)
764
0
{
765
0
    int i = _next_pending_call(pending, func, arg, flags);
766
0
    if (i >= 0) {
767
0
        pending->calls[i] = (struct _pending_call){0};
768
0
        pending->first = (i + 1) % PENDINGCALLSARRAYSIZE;
769
0
        assert(pending->npending > 0);
770
0
        _Py_atomic_add_int32(&pending->npending, -1);
771
0
    }
772
0
}
773
774
/* This implementation is thread-safe.  It allows
775
   scheduling to be made from any thread, and even from an executing
776
   callback.
777
 */
778
779
_Py_add_pending_call_result
780
_PyEval_AddPendingCall(PyInterpreterState *interp,
781
                       _Py_pending_call_func func, void *arg, int flags)
782
0
{
783
0
    struct _pending_calls *pending = &interp->ceval.pending;
784
0
    int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0;
785
0
    if (main_only) {
786
        /* The main thread only exists in the main interpreter. */
787
0
        assert(_Py_IsMainInterpreter(interp));
788
0
        pending = &_PyRuntime.ceval.pending_mainthread;
789
0
    }
790
791
0
    PyMutex_Lock(&pending->mutex);
792
0
    _Py_add_pending_call_result result =
793
0
        _push_pending_call(pending, func, arg, flags);
794
0
    PyMutex_Unlock(&pending->mutex);
795
796
0
    if (main_only) {
797
0
        _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT);
798
0
    }
799
0
    else {
800
#ifdef Py_GIL_DISABLED
801
        _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
802
#else
803
0
        signal_active_thread(interp, _PY_CALLS_TO_DO_BIT);
804
0
#endif
805
0
    }
806
807
0
    return result;
808
0
}
809
810
int
811
Py_AddPendingCall(_Py_pending_call_func func, void *arg)
812
0
{
813
    /* Legacy users of this API will continue to target the main thread
814
       (of the main interpreter). */
815
0
    PyInterpreterState *interp = _PyInterpreterState_Main();
816
0
    _Py_add_pending_call_result r =
817
0
        _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
818
0
    if (r == _Py_ADD_PENDING_FULL) {
819
0
        return -1;
820
0
    }
821
0
    else {
822
0
        assert(r == _Py_ADD_PENDING_SUCCESS);
823
0
        return 0;
824
0
    }
825
0
}
826
827
static int
828
handle_signals(PyThreadState *tstate)
829
0
{
830
0
    assert(_PyThreadState_CheckConsistency(tstate));
831
0
    _Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
832
0
    if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
833
0
        return 0;
834
0
    }
835
0
    if (_PyErr_CheckSignalsTstate(tstate) < 0) {
836
        /* On failure, re-schedule a call to handle_signals(). */
837
0
        _Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
838
0
        return -1;
839
0
    }
840
0
    return 0;
841
0
}
842
843
static int
844
_make_pending_calls(struct _pending_calls *pending, int32_t *p_npending)
845
0
{
846
0
    int res = 0;
847
0
    int32_t npending = -1;
848
849
0
    assert(sizeof(pending->max) <= sizeof(size_t)
850
0
            && ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls));
851
0
    int32_t maxloop = pending->maxloop;
852
0
    if (maxloop == 0) {
853
0
        maxloop = pending->max;
854
0
    }
855
0
    assert(maxloop > 0 && maxloop <= pending->max);
856
857
    /* perform a bounded number of calls, in case of recursion */
858
0
    for (int i=0; i<maxloop; i++) {
859
0
        _Py_pending_call_func func = NULL;
860
0
        void *arg = NULL;
861
0
        int flags = 0;
862
863
        /* pop one item off the queue while holding the lock */
864
0
        PyMutex_Lock(&pending->mutex);
865
0
        _pop_pending_call(pending, &func, &arg, &flags);
866
0
        npending = pending->npending;
867
0
        PyMutex_Unlock(&pending->mutex);
868
869
        /* Check if there are any more pending calls. */
870
0
        if (func == NULL) {
871
0
            assert(npending == 0);
872
0
            break;
873
0
        }
874
875
        /* having released the lock, perform the callback */
876
0
        res = func(arg);
877
0
        if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
878
0
            PyMem_RawFree(arg);
879
0
        }
880
0
        if (res != 0) {
881
0
            res = -1;
882
0
            goto finally;
883
0
        }
884
0
    }
885
886
0
finally:
887
0
    *p_npending = npending;
888
0
    return res;
889
0
}
890
891
static void
892
signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
893
0
{
894
#ifdef Py_GIL_DISABLED
895
    _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
896
#else
897
0
    _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
898
0
#endif
899
0
}
900
901
static void
902
unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
903
0
{
904
#ifdef Py_GIL_DISABLED
905
    _Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
906
#else
907
0
    _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
908
0
#endif
909
0
}
910
911
static void
912
clear_pending_handling_thread(struct _pending_calls *pending)
913
0
{
914
0
    FT_MUTEX_LOCK(&pending->mutex);
915
0
    pending->handling_thread = NULL;
916
0
    FT_MUTEX_UNLOCK(&pending->mutex);
917
0
}
918
919
static int
920
make_pending_calls(PyThreadState *tstate)
921
0
{
922
0
    PyInterpreterState *interp = tstate->interp;
923
0
    struct _pending_calls *pending = &interp->ceval.pending;
924
0
    struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
925
926
    /* Only one thread (per interpreter) may run the pending calls
927
       at once.  In the same way, we don't do recursive pending calls. */
928
0
    PyMutex_Lock(&pending->mutex);
929
0
    if (pending->handling_thread != NULL) {
930
        /* A pending call was added after another thread was already
931
           handling the pending calls (and had already "unsignaled").
932
           Once that thread is done, it may have taken care of all the
933
           pending calls, or there might be some still waiting.
934
           To avoid all threads constantly stopping on the eval breaker,
935
           we clear the bit for this thread and make sure it is set
936
           for the thread currently handling the pending call. */
937
0
        _Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT);
938
0
        _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
939
0
        PyMutex_Unlock(&pending->mutex);
940
0
        return 0;
941
0
    }
942
0
    pending->handling_thread = tstate;
943
0
    PyMutex_Unlock(&pending->mutex);
944
945
    /* unsignal before starting to call callbacks, so that any callback
946
       added in-between re-signals */
947
0
    unsignal_pending_calls(tstate, interp);
948
949
0
    int32_t npending;
950
0
    if (_make_pending_calls(pending, &npending) != 0) {
951
0
        clear_pending_handling_thread(pending);
952
        /* There might not be more calls to make, but we play it safe. */
953
0
        signal_pending_calls(tstate, interp);
954
0
        return -1;
955
0
    }
956
0
    if (npending > 0) {
957
        /* We hit pending->maxloop. */
958
0
        signal_pending_calls(tstate, interp);
959
0
    }
960
961
0
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
962
0
        if (_make_pending_calls(pending_main, &npending) != 0) {
963
0
            clear_pending_handling_thread(pending);
964
            /* There might not be more calls to make, but we play it safe. */
965
0
            signal_pending_calls(tstate, interp);
966
0
            return -1;
967
0
        }
968
0
        if (npending > 0) {
969
            /* We hit pending_main->maxloop. */
970
0
            signal_pending_calls(tstate, interp);
971
0
        }
972
0
    }
973
974
0
    clear_pending_handling_thread(pending);
975
0
    return 0;
976
0
}
977
978
979
void
980
_Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
981
0
{
982
0
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
983
0
        _Py_set_eval_breaker_bit(tstate, bit);
984
0
    }
985
0
    _Py_FOR_EACH_TSTATE_END(interp);
986
0
}
987
988
void
989
_Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
990
0
{
991
0
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
992
0
        _Py_unset_eval_breaker_bit(tstate, bit);
993
0
    }
994
0
    _Py_FOR_EACH_TSTATE_END(interp);
995
0
}
996
997
void
998
_Py_FinishPendingCalls(PyThreadState *tstate)
999
0
{
1000
0
    _Py_AssertHoldsTstate();
1001
0
    assert(_PyThreadState_CheckConsistency(tstate));
1002
1003
0
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
1004
0
    struct _pending_calls *pending_main =
1005
0
            _Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)
1006
0
            ? &_PyRuntime.ceval.pending_mainthread
1007
0
            : NULL;
1008
    /* make_pending_calls() may return early without making all pending
1009
       calls, so we keep trying until we're actually done. */
1010
0
    int32_t npending;
1011
#ifndef NDEBUG
1012
    int32_t npending_prev = INT32_MAX;
1013
#endif
1014
0
    do {
1015
0
        if (make_pending_calls(tstate) < 0) {
1016
0
            PyObject *exc = _PyErr_GetRaisedException(tstate);
1017
0
            PyErr_BadInternalCall();
1018
0
            _PyErr_ChainExceptions1(exc);
1019
0
            _PyErr_Print(tstate);
1020
0
        }
1021
1022
0
        npending = _Py_atomic_load_int32_relaxed(&pending->npending);
1023
0
        if (pending_main != NULL) {
1024
0
            npending += _Py_atomic_load_int32_relaxed(&pending_main->npending);
1025
0
        }
1026
#ifndef NDEBUG
1027
        assert(npending_prev > npending);
1028
        npending_prev = npending;
1029
#endif
1030
0
    } while (npending > 0);
1031
0
}
1032
1033
int
1034
_PyEval_MakePendingCalls(PyThreadState *tstate)
1035
0
{
1036
0
    int res;
1037
1038
0
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
1039
        /* Python signal handler doesn't really queue a callback:
1040
           it only signals that a signal was received,
1041
           see _PyEval_SignalReceived(). */
1042
0
        res = handle_signals(tstate);
1043
0
        if (res != 0) {
1044
0
            return res;
1045
0
        }
1046
0
    }
1047
1048
0
    res = make_pending_calls(tstate);
1049
0
    if (res != 0) {
1050
0
        return res;
1051
0
    }
1052
1053
0
    return 0;
1054
0
}
1055
1056
/* Py_MakePendingCalls() is a simple wrapper for the sake
1057
   of backward-compatibility. */
1058
int
1059
Py_MakePendingCalls(void)
1060
0
{
1061
0
    _Py_AssertHoldsTstate();
1062
1063
0
    PyThreadState *tstate = _PyThreadState_GET();
1064
0
    assert(_PyThreadState_CheckConsistency(tstate));
1065
1066
    /* Only execute pending calls on the main thread. */
1067
0
    if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) {
1068
0
        return 0;
1069
0
    }
1070
0
    return _PyEval_MakePendingCalls(tstate);
1071
0
}
1072
1073
void
1074
_PyEval_InitState(PyInterpreterState *interp)
1075
28
{
1076
28
    _gil_initialize(&interp->_gil);
1077
28
}
1078
1079
#ifdef Py_GIL_DISABLED
1080
int
1081
_PyEval_EnableGILTransient(PyThreadState *tstate)
1082
{
1083
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1084
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1085
        return 0;
1086
    }
1087
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1088
1089
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1090
    if (enabled == INT_MAX) {
1091
        // The GIL is already enabled permanently.
1092
        return 0;
1093
    }
1094
    if (enabled == INT_MAX - 1) {
1095
        Py_FatalError("Too many transient requests to enable the GIL");
1096
    }
1097
    if (enabled > 0) {
1098
        // If enabled is nonzero, we know we hold the GIL. This means that no
1099
        // other threads are attached, and nobody else can be concurrently
1100
        // mutating it.
1101
        _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
1102
        return 0;
1103
    }
1104
1105
    // Enabling the GIL changes what it means to be an "attached" thread. To
1106
    // safely make this transition, we:
1107
    // 1. Detach the current thread.
1108
    // 2. Stop the world to detach (and suspend) all other threads.
1109
    // 3. Enable the GIL, if nobody else did between our check above and when
1110
    //    our stop-the-world begins.
1111
    // 4. Start the world.
1112
    // 5. Attach the current thread. Other threads may attach and hold the GIL
1113
    //    before this thread, which is harmless.
1114
    _PyThreadState_Detach(tstate);
1115
1116
    // This could be an interpreter-local stop-the-world in situations where we
1117
    // know that this interpreter's GIL is not shared, and that it won't become
1118
    // shared before the stop-the-world begins. For now, we always stop all
1119
    // interpreters for simplicity.
1120
    _PyEval_StopTheWorldAll(&_PyRuntime);
1121
1122
    enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1123
    int this_thread_enabled = enabled == 0;
1124
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
1125
1126
    _PyEval_StartTheWorldAll(&_PyRuntime);
1127
    _PyThreadState_Attach(tstate);
1128
1129
    return this_thread_enabled;
1130
}
1131
1132
int
1133
_PyEval_EnableGILPermanent(PyThreadState *tstate)
1134
{
1135
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1136
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1137
        return 0;
1138
    }
1139
1140
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1141
    assert(current_thread_holds_gil(gil, tstate));
1142
1143
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1144
    if (enabled == INT_MAX) {
1145
        return 0;
1146
    }
1147
1148
    _Py_atomic_store_int_relaxed(&gil->enabled, INT_MAX);
1149
    return 1;
1150
}
1151
1152
int
1153
_PyEval_DisableGIL(PyThreadState *tstate)
1154
{
1155
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1156
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
1157
        return 0;
1158
    }
1159
1160
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
1161
    assert(current_thread_holds_gil(gil, tstate));
1162
1163
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
1164
    if (enabled == INT_MAX) {
1165
        return 0;
1166
    }
1167
1168
    assert(enabled >= 1);
1169
    enabled--;
1170
1171
    // Disabling the GIL is much simpler than enabling it, since we know we are
1172
    // the only attached thread. Other threads may start free-threading as soon
1173
    // as this store is complete, if it sets gil->enabled to 0.
1174
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled);
1175
1176
    if (enabled == 0) {
1177
        // We're attached, so we know the GIL will remain disabled until at
1178
        // least the next time we detach, which must be after this function
1179
        // returns.
1180
        //
1181
        // Drop the GIL, which will wake up any threads waiting in take_gil()
1182
        // and let them resume execution without the GIL.
1183
        drop_gil_impl(tstate, gil);
1184
1185
        // If another thread asked us to drop the GIL, they should be
1186
        // free-threading by now. Remove any such request so we have a clean
1187
        // slate if/when the GIL is enabled again.
1188
        _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
1189
        return 1;
1190
    }
1191
    return 0;
1192
}
1193
#endif
1194
1195
#if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
1196
// Note that this function is inline to avoid creating a PLT entry
1197
// that would be an easy target for a ROP gadget.
1198
static inline int run_remote_debugger_source(PyObject *source)
1199
0
{
1200
0
    const char *str = PyBytes_AsString(source);
1201
0
    if (!str) {
1202
0
        return -1;
1203
0
    }
1204
1205
0
    PyObject *ns = PyDict_New();
1206
0
    if (!ns) {
1207
0
        return -1;
1208
0
    }
1209
1210
0
    PyObject *res = PyRun_String(str, Py_file_input, ns, ns);
1211
0
    Py_DECREF(ns);
1212
0
    if (!res) {
1213
0
        return -1;
1214
0
    }
1215
0
    Py_DECREF(res);
1216
0
    return 0;
1217
0
}
1218
1219
// Note that this function is inline to avoid creating a PLT entry
1220
// that would be an easy target for a ROP gadget.
1221
static inline void run_remote_debugger_script(PyObject *path)
1222
0
{
1223
0
    if (0 != PySys_Audit("cpython.remote_debugger_script", "O", path)) {
1224
0
        PyErr_FormatUnraisable(
1225
0
            "Audit hook failed for remote debugger script %U", path);
1226
0
        return;
1227
0
    }
1228
1229
    // Open the debugger script with the open code hook, and reopen the
1230
    // resulting file object to get a C FILE* object.
1231
0
    PyObject* fileobj = PyFile_OpenCodeObject(path);
1232
0
    if (!fileobj) {
1233
0
        PyErr_FormatUnraisable("Can't open debugger script %U", path);
1234
0
        return;
1235
0
    }
1236
1237
0
    PyObject* source = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(read));
1238
0
    if (!source) {
1239
0
        PyErr_FormatUnraisable("Error reading debugger script %U", path);
1240
0
    }
1241
1242
0
    PyObject* res = PyObject_CallMethodNoArgs(fileobj, &_Py_ID(close));
1243
0
    if (!res) {
1244
0
        PyErr_FormatUnraisable("Error closing debugger script %U", path);
1245
0
    } else {
1246
0
        Py_DECREF(res);
1247
0
    }
1248
0
    Py_DECREF(fileobj);
1249
1250
0
    if (source) {
1251
0
        if (0 != run_remote_debugger_source(source)) {
1252
0
            PyErr_FormatUnraisable("Error executing debugger script %U", path);
1253
0
        }
1254
0
        Py_DECREF(source);
1255
0
    }
1256
0
}
1257
1258
int _PyRunRemoteDebugger(PyThreadState *tstate)
1259
102M
{
1260
102M
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
1261
102M
    if (config->remote_debug == 1
1262
102M
         && tstate->remote_debugger_support.debugger_pending_call == 1)
1263
0
    {
1264
0
        tstate->remote_debugger_support.debugger_pending_call = 0;
1265
1266
        // Immediately make a copy in case of a race with another debugger
1267
        // process that's trying to write to the buffer. At least this way
1268
        // we'll be internally consistent: what we audit is what we run.
1269
0
        const size_t pathsz
1270
0
            = sizeof(tstate->remote_debugger_support.debugger_script_path);
1271
1272
0
        char *path = PyMem_Malloc(pathsz);
1273
0
        if (path) {
1274
            // And don't assume the debugger correctly null terminated it.
1275
0
            memcpy(
1276
0
                path,
1277
0
                tstate->remote_debugger_support.debugger_script_path,
1278
0
                pathsz);
1279
0
            path[pathsz - 1] = '\0';
1280
0
            if (*path) {
1281
0
                PyObject *path_obj = PyUnicode_DecodeFSDefault(path);
1282
0
                if (path_obj == NULL) {
1283
0
                    PyErr_FormatUnraisable("Can't decode debugger script");
1284
0
                }
1285
0
                else {
1286
0
                    run_remote_debugger_script(path_obj);
1287
0
                    Py_DECREF(path_obj);
1288
0
                }
1289
0
            }
1290
0
            PyMem_Free(path);
1291
0
        }
1292
0
    }
1293
102M
    return 0;
1294
102M
}
1295
1296
#endif
1297
1298
/* Do periodic things, like check for signals and async I/0.
1299
* We need to do reasonably frequently, but not too frequently.
1300
* All loops should include a check of the eval breaker.
1301
* We also check on return from any builtin function.
1302
*
1303
* ## More Details ###
1304
*
1305
* The eval loop (this function) normally executes the instructions
1306
* of a code object sequentially.  However, the runtime supports a
1307
* number of out-of-band execution scenarios that may pause that
1308
* sequential execution long enough to do that out-of-band work
1309
* in the current thread using the current PyThreadState.
1310
*
1311
* The scenarios include:
1312
*
1313
*  - cyclic garbage collection
1314
*  - GIL drop requests
1315
*  - "async" exceptions
1316
*  - "pending calls"  (some only in the main thread)
1317
*  - signal handling (only in the main thread)
1318
*
1319
* When the need for one of the above is detected, the eval loop
1320
* pauses long enough to handle the detected case.  Then, if doing
1321
* so didn't trigger an exception, the eval loop resumes executing
1322
* the sequential instructions.
1323
*
1324
* To make this work, the eval loop periodically checks if any
1325
* of the above needs to happen.  The individual checks can be
1326
* expensive if computed each time, so a while back we switched
1327
* to using pre-computed, per-interpreter variables for the checks,
1328
* and later consolidated that to a single "eval breaker" variable
1329
* (now a PyInterpreterState field).
1330
*
1331
* For the longest time, the eval breaker check would happen
1332
* frequently, every 5 or so times through the loop, regardless
1333
* of what instruction ran last or what would run next.  Then, in
1334
* early 2021 (gh-18334, commit 4958f5d), we switched to checking
1335
* the eval breaker less frequently, by hard-coding the check to
1336
* specific places in the eval loop (e.g. certain instructions).
1337
* The intent then was to check after returning from calls
1338
* and on the back edges of loops.
1339
*
1340
* In addition to being more efficient, that approach keeps
1341
* the eval loop from running arbitrary code between instructions
1342
* that don't handle that well.  (See gh-74174.)
1343
*
1344
* Currently, the eval breaker check happens on back edges in
1345
* the control flow graph, which pretty much applies to all loops,
1346
* and most calls.
1347
* (See bytecodes.c for exact information.)
1348
*
1349
* One consequence of this approach is that it might not be obvious
1350
* how to force any specific thread to pick up the eval breaker,
1351
* or for any specific thread to not pick it up.  Mostly this
1352
* involves judicious uses of locks and careful ordering of code,
1353
* while avoiding code that might trigger the eval breaker
1354
* until so desired.
1355
*/
1356
int
1357
_Py_HandlePending(PyThreadState *tstate)
1358
79.3k
{
1359
79.3k
    uintptr_t breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker);
1360
1361
    /* Stop-the-world */
1362
79.3k
    if ((breaker & _PY_EVAL_PLEASE_STOP_BIT) != 0) {
1363
0
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_PLEASE_STOP_BIT);
1364
0
        _PyThreadState_Suspend(tstate);
1365
1366
        /* The attach blocks until the stop-the-world event is complete. */
1367
0
        _PyThreadState_Attach(tstate);
1368
0
    }
1369
1370
    /* Pending signals */
1371
79.3k
    if ((breaker & _PY_SIGNALS_PENDING_BIT) != 0) {
1372
0
        if (handle_signals(tstate) != 0) {
1373
0
            return -1;
1374
0
        }
1375
0
    }
1376
1377
    /* Pending calls */
1378
79.3k
    if ((breaker & _PY_CALLS_TO_DO_BIT) != 0) {
1379
0
        if (make_pending_calls(tstate) != 0) {
1380
0
            return -1;
1381
0
        }
1382
0
    }
1383
1384
#ifdef Py_GIL_DISABLED
1385
    /* Objects with refcounts to merge */
1386
    if ((breaker & _PY_EVAL_EXPLICIT_MERGE_BIT) != 0) {
1387
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_EXPLICIT_MERGE_BIT);
1388
        _Py_brc_merge_refcounts(tstate);
1389
    }
1390
    /* Process deferred memory frees held by QSBR */
1391
    if (_Py_qsbr_should_process(((_PyThreadStateImpl *)tstate)->qsbr)) {
1392
        _PyMem_ProcessDelayed(tstate);
1393
    }
1394
#endif
1395
1396
    /* GC scheduled to run */
1397
79.3k
    if ((breaker & _PY_GC_SCHEDULED_BIT) != 0) {
1398
79.3k
        _Py_unset_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
1399
79.3k
        _Py_RunGC(tstate);
1400
79.3k
    }
1401
1402
79.3k
    if ((breaker & _PY_EVAL_JIT_INVALIDATE_COLD_BIT) != 0) {
1403
0
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_JIT_INVALIDATE_COLD_BIT);
1404
0
        _Py_Executors_InvalidateCold(tstate->interp);
1405
0
        tstate->interp->executor_creation_counter = JIT_CLEANUP_THRESHOLD;
1406
0
    }
1407
1408
    /* GIL drop request */
1409
79.3k
    if ((breaker & _PY_GIL_DROP_REQUEST_BIT) != 0) {
1410
        /* Give another thread a chance */
1411
0
        _PyThreadState_Detach(tstate);
1412
1413
        /* Other threads may run now */
1414
1415
0
        _PyThreadState_Attach(tstate);
1416
0
    }
1417
1418
    /* Check for asynchronous exception. */
1419
79.3k
    if ((breaker & _PY_ASYNC_EXCEPTION_BIT) != 0) {
1420
0
        _Py_unset_eval_breaker_bit(tstate, _PY_ASYNC_EXCEPTION_BIT);
1421
0
        PyObject *exc = _Py_atomic_exchange_ptr(&tstate->async_exc, NULL);
1422
0
        if (exc != NULL) {
1423
0
            _PyErr_SetNone(tstate, exc);
1424
0
            Py_DECREF(exc);
1425
0
            return -1;
1426
0
        }
1427
0
    }
1428
1429
79.3k
#if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
1430
79.3k
    _PyRunRemoteDebugger(tstate);
1431
79.3k
#endif
1432
1433
79.3k
    return 0;
1434
79.3k
}