Coverage Report

Created: 2025-11-24 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Python/dtoa.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
55
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.63M
#define word0(x) (x)->L[1]
181
1.08M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
4.14M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
85.1k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
576k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
1.96M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
191k
#define Exp_shift  20
235
83.8k
#define Exp_shift1 20
236
524k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
964k
#define Exp_mask  0x7ff00000
239
419k
#define P 53
240
#define Nbits 53
241
220k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
341k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
104k
#define Exp_1  0x3ff00000
246
37.6k
#define Exp_11 0x3ff00000
247
225k
#define Ebits 11
248
171k
#define Frac_mask  0xfffff
249
39.8k
#define Frac_mask1 0xfffff
250
1.13M
#define Ten_pmax 22
251
89
#define Bletch 0x10
252
66.4k
#define Bndry_mask  0xfffff
253
6.77k
#define Bndry_mask1 0xfffff
254
58.8k
#define Sign_bit 0x80000000
255
6.29k
#define Log2P 1
256
#define Tiny0 0
257
25.3k
#define Tiny1 1
258
42.0k
#define Quick_max 14
259
25.1k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
612k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
3.43k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
2.16k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
16.7M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
6.56M
#define freelist interp->dtoa.freelist
336
362
#define private_mem interp->dtoa.preallocated
337
976
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
1.64M
{
344
1.64M
    int x;
345
1.64M
    Bigint *rv;
346
1.64M
    unsigned int len;
347
1.64M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
1.64M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
1.64M
        freelist[k] = rv->next;
351
362
    else {
352
362
        x = 1 << k;
353
362
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
362
            /sizeof(double);
355
362
        if (k <= Bigint_Kmax &&
356
362
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
362
        ) {
358
307
            rv = (Bigint*)pmem_next;
359
307
            pmem_next += len;
360
307
        }
361
55
        else {
362
55
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
55
            if (rv == NULL)
364
0
                return NULL;
365
55
        }
366
362
        rv->k = k;
367
362
        rv->maxwds = x;
368
362
    }
369
1.64M
    rv->sign = rv->wds = 0;
370
1.64M
    return rv;
371
1.64M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
4.48M
{
378
4.48M
    if (v) {
379
1.64M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
1.64M
        else {
382
1.64M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
1.64M
            v->next = freelist[v->k];
384
1.64M
            freelist[v->k] = v;
385
1.64M
        }
386
1.64M
    }
387
4.48M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
118k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
118k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
987k
{
445
987k
    int i, wds;
446
987k
    ULong *x;
447
987k
    ULLong carry, y;
448
987k
    Bigint *b1;
449
450
987k
    wds = b->wds;
451
987k
    x = b->x;
452
987k
    i = 0;
453
987k
    carry = a;
454
3.23M
    do {
455
3.23M
        y = *x * (ULLong)m + carry;
456
3.23M
        carry = y >> 32;
457
3.23M
        *x++ = (ULong)(y & FFFFFFFF);
458
3.23M
    }
459
3.23M
    while(++i < wds);
460
987k
    if (carry) {
461
66.6k
        if (wds >= b->maxwds) {
462
4.88k
            b1 = Balloc(b->k+1);
463
4.88k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
4.88k
            Bcopy(b1, b);
468
4.88k
            Bfree(b);
469
4.88k
            b = b1;
470
4.88k
        }
471
66.6k
        b->x[wds++] = (ULong)carry;
472
66.6k
        b->wds = wds;
473
66.6k
    }
474
987k
    return b;
475
987k
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
85.1k
{
486
85.1k
    Bigint *b;
487
85.1k
    int i, k;
488
85.1k
    Long x, y;
489
490
85.1k
    x = (nd + 8) / 9;
491
133k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
85.1k
    b = Balloc(k);
493
85.1k
    if (b == NULL)
494
0
        return NULL;
495
85.1k
    b->x[0] = y9;
496
85.1k
    b->wds = 1;
497
498
85.1k
    if (nd <= 9)
499
47.2k
      return b;
500
501
37.8k
    s += 9;
502
353k
    for (i = 9; i < nd0; i++) {
503
315k
        b = multadd(b, 10, *s++ - '0');
504
315k
        if (b == NULL)
505
0
            return NULL;
506
315k
    }
507
37.8k
    s++;
508
127k
    for(; i < nd; i++) {
509
90.0k
        b = multadd(b, 10, *s++ - '0');
510
90.0k
        if (b == NULL)
511
0
            return NULL;
512
90.0k
    }
513
37.8k
    return b;
514
37.8k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
139k
{
521
139k
    int k = 0;
522
523
139k
    if (!(x & 0xffff0000)) {
524
77.7k
        k = 16;
525
77.7k
        x <<= 16;
526
77.7k
    }
527
139k
    if (!(x & 0xff000000)) {
528
84.8k
        k += 8;
529
84.8k
        x <<= 8;
530
84.8k
    }
531
139k
    if (!(x & 0xf0000000)) {
532
81.6k
        k += 4;
533
81.6k
        x <<= 4;
534
81.6k
    }
535
139k
    if (!(x & 0xc0000000)) {
536
81.1k
        k += 2;
537
81.1k
        x <<= 2;
538
81.1k
    }
539
139k
    if (!(x & 0x80000000)) {
540
81.1k
        k++;
541
81.1k
        if (!(x & 0x40000000))
542
0
            return 32;
543
81.1k
    }
544
139k
    return k;
545
139k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
41.9k
{
553
41.9k
    int k;
554
41.9k
    ULong x = *y;
555
556
41.9k
    if (x & 7) {
557
23.8k
        if (x & 1)
558
12.7k
            return 0;
559
11.0k
        if (x & 2) {
560
7.08k
            *y = x >> 1;
561
7.08k
            return 1;
562
7.08k
        }
563
3.95k
        *y = x >> 2;
564
3.95k
        return 2;
565
11.0k
    }
566
18.0k
    k = 0;
567
18.0k
    if (!(x & 0xffff)) {
568
7.63k
        k = 16;
569
7.63k
        x >>= 16;
570
7.63k
    }
571
18.0k
    if (!(x & 0xff)) {
572
3.96k
        k += 8;
573
3.96k
        x >>= 8;
574
3.96k
    }
575
18.0k
    if (!(x & 0xf)) {
576
9.79k
        k += 4;
577
9.79k
        x >>= 4;
578
9.79k
    }
579
18.0k
    if (!(x & 0x3)) {
580
9.37k
        k += 2;
581
9.37k
        x >>= 2;
582
9.37k
    }
583
18.0k
    if (!(x & 1)) {
584
12.1k
        k++;
585
12.1k
        x >>= 1;
586
12.1k
        if (!x)
587
0
            return 32;
588
12.1k
    }
589
18.0k
    *y = x;
590
18.0k
    return k;
591
18.0k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
190k
{
598
190k
    Bigint *b;
599
600
190k
    b = Balloc(1);
601
190k
    if (b == NULL)
602
0
        return NULL;
603
190k
    b->x[0] = i;
604
190k
    b->wds = 1;
605
190k
    return b;
606
190k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
438k
{
614
438k
    Bigint *c;
615
438k
    int k, wa, wb, wc;
616
438k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
438k
    ULong y;
618
438k
    ULLong carry, z;
619
620
438k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
4.31k
        c = Balloc(0);
622
4.31k
        if (c == NULL)
623
0
            return NULL;
624
4.31k
        c->wds = 1;
625
4.31k
        c->x[0] = 0;
626
4.31k
        return c;
627
4.31k
    }
628
629
434k
    if (a->wds < b->wds) {
630
200k
        c = a;
631
200k
        a = b;
632
200k
        b = c;
633
200k
    }
634
434k
    k = a->k;
635
434k
    wa = a->wds;
636
434k
    wb = b->wds;
637
434k
    wc = wa + wb;
638
434k
    if (wc > a->maxwds)
639
201k
        k++;
640
434k
    c = Balloc(k);
641
434k
    if (c == NULL)
642
0
        return NULL;
643
3.82M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.38M
        *x = 0;
645
434k
    xa = a->x;
646
434k
    xae = xa + wa;
647
434k
    xb = b->x;
648
434k
    xbe = xb + wb;
649
434k
    xc0 = c->x;
650
1.33M
    for(; xb < xbe; xc0++) {
651
900k
        if ((y = *xb++)) {
652
894k
            x = xa;
653
894k
            xc = xc0;
654
894k
            carry = 0;
655
8.35M
            do {
656
8.35M
                z = *x++ * (ULLong)y + *xc + carry;
657
8.35M
                carry = z >> 32;
658
8.35M
                *xc++ = (ULong)(z & FFFFFFFF);
659
8.35M
            }
660
8.35M
            while(x < xae);
661
894k
            *xc = (ULong)carry;
662
894k
        }
663
900k
    }
664
739k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
434k
    c->wds = wc;
666
434k
    return c;
667
434k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
151k
{
678
151k
    Bigint *b1, *p5, **p5s;
679
151k
    int i;
680
151k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
151k
    assert(0 <= k && k < 1024);
688
689
151k
    if ((i = k & 3)) {
690
106k
        b = multadd(b, p05[i-1], 0);
691
106k
        if (b == NULL)
692
0
            return NULL;
693
106k
    }
694
695
151k
    if (!(k >>= 2))
696
10.5k
        return b;
697
140k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
140k
    p5s = interp->dtoa.p5s;
699
641k
    for(;;) {
700
641k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
641k
        p5 = *p5s;
702
641k
        p5s++;
703
641k
        if (k & 1) {
704
373k
            b1 = mult(b, p5);
705
373k
            Bfree(b);
706
373k
            b = b1;
707
373k
            if (b == NULL)
708
0
                return NULL;
709
373k
        }
710
641k
        if (!(k >>= 1))
711
140k
            break;
712
641k
    }
713
140k
    return b;
714
140k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
368k
{
775
368k
    int i, k1, n, n1;
776
368k
    Bigint *b1;
777
368k
    ULong *x, *x1, *xe, z;
778
779
368k
    if (!k || (!b->x[0] && b->wds == 1))
780
4.73k
        return b;
781
782
363k
    n = k >> 5;
783
363k
    k1 = b->k;
784
363k
    n1 = n + b->wds + 1;
785
853k
    for(i = b->maxwds; n1 > i; i <<= 1)
786
490k
        k1++;
787
363k
    b1 = Balloc(k1);
788
363k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
363k
    x1 = b1->x;
793
1.83M
    for(i = 0; i < n; i++)
794
1.46M
        *x1++ = 0;
795
363k
    x = b->x;
796
363k
    xe = x + b->wds;
797
363k
    if (k &= 0x1f) {
798
360k
        k1 = 32 - k;
799
360k
        z = 0;
800
1.58M
        do {
801
1.58M
            *x1++ = *x << k | z;
802
1.58M
            z = *x++ >> k1;
803
1.58M
        }
804
1.58M
        while(x < xe);
805
360k
        if ((*x1 = z))
806
57.1k
            ++n1;
807
360k
    }
808
2.79k
    else do
809
6.02k
             *x1++ = *x++;
810
6.02k
        while(x < xe);
811
363k
    b1->wds = n1 - 1;
812
363k
    Bfree(b);
813
363k
    return b1;
814
363k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
1.01M
{
822
1.01M
    ULong *xa, *xa0, *xb, *xb0;
823
1.01M
    int i, j;
824
825
1.01M
    i = a->wds;
826
1.01M
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
1.01M
    if (i -= j)
834
167k
        return i;
835
843k
    xa0 = a->x;
836
843k
    xa = xa0 + j;
837
843k
    xb0 = b->x;
838
843k
    xb = xb0 + j;
839
1.02M
    for(;;) {
840
1.02M
        if (*--xa != *--xb)
841
826k
            return *xa < *xb ? -1 : 1;
842
197k
        if (xa <= xa0)
843
16.7k
            break;
844
197k
    }
845
16.7k
    return 0;
846
843k
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
226k
{
855
226k
    Bigint *c;
856
226k
    int i, wa, wb;
857
226k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
226k
    ULLong borrow, y;
859
860
226k
    i = cmp(a,b);
861
226k
    if (!i) {
862
2.88k
        c = Balloc(0);
863
2.88k
        if (c == NULL)
864
0
            return NULL;
865
2.88k
        c->wds = 1;
866
2.88k
        c->x[0] = 0;
867
2.88k
        return c;
868
2.88k
    }
869
223k
    if (i < 0) {
870
57.8k
        c = a;
871
57.8k
        a = b;
872
57.8k
        b = c;
873
57.8k
        i = 1;
874
57.8k
    }
875
165k
    else
876
165k
        i = 0;
877
223k
    c = Balloc(a->k);
878
223k
    if (c == NULL)
879
0
        return NULL;
880
223k
    c->sign = i;
881
223k
    wa = a->wds;
882
223k
    xa = a->x;
883
223k
    xae = xa + wa;
884
223k
    wb = b->wds;
885
223k
    xb = b->x;
886
223k
    xbe = xb + wb;
887
223k
    xc = c->x;
888
223k
    borrow = 0;
889
1.64M
    do {
890
1.64M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
1.64M
        borrow = y >> 32 & (ULong)1;
892
1.64M
        *xc++ = (ULong)(y & FFFFFFFF);
893
1.64M
    }
894
1.64M
    while(xb < xbe);
895
429k
    while(xa < xae) {
896
205k
        y = *xa++ - borrow;
897
205k
        borrow = y >> 32 & (ULong)1;
898
205k
        *xc++ = (ULong)(y & FFFFFFFF);
899
205k
    }
900
373k
    while(!*--xc)
901
149k
        wa--;
902
223k
    c->wds = wa;
903
223k
    return c;
904
223k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
46.3k
{
912
46.3k
    Long L;
913
46.3k
    U u;
914
915
46.3k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
46.3k
    word0(&u) = L;
917
46.3k
    word1(&u) = 0;
918
46.3k
    return dval(&u);
919
46.3k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
87.4k
{
926
87.4k
    ULong *xa, *xa0, w, y, z;
927
87.4k
    int k;
928
87.4k
    U d;
929
930
87.4k
    xa0 = a->x;
931
87.4k
    xa = xa0 + a->wds;
932
87.4k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
87.4k
    k = hi0bits(y);
937
87.4k
    *e = 32 - k;
938
87.4k
    if (k < Ebits) {
939
25.2k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
25.2k
        w = xa > xa0 ? *--xa : 0;
941
25.2k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
25.2k
        goto ret_d;
943
25.2k
    }
944
62.1k
    z = xa > xa0 ? *--xa : 0;
945
62.1k
    if (k -= Ebits) {
946
58.5k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
58.5k
        y = xa > xa0 ? *--xa : 0;
948
58.5k
        word1(&d) = z << k | y >> (32 - k);
949
58.5k
    }
950
3.66k
    else {
951
3.66k
        word0(&d) = Exp_1 | y;
952
3.66k
        word1(&d) = z;
953
3.66k
    }
954
87.4k
  ret_d:
955
87.4k
    return dval(&d);
956
62.1k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
129k
{
982
129k
    Bigint *b;
983
984
129k
    b = Balloc(1);
985
129k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
129k
    b->wds = 2;
990
129k
    b->x[0] = word1(d);
991
129k
    b->x[1] = word0(d) & Frac_mask;
992
129k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
129k
    if (*e < Etiny)
994
4.73k
        *e = Etiny;
995
124k
    else
996
124k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
129k
    if (scale && (b->x[0] || b->x[1])) {
1000
28.1k
        *e -= scale;
1001
28.1k
        if (*e < Etiny) {
1002
24.7k
            scale = Etiny - *e;
1003
24.7k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
24.7k
            assert(0 < scale && scale <= P - 1);
1006
24.7k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
12.2k
                assert(b->x[0] == 0);
1009
12.2k
                b->x[0] = b->x[1];
1010
12.2k
                b->x[1] = 0;
1011
12.2k
                scale -= 32;
1012
12.2k
            }
1013
24.7k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
23.2k
                assert(b->x[0] << (32 - scale) == 0);
1016
23.2k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
23.2k
                b->x[1] >>= scale;
1018
23.2k
            }
1019
24.7k
        }
1020
28.1k
    }
1021
    /* Ensure b is normalized. */
1022
129k
    if (!b->x[1])
1023
20.6k
        b->wds = 1;
1024
1025
129k
    return b;
1026
129k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
41.9k
{
1040
41.9k
    Bigint *b;
1041
41.9k
    int de, k;
1042
41.9k
    ULong *x, y, z;
1043
41.9k
    int i;
1044
1045
41.9k
    b = Balloc(1);
1046
41.9k
    if (b == NULL)
1047
0
        return NULL;
1048
41.9k
    x = b->x;
1049
1050
41.9k
    z = word0(d) & Frac_mask;
1051
41.9k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
41.9k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
37.6k
        z |= Exp_msk1;
1054
41.9k
    if ((y = word1(d))) {
1055
30.4k
        if ((k = lo0bits(&y))) {
1056
18.2k
            x[0] = y | z << (32 - k);
1057
18.2k
            z >>= k;
1058
18.2k
        }
1059
12.1k
        else
1060
12.1k
            x[0] = y;
1061
30.4k
        i =
1062
30.4k
            b->wds = (x[1] = z) ? 2 : 1;
1063
30.4k
    }
1064
11.4k
    else {
1065
11.4k
        k = lo0bits(&z);
1066
11.4k
        x[0] = z;
1067
11.4k
        i =
1068
11.4k
            b->wds = 1;
1069
11.4k
        k += 32;
1070
11.4k
    }
1071
41.9k
    if (de) {
1072
37.6k
        *e = de - Bias - (P-1) + k;
1073
37.6k
        *bits = P - k;
1074
37.6k
    }
1075
4.25k
    else {
1076
4.25k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.25k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.25k
    }
1079
41.9k
    return b;
1080
41.9k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
43.7k
{
1088
43.7k
    U da, db;
1089
43.7k
    int k, ka, kb;
1090
1091
43.7k
    dval(&da) = b2d(a, &ka);
1092
43.7k
    dval(&db) = b2d(b, &kb);
1093
43.7k
    k = ka - kb + 32*(a->wds - b->wds);
1094
43.7k
    if (k > 0)
1095
25.1k
        word0(&da) += k*Exp_msk1;
1096
18.6k
    else {
1097
18.6k
        k = -k;
1098
18.6k
        word0(&db) += k*Exp_msk1;
1099
18.6k
    }
1100
43.7k
    return dval(&da) / dval(&db);
1101
43.7k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
22.2k
#define Scale_Bit 0x10
1119
23.2k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
47.4k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
47.4k
{
1129
47.4k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
47.4k
    if (p2 > 0)
1131
23.4k
        rv -= p2;
1132
47.4k
    return rv & kmask;
1133
47.4k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
414k
{
1142
414k
    int n;
1143
414k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
414k
    ULLong borrow, carry, y, ys;
1145
1146
414k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
414k
    if (b->wds < n)
1152
14.9k
        return 0;
1153
399k
    sx = S->x;
1154
399k
    sxe = sx + --n;
1155
399k
    bx = b->x;
1156
399k
    bxe = bx + n;
1157
399k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
399k
    if (q) {
1163
294k
        borrow = 0;
1164
294k
        carry = 0;
1165
1.52M
        do {
1166
1.52M
            ys = *sx++ * (ULLong)q + carry;
1167
1.52M
            carry = ys >> 32;
1168
1.52M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.52M
            borrow = y >> 32 & (ULong)1;
1170
1.52M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.52M
        }
1172
1.52M
        while(sx <= sxe);
1173
294k
        if (!*bxe) {
1174
928
            bx = b->x;
1175
928
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
928
            b->wds = n;
1178
928
        }
1179
294k
    }
1180
399k
    if (cmp(b, S) >= 0) {
1181
21.6k
        q++;
1182
21.6k
        borrow = 0;
1183
21.6k
        carry = 0;
1184
21.6k
        bx = b->x;
1185
21.6k
        sx = S->x;
1186
131k
        do {
1187
131k
            ys = *sx++ + carry;
1188
131k
            carry = ys >> 32;
1189
131k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
131k
            borrow = y >> 32 & (ULong)1;
1191
131k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
131k
        }
1193
131k
        while(sx <= sxe);
1194
21.6k
        bx = b->x;
1195
21.6k
        bxe = bx + n;
1196
21.6k
        if (!*bxe) {
1197
20.6k
            while(--bxe > bx && !*bxe)
1198
1.59k
                --n;
1199
19.0k
            b->wds = n;
1200
19.0k
        }
1201
21.6k
    }
1202
399k
    return q;
1203
414k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.04k
{
1214
3.04k
    U u;
1215
1216
3.04k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
400
        word0(&u) = (P+2)*Exp_msk1;
1219
400
        word1(&u) = 0;
1220
400
        return u.d;
1221
400
    }
1222
2.64k
    else {
1223
2.64k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
2.64k
        return ulp(x);
1225
2.64k
    }
1226
3.04k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
17.1k
{
1277
17.1k
    Bigint *b, *d;
1278
17.1k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
17.1k
    nd = bc->nd;
1281
17.1k
    nd0 = bc->nd0;
1282
17.1k
    p5 = nd + bc->e0;
1283
17.1k
    b = sd2b(rv, bc->scale, &p2);
1284
17.1k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
17.1k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
17.1k
    b = lshift(b, 1);
1294
17.1k
    if (b == NULL)
1295
0
        return -1;
1296
17.1k
    b->x[0] |= 1;
1297
17.1k
    p2--;
1298
1299
17.1k
    p2 -= p5;
1300
17.1k
    d = i2b(1);
1301
17.1k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
17.1k
    if (p5 > 0) {
1309
14.8k
        d = pow5mult(d, p5);
1310
14.8k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
14.8k
    }
1315
2.31k
    else if (p5 < 0) {
1316
1.54k
        b = pow5mult(b, -p5);
1317
1.54k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.54k
    }
1322
17.1k
    if (p2 > 0) {
1323
13.2k
        b2 = p2;
1324
13.2k
        d2 = 0;
1325
13.2k
    }
1326
3.96k
    else {
1327
3.96k
        b2 = 0;
1328
3.96k
        d2 = -p2;
1329
3.96k
    }
1330
17.1k
    i = dshift(d, d2);
1331
17.1k
    if ((b2 += i) > 0) {
1332
16.9k
        b = lshift(b, b2);
1333
16.9k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
16.9k
    }
1338
17.1k
    if ((d2 += i) > 0) {
1339
16.5k
        d = lshift(d, d2);
1340
16.5k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
16.5k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
17.1k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
922
        dd = -1;
1352
16.2k
    else {
1353
16.2k
        i = 0;
1354
300k
        for(;;) {
1355
300k
            b = multadd(b, 10, 0);
1356
300k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
300k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
300k
            i++;
1362
1363
300k
            if (dd)
1364
14.7k
                break;
1365
285k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
836
                dd = i < nd;
1368
836
                break;
1369
836
            }
1370
284k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
671
                dd = -1;
1373
671
                break;
1374
671
            }
1375
284k
        }
1376
16.2k
    }
1377
17.1k
    Bfree(b);
1378
17.1k
    Bfree(d);
1379
17.1k
    if (dd > 0 || (dd == 0 && odd))
1380
1.65k
        dval(rv) += sulp(rv, bc);
1381
17.1k
    return 0;
1382
17.1k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
654k
{
1388
654k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
654k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
654k
    const char *s, *s0, *s1;
1391
654k
    double aadj, aadj1;
1392
654k
    U aadj2, adj, rv, rv0;
1393
654k
    ULong y, z, abs_exp;
1394
654k
    Long L;
1395
654k
    BCinfo bc;
1396
654k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
654k
    size_t ndigits, fraclen;
1398
654k
    double result;
1399
1400
654k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
654k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
654k
    sign = 0;
1407
654k
    switch (c) {
1408
510k
    case '-':
1409
510k
        sign = 1;
1410
510k
        _Py_FALLTHROUGH;
1411
510k
    case '+':
1412
510k
        c = *++s;
1413
654k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
654k
    s1 = s;
1417
672k
    while (c == '0')
1418
18.3k
        c = *++s;
1419
654k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
654k
    s0 = s1 = s;
1426
3.94M
    while ('0' <= c && c <= '9')
1427
3.29M
        c = *++s;
1428
654k
    ndigits = s - s1;
1429
654k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
654k
    if (c == '.') {
1433
75.6k
        c = *++s;
1434
75.6k
        if (!ndigits) {
1435
21.3k
            s1 = s;
1436
2.44M
            while (c == '0')
1437
2.41M
                c = *++s;
1438
21.3k
            lz = lz || s != s1;
1439
21.3k
            fraclen += (s - s1);
1440
21.3k
            s0 = s;
1441
21.3k
        }
1442
75.6k
        s1 = s;
1443
24.4M
        while ('0' <= c && c <= '9')
1444
24.3M
            c = *++s;
1445
75.6k
        ndigits += s - s1;
1446
75.6k
        fraclen += s - s1;
1447
75.6k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
654k
    if (!ndigits && !lz) {
1453
19
        if (se)
1454
19
            *se = (char *)s00;
1455
19
        goto parse_error;
1456
19
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
654k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
654k
    nd = (int)ndigits;
1466
654k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
654k
    e = 0;
1470
654k
    if (c == 'e' || c == 'E') {
1471
576k
        s00 = s;
1472
576k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
576k
        esign = 0;
1476
576k
        switch (c) {
1477
25.8k
        case '-':
1478
25.8k
            esign = 1;
1479
25.8k
            _Py_FALLTHROUGH;
1480
37.1k
        case '+':
1481
37.1k
            c = *++s;
1482
576k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
576k
        s1 = s;
1486
582k
        while (c == '0')
1487
6.23k
            c = *++s;
1488
576k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
576k
        s1 = s;
1492
576k
        abs_exp = 0;
1493
4.02M
        while ('0' <= c && c <= '9') {
1494
3.44M
            abs_exp = 10*abs_exp + (c - '0');
1495
3.44M
            c = *++s;
1496
3.44M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
576k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
6.86k
            e = (int)MAX_ABS_EXP;
1503
569k
        else
1504
569k
            e = (int)abs_exp;
1505
576k
        if (esign)
1506
25.8k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
576k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
576k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
654k
    e -= nd - nd0;
1515
654k
    if (nd0 <= 0)
1516
25.0k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
654k
    if (se)
1520
654k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
654k
    if (!nd)
1525
9.74k
        goto ret;
1526
4.71M
    for (i = nd; i > 0; ) {
1527
4.71M
        --i;
1528
4.71M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
644k
            ++i;
1530
644k
            break;
1531
644k
        }
1532
4.71M
    }
1533
644k
    e += nd - i;
1534
644k
    nd = i;
1535
644k
    if (nd0 > nd)
1536
10.2k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
644k
    bc.e0 = e1 = e;
1575
644k
    y = z = 0;
1576
2.14M
    for (i = 0; i < nd; i++) {
1577
1.53M
        if (i < 9)
1578
1.16M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
373k
        else if (i < DBL_DIG+1)
1580
334k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
39.1k
        else
1582
39.1k
            break;
1583
1.53M
    }
1584
1585
644k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
644k
    dval(&rv) = y;
1587
644k
    if (k > 9) {
1588
54.1k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
54.1k
    }
1590
644k
    if (nd <= DBL_DIG
1591
599k
        && Flt_Rounds == 1
1592
644k
        ) {
1593
599k
        if (!e)
1594
12.1k
            goto ret;
1595
587k
        if (e > 0) {
1596
544k
            if (e <= Ten_pmax) {
1597
22.7k
                dval(&rv) *= tens[e];
1598
22.7k
                goto ret;
1599
22.7k
            }
1600
521k
            i = DBL_DIG - nd;
1601
521k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
2.80k
                e -= i;
1606
2.80k
                dval(&rv) *= tens[i];
1607
2.80k
                dval(&rv) *= tens[e];
1608
2.80k
                goto ret;
1609
2.80k
            }
1610
521k
        }
1611
42.7k
        else if (e >= -Ten_pmax) {
1612
24.5k
            dval(&rv) /= tens[-e];
1613
24.5k
            goto ret;
1614
24.5k
        }
1615
587k
    }
1616
582k
    e1 += nd - k;
1617
1618
582k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
582k
    if (e1 > 0) {
1623
548k
        if ((i = e1 & 15))
1624
534k
            dval(&rv) *= tens[i];
1625
548k
        if (e1 &= ~15) {
1626
536k
            if (e1 > DBL_MAX_10_EXP)
1627
495k
                goto ovfl;
1628
40.2k
            e1 >>= 4;
1629
99.9k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
59.6k
                if (e1 & 1)
1631
25.6k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
40.2k
            word0(&rv) -= P*Exp_msk1;
1634
40.2k
            dval(&rv) *= bigtens[j];
1635
40.2k
            if ((z = word0(&rv) & Exp_mask)
1636
40.2k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
571
                goto ovfl;
1638
39.7k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
498
                word0(&rv) = Big0;
1642
498
                word1(&rv) = Big1;
1643
498
            }
1644
39.2k
            else
1645
39.2k
                word0(&rv) += P*Exp_msk1;
1646
39.7k
        }
1647
548k
    }
1648
34.0k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
30.9k
        e1 = -e1;
1660
30.9k
        if ((i = e1 & 15))
1661
26.9k
            dval(&rv) /= tens[i];
1662
30.9k
        if (e1 >>= 4) {
1663
23.2k
            if (e1 >= 1 << n_bigtens)
1664
973
                goto undfl;
1665
22.2k
            if (e1 & Scale_Bit)
1666
17.4k
                bc.scale = 2*P;
1667
117k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
94.7k
                if (e1 & 1)
1669
55.2k
                    dval(&rv) *= tinytens[j];
1670
22.2k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
17.4k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
16.0k
                if (j >= 32) {
1674
9.40k
                    word1(&rv) = 0;
1675
9.40k
                    if (j >= 53)
1676
4.82k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.58k
                    else
1678
4.58k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
9.40k
                }
1680
6.64k
                else
1681
6.64k
                    word1(&rv) &= 0xffffffff << j;
1682
16.0k
            }
1683
22.2k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
22.2k
        }
1686
30.9k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
85.1k
    bc.nd = nd;
1693
85.1k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
85.1k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
134k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
134k
            --i;
1708
134k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
23.7k
                ++i;
1710
23.7k
                break;
1711
23.7k
            }
1712
134k
        }
1713
23.7k
        e += nd - i;
1714
23.7k
        nd = i;
1715
23.7k
        if (nd0 > nd)
1716
20.6k
            nd0 = nd;
1717
23.7k
        if (nd < 9) { /* must recompute y */
1718
8.72k
            y = 0;
1719
53.9k
            for(i = 0; i < nd0; ++i)
1720
45.1k
                y = 10*y + s0[i] - '0';
1721
16.4k
            for(; i < nd; ++i)
1722
7.73k
                y = 10*y + s0[i+1] - '0';
1723
8.72k
        }
1724
23.7k
    }
1725
85.1k
    bd0 = s2b(s0, nd0, nd, y);
1726
85.1k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
112k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
112k
        bd = Balloc(bd0->k);
1758
112k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
112k
        Bcopy(bd, bd0);
1762
112k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
112k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
112k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
112k
        bs = i2b(1);
1772
112k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
112k
        if (e >= 0) {
1777
60.6k
            bb2 = bb5 = 0;
1778
60.6k
            bd2 = bd5 = e;
1779
60.6k
        }
1780
51.7k
        else {
1781
51.7k
            bb2 = bb5 = -e;
1782
51.7k
            bd2 = bd5 = 0;
1783
51.7k
        }
1784
112k
        if (bbe >= 0)
1785
65.8k
            bb2 += bbe;
1786
46.5k
        else
1787
46.5k
            bd2 -= bbe;
1788
112k
        bs2 = bb2;
1789
112k
        bb2++;
1790
112k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
112k
        i = bb2 < bd2 ? bb2 : bd2;
1811
112k
        if (i > bs2)
1812
46.1k
            i = bs2;
1813
112k
        if (i > 0) {
1814
111k
            bb2 -= i;
1815
111k
            bd2 -= i;
1816
111k
            bs2 -= i;
1817
111k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
112k
        if (bb5 > 0) {
1821
51.7k
            bs = pow5mult(bs, bb5);
1822
51.7k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
51.7k
            Bigint *bb1 = mult(bs, bb);
1826
51.7k
            Bfree(bb);
1827
51.7k
            bb = bb1;
1828
51.7k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
51.7k
        }
1832
112k
        if (bb2 > 0) {
1833
112k
            bb = lshift(bb, bb2);
1834
112k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
112k
        }
1838
112k
        if (bd5 > 0) {
1839
54.6k
            bd = pow5mult(bd, bd5);
1840
54.6k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
54.6k
        }
1844
112k
        if (bd2 > 0) {
1845
46.1k
            bd = lshift(bd, bd2);
1846
46.1k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
46.1k
        }
1850
112k
        if (bs2 > 0) {
1851
62.5k
            bs = lshift(bs, bs2);
1852
62.5k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
62.5k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
112k
        delta = diff(bb, bd);
1862
112k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
112k
        dsign = delta->sign;
1866
112k
        delta->sign = 0;
1867
112k
        i = cmp(delta, bs);
1868
112k
        if (bc.nd > nd && i <= 0) {
1869
23.7k
            if (dsign)
1870
16.3k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
7.33k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.08k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.08k
                if (j - bc.scale >= 2) {
1890
814
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
814
                    break; /* Use bigcomp. */
1892
814
                }
1893
1.08k
            }
1894
1895
6.52k
            {
1896
6.52k
                bc.nd = nd;
1897
6.52k
                i = -1; /* Discarded digits make delta smaller. */
1898
6.52k
            }
1899
6.52k
        }
1900
1901
95.2k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
48.1k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
4.88k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
48.1k
                ) {
1908
44.6k
                break;
1909
44.6k
            }
1910
3.46k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
430
                break;
1913
430
            }
1914
3.03k
            delta = lshift(delta,Log2P);
1915
3.03k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
3.03k
            if (cmp(delta, bs) > 0)
1919
1.00k
                goto drop_down;
1920
2.03k
            break;
1921
3.03k
        }
1922
47.1k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.40k
            if (dsign) {
1925
1.92k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
793
                    &&  word1(&rv) == (
1927
793
                        (bc.scale &&
1928
0
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
793
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
433
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
433
                        + Exp_msk1
1934
433
                        ;
1935
433
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
433
                    break;
1938
433
                }
1939
1.92k
            }
1940
1.48k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
1.00k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
1.00k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
1.00k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
1.00k
                word0(&rv) = L | Bndry_mask1;
1958
1.00k
                word1(&rv) = 0xffffffff;
1959
1.00k
                break;
1960
1.00k
            }
1961
2.97k
            if (!odd)
1962
2.39k
                break;
1963
578
            if (dsign)
1964
340
                dval(&rv) += sulp(&rv, &bc);
1965
238
            else {
1966
238
                dval(&rv) -= sulp(&rv, &bc);
1967
238
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
238
            }
1973
            /* dsign = 1 - dsign; */
1974
578
            break;
1975
578
        }
1976
43.7k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
30.7k
            if (dsign)
1978
13.7k
                aadj = aadj1 = 1.;
1979
17.0k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
12.6k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
12.6k
                aadj = 1.;
1986
12.6k
                aadj1 = -1.;
1987
12.6k
            }
1988
4.31k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
4.31k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
4.31k
                else
1995
4.31k
                    aadj *= 0.5;
1996
4.31k
                aadj1 = -aadj;
1997
4.31k
            }
1998
30.7k
        }
1999
12.9k
        else {
2000
12.9k
            aadj *= 0.5;
2001
12.9k
            aadj1 = dsign ? aadj : -aadj;
2002
12.9k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
12.9k
        }
2005
43.7k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
43.7k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.91k
            dval(&rv0) = dval(&rv);
2011
1.91k
            word0(&rv) -= P*Exp_msk1;
2012
1.91k
            adj.d = aadj1 * ulp(&rv);
2013
1.91k
            dval(&rv) += adj.d;
2014
1.91k
            if ((word0(&rv) & Exp_mask) >=
2015
1.91k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.27k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
887
                    goto ovfl;
2018
887
                }
2019
389
                word0(&rv) = Big0;
2020
389
                word1(&rv) = Big1;
2021
389
                goto cont;
2022
1.27k
            }
2023
634
            else
2024
634
                word0(&rv) += P*Exp_msk1;
2025
1.91k
        }
2026
41.8k
        else {
2027
41.8k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
13.1k
                if (aadj <= 0x7fffffff) {
2029
13.1k
                    if ((z = (ULong)aadj) <= 0)
2030
736
                        z = 1;
2031
13.1k
                    aadj = z;
2032
13.1k
                    aadj1 = dsign ? aadj : -aadj;
2033
13.1k
                }
2034
13.1k
                dval(&aadj2) = aadj1;
2035
13.1k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
13.1k
                aadj1 = dval(&aadj2);
2037
13.1k
            }
2038
41.8k
            adj.d = aadj1 * ulp(&rv);
2039
41.8k
            dval(&rv) += adj.d;
2040
41.8k
        }
2041
42.4k
        z = word0(&rv) & Exp_mask;
2042
42.4k
        if (bc.nd == nd) {
2043
31.2k
            if (!bc.scale)
2044
18.0k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
16.3k
                    L = (Long)aadj;
2047
16.3k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
16.3k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
16.3k
                        if (aadj < .4999999 || aadj > .5000001)
2051
15.4k
                            break;
2052
16.3k
                    }
2053
15
                    else if (aadj < .4999999/FLT_RADIX)
2054
15
                        break;
2055
16.3k
                }
2056
31.2k
        }
2057
27.3k
      cont:
2058
27.3k
        Bfree(bb); bb = NULL;
2059
27.3k
        Bfree(bd); bd = NULL;
2060
27.3k
        Bfree(bs); bs = NULL;
2061
27.3k
        Bfree(delta); delta = NULL;
2062
27.3k
    }
2063
84.2k
    if (bc.nd > nd) {
2064
17.1k
        error = bigcomp(&rv, s0, &bc);
2065
17.1k
        if (error)
2066
0
            goto failed_malloc;
2067
17.1k
    }
2068
2069
84.2k
    if (bc.scale) {
2070
17.4k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
17.4k
        word1(&rv0) = 0;
2072
17.4k
        dval(&rv) *= dval(&rv0);
2073
17.4k
    }
2074
2075
156k
  ret:
2076
156k
    result = sign ? -dval(&rv) : dval(&rv);
2077
156k
    goto done;
2078
2079
19
  parse_error:
2080
19
    result = 0.0;
2081
19
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
973
  undfl:
2089
973
    result = sign ? -0.0 : 0.0;
2090
973
    goto done;
2091
2092
497k
  ovfl:
2093
497k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
497k
    word0(&rv) = Exp_mask;
2096
497k
    word1(&rv) = 0;
2097
497k
    result = sign ? -dval(&rv) : dval(&rv);
2098
497k
    goto done;
2099
2100
654k
  done:
2101
654k
    Bfree(bb);
2102
654k
    Bfree(bd);
2103
654k
    Bfree(bs);
2104
654k
    Bfree(bd0);
2105
654k
    Bfree(delta);
2106
654k
    return result;
2107
2108
84.2k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
46.6k
{
2113
46.6k
    int j, k, *r;
2114
2115
46.6k
    j = sizeof(ULong);
2116
46.6k
    for(k = 0;
2117
46.6k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
46.6k
        j <<= 1)
2119
0
        k++;
2120
46.6k
    r = (int*)Balloc(k);
2121
46.6k
    if (r == NULL)
2122
0
        return NULL;
2123
46.6k
    *r = k;
2124
46.6k
    return (char *)(r+1);
2125
46.6k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
4.76k
{
2130
4.76k
    char *rv, *t;
2131
2132
4.76k
    rv = rv_alloc(n);
2133
4.76k
    if (rv == NULL)
2134
0
        return NULL;
2135
4.76k
    t = rv;
2136
12.8k
    while((*t = *s++)) t++;
2137
4.76k
    if (rve)
2138
4.76k
        *rve = t;
2139
4.76k
    return rv;
2140
4.76k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
46.6k
{
2151
46.6k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
46.6k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
46.6k
    Bfree(b);
2154
46.6k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
46.6k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
46.6k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
46.6k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
46.6k
        spec_case, try_quick;
2235
46.6k
    Long L;
2236
46.6k
    int denorm;
2237
46.6k
    ULong x;
2238
46.6k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
46.6k
    U d2, eps, u;
2240
46.6k
    double ds;
2241
46.6k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
46.6k
    mlo = mhi = S = 0;
2246
46.6k
    s0 = 0;
2247
2248
46.6k
    u.d = dd;
2249
46.6k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
12.1k
        *sign = 1;
2252
12.1k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
12.1k
    }
2254
34.5k
    else
2255
34.5k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
46.6k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
479
    {
2260
        /* Infinity or NaN */
2261
479
        *decpt = 9999;
2262
479
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
479
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
479
    }
2266
46.2k
    if (!dval(&u)) {
2267
4.28k
        *decpt = 1;
2268
4.28k
        return nrv_alloc("0", rve, 1);
2269
4.28k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
41.9k
    b = d2b(&u, &be, &bbits);
2274
41.9k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
41.9k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
37.6k
        dval(&d2) = dval(&u);
2278
37.6k
        word0(&d2) &= Frac_mask1;
2279
37.6k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
37.6k
        i -= Bias;
2304
37.6k
        denorm = 0;
2305
37.6k
    }
2306
4.25k
    else {
2307
        /* d is denormalized */
2308
2309
4.25k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.25k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.25k
            : word1(&u) << (32 - i);
2312
4.25k
        dval(&d2) = x;
2313
4.25k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.25k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.25k
        denorm = 1;
2316
4.25k
    }
2317
41.9k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
41.9k
        i*0.301029995663981;
2319
41.9k
    k = (int)ds;
2320
41.9k
    if (ds < 0. && ds != k)
2321
12.4k
        k--;    /* want k = floor(ds) */
2322
41.9k
    k_check = 1;
2323
41.9k
    if (k >= 0 && k <= Ten_pmax) {
2324
19.2k
        if (dval(&u) < tens[k])
2325
2.29k
            k--;
2326
19.2k
        k_check = 0;
2327
19.2k
    }
2328
41.9k
    j = bbits - i - 1;
2329
41.9k
    if (j >= 0) {
2330
18.5k
        b2 = 0;
2331
18.5k
        s2 = j;
2332
18.5k
    }
2333
23.3k
    else {
2334
23.3k
        b2 = -j;
2335
23.3k
        s2 = 0;
2336
23.3k
    }
2337
41.9k
    if (k >= 0) {
2338
28.8k
        b5 = 0;
2339
28.8k
        s5 = k;
2340
28.8k
        s2 += k;
2341
28.8k
    }
2342
13.1k
    else {
2343
13.1k
        b2 -= k;
2344
13.1k
        b5 = -k;
2345
13.1k
        s5 = 0;
2346
13.1k
    }
2347
41.9k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
41.9k
    try_quick = 1;
2351
2352
41.9k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
41.9k
    leftright = 1;
2357
41.9k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
41.9k
    switch(mode) {
2360
41.8k
    case 0:
2361
41.8k
    case 1:
2362
41.8k
        i = 18;
2363
41.8k
        ndigits = 0;
2364
41.8k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
112
    case 3:
2374
112
        leftright = 0;
2375
112
        _Py_FALLTHROUGH;
2376
112
    case 5:
2377
112
        i = ndigits + k + 1;
2378
112
        ilim = i;
2379
112
        ilim1 = i - 1;
2380
112
        if (i <= 0)
2381
0
            i = 1;
2382
41.9k
    }
2383
41.9k
    s0 = rv_alloc(i);
2384
41.9k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
41.9k
    s = s0;
2387
2388
2389
41.9k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
112
        i = 0;
2394
112
        dval(&d2) = dval(&u);
2395
112
        k0 = k;
2396
112
        ilim0 = ilim;
2397
112
        ieps = 2; /* conservative */
2398
112
        if (k > 0) {
2399
89
            ds = tens[k&0xf];
2400
89
            j = k >> 4;
2401
89
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
89
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
89
            dval(&u) /= ds;
2413
89
        }
2414
23
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
112
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
112
        dval(&eps) = ieps*dval(&u) + 7.;
2431
112
        word0(&eps) -= (P-1)*Exp_msk1;
2432
112
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
112
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
112
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
112
            dval(&eps) *= tens[ilim-1];
2463
299
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
299
                L = (Long)(dval(&u));
2465
299
                if (!(dval(&u) -= L))
2466
20
                    ilim = i;
2467
299
                *s++ = '0' + (int)L;
2468
299
                if (i == ilim) {
2469
112
                    if (dval(&u) > 0.5 + dval(&eps))
2470
60
                        goto bump_up;
2471
52
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
55
                        while(*--s == '0');
2473
52
                        s++;
2474
52
                        goto ret1;
2475
52
                    }
2476
0
                    break;
2477
112
                }
2478
299
            }
2479
112
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
41.8k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
11.5k
        ds = tens[k];
2492
11.5k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
17.7k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
17.7k
            L = (Long)(dval(&u) / ds);
2500
17.7k
            dval(&u) -= L*ds;
2501
17.7k
            *s++ = '0' + (int)L;
2502
17.7k
            if (!dval(&u)) {
2503
11.5k
                break;
2504
11.5k
            }
2505
6.24k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
60
                  bump_up:
2509
63
                    while(*--s == '9')
2510
3
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
60
                    ++*s++;
2516
60
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
60
                break;
2526
0
            }
2527
6.24k
        }
2528
11.5k
        goto ret1;
2529
11.5k
    }
2530
2531
30.2k
    m2 = b2;
2532
30.2k
    m5 = b5;
2533
30.2k
    if (leftright) {
2534
30.2k
        i =
2535
30.2k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
30.2k
            1 + P - bbits;
2537
30.2k
        b2 += i;
2538
30.2k
        s2 += i;
2539
30.2k
        mhi = i2b(1);
2540
30.2k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
30.2k
    }
2543
30.2k
    if (m2 > 0 && s2 > 0) {
2544
26.6k
        i = m2 < s2 ? m2 : s2;
2545
26.6k
        b2 -= i;
2546
26.6k
        m2 -= i;
2547
26.6k
        s2 -= i;
2548
26.6k
    }
2549
30.2k
    if (b5 > 0) {
2550
13.1k
        if (leftright) {
2551
13.1k
            if (m5 > 0) {
2552
13.1k
                mhi = pow5mult(mhi, m5);
2553
13.1k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
13.1k
                b1 = mult(mhi, b);
2556
13.1k
                Bfree(b);
2557
13.1k
                b = b1;
2558
13.1k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
13.1k
            }
2561
13.1k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
13.1k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
13.1k
    }
2573
30.2k
    S = i2b(1);
2574
30.2k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
30.2k
    if (s5 > 0) {
2577
15.1k
        S = pow5mult(S, s5);
2578
15.1k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
15.1k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
30.2k
    spec_case = 0;
2585
30.2k
    if ((mode < 2 || leftright)
2586
30.2k
        ) {
2587
30.2k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
1.35k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
30.2k
            ) {
2590
            /* The special case */
2591
1.08k
            b2 += Log2P;
2592
1.08k
            s2 += Log2P;
2593
1.08k
            spec_case = 1;
2594
1.08k
        }
2595
30.2k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
30.2k
#define iInc 28
2605
30.2k
    i = dshift(S, s2);
2606
30.2k
    b2 += i;
2607
30.2k
    m2 += i;
2608
30.2k
    s2 += i;
2609
30.2k
    if (b2 > 0) {
2610
30.2k
        b = lshift(b, b2);
2611
30.2k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
30.2k
    }
2614
30.2k
    if (s2 > 0) {
2615
29.6k
        S = lshift(S, s2);
2616
29.6k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
29.6k
    }
2619
30.2k
    if (k_check) {
2620
22.6k
        if (cmp(b,S) < 0) {
2621
2.07k
            k--;
2622
2.07k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.07k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.07k
            if (leftright) {
2626
2.07k
                mhi = multadd(mhi, 10, 0);
2627
2.07k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.07k
            }
2630
2.07k
            ilim = ilim1;
2631
2.07k
        }
2632
22.6k
    }
2633
30.2k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
30.2k
    if (leftright) {
2653
30.2k
        if (m2 > 0) {
2654
29.3k
            mhi = lshift(mhi, m2);
2655
29.3k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
29.3k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
30.2k
        mlo = mhi;
2664
30.2k
        if (spec_case) {
2665
1.08k
            mhi = Balloc(mhi->k);
2666
1.08k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.08k
            Bcopy(mhi, mlo);
2669
1.08k
            mhi = lshift(mhi, Log2P);
2670
1.08k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.08k
        }
2673
2674
114k
        for(i = 1;;i++) {
2675
114k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
114k
            j = cmp(b, mlo);
2680
114k
            delta = diff(S, mhi);
2681
114k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
114k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
114k
            Bfree(delta);
2685
114k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
114k
                ) {
2687
1.94k
                if (dig == '9')
2688
396
                    goto round_9_up;
2689
1.54k
                if (j > 0)
2690
764
                    dig++;
2691
1.54k
                *s++ = dig;
2692
1.54k
                goto ret;
2693
1.94k
            }
2694
112k
            if (j < 0 || (j == 0 && mode != 1
2695
1.80k
                          && !(word1(&u) & 1)
2696
95.2k
                    )) {
2697
17.8k
                if (!b->x[0] && b->wds <= 1) {
2698
2.74k
                    goto accept_dig;
2699
2.74k
                }
2700
15.0k
                if (j1 > 0) {
2701
3.05k
                    b = lshift(b, 1);
2702
3.05k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.05k
                    j1 = cmp(b, S);
2705
3.05k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
1.85k
                        && dig++ == '9')
2707
299
                        goto round_9_up;
2708
3.05k
                }
2709
17.5k
              accept_dig:
2710
17.5k
                *s++ = dig;
2711
17.5k
                goto ret;
2712
15.0k
            }
2713
94.4k
            if (j1 > 0) {
2714
10.5k
                if (dig == '9') { /* possible if i == 1 */
2715
2.01k
                  round_9_up:
2716
2.01k
                    *s++ = '9';
2717
2.01k
                    goto roundoff;
2718
1.32k
                }
2719
9.19k
                *s++ = dig + 1;
2720
9.19k
                goto ret;
2721
10.5k
            }
2722
83.9k
            *s++ = dig;
2723
83.9k
            if (i == ilim)
2724
0
                break;
2725
83.9k
            b = multadd(b, 10, 0);
2726
83.9k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
83.9k
            if (mlo == mhi) {
2729
81.0k
                mlo = mhi = multadd(mhi, 10, 0);
2730
81.0k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
81.0k
            }
2733
2.89k
            else {
2734
2.89k
                mlo = multadd(mlo, 10, 0);
2735
2.89k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.89k
                mhi = multadd(mhi, 10, 0);
2738
2.89k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.89k
            }
2741
83.9k
        }
2742
30.2k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.01k
      roundoff:
2764
2.01k
        while(*--s == '9')
2765
2.01k
            if (s == s0) {
2766
2.01k
                k++;
2767
2.01k
                *s++ = '1';
2768
2.01k
                goto ret;
2769
2.01k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
30.2k
  ret:
2777
30.2k
    Bfree(S);
2778
30.2k
    if (mhi) {
2779
30.2k
        if (mlo && mlo != mhi)
2780
1.08k
            Bfree(mlo);
2781
30.2k
        Bfree(mhi);
2782
30.2k
    }
2783
41.9k
  ret1:
2784
41.9k
    Bfree(b);
2785
41.9k
    *s = 0;
2786
41.9k
    *decpt = k + 1;
2787
41.9k
    if (rve)
2788
41.9k
        *rve = s;
2789
41.9k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
30.2k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
28
{
2809
28
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
28
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
28
    Bigint *p5 = i2b(625);
2814
28
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
28
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
224
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
196
        p5 = mult(p5, p5);
2822
196
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
196
        p5s[i] = p5;
2826
196
    }
2827
2828
28
#endif
2829
28
    return PyStatus_Ok();
2830
28
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}