Coverage Report

Created: 2025-12-07 07:03

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Objects/longobject.c
Line
Count
Source
1
/* Long (arbitrary precision) integer object implementation */
2
3
/* XXX The functional organization of this file is terrible */
4
5
#include "Python.h"
6
#include "pycore_bitutils.h"      // _Py_popcount32()
7
#include "pycore_initconfig.h"    // _PyStatus_OK()
8
#include "pycore_call.h"          // _PyObject_MakeTpCall
9
#include "pycore_freelist.h"      // _Py_FREELIST_FREE, _Py_FREELIST_POP
10
#include "pycore_long.h"          // _Py_SmallInts
11
#include "pycore_object.h"        // _PyObject_Init()
12
#include "pycore_runtime.h"       // _PY_NSMALLPOSINTS
13
#include "pycore_stackref.h"
14
#include "pycore_structseq.h"     // _PyStructSequence_FiniBuiltin()
15
#include "pycore_unicodeobject.h" // _PyUnicode_Equal()
16
17
#include <float.h>                // DBL_MANT_DIG
18
#include <stddef.h>               // offsetof
19
20
#include "clinic/longobject.c.h"
21
/*[clinic input]
22
class int "PyObject *" "&PyLong_Type"
23
[clinic start generated code]*/
24
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
25
26
2.53G
#define medium_value(x) ((stwodigits)_PyLong_CompactValue(x))
27
28
3.45G
#define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
29
9.08M
#define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
30
31
54
#define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
32
2
#define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
33
34
/* If defined, use algorithms from the _pylong.py module */
35
#define WITH_PYLONG_MODULE 1
36
37
// Forward declarations
38
static PyLongObject* long_neg(PyLongObject *v);
39
static PyLongObject *x_divrem(PyLongObject *, PyLongObject *, PyLongObject **);
40
static PyObject* long_long(PyObject *v);
41
static PyObject* long_lshift_int64(PyLongObject *a, int64_t shiftby);
42
43
44
static inline void
45
_Py_DECREF_INT(PyLongObject *op)
46
22.8M
{
47
22.8M
    assert(PyLong_CheckExact(op));
48
22.8M
    _Py_DECREF_SPECIALIZED((PyObject *)op, _PyLong_ExactDealloc);
49
22.8M
}
50
51
static inline int
52
is_medium_int(stwodigits x)
53
727M
{
54
    /* Take care that we are comparing unsigned values. */
55
727M
    twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
56
727M
    return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
57
727M
}
58
59
static PyObject *
60
get_small_int(sdigit ival)
61
2.08G
{
62
2.08G
    assert(IS_SMALL_INT(ival));
63
2.08G
    return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
64
2.08G
}
65
66
static PyLongObject *
67
maybe_small_long(PyLongObject *v)
68
13.3M
{
69
13.3M
    if (v && _PyLong_IsCompact(v)) {
70
9.46M
        stwodigits ival = medium_value(v);
71
9.46M
        if (IS_SMALL_INT(ival)) {
72
9.11M
            _Py_DECREF_INT(v);
73
9.11M
            return (PyLongObject *)get_small_int((sdigit)ival);
74
9.11M
        }
75
9.46M
    }
76
4.23M
    return v;
77
13.3M
}
78
79
/* For int multiplication, use the O(N**2) school algorithm unless
80
 * both operands contain more than KARATSUBA_CUTOFF digits (this
81
 * being an internal Python int digit, in base BASE).
82
 */
83
2.45M
#define KARATSUBA_CUTOFF 70
84
38.6k
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
85
86
/* For exponentiation, use the binary left-to-right algorithm unless the
87
 ^ exponent contains more than HUGE_EXP_CUTOFF bits.  In that case, do
88
 * (no more than) EXP_WINDOW_SIZE bits at a time.  The potential drawback is
89
 * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
90
 * precomputed.
91
 */
92
0
#define EXP_WINDOW_SIZE 5
93
0
#define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
94
/* Suppose the exponent has bit length e. All ways of doing this
95
 * need e squarings. The binary method also needs a multiply for
96
 * each bit set. In a k-ary method with window width w, a multiply
97
 * for each non-zero window, so at worst (and likely!)
98
 * ceiling(e/w). The k-ary sliding window method has the same
99
 * worst case, but the window slides so it can sometimes skip
100
 * over an all-zero window that the fixed-window method can't
101
 * exploit. In addition, the windowing methods need multiplies
102
 * to precompute a table of small powers.
103
 *
104
 * For the sliding window method with width 5, 16 precomputation
105
 * multiplies are needed. Assuming about half the exponent bits
106
 * are set, then, the binary method needs about e/2 extra mults
107
 * and the window method about 16 + e/5.
108
 *
109
 * The latter is smaller for e > 53 1/3. We don't have direct
110
 * access to the bit length, though, so call it 60, which is a
111
 * multiple of a long digit's max bit length (15 or 30 so far).
112
 */
113
1.05M
#define HUGE_EXP_CUTOFF 60
114
115
#define SIGCHECK(PyTryBlock)                    \
116
14.9M
    do {                                        \
117
14.9M
        if (PyErr_CheckSignals()) PyTryBlock    \
118
14.9M
    } while(0)
119
120
/* Normalize (remove leading zeros from) an int object.
121
   Doesn't attempt to free the storage--in most cases, due to the nature
122
   of the algorithms used, this could save at most be one word anyway. */
123
124
static PyLongObject *
125
long_normalize(PyLongObject *v)
126
28.0M
{
127
28.0M
    Py_ssize_t j = _PyLong_DigitCount(v);
128
28.0M
    Py_ssize_t i = j;
129
130
50.2M
    while (i > 0 && v->long_value.ob_digit[i-1] == 0)
131
22.2M
        --i;
132
28.0M
    if (i != j) {
133
20.7M
        if (i == 0) {
134
1.64M
            _PyLong_SetSignAndDigitCount(v, 0, 0);
135
1.64M
        }
136
19.1M
        else {
137
19.1M
            _PyLong_SetDigitCount(v, i);
138
19.1M
        }
139
20.7M
    }
140
28.0M
    return v;
141
28.0M
}
142
143
/* Allocate a new int object with size digits.
144
   Return NULL and set exception if we run out of memory. */
145
146
#if SIZEOF_SIZE_T < 8
147
# define MAX_LONG_DIGITS \
148
    ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit))
149
#else
150
/* Guarantee that the number of bits fits in int64_t.
151
   This is more than an exbibyte, that is more than many of modern
152
   architectures support in principle.
153
   -1 is added to avoid overflow in _PyLong_Frexp(). */
154
55.5M
# define MAX_LONG_DIGITS ((INT64_MAX-1) / PyLong_SHIFT)
155
#endif
156
157
static PyLongObject *
158
long_alloc(Py_ssize_t size)
159
48.9M
{
160
48.9M
    assert(size >= 0);
161
48.9M
    PyLongObject *result = NULL;
162
48.9M
    if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
163
0
        PyErr_SetString(PyExc_OverflowError,
164
0
                        "too many digits in integer");
165
0
        return NULL;
166
0
    }
167
    /* Fast operations for single digit integers (including zero)
168
     * assume that there is always at least one digit present. */
169
48.9M
    Py_ssize_t ndigits = size ? size : 1;
170
171
48.9M
    if (ndigits == 1) {
172
6.94M
        result = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
173
6.94M
    }
174
48.9M
    if (result == NULL) {
175
        /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
176
        sizeof(digit)*size.  Previous incarnations of this code used
177
        sizeof() instead of the offsetof, but this risks being
178
        incorrect in the presence of padding between the header
179
        and the digits. */
180
42.0M
        result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) +
181
42.0M
                                ndigits*sizeof(digit));
182
42.0M
        if (!result) {
183
0
            PyErr_NoMemory();
184
0
            return NULL;
185
0
        }
186
42.0M
        _PyObject_Init((PyObject*)result, &PyLong_Type);
187
42.0M
    }
188
48.9M
    _PyLong_SetSignAndDigitCount(result, size != 0, size);
189
    /* The digit has to be initialized explicitly to avoid
190
     * use-of-uninitialized-value. */
191
48.9M
    result->long_value.ob_digit[0] = 0;
192
48.9M
    return result;
193
48.9M
}
194
195
PyLongObject *
196
_PyLong_New(Py_ssize_t size)
197
0
{
198
0
    return long_alloc(size);
199
0
}
200
201
PyLongObject *
202
_PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits)
203
0
{
204
0
    assert(digit_count >= 0);
205
0
    if (digit_count == 0) {
206
0
        return (PyLongObject *)_PyLong_GetZero();
207
0
    }
208
0
    PyLongObject *result = long_alloc(digit_count);
209
0
    if (result == NULL) {
210
0
        return NULL;
211
0
    }
212
0
    _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count);
213
0
    memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit));
214
0
    return result;
215
0
}
216
217
PyObject *
218
_PyLong_Copy(PyLongObject *src)
219
118k
{
220
118k
    assert(src != NULL);
221
118k
    int sign;
222
223
118k
    if (_PyLong_IsCompact(src)) {
224
0
        stwodigits ival = medium_value(src);
225
0
        if (IS_SMALL_INT(ival)) {
226
0
            return get_small_int((sdigit)ival);
227
0
        }
228
0
        sign = _PyLong_CompactSign(src);
229
0
    }
230
118k
    else {
231
118k
        sign = _PyLong_NonCompactSign(src);
232
118k
    }
233
234
118k
    Py_ssize_t size = _PyLong_DigitCount(src);
235
118k
    PyLongObject *result = long_alloc(size);
236
237
118k
    if (result == NULL) {
238
0
        return NULL;
239
0
    }
240
118k
    _PyLong_SetSignAndDigitCount(result, sign, size);
241
118k
    memcpy(result->long_value.ob_digit, src->long_value.ob_digit,
242
118k
           size * sizeof(digit));
243
118k
    return (PyObject *)result;
244
118k
}
245
246
static PyObject *
247
_PyLong_FromMedium(sdigit x)
248
657M
{
249
657M
    assert(!IS_SMALL_INT(x));
250
657M
    assert(is_medium_int(x));
251
252
657M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
253
657M
    if (v == NULL) {
254
97.8M
        v = PyObject_Malloc(sizeof(PyLongObject));
255
97.8M
        if (v == NULL) {
256
0
            PyErr_NoMemory();
257
0
            return NULL;
258
0
        }
259
97.8M
        _PyObject_Init((PyObject*)v, &PyLong_Type);
260
97.8M
    }
261
657M
    digit abs_x = x < 0 ? -x : x;
262
657M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
263
657M
    v->long_value.ob_digit[0] = abs_x;
264
657M
    return (PyObject*)v;
265
657M
}
266
267
static PyObject *
268
_PyLong_FromLarge(stwodigits ival)
269
2.12M
{
270
2.12M
    twodigits abs_ival;
271
2.12M
    int sign;
272
2.12M
    assert(!is_medium_int(ival));
273
274
2.12M
    if (ival < 0) {
275
        /* negate: can't write this as abs_ival = -ival since that
276
           invokes undefined behaviour when ival is LONG_MIN */
277
58
        abs_ival = 0U-(twodigits)ival;
278
58
        sign = -1;
279
58
    }
280
2.12M
    else {
281
2.12M
        abs_ival = (twodigits)ival;
282
2.12M
        sign = 1;
283
2.12M
    }
284
    /* Must be at least two digits */
285
2.12M
    assert(abs_ival >> PyLong_SHIFT != 0);
286
2.12M
    twodigits t = abs_ival >> (PyLong_SHIFT * 2);
287
2.12M
    Py_ssize_t ndigits = 2;
288
2.12M
    while (t) {
289
0
        ++ndigits;
290
0
        t >>= PyLong_SHIFT;
291
0
    }
292
2.12M
    PyLongObject *v = long_alloc(ndigits);
293
2.12M
    if (v != NULL) {
294
2.12M
        digit *p = v->long_value.ob_digit;
295
2.12M
        _PyLong_SetSignAndDigitCount(v, sign, ndigits);
296
2.12M
        t = abs_ival;
297
6.36M
        while (t) {
298
4.24M
            *p++ = Py_SAFE_DOWNCAST(
299
4.24M
                t & PyLong_MASK, twodigits, digit);
300
4.24M
            t >>= PyLong_SHIFT;
301
4.24M
        }
302
2.12M
    }
303
2.12M
    return (PyObject *)v;
304
2.12M
}
305
306
/* Create a new int object from a C word-sized int */
307
static inline PyLongObject *
308
_PyLong_FromSTwoDigits(stwodigits x)
309
18.9M
{
310
18.9M
    if (IS_SMALL_INT(x)) {
311
10.1M
        return (PyLongObject*)get_small_int((sdigit)x);
312
10.1M
    }
313
18.9M
    assert(x != 0);
314
8.80M
    if (is_medium_int(x)) {
315
6.68M
        return (PyLongObject*)_PyLong_FromMedium((sdigit)x);
316
6.68M
    }
317
2.12M
    return (PyLongObject*)_PyLong_FromLarge(x);
318
8.80M
}
319
320
/* Create a new medium int object from a medium int.
321
 * Do not raise. Return NULL if not medium or can't allocate. */
322
static inline _PyStackRef
323
medium_from_stwodigits(stwodigits x)
324
1.24G
{
325
1.24G
    if (IS_SMALL_INT(x)) {
326
528M
        return PyStackRef_FromPyObjectBorrow(get_small_int((sdigit)x));
327
528M
    }
328
1.24G
    assert(x != 0);
329
718M
    if(!is_medium_int(x)) {
330
453
        return PyStackRef_NULL;
331
453
    }
332
718M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
333
718M
    if (v == NULL) {
334
10.3M
        v = PyObject_Malloc(sizeof(PyLongObject));
335
10.3M
        if (v == NULL) {
336
0
            return PyStackRef_NULL;
337
0
        }
338
10.3M
        _PyObject_Init((PyObject*)v, &PyLong_Type);
339
10.3M
    }
340
718M
    digit abs_x = x < 0 ? (digit)(-x) : (digit)x;
341
718M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
342
718M
    v->long_value.ob_digit[0] = abs_x;
343
718M
    return PyStackRef_FromPyObjectStealMortal((PyObject *)v);
344
718M
}
345
346
347
/* If a freshly-allocated int is already shared, it must
348
   be a small integer, so negating it must go to PyLong_FromLong */
349
Py_LOCAL_INLINE(void)
350
_PyLong_Negate(PyLongObject **x_p)
351
121
{
352
121
    PyLongObject *x;
353
354
121
    x = (PyLongObject *)*x_p;
355
121
    if (_PyObject_IsUniquelyReferenced((PyObject *)x)) {
356
0
         _PyLong_FlipSign(x);
357
0
        return;
358
0
    }
359
360
121
    *x_p = _PyLong_FromSTwoDigits(-medium_value(x));
361
121
    Py_DECREF(x);
362
121
}
363
364
#define PYLONG_FROM_INT(UINT_TYPE, INT_TYPE, ival)                                  \
365
2.18G
    do {                                                                            \
366
2.18G
        /* Handle small and medium cases. */                                        \
367
2.18G
        if (IS_SMALL_INT(ival)) {                                                   \
368
1.53G
            return get_small_int((sdigit)(ival));                                   \
369
1.53G
        }                                                                           \
370
2.18G
        if (-(INT_TYPE)PyLong_MASK <= (ival) && (ival) <= (INT_TYPE)PyLong_MASK) {  \
371
646M
            return _PyLong_FromMedium((sdigit)(ival));                              \
372
646M
        }                                                                           \
373
648M
        UINT_TYPE abs_ival = (ival) < 0 ? 0U-(UINT_TYPE)(ival) : (UINT_TYPE)(ival); \
374
2.34M
        /* Do shift in two steps to avoid possible undefined behavior. */           \
375
2.34M
        UINT_TYPE t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;                     \
376
2.34M
        /* Count digits (at least two - smaller cases were handled above). */       \
377
2.34M
        Py_ssize_t ndigits = 2;                                                     \
378
3.58M
        while (t) {                                                                 \
379
1.23M
            ++ndigits;                                                              \
380
1.23M
            t >>= PyLong_SHIFT;                                                     \
381
1.23M
        }                                                                           \
382
2.34M
        /* Construct output value. */                                               \
383
2.34M
        PyLongObject *v = long_alloc(ndigits);                                      \
384
2.34M
        if (v == NULL) {                                                            \
385
0
            return NULL;                                                            \
386
0
        }                                                                           \
387
2.34M
        digit *p = v->long_value.ob_digit;                                          \
388
2.34M
        _PyLong_SetSignAndDigitCount(v, (ival) < 0 ? -1 : 1, ndigits);              \
389
2.34M
        t = abs_ival;                                                               \
390
8.28M
        while (t) {                                                                 \
391
5.93M
            *p++ = (digit)(t & PyLong_MASK);                                        \
392
5.93M
            t >>= PyLong_SHIFT;                                                     \
393
5.93M
        }                                                                           \
394
2.34M
        return (PyObject *)v;                                                       \
395
2.34M
    } while(0)
396
397
398
/* Create a new int object from a C long int */
399
400
PyObject *
401
PyLong_FromLong(long ival)
402
1.78G
{
403
1.78G
    PYLONG_FROM_INT(unsigned long, long, ival);
404
1.78G
}
405
406
#define PYLONG_FROM_UINT(INT_TYPE, ival) \
407
9.08M
    do { \
408
9.08M
        /* Handle small and medium cases. */ \
409
9.08M
        if (IS_SMALL_UINT(ival)) { \
410
1.62M
            return get_small_int((sdigit)(ival)); \
411
1.62M
        } \
412
9.08M
        if ((ival) <= PyLong_MASK) { \
413
4.82M
            return _PyLong_FromMedium((sdigit)(ival)); \
414
4.82M
        } \
415
7.45M
        /* Do shift in two steps to avoid possible undefined behavior. */ \
416
7.45M
        INT_TYPE t = (ival) >> PyLong_SHIFT >> PyLong_SHIFT; \
417
2.63M
        /* Count digits (at least two - smaller cases were handled above). */ \
418
2.63M
        Py_ssize_t ndigits = 2; \
419
2.63M
        while (t) { \
420
4.89k
            ++ndigits; \
421
4.89k
            t >>= PyLong_SHIFT; \
422
4.89k
        } \
423
2.63M
        /* Construct output value. */ \
424
2.63M
        PyLongObject *v = long_alloc(ndigits); \
425
2.63M
        if (v == NULL) { \
426
0
            return NULL; \
427
0
        } \
428
2.63M
        digit *p = v->long_value.ob_digit; \
429
7.90M
        while ((ival)) { \
430
5.27M
            *p++ = (digit)((ival) & PyLong_MASK); \
431
5.27M
            (ival) >>= PyLong_SHIFT; \
432
5.27M
        } \
433
2.63M
        return (PyObject *)v; \
434
2.63M
    } while(0)
435
436
/* Create a new int object from a C unsigned long int */
437
438
PyObject *
439
PyLong_FromUnsignedLong(unsigned long ival)
440
7.88M
{
441
7.88M
    PYLONG_FROM_UINT(unsigned long, ival);
442
7.88M
}
443
444
/* Create a new int object from a C unsigned long long int. */
445
446
PyObject *
447
PyLong_FromUnsignedLongLong(unsigned long long ival)
448
1.12M
{
449
1.12M
    PYLONG_FROM_UINT(unsigned long long, ival);
450
1.12M
}
451
452
/* Create a new int object from a C size_t. */
453
454
PyObject *
455
PyLong_FromSize_t(size_t ival)
456
73.3k
{
457
73.3k
    PYLONG_FROM_UINT(size_t, ival);
458
73.3k
}
459
460
/* Create a new int object from a C double */
461
462
PyObject *
463
PyLong_FromDouble(double dval)
464
50.1k
{
465
    /* Try to get out cheap if this fits in a long. When a finite value of real
466
     * floating type is converted to an integer type, the value is truncated
467
     * toward zero. If the value of the integral part cannot be represented by
468
     * the integer type, the behavior is undefined. Thus, we must check that
469
     * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
470
     * of precision than a double, casting LONG_MIN - 1 to double may yield an
471
     * approximation, but LONG_MAX + 1 is a power of two and can be represented
472
     * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
473
     * check against [-(LONG_MAX + 1), LONG_MAX + 1).
474
     */
475
50.1k
    const double int_max = (unsigned long)LONG_MAX + 1;
476
50.1k
    if (-int_max < dval && dval < int_max) {
477
50.1k
        return PyLong_FromLong((long)dval);
478
50.1k
    }
479
480
0
    PyLongObject *v;
481
0
    double frac;
482
0
    int i, ndig, expo, neg;
483
0
    neg = 0;
484
0
    if (isinf(dval)) {
485
0
        PyErr_SetString(PyExc_OverflowError,
486
0
                        "cannot convert float infinity to integer");
487
0
        return NULL;
488
0
    }
489
0
    if (isnan(dval)) {
490
0
        PyErr_SetString(PyExc_ValueError,
491
0
                        "cannot convert float NaN to integer");
492
0
        return NULL;
493
0
    }
494
0
    if (dval < 0.0) {
495
0
        neg = 1;
496
0
        dval = -dval;
497
0
    }
498
0
    frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
499
0
    assert(expo > 0);
500
0
    ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
501
0
    v = long_alloc(ndig);
502
0
    if (v == NULL)
503
0
        return NULL;
504
0
    frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
505
0
    for (i = ndig; --i >= 0; ) {
506
0
        digit bits = (digit)frac;
507
0
        v->long_value.ob_digit[i] = bits;
508
0
        frac = frac - (double)bits;
509
0
        frac = ldexp(frac, PyLong_SHIFT);
510
0
    }
511
0
    if (neg) {
512
0
        _PyLong_FlipSign(v);
513
0
    }
514
0
    return (PyObject *)v;
515
0
}
516
517
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
518
 * anything about what happens when a signed integer operation overflows,
519
 * and some compilers think they're doing you a favor by being "clever"
520
 * then.  The bit pattern for the largest positive signed long is
521
 * (unsigned long)LONG_MAX, and for the smallest negative signed long
522
 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
523
 * However, some other compilers warn about applying unary minus to an
524
 * unsigned operand.  Hence the weird "0-".
525
 */
526
3
#define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
527
0
#define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
528
529
static inline unsigned long
530
unroll_digits_ulong(PyLongObject *v, Py_ssize_t *iptr)
531
464k
{
532
464k
    assert(ULONG_MAX >= ((1UL << PyLong_SHIFT) - 1));
533
534
464k
    Py_ssize_t i = *iptr;
535
464k
    assert(i >= 2);
536
537
    /* unroll 1 digit */
538
464k
    --i;
539
464k
    digit *digits = v->long_value.ob_digit;
540
464k
    unsigned long x = digits[i];
541
542
464k
#if (ULONG_MAX >> PyLong_SHIFT) >= ((1UL << PyLong_SHIFT) - 1)
543
    /* unroll another digit */
544
464k
    x <<= PyLong_SHIFT;
545
464k
    --i;
546
464k
    x |= digits[i];
547
464k
#endif
548
549
464k
    *iptr = i;
550
464k
    return x;
551
464k
}
552
553
static inline size_t
554
unroll_digits_size_t(PyLongObject *v, Py_ssize_t *iptr)
555
168k
{
556
168k
    assert(SIZE_MAX >= ((1UL << PyLong_SHIFT) - 1));
557
558
168k
    Py_ssize_t i = *iptr;
559
168k
    assert(i >= 2);
560
561
    /* unroll 1 digit */
562
168k
    --i;
563
168k
    digit *digits = v->long_value.ob_digit;
564
168k
    size_t x = digits[i];
565
566
168k
#if (SIZE_MAX >> PyLong_SHIFT) >= ((1 << PyLong_SHIFT) - 1)
567
    /* unroll another digit */
568
168k
    x <<= PyLong_SHIFT;
569
168k
    --i;
570
168k
    x |= digits[i];
571
168k
#endif
572
573
168k
    *iptr = i;
574
168k
    return x;
575
168k
}
576
577
/* Get a C long int from an int object or any object that has an __index__
578
   method.
579
580
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
581
   the result.  Otherwise *overflow is 0.
582
583
   For other errors (e.g., TypeError), return -1 and set an error condition.
584
   In this case *overflow will be 0.
585
*/
586
long
587
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
588
299M
{
589
    /* This version originally by Tim Peters */
590
299M
    PyLongObject *v;
591
299M
    long res;
592
299M
    Py_ssize_t i;
593
299M
    int sign;
594
299M
    int do_decref = 0; /* if PyNumber_Index was called */
595
596
299M
    *overflow = 0;
597
299M
    if (vv == NULL) {
598
0
        PyErr_BadInternalCall();
599
0
        return -1;
600
0
    }
601
602
299M
    if (PyLong_Check(vv)) {
603
299M
        v = (PyLongObject *)vv;
604
299M
    }
605
13.1k
    else {
606
13.1k
        v = (PyLongObject *)_PyNumber_Index(vv);
607
13.1k
        if (v == NULL)
608
13.1k
            return -1;
609
0
        do_decref = 1;
610
0
    }
611
299M
    if (_PyLong_IsCompact(v)) {
612
#if SIZEOF_LONG < SIZEOF_SIZE_T
613
        Py_ssize_t tmp = _PyLong_CompactValue(v);
614
        if (tmp < LONG_MIN) {
615
            *overflow = -1;
616
            res = -1;
617
        }
618
        else if (tmp > LONG_MAX) {
619
            *overflow = 1;
620
            res = -1;
621
        }
622
        else {
623
            res = (long)tmp;
624
        }
625
#else
626
299M
        res = _PyLong_CompactValue(v);
627
299M
#endif
628
299M
    }
629
198
    else {
630
198
        res = -1;
631
198
        i = _PyLong_DigitCount(v);
632
198
        sign = _PyLong_NonCompactSign(v);
633
634
198
        unsigned long x = unroll_digits_ulong(v, &i);
635
210
        while (--i >= 0) {
636
98
            if (x > (ULONG_MAX >> PyLong_SHIFT)) {
637
86
                *overflow = sign;
638
86
                goto exit;
639
86
            }
640
12
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
641
12
        }
642
        /* Haven't lost any bits, but casting to long requires extra
643
        * care (see comment above).
644
        */
645
112
        if (x <= (unsigned long)LONG_MAX) {
646
100
            res = (long)x * sign;
647
100
        }
648
12
        else if (sign < 0 && x == PY_ABS_LONG_MIN) {
649
3
            res = LONG_MIN;
650
3
        }
651
9
        else {
652
9
            *overflow = sign;
653
            /* res is already set to -1 */
654
9
        }
655
112
    }
656
299M
  exit:
657
299M
    if (do_decref) {
658
0
        Py_DECREF(v);
659
0
    }
660
299M
    return res;
661
299M
}
662
663
/* Get a C long int from an int object or any object that has an __index__
664
   method.  Return -1 and set an error if overflow occurs. */
665
666
long
667
PyLong_AsLong(PyObject *obj)
668
43.3M
{
669
43.3M
    int overflow;
670
43.3M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
671
43.3M
    if (overflow) {
672
        /* XXX: could be cute and give a different
673
           message for overflow == -1 */
674
28
        PyErr_SetString(PyExc_OverflowError,
675
28
                        "Python int too large to convert to C long");
676
28
    }
677
43.3M
    return result;
678
43.3M
}
679
680
/* Get a C int from an int object or any object that has an __index__
681
   method.  Return -1 and set an error if overflow occurs. */
682
683
int
684
PyLong_AsInt(PyObject *obj)
685
122M
{
686
122M
    int overflow;
687
122M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
688
122M
    if (overflow || result > INT_MAX || result < INT_MIN) {
689
        /* XXX: could be cute and give a different
690
           message for overflow == -1 */
691
0
        PyErr_SetString(PyExc_OverflowError,
692
0
                        "Python int too large to convert to C int");
693
0
        return -1;
694
0
    }
695
122M
    return (int)result;
696
122M
}
697
698
/* Get a Py_ssize_t from an int object.
699
   Returns -1 and sets an error condition if overflow occurs. */
700
701
Py_ssize_t
702
555M
PyLong_AsSsize_t(PyObject *vv) {
703
555M
    PyLongObject *v;
704
555M
    Py_ssize_t i;
705
555M
    int sign;
706
707
555M
    if (vv == NULL) {
708
0
        PyErr_BadInternalCall();
709
0
        return -1;
710
0
    }
711
555M
    if (!PyLong_Check(vv)) {
712
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
713
0
        return -1;
714
0
    }
715
716
555M
    v = (PyLongObject *)vv;
717
555M
    if (_PyLong_IsCompact(v)) {
718
555M
        return _PyLong_CompactValue(v);
719
555M
    }
720
168k
    i = _PyLong_DigitCount(v);
721
168k
    sign = _PyLong_NonCompactSign(v);
722
723
168k
    size_t x = unroll_digits_size_t(v, &i);
724
321k
    while (--i >= 0) {
725
152k
        if (x > (SIZE_MAX >> PyLong_SHIFT)) {
726
118
            goto overflow;
727
118
        }
728
152k
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
729
152k
    }
730
    /* Haven't lost any bits, but casting to a signed type requires
731
     * extra care (see comment above).
732
     */
733
168k
    if (x <= (size_t)PY_SSIZE_T_MAX) {
734
168k
        return (Py_ssize_t)x * sign;
735
168k
    }
736
141
    else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
737
0
        return PY_SSIZE_T_MIN;
738
0
    }
739
    /* else overflow */
740
741
259
  overflow:
742
259
    PyErr_SetString(PyExc_OverflowError,
743
259
                    "Python int too large to convert to C ssize_t");
744
259
    return -1;
745
168k
}
746
747
/* Get a C unsigned long int from an int object.
748
   Returns -1 and sets an error condition if overflow occurs. */
749
750
unsigned long
751
PyLong_AsUnsignedLong(PyObject *vv)
752
95.5M
{
753
95.5M
    PyLongObject *v;
754
95.5M
    Py_ssize_t i;
755
756
95.5M
    if (vv == NULL) {
757
0
        PyErr_BadInternalCall();
758
0
        return (unsigned long)-1;
759
0
    }
760
95.5M
    if (!PyLong_Check(vv)) {
761
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
762
0
        return (unsigned long)-1;
763
0
    }
764
765
95.5M
    v = (PyLongObject *)vv;
766
95.5M
    if (_PyLong_IsNonNegativeCompact(v)) {
767
#if SIZEOF_LONG < SIZEOF_SIZE_T
768
        size_t tmp = (size_t)_PyLong_CompactValue(v);
769
        unsigned long res = (unsigned long)tmp;
770
        if (res != tmp) {
771
            goto overflow;
772
        }
773
        return res;
774
#else
775
95.0M
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
776
95.0M
#endif
777
95.0M
    }
778
464k
    if (_PyLong_IsNegative(v)) {
779
0
        PyErr_SetString(PyExc_OverflowError,
780
0
                        "can't convert negative value to unsigned int");
781
0
        return (unsigned long) -1;
782
0
    }
783
464k
    i = _PyLong_DigitCount(v);
784
785
464k
    unsigned long x = unroll_digits_ulong(v, &i);
786
464k
    while (--i >= 0) {
787
0
        if (x > (ULONG_MAX >> PyLong_SHIFT)) {
788
0
            goto overflow;
789
0
        }
790
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
791
0
    }
792
464k
    return x;
793
0
overflow:
794
0
    PyErr_SetString(PyExc_OverflowError,
795
0
                    "Python int too large to convert "
796
0
                    "to C unsigned long");
797
0
    return (unsigned long) -1;
798
464k
}
799
800
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
801
   an error condition if overflow occurs. */
802
803
size_t
804
PyLong_AsSize_t(PyObject *vv)
805
59
{
806
59
    PyLongObject *v;
807
59
    Py_ssize_t i;
808
809
59
    if (vv == NULL) {
810
0
        PyErr_BadInternalCall();
811
0
        return (size_t) -1;
812
0
    }
813
59
    if (!PyLong_Check(vv)) {
814
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
815
0
        return (size_t)-1;
816
0
    }
817
818
59
    v = (PyLongObject *)vv;
819
59
    if (_PyLong_IsNonNegativeCompact(v)) {
820
59
        return (size_t)_PyLong_CompactValue(v);
821
59
    }
822
0
    if (_PyLong_IsNegative(v)) {
823
0
        PyErr_SetString(PyExc_OverflowError,
824
0
                   "can't convert negative value to size_t");
825
0
        return (size_t) -1;
826
0
    }
827
0
    i = _PyLong_DigitCount(v);
828
829
0
    size_t x = unroll_digits_size_t(v, &i);
830
0
    while (--i >= 0) {
831
0
            if (x > (SIZE_MAX >> PyLong_SHIFT)) {
832
0
                PyErr_SetString(PyExc_OverflowError,
833
0
                    "Python int too large to convert to C size_t");
834
0
                return (size_t) -1;
835
0
            }
836
0
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
837
0
        }
838
0
    return x;
839
0
}
840
841
/* Get a C unsigned long int from an int object, ignoring the high bits.
842
   Returns -1 and sets an error condition if an error occurs. */
843
844
static unsigned long
845
_PyLong_AsUnsignedLongMask(PyObject *vv)
846
0
{
847
0
    PyLongObject *v;
848
0
    Py_ssize_t i;
849
850
0
    if (vv == NULL || !PyLong_Check(vv)) {
851
0
        PyErr_BadInternalCall();
852
0
        return (unsigned long) -1;
853
0
    }
854
0
    v = (PyLongObject *)vv;
855
0
    if (_PyLong_IsCompact(v)) {
856
#if SIZEOF_LONG < SIZEOF_SIZE_T
857
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
858
#else
859
0
        return (unsigned long)(long)_PyLong_CompactValue(v);
860
0
#endif
861
0
    }
862
0
    i = _PyLong_DigitCount(v);
863
0
    int sign = _PyLong_NonCompactSign(v);
864
0
    unsigned long x = unroll_digits_ulong(v, &i);
865
0
    while (--i >= 0) {
866
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
867
0
    }
868
0
    return x * sign;
869
0
}
870
871
unsigned long
872
PyLong_AsUnsignedLongMask(PyObject *op)
873
0
{
874
0
    PyLongObject *lo;
875
0
    unsigned long val;
876
877
0
    if (op == NULL) {
878
0
        PyErr_BadInternalCall();
879
0
        return (unsigned long)-1;
880
0
    }
881
882
0
    if (PyLong_Check(op)) {
883
0
        return _PyLong_AsUnsignedLongMask(op);
884
0
    }
885
886
0
    lo = (PyLongObject *)_PyNumber_Index(op);
887
0
    if (lo == NULL)
888
0
        return (unsigned long)-1;
889
890
0
    val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
891
0
    Py_DECREF(lo);
892
0
    return val;
893
0
}
894
895
int
896
PyLong_IsPositive(PyObject *obj)
897
0
{
898
0
    assert(obj != NULL);
899
0
    if (!PyLong_Check(obj)) {
900
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
901
0
        return -1;
902
0
    }
903
0
    return _PyLong_IsPositive((PyLongObject *)obj);
904
0
}
905
906
int
907
PyLong_IsNegative(PyObject *obj)
908
0
{
909
0
    assert(obj != NULL);
910
0
    if (!PyLong_Check(obj)) {
911
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
912
0
        return -1;
913
0
    }
914
0
    return _PyLong_IsNegative((PyLongObject *)obj);
915
0
}
916
917
int
918
PyLong_IsZero(PyObject *obj)
919
2.66M
{
920
2.66M
    assert(obj != NULL);
921
2.66M
    if (!PyLong_Check(obj)) {
922
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
923
0
        return -1;
924
0
    }
925
2.66M
    return _PyLong_IsZero((PyLongObject *)obj);
926
2.66M
}
927
928
static int
929
long_sign(PyObject *vv)
930
1.70M
{
931
1.70M
    assert(vv != NULL);
932
1.70M
    assert(PyLong_Check(vv));
933
1.70M
    PyLongObject *v = (PyLongObject *)vv;
934
935
1.70M
    if (_PyLong_IsCompact(v)) {
936
1.70M
        return _PyLong_CompactSign(v);
937
1.70M
    }
938
0
    return _PyLong_NonCompactSign(v);
939
1.70M
}
940
941
int
942
_PyLong_Sign(PyObject *vv)
943
0
{
944
0
    return long_sign(vv);
945
0
}
946
947
int
948
PyLong_GetSign(PyObject *vv, int *sign)
949
1.70M
{
950
1.70M
    if (!PyLong_Check(vv)) {
951
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
952
0
        return -1;
953
0
    }
954
955
1.70M
    *sign = long_sign(vv);
956
1.70M
    return 0;
957
1.70M
}
958
959
static int
960
bit_length_digit(digit x)
961
3.88M
{
962
    // digit can be larger than unsigned long, but only PyLong_SHIFT bits
963
    // of it will be ever used.
964
3.88M
    static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
965
3.88M
                  "digit is larger than unsigned long");
966
3.88M
    return _Py_bit_length((unsigned long)x);
967
3.88M
}
968
969
int64_t
970
_PyLong_NumBits(PyObject *vv)
971
10.5k
{
972
10.5k
    PyLongObject *v = (PyLongObject *)vv;
973
10.5k
    int64_t result = 0;
974
10.5k
    Py_ssize_t ndigits;
975
10.5k
    int msd_bits;
976
977
10.5k
    assert(v != NULL);
978
10.5k
    assert(PyLong_Check(v));
979
10.5k
    ndigits = _PyLong_DigitCount(v);
980
10.5k
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
981
10.5k
    if (ndigits > 0) {
982
10.5k
        digit msd = v->long_value.ob_digit[ndigits - 1];
983
10.5k
#if SIZEOF_SIZE_T == 8
984
10.5k
        assert(ndigits <= INT64_MAX / PyLong_SHIFT);
985
10.5k
#endif
986
10.5k
        result = (int64_t)(ndigits - 1) * PyLong_SHIFT;
987
10.5k
        msd_bits = bit_length_digit(msd);
988
10.5k
        result += msd_bits;
989
10.5k
    }
990
10.5k
    return result;
991
10.5k
}
992
993
PyObject *
994
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
995
                      int little_endian, int is_signed)
996
23.2k
{
997
23.2k
    const unsigned char* pstartbyte;    /* LSB of bytes */
998
23.2k
    int incr;                           /* direction to move pstartbyte */
999
23.2k
    const unsigned char* pendbyte;      /* MSB of bytes */
1000
23.2k
    size_t numsignificantbytes;         /* number of bytes that matter */
1001
23.2k
    Py_ssize_t ndigits;                 /* number of Python int digits */
1002
23.2k
    PyLongObject* v;                    /* result */
1003
23.2k
    Py_ssize_t idigit = 0;              /* next free index in v->long_value.ob_digit */
1004
1005
23.2k
    if (n == 0)
1006
0
        return PyLong_FromLong(0L);
1007
1008
23.2k
    if (little_endian) {
1009
18.4k
        pstartbyte = bytes;
1010
18.4k
        pendbyte = bytes + n - 1;
1011
18.4k
        incr = 1;
1012
18.4k
    }
1013
4.81k
    else {
1014
4.81k
        pstartbyte = bytes + n - 1;
1015
4.81k
        pendbyte = bytes;
1016
4.81k
        incr = -1;
1017
4.81k
    }
1018
1019
23.2k
    if (is_signed)
1020
24
        is_signed = *pendbyte >= 0x80;
1021
1022
    /* Compute numsignificantbytes.  This consists of finding the most
1023
       significant byte.  Leading 0 bytes are insignificant if the number
1024
       is positive, and leading 0xff bytes if negative. */
1025
23.2k
    {
1026
23.2k
        size_t i;
1027
23.2k
        const unsigned char* p = pendbyte;
1028
23.2k
        const int pincr = -incr;  /* search MSB to LSB */
1029
23.2k
        const unsigned char insignificant = is_signed ? 0xff : 0x00;
1030
1031
67.2k
        for (i = 0; i < n; ++i, p += pincr) {
1032
59.9k
            if (*p != insignificant)
1033
15.9k
                break;
1034
59.9k
        }
1035
23.2k
        numsignificantbytes = n - i;
1036
        /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
1037
           actually has 2 significant bytes.  OTOH, 0xff0001 ==
1038
           -0x00ffff, so we wouldn't *need* to bump it there; but we
1039
           do for 0xffff = -0x0001.  To be safe without bothering to
1040
           check every case, bump it regardless. */
1041
23.2k
        if (is_signed && numsignificantbytes < n)
1042
0
            ++numsignificantbytes;
1043
23.2k
    }
1044
1045
    /* avoid integer overflow */
1046
23.2k
    ndigits = numsignificantbytes / PyLong_SHIFT * 8
1047
23.2k
        + (numsignificantbytes % PyLong_SHIFT * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
1048
23.2k
    v = long_alloc(ndigits);
1049
23.2k
    if (v == NULL)
1050
0
        return NULL;
1051
1052
    /* Copy the bits over.  The tricky parts are computing 2's-comp on
1053
       the fly for signed numbers, and dealing with the mismatch between
1054
       8-bit bytes and (probably) 15-bit Python digits.*/
1055
23.2k
    {
1056
23.2k
        size_t i;
1057
23.2k
        twodigits carry = 1;                    /* for 2's-comp calculation */
1058
23.2k
        twodigits accum = 0;                    /* sliding register */
1059
23.2k
        unsigned int accumbits = 0;             /* number of bits in accum */
1060
23.2k
        const unsigned char* p = pstartbyte;
1061
1062
150k
        for (i = 0; i < numsignificantbytes; ++i, p += incr) {
1063
127k
            twodigits thisbyte = *p;
1064
            /* Compute correction for 2's comp, if needed. */
1065
127k
            if (is_signed) {
1066
15.5k
                thisbyte = (0xff ^ thisbyte) + carry;
1067
15.5k
                carry = thisbyte >> 8;
1068
15.5k
                thisbyte &= 0xff;
1069
15.5k
            }
1070
            /* Because we're going LSB to MSB, thisbyte is
1071
               more significant than what's already in accum,
1072
               so needs to be prepended to accum. */
1073
127k
            accum |= thisbyte << accumbits;
1074
127k
            accumbits += 8;
1075
127k
            if (accumbits >= PyLong_SHIFT) {
1076
                /* There's enough to fill a Python digit. */
1077
29.1k
                assert(idigit < ndigits);
1078
29.1k
                v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK);
1079
29.1k
                ++idigit;
1080
29.1k
                accum >>= PyLong_SHIFT;
1081
29.1k
                accumbits -= PyLong_SHIFT;
1082
29.1k
                assert(accumbits < PyLong_SHIFT);
1083
29.1k
            }
1084
127k
        }
1085
23.2k
        assert(accumbits < PyLong_SHIFT);
1086
23.2k
        if (accumbits) {
1087
15.9k
            assert(idigit < ndigits);
1088
15.9k
            v->long_value.ob_digit[idigit] = (digit)accum;
1089
15.9k
            ++idigit;
1090
15.9k
        }
1091
23.2k
    }
1092
1093
23.2k
    int sign = is_signed ? -1: 1;
1094
23.2k
    if (idigit == 0) {
1095
7.23k
        sign = 0;
1096
7.23k
    }
1097
23.2k
    _PyLong_SetSignAndDigitCount(v, sign, idigit);
1098
23.2k
    return (PyObject *)maybe_small_long(long_normalize(v));
1099
23.2k
}
1100
1101
int
1102
_PyLong_AsByteArray(PyLongObject* v,
1103
                    unsigned char* bytes, size_t n,
1104
                    int little_endian, int is_signed,
1105
                    int with_exceptions)
1106
11.4k
{
1107
11.4k
    Py_ssize_t i;               /* index into v->long_value.ob_digit */
1108
11.4k
    Py_ssize_t ndigits;         /* number of digits */
1109
11.4k
    twodigits accum;            /* sliding register */
1110
11.4k
    unsigned int accumbits;     /* # bits in accum */
1111
11.4k
    int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
1112
11.4k
    digit carry;                /* for computing 2's-comp */
1113
11.4k
    size_t j;                   /* # bytes filled */
1114
11.4k
    unsigned char* p;           /* pointer to next byte in bytes */
1115
11.4k
    int pincr;                  /* direction to move p */
1116
1117
11.4k
    assert(v != NULL && PyLong_Check(v));
1118
1119
11.4k
    ndigits = _PyLong_DigitCount(v);
1120
11.4k
    if (_PyLong_IsNegative(v)) {
1121
0
        if (!is_signed) {
1122
0
            if (with_exceptions) {
1123
0
                PyErr_SetString(PyExc_OverflowError,
1124
0
                                "can't convert negative int to unsigned");
1125
0
            }
1126
0
            return -1;
1127
0
        }
1128
0
        do_twos_comp = 1;
1129
0
    }
1130
11.4k
    else {
1131
11.4k
        do_twos_comp = 0;
1132
11.4k
    }
1133
1134
11.4k
    if (little_endian) {
1135
11.2k
        p = bytes;
1136
11.2k
        pincr = 1;
1137
11.2k
    }
1138
273
    else {
1139
273
        p = bytes + n - 1;
1140
273
        pincr = -1;
1141
273
    }
1142
1143
    /* Copy over all the Python digits.
1144
       It's crucial that every Python digit except for the MSD contribute
1145
       exactly PyLong_SHIFT bits to the total, so first assert that the int is
1146
       normalized.
1147
       NOTE: PyLong_AsNativeBytes() assumes that this function will fill in 'n'
1148
       bytes even if it eventually fails to convert the whole number. Make sure
1149
       you account for that if you are changing this algorithm to return without
1150
       doing that.
1151
       */
1152
11.4k
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
1153
11.4k
    j = 0;
1154
11.4k
    accum = 0;
1155
11.4k
    accumbits = 0;
1156
11.4k
    carry = do_twos_comp ? 1 : 0;
1157
33.2k
    for (i = 0; i < ndigits; ++i) {
1158
21.7k
        digit thisdigit = v->long_value.ob_digit[i];
1159
21.7k
        if (do_twos_comp) {
1160
0
            thisdigit = (thisdigit ^ PyLong_MASK) + carry;
1161
0
            carry = thisdigit >> PyLong_SHIFT;
1162
0
            thisdigit &= PyLong_MASK;
1163
0
        }
1164
        /* Because we're going LSB to MSB, thisdigit is more
1165
           significant than what's already in accum, so needs to be
1166
           prepended to accum. */
1167
21.7k
        accum |= (twodigits)thisdigit << accumbits;
1168
1169
        /* The most-significant digit may be (probably is) at least
1170
           partly empty. */
1171
21.7k
        if (i == ndigits - 1) {
1172
            /* Count # of sign bits -- they needn't be stored,
1173
             * although for signed conversion we need later to
1174
             * make sure at least one sign bit gets stored. */
1175
11.1k
            digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
1176
33.5k
            while (s != 0) {
1177
22.4k
                s >>= 1;
1178
22.4k
                accumbits++;
1179
22.4k
            }
1180
11.1k
        }
1181
10.6k
        else
1182
10.6k
            accumbits += PyLong_SHIFT;
1183
1184
        /* Store as many bytes as possible. */
1185
60.8k
        while (accumbits >= 8) {
1186
39.0k
            if (j >= n)
1187
0
                goto Overflow;
1188
39.0k
            ++j;
1189
39.0k
            *p = (unsigned char)(accum & 0xff);
1190
39.0k
            p += pincr;
1191
39.0k
            accumbits -= 8;
1192
39.0k
            accum >>= 8;
1193
39.0k
        }
1194
21.7k
    }
1195
1196
    /* Store the straggler (if any). */
1197
11.4k
    assert(accumbits < 8);
1198
11.4k
    assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
1199
11.4k
    if (accumbits > 0) {
1200
4.28k
        if (j >= n)
1201
0
            goto Overflow;
1202
4.28k
        ++j;
1203
4.28k
        if (do_twos_comp) {
1204
            /* Fill leading bits of the byte with sign bits
1205
               (appropriately pretending that the int had an
1206
               infinite supply of sign bits). */
1207
0
            accum |= (~(twodigits)0) << accumbits;
1208
0
        }
1209
4.28k
        *p = (unsigned char)(accum & 0xff);
1210
4.28k
        p += pincr;
1211
4.28k
    }
1212
7.19k
    else if (j == n && is_signed) {
1213
        /* The main loop filled the byte array exactly, so the code
1214
           just above didn't get to ensure there's a sign bit, and the
1215
           loop below wouldn't add one either.  Make sure a sign bit
1216
           exists. */
1217
6.78k
        int sign_bit_set;
1218
6.78k
        if (n > 0) {
1219
6.78k
            unsigned char msb = *(p - pincr);
1220
6.78k
            sign_bit_set = msb >= 0x80;
1221
6.78k
        }
1222
0
        else {
1223
0
            sign_bit_set = 0;
1224
0
        }
1225
6.78k
        assert(accumbits == 0);
1226
6.78k
        if (sign_bit_set == do_twos_comp)
1227
0
            return 0;
1228
6.78k
        else
1229
6.78k
            goto Overflow;
1230
6.78k
    }
1231
1232
    /* Fill remaining bytes with copies of the sign bit. */
1233
4.69k
    {
1234
4.69k
        unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
1235
8.32k
        for ( ; j < n; ++j, p += pincr)
1236
3.63k
            *p = signbyte;
1237
4.69k
    }
1238
1239
4.69k
    return 0;
1240
1241
6.78k
  Overflow:
1242
6.78k
    if (with_exceptions) {
1243
0
        PyErr_SetString(PyExc_OverflowError, "int too big to convert");
1244
0
    }
1245
6.78k
    return -1;
1246
1247
11.4k
}
1248
1249
// Refactored out for readability, not reuse
1250
static inline int
1251
_fits_in_n_bits(Py_ssize_t v, Py_ssize_t n)
1252
6.76M
{
1253
6.76M
    if (n >= (Py_ssize_t)sizeof(Py_ssize_t) * 8) {
1254
6.75M
        return 1;
1255
6.75M
    }
1256
    // If all bits above n are the same, we fit.
1257
    // (Use n-1 if we require the sign bit to be consistent.)
1258
12.5k
    Py_ssize_t v_extended = v >> ((int)n - 1);
1259
12.5k
    return v_extended == 0 || v_extended == -1;
1260
6.76M
}
1261
1262
static inline int
1263
_resolve_endianness(int *endianness)
1264
6.77M
{
1265
6.77M
    if (*endianness == -1 || (*endianness & 2)) {
1266
6.77M
        *endianness = PY_LITTLE_ENDIAN;
1267
6.77M
    } else {
1268
0
        *endianness &= 1;
1269
0
    }
1270
6.77M
    assert(*endianness == 0 || *endianness == 1);
1271
6.77M
    return 0;
1272
6.77M
}
1273
1274
Py_ssize_t
1275
PyLong_AsNativeBytes(PyObject* vv, void* buffer, Py_ssize_t n, int flags)
1276
6.77M
{
1277
6.77M
    PyLongObject *v;
1278
6.77M
    union {
1279
6.77M
        Py_ssize_t v;
1280
6.77M
        unsigned char b[sizeof(Py_ssize_t)];
1281
6.77M
    } cv;
1282
6.77M
    int do_decref = 0;
1283
6.77M
    Py_ssize_t res = 0;
1284
1285
6.77M
    if (vv == NULL || n < 0) {
1286
0
        PyErr_BadInternalCall();
1287
0
        return -1;
1288
0
    }
1289
1290
6.77M
    int little_endian = flags;
1291
6.77M
    if (_resolve_endianness(&little_endian) < 0) {
1292
0
        return -1;
1293
0
    }
1294
1295
6.77M
    if (PyLong_Check(vv)) {
1296
6.77M
        v = (PyLongObject *)vv;
1297
6.77M
    }
1298
0
    else if (flags != -1 && (flags & Py_ASNATIVEBYTES_ALLOW_INDEX)) {
1299
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1300
0
        if (v == NULL) {
1301
0
            return -1;
1302
0
        }
1303
0
        do_decref = 1;
1304
0
    }
1305
0
    else {
1306
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
1307
0
        return -1;
1308
0
    }
1309
1310
6.77M
    if ((flags != -1 && (flags & Py_ASNATIVEBYTES_REJECT_NEGATIVE))
1311
0
        && _PyLong_IsNegative(v)) {
1312
0
        PyErr_SetString(PyExc_ValueError, "Cannot convert negative int");
1313
0
        if (do_decref) {
1314
0
            Py_DECREF(v);
1315
0
        }
1316
0
        return -1;
1317
0
    }
1318
1319
6.77M
    if (_PyLong_IsCompact(v)) {
1320
6.76M
        res = 0;
1321
6.76M
        cv.v = _PyLong_CompactValue(v);
1322
        /* Most paths result in res = sizeof(compact value). Only the case
1323
         * where 0 < n < sizeof(compact value) do we need to check and adjust
1324
         * our return value. */
1325
6.76M
        res = sizeof(cv.b);
1326
6.76M
        if (n <= 0) {
1327
            // nothing to do!
1328
0
        }
1329
6.76M
        else if (n <= (Py_ssize_t)sizeof(cv.b)) {
1330
6.76M
#if PY_LITTLE_ENDIAN
1331
6.76M
            if (little_endian) {
1332
6.76M
                memcpy(buffer, cv.b, n);
1333
6.76M
            }
1334
0
            else {
1335
0
                for (Py_ssize_t i = 0; i < n; ++i) {
1336
0
                    ((unsigned char*)buffer)[n - i - 1] = cv.b[i];
1337
0
                }
1338
0
            }
1339
#else
1340
            if (little_endian) {
1341
                for (Py_ssize_t i = 0; i < n; ++i) {
1342
                    ((unsigned char*)buffer)[i] = cv.b[sizeof(cv.b) - i - 1];
1343
                }
1344
            }
1345
            else {
1346
                memcpy(buffer, &cv.b[sizeof(cv.b) - n], n);
1347
            }
1348
#endif
1349
1350
            /* If we fit, return the requested number of bytes */
1351
6.76M
            if (_fits_in_n_bits(cv.v, n * 8)) {
1352
6.76M
                res = n;
1353
6.76M
            } else if (cv.v > 0 && _fits_in_n_bits(cv.v, n * 8 + 1)) {
1354
                /* Positive values with the MSB set do not require an
1355
                 * additional bit when the caller's intent is to treat them
1356
                 * as unsigned. */
1357
0
                if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1358
0
                    res = n;
1359
0
                } else {
1360
0
                    res = n + 1;
1361
0
                }
1362
0
            }
1363
6.76M
        }
1364
0
        else {
1365
0
            unsigned char fill = cv.v < 0 ? 0xFF : 0x00;
1366
0
#if PY_LITTLE_ENDIAN
1367
0
            if (little_endian) {
1368
0
                memcpy(buffer, cv.b, sizeof(cv.b));
1369
0
                memset((char *)buffer + sizeof(cv.b), fill, n - sizeof(cv.b));
1370
0
            }
1371
0
            else {
1372
0
                unsigned char *b = (unsigned char *)buffer;
1373
0
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1374
0
                    *b++ = fill;
1375
0
                }
1376
0
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1377
0
                    *b++ = cv.b[i - 1];
1378
0
                }
1379
0
            }
1380
#else
1381
            if (little_endian) {
1382
                unsigned char *b = (unsigned char *)buffer;
1383
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1384
                    *b++ = cv.b[i - 1];
1385
                }
1386
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1387
                    *b++ = fill;
1388
                }
1389
            }
1390
            else {
1391
                memset(buffer, fill, n - sizeof(cv.b));
1392
                memcpy((char *)buffer + n - sizeof(cv.b), cv.b, sizeof(cv.b));
1393
            }
1394
#endif
1395
0
        }
1396
6.76M
    }
1397
10.3k
    else {
1398
10.3k
        if (n > 0) {
1399
10.3k
            _PyLong_AsByteArray(v, buffer, (size_t)n, little_endian, 1, 0);
1400
10.3k
        }
1401
1402
        /* Calculates the number of bits required for the *absolute* value
1403
         * of v. This does not take sign into account, only magnitude. */
1404
10.3k
        int64_t nb = _PyLong_NumBits((PyObject *)v);
1405
10.3k
        assert(nb >= 0);
1406
        /* Normally this would be ((nb - 1) / 8) + 1 to avoid rounding up
1407
         * multiples of 8 to the next byte, but we add an implied bit for
1408
         * the sign and it cancels out. */
1409
10.3k
        res = (Py_ssize_t)(nb / 8) + 1;
1410
1411
        /* Two edge cases exist that are best handled after extracting the
1412
         * bits. These may result in us reporting overflow when the value
1413
         * actually fits.
1414
         */
1415
10.3k
        if (n > 0 && res == n + 1 && nb % 8 == 0) {
1416
6.78k
            if (_PyLong_IsNegative(v)) {
1417
                /* Values of 0x80...00 from negative values that use every
1418
                 * available bit in the buffer do not require an additional
1419
                 * bit to store the sign. */
1420
0
                int is_edge_case = 1;
1421
0
                unsigned char *b = (unsigned char *)buffer;
1422
0
                for (Py_ssize_t i = 0; i < n && is_edge_case; ++i, ++b) {
1423
0
                    if (i == 0) {
1424
0
                        is_edge_case = (*b == (little_endian ? 0 : 0x80));
1425
0
                    } else if (i < n - 1) {
1426
0
                        is_edge_case = (*b == 0);
1427
0
                    } else {
1428
0
                        is_edge_case = (*b == (little_endian ? 0x80 : 0));
1429
0
                    }
1430
0
                }
1431
0
                if (is_edge_case) {
1432
0
                    res = n;
1433
0
                }
1434
0
            }
1435
6.78k
            else {
1436
                /* Positive values with the MSB set do not require an
1437
                 * additional bit when the caller's intent is to treat them
1438
                 * as unsigned. */
1439
6.78k
                unsigned char *b = (unsigned char *)buffer;
1440
6.78k
                if (b[little_endian ? n - 1 : 0] & 0x80) {
1441
6.78k
                    if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1442
6.78k
                        res = n;
1443
6.78k
                    } else {
1444
0
                        res = n + 1;
1445
0
                    }
1446
6.78k
                }
1447
6.78k
            }
1448
6.78k
        }
1449
10.3k
    }
1450
1451
6.77M
    if (do_decref) {
1452
0
        Py_DECREF(v);
1453
0
    }
1454
1455
6.77M
    return res;
1456
6.77M
}
1457
1458
1459
PyObject *
1460
PyLong_FromNativeBytes(const void* buffer, size_t n, int flags)
1461
0
{
1462
0
    if (!buffer) {
1463
0
        PyErr_BadInternalCall();
1464
0
        return NULL;
1465
0
    }
1466
1467
0
    int little_endian = flags;
1468
0
    if (_resolve_endianness(&little_endian) < 0) {
1469
0
        return NULL;
1470
0
    }
1471
1472
0
    return _PyLong_FromByteArray(
1473
0
        (const unsigned char *)buffer,
1474
0
        n,
1475
0
        little_endian,
1476
0
        (flags == -1 || !(flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) ? 1 : 0
1477
0
    );
1478
0
}
1479
1480
1481
PyObject *
1482
PyLong_FromUnsignedNativeBytes(const void* buffer, size_t n, int flags)
1483
0
{
1484
0
    if (!buffer) {
1485
0
        PyErr_BadInternalCall();
1486
0
        return NULL;
1487
0
    }
1488
1489
0
    int little_endian = flags;
1490
0
    if (_resolve_endianness(&little_endian) < 0) {
1491
0
        return NULL;
1492
0
    }
1493
1494
0
    return _PyLong_FromByteArray((const unsigned char *)buffer, n, little_endian, 0);
1495
0
}
1496
1497
1498
/* Create a new int object from a C pointer */
1499
1500
PyObject *
1501
PyLong_FromVoidPtr(void *p)
1502
2.38M
{
1503
2.38M
#if SIZEOF_VOID_P <= SIZEOF_LONG
1504
2.38M
    return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
1505
#else
1506
1507
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1508
#   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
1509
#endif
1510
    return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
1511
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1512
1513
2.38M
}
1514
1515
/* Get a C pointer from an int object. */
1516
1517
void *
1518
PyLong_AsVoidPtr(PyObject *vv)
1519
72
{
1520
72
#if SIZEOF_VOID_P <= SIZEOF_LONG
1521
72
    long x;
1522
1523
72
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1524
0
        x = PyLong_AsLong(vv);
1525
0
    }
1526
72
    else {
1527
72
        x = PyLong_AsUnsignedLong(vv);
1528
72
    }
1529
#else
1530
1531
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1532
#   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
1533
#endif
1534
    long long x;
1535
1536
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1537
        x = PyLong_AsLongLong(vv);
1538
    }
1539
    else {
1540
        x = PyLong_AsUnsignedLongLong(vv);
1541
    }
1542
1543
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1544
1545
72
    if (x == -1 && PyErr_Occurred())
1546
0
        return NULL;
1547
72
    return (void *)x;
1548
72
}
1549
1550
/* Initial long long support by Chris Herborth (chrish@qnx.com), later
1551
 * rewritten to use the newer PyLong_{As,From}ByteArray API.
1552
 */
1553
1554
0
#define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
1555
1556
/* Create a new int object from a C long long int. */
1557
1558
PyObject *
1559
PyLong_FromLongLong(long long ival)
1560
2.53M
{
1561
2.53M
    PYLONG_FROM_INT(unsigned long long, long long, ival);
1562
2.53M
}
1563
1564
/* Create a new int object from a C Py_ssize_t. */
1565
1566
PyObject *
1567
PyLong_FromSsize_t(Py_ssize_t ival)
1568
394M
{
1569
394M
    PYLONG_FROM_INT(size_t, Py_ssize_t, ival);
1570
394M
}
1571
1572
/* Get a C long long int from an int object or any object that has an
1573
   __index__ method.  Return -1 and set an error if overflow occurs. */
1574
1575
long long
1576
PyLong_AsLongLong(PyObject *vv)
1577
0
{
1578
0
    PyLongObject *v;
1579
0
    long long bytes;
1580
0
    int res;
1581
0
    int do_decref = 0; /* if PyNumber_Index was called */
1582
1583
0
    if (vv == NULL) {
1584
0
        PyErr_BadInternalCall();
1585
0
        return -1;
1586
0
    }
1587
1588
0
    if (PyLong_Check(vv)) {
1589
0
        v = (PyLongObject *)vv;
1590
0
    }
1591
0
    else {
1592
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1593
0
        if (v == NULL)
1594
0
            return -1;
1595
0
        do_decref = 1;
1596
0
    }
1597
1598
0
    if (_PyLong_IsCompact(v)) {
1599
0
        res = 0;
1600
0
        bytes = _PyLong_CompactValue(v);
1601
0
    }
1602
0
    else {
1603
0
        res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
1604
0
                                  SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1, 1);
1605
0
    }
1606
0
    if (do_decref) {
1607
0
        Py_DECREF(v);
1608
0
    }
1609
1610
    /* Plan 9 can't handle long long in ? : expressions */
1611
0
    if (res < 0)
1612
0
        return (long long)-1;
1613
0
    else
1614
0
        return bytes;
1615
0
}
1616
1617
/* Get a C unsigned long long int from an int object.
1618
   Return -1 and set an error if overflow occurs. */
1619
1620
unsigned long long
1621
PyLong_AsUnsignedLongLong(PyObject *vv)
1622
2
{
1623
2
    PyLongObject *v;
1624
2
    unsigned long long bytes;
1625
2
    int res;
1626
1627
2
    if (vv == NULL) {
1628
0
        PyErr_BadInternalCall();
1629
0
        return (unsigned long long)-1;
1630
0
    }
1631
2
    if (!PyLong_Check(vv)) {
1632
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
1633
0
        return (unsigned long long)-1;
1634
0
    }
1635
1636
2
    v = (PyLongObject*)vv;
1637
2
    if (_PyLong_IsNonNegativeCompact(v)) {
1638
0
        res = 0;
1639
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1640
        size_t tmp = (size_t)_PyLong_CompactValue(v);
1641
        bytes = (unsigned long long)tmp;
1642
        if (bytes != tmp) {
1643
            PyErr_SetString(PyExc_OverflowError,
1644
                            "Python int too large to convert "
1645
                            "to C unsigned long long");
1646
            res = -1;
1647
        }
1648
#else
1649
0
        bytes = (unsigned long long)(size_t)_PyLong_CompactValue(v);
1650
0
#endif
1651
0
    }
1652
2
    else {
1653
2
        res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
1654
2
                              SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0, 1);
1655
2
    }
1656
1657
    /* Plan 9 can't handle long long in ? : expressions */
1658
2
    if (res < 0)
1659
0
        return (unsigned long long)res;
1660
2
    else
1661
2
        return bytes;
1662
2
}
1663
1664
/* Get a C unsigned long int from an int object, ignoring the high bits.
1665
   Returns -1 and sets an error condition if an error occurs. */
1666
1667
static unsigned long long
1668
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
1669
0
{
1670
0
    PyLongObject *v;
1671
0
    Py_ssize_t i;
1672
0
    int sign;
1673
1674
0
    if (vv == NULL || !PyLong_Check(vv)) {
1675
0
        PyErr_BadInternalCall();
1676
0
        return (unsigned long long) -1;
1677
0
    }
1678
0
    v = (PyLongObject *)vv;
1679
0
    if (_PyLong_IsCompact(v)) {
1680
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1681
        return (unsigned long long)(size_t)_PyLong_CompactValue(v);
1682
#else
1683
0
        return (unsigned long long)(long long)_PyLong_CompactValue(v);
1684
0
#endif
1685
0
    }
1686
0
    i = _PyLong_DigitCount(v);
1687
0
    sign = _PyLong_NonCompactSign(v);
1688
0
    unsigned long long x = unroll_digits_ulong(v, &i);
1689
0
    while (--i >= 0) {
1690
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
1691
0
    }
1692
0
    return x * sign;
1693
0
}
1694
1695
unsigned long long
1696
PyLong_AsUnsignedLongLongMask(PyObject *op)
1697
0
{
1698
0
    PyLongObject *lo;
1699
0
    unsigned long long val;
1700
1701
0
    if (op == NULL) {
1702
0
        PyErr_BadInternalCall();
1703
0
        return (unsigned long long)-1;
1704
0
    }
1705
1706
0
    if (PyLong_Check(op)) {
1707
0
        return _PyLong_AsUnsignedLongLongMask(op);
1708
0
    }
1709
1710
0
    lo = (PyLongObject *)_PyNumber_Index(op);
1711
0
    if (lo == NULL)
1712
0
        return (unsigned long long)-1;
1713
1714
0
    val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
1715
0
    Py_DECREF(lo);
1716
0
    return val;
1717
0
}
1718
1719
/* Get a C long long int from an int object or any object that has an
1720
   __index__ method.
1721
1722
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
1723
   the result.  Otherwise *overflow is 0.
1724
1725
   For other errors (e.g., TypeError), return -1 and set an error condition.
1726
   In this case *overflow will be 0.
1727
*/
1728
1729
long long
1730
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
1731
0
{
1732
    /* This version by Tim Peters */
1733
0
    PyLongObject *v;
1734
0
    long long res;
1735
0
    Py_ssize_t i;
1736
0
    int sign;
1737
0
    int do_decref = 0; /* if PyNumber_Index was called */
1738
1739
0
    *overflow = 0;
1740
0
    if (vv == NULL) {
1741
0
        PyErr_BadInternalCall();
1742
0
        return -1;
1743
0
    }
1744
1745
0
    if (PyLong_Check(vv)) {
1746
0
        v = (PyLongObject *)vv;
1747
0
    }
1748
0
    else {
1749
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1750
0
        if (v == NULL)
1751
0
            return -1;
1752
0
        do_decref = 1;
1753
0
    }
1754
0
    if (_PyLong_IsCompact(v)) {
1755
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1756
        Py_ssize_t tmp = _PyLong_CompactValue(v);
1757
        if (tmp < LLONG_MIN) {
1758
            *overflow = -1;
1759
            res = -1;
1760
        }
1761
        else if (tmp > LLONG_MAX) {
1762
            *overflow = 1;
1763
            res = -1;
1764
        }
1765
        else {
1766
            res = (long long)tmp;
1767
        }
1768
#else
1769
0
        res = _PyLong_CompactValue(v);
1770
0
#endif
1771
0
    }
1772
0
    else {
1773
0
        i = _PyLong_DigitCount(v);
1774
0
        sign = _PyLong_NonCompactSign(v);
1775
0
        unsigned long long x = unroll_digits_ulong(v, &i);
1776
0
        while (--i >= 0) {
1777
0
            if (x > ULLONG_MAX >> PyLong_SHIFT) {
1778
0
                *overflow = sign;
1779
0
                res = -1;
1780
0
                goto exit;
1781
0
            }
1782
0
            x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i];
1783
0
        }
1784
        /* Haven't lost any bits, but casting to long requires extra
1785
         * care (see comment above).
1786
         */
1787
0
        if (x <= (unsigned long long)LLONG_MAX) {
1788
0
            res = (long long)x * sign;
1789
0
        }
1790
0
        else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
1791
0
            res = LLONG_MIN;
1792
0
        }
1793
0
        else {
1794
0
            *overflow = sign;
1795
0
            res = -1;
1796
0
        }
1797
0
    }
1798
0
  exit:
1799
0
    if (do_decref) {
1800
0
        Py_DECREF(v);
1801
0
    }
1802
0
    return res;
1803
0
}
1804
1805
#define UNSIGNED_INT_CONVERTER(NAME, TYPE)                          \
1806
int                                                                 \
1807
0
_PyLong_##NAME##_Converter(PyObject *obj, void *ptr)                \
1808
0
{                                                                   \
1809
0
    Py_ssize_t bytes = PyLong_AsNativeBytes(obj, ptr, sizeof(TYPE), \
1810
0
            Py_ASNATIVEBYTES_NATIVE_ENDIAN |                        \
1811
0
            Py_ASNATIVEBYTES_ALLOW_INDEX |                          \
1812
0
            Py_ASNATIVEBYTES_REJECT_NEGATIVE |                      \
1813
0
            Py_ASNATIVEBYTES_UNSIGNED_BUFFER);                      \
1814
0
    if (bytes < 0) {                                                \
1815
0
        return 0;                                                   \
1816
0
    }                                                               \
1817
0
    if ((size_t)bytes > sizeof(TYPE)) {                             \
1818
0
        PyErr_SetString(PyExc_OverflowError,                        \
1819
0
                        "Python int too large for C "#TYPE);        \
1820
0
        return 0;                                                   \
1821
0
    }                                                               \
1822
0
    return 1;                                                       \
1823
0
}
Unexecuted instantiation: _PyLong_UnsignedShort_Converter
Unexecuted instantiation: _PyLong_UnsignedInt_Converter
Unexecuted instantiation: _PyLong_UnsignedLong_Converter
Unexecuted instantiation: _PyLong_UnsignedLongLong_Converter
Unexecuted instantiation: _PyLong_Size_t_Converter
Unexecuted instantiation: _PyLong_UInt8_Converter
Unexecuted instantiation: _PyLong_UInt16_Converter
Unexecuted instantiation: _PyLong_UInt32_Converter
Unexecuted instantiation: _PyLong_UInt64_Converter
1824
1825
UNSIGNED_INT_CONVERTER(UnsignedShort, unsigned short)
1826
UNSIGNED_INT_CONVERTER(UnsignedInt, unsigned int)
1827
UNSIGNED_INT_CONVERTER(UnsignedLong, unsigned long)
1828
UNSIGNED_INT_CONVERTER(UnsignedLongLong, unsigned long long)
1829
UNSIGNED_INT_CONVERTER(Size_t, size_t)
1830
UNSIGNED_INT_CONVERTER(UInt8, uint8_t)
1831
UNSIGNED_INT_CONVERTER(UInt16, uint16_t)
1832
UNSIGNED_INT_CONVERTER(UInt32, uint32_t)
1833
UNSIGNED_INT_CONVERTER(UInt64, uint64_t)
1834
1835
1836
#define CHECK_BINOP(v,w)                                \
1837
207M
    do {                                                \
1838
207M
        if (!PyLong_Check(v) || !PyLong_Check(w))       \
1839
207M
            Py_RETURN_NOTIMPLEMENTED;                   \
1840
207M
    } while(0)
1841
1842
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1843
 * is modified in place, by adding y to it.  Carries are propagated as far as
1844
 * x[m-1], and the remaining carry (0 or 1) is returned.
1845
 */
1846
static digit
1847
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1848
0
{
1849
0
    Py_ssize_t i;
1850
0
    digit carry = 0;
1851
1852
0
    assert(m >= n);
1853
0
    for (i = 0; i < n; ++i) {
1854
0
        carry += x[i] + y[i];
1855
0
        x[i] = carry & PyLong_MASK;
1856
0
        carry >>= PyLong_SHIFT;
1857
0
        assert((carry & 1) == carry);
1858
0
    }
1859
0
    for (; carry && i < m; ++i) {
1860
0
        carry += x[i];
1861
0
        x[i] = carry & PyLong_MASK;
1862
0
        carry >>= PyLong_SHIFT;
1863
0
        assert((carry & 1) == carry);
1864
0
    }
1865
0
    return carry;
1866
0
}
1867
1868
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1869
 * is modified in place, by subtracting y from it.  Borrows are propagated as
1870
 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1871
 */
1872
static digit
1873
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1874
0
{
1875
0
    Py_ssize_t i;
1876
0
    digit borrow = 0;
1877
1878
0
    assert(m >= n);
1879
0
    for (i = 0; i < n; ++i) {
1880
0
        borrow = x[i] - y[i] - borrow;
1881
0
        x[i] = borrow & PyLong_MASK;
1882
0
        borrow >>= PyLong_SHIFT;
1883
0
        borrow &= 1;            /* keep only 1 sign bit */
1884
0
    }
1885
0
    for (; borrow && i < m; ++i) {
1886
0
        borrow = x[i] - borrow;
1887
0
        x[i] = borrow & PyLong_MASK;
1888
0
        borrow >>= PyLong_SHIFT;
1889
0
        borrow &= 1;
1890
0
    }
1891
0
    return borrow;
1892
0
}
1893
1894
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
1895
 * result in z[0:m], and return the d bits shifted out of the top.
1896
 */
1897
static digit
1898
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
1899
0
{
1900
0
    Py_ssize_t i;
1901
0
    digit carry = 0;
1902
1903
0
    assert(0 <= d && d < PyLong_SHIFT);
1904
0
    for (i=0; i < m; i++) {
1905
0
        twodigits acc = (twodigits)a[i] << d | carry;
1906
0
        z[i] = (digit)acc & PyLong_MASK;
1907
0
        carry = (digit)(acc >> PyLong_SHIFT);
1908
0
    }
1909
0
    return carry;
1910
0
}
1911
1912
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
1913
 * result in z[0:m], and return the d bits shifted out of the bottom.
1914
 */
1915
static digit
1916
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
1917
0
{
1918
0
    Py_ssize_t i;
1919
0
    digit carry = 0;
1920
0
    digit mask = ((digit)1 << d) - 1U;
1921
1922
0
    assert(0 <= d && d < PyLong_SHIFT);
1923
0
    for (i=m; i-- > 0;) {
1924
0
        twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
1925
0
        carry = (digit)acc & mask;
1926
0
        z[i] = (digit)(acc >> d);
1927
0
    }
1928
0
    return carry;
1929
0
}
1930
1931
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1932
   in pout, and returning the remainder.  pin and pout point at the LSD.
1933
   It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1934
   _PyLong_Format, but that should be done with great care since ints are
1935
   immutable.
1936
1937
   This version of the code can be 20% faster than the pre-2022 version
1938
   on todays compilers on architectures like amd64.  It evolved from Mark
1939
   Dickinson observing that a 128:64 divide instruction was always being
1940
   generated by the compiler despite us working with 30-bit digit values.
1941
   See the thread for full context:
1942
1943
     https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
1944
1945
   If you ever want to change this code, pay attention to performance using
1946
   different compilers, optimization levels, and cpu architectures. Beware of
1947
   PGO/FDO builds doing value specialization such as a fast path for //10. :)
1948
1949
   Verify that 17 isn't specialized and this works as a quick test:
1950
     python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
1951
*/
1952
static digit
1953
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
1954
356
{
1955
356
    digit remainder = 0;
1956
1957
356
    assert(n > 0 && n <= PyLong_MASK);
1958
5.48k
    while (--size >= 0) {
1959
5.12k
        twodigits dividend;
1960
5.12k
        dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
1961
5.12k
        digit quotient;
1962
5.12k
        quotient = (digit)(dividend / n);
1963
5.12k
        remainder = dividend % n;
1964
5.12k
        pout[size] = quotient;
1965
5.12k
    }
1966
356
    return remainder;
1967
356
}
1968
1969
1970
/* Divide an integer by a digit, returning both the quotient
1971
   (as function result) and the remainder (through *prem).
1972
   The sign of a is ignored; n should not be zero. */
1973
1974
static PyLongObject *
1975
divrem1(PyLongObject *a, digit n, digit *prem)
1976
356
{
1977
356
    const Py_ssize_t size = _PyLong_DigitCount(a);
1978
356
    PyLongObject *z;
1979
1980
356
    assert(n > 0 && n <= PyLong_MASK);
1981
356
    z = long_alloc(size);
1982
356
    if (z == NULL)
1983
0
        return NULL;
1984
356
    *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n);
1985
356
    return long_normalize(z);
1986
356
}
1987
1988
/* Remainder of long pin, w/ size digits, by non-zero digit n,
1989
   returning the remainder. pin points at the LSD. */
1990
1991
static digit
1992
inplace_rem1(digit *pin, Py_ssize_t size, digit n)
1993
60
{
1994
60
    twodigits rem = 0;
1995
1996
60
    assert(n > 0 && n <= PyLong_MASK);
1997
180
    while (--size >= 0)
1998
120
        rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
1999
60
    return (digit)rem;
2000
60
}
2001
2002
/* Get the remainder of an integer divided by a digit, returning
2003
   the remainder as the result of the function. The sign of a is
2004
   ignored; n should not be zero. */
2005
2006
static PyLongObject *
2007
rem1(PyLongObject *a, digit n)
2008
60
{
2009
60
    const Py_ssize_t size = _PyLong_DigitCount(a);
2010
2011
60
    assert(n > 0 && n <= PyLong_MASK);
2012
60
    return (PyLongObject *)PyLong_FromLong(
2013
60
        (long)inplace_rem1(a->long_value.ob_digit, size, n)
2014
60
    );
2015
60
}
2016
2017
#ifdef WITH_PYLONG_MODULE
2018
/* asymptotically faster long_to_decimal_string, using _pylong.py */
2019
static int
2020
pylong_int_to_decimal_string(PyObject *aa,
2021
                             PyObject **p_output,
2022
                             _PyUnicodeWriter *writer,
2023
                             PyBytesWriter *bytes_writer,
2024
                             char **bytes_str)
2025
0
{
2026
0
    PyObject *s = NULL;
2027
0
    PyObject *mod = PyImport_ImportModule("_pylong");
2028
0
    if (mod == NULL) {
2029
0
        return -1;
2030
0
    }
2031
0
    s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa);
2032
0
    if (s == NULL) {
2033
0
        goto error;
2034
0
    }
2035
0
    if (!PyUnicode_Check(s)) {
2036
0
        PyErr_SetString(PyExc_TypeError,
2037
0
                        "_pylong.int_to_decimal_string did not return a str");
2038
0
        goto error;
2039
0
    }
2040
0
    if (writer) {
2041
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2042
0
        if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) {
2043
0
            goto error;
2044
0
        }
2045
0
        if (_PyUnicodeWriter_WriteStr(writer, s) < 0) {
2046
0
            goto error;
2047
0
        }
2048
0
        goto success;
2049
0
    }
2050
0
    else if (bytes_writer) {
2051
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2052
0
        const void *data = PyUnicode_DATA(s);
2053
0
        int kind = PyUnicode_KIND(s);
2054
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, size,
2055
0
                                                        *bytes_str);
2056
0
        if (*bytes_str == NULL) {
2057
0
            goto error;
2058
0
        }
2059
0
        char *p = *bytes_str;
2060
0
        for (Py_ssize_t i=0; i < size; i++) {
2061
0
            Py_UCS4 ch = PyUnicode_READ(kind, data, i);
2062
0
            *p++ = (char) ch;
2063
0
        }
2064
0
        (*bytes_str) = p;
2065
0
        goto success;
2066
0
    }
2067
0
    else {
2068
0
        *p_output = Py_NewRef(s);
2069
0
        goto success;
2070
0
    }
2071
2072
0
error:
2073
0
        Py_DECREF(mod);
2074
0
        Py_XDECREF(s);
2075
0
        return -1;
2076
2077
0
success:
2078
0
        Py_DECREF(mod);
2079
0
        Py_DECREF(s);
2080
0
        return 0;
2081
0
}
2082
#endif /* WITH_PYLONG_MODULE */
2083
2084
/* Convert an integer to a base 10 string.  Returns a new non-shared
2085
   string.  (Return value is non-shared so that callers can modify the
2086
   returned value if necessary.) */
2087
2088
static int
2089
long_to_decimal_string_internal(PyObject *aa,
2090
                                PyObject **p_output,
2091
                                _PyUnicodeWriter *writer,
2092
                                PyBytesWriter *bytes_writer,
2093
                                char **bytes_str)
2094
13.7M
{
2095
13.7M
    PyLongObject *scratch, *a;
2096
13.7M
    PyObject *str = NULL;
2097
13.7M
    Py_ssize_t size, strlen, size_a, i, j;
2098
13.7M
    digit *pout, *pin, rem, tenpow;
2099
13.7M
    int negative;
2100
13.7M
    int d;
2101
2102
    // writer or bytes_writer can be used, but not both at the same time.
2103
13.7M
    assert(writer == NULL || bytes_writer == NULL);
2104
2105
13.7M
    a = (PyLongObject *)aa;
2106
13.7M
    if (a == NULL || !PyLong_Check(a)) {
2107
0
        PyErr_BadInternalCall();
2108
0
        return -1;
2109
0
    }
2110
13.7M
    size_a = _PyLong_DigitCount(a);
2111
13.7M
    negative = _PyLong_IsNegative(a);
2112
2113
    /* quick and dirty pre-check for overflowing the decimal digit limit,
2114
       based on the inequality 10/3 >= log2(10)
2115
2116
       explanation in https://github.com/python/cpython/pull/96537
2117
    */
2118
13.7M
    if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
2119
13.7M
                  / (3 * PyLong_SHIFT) + 2) {
2120
305
        PyInterpreterState *interp = _PyInterpreterState_GET();
2121
305
        int max_str_digits = interp->long_state.max_str_digits;
2122
305
        if ((max_str_digits > 0) &&
2123
305
            (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
2124
1
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2125
1
                         max_str_digits);
2126
1
            return -1;
2127
1
        }
2128
305
    }
2129
2130
13.7M
#if WITH_PYLONG_MODULE
2131
13.7M
    if (size_a > 1000) {
2132
        /* Switch to _pylong.int_to_decimal_string(). */
2133
0
        return pylong_int_to_decimal_string(aa,
2134
0
                                         p_output,
2135
0
                                         writer,
2136
0
                                         bytes_writer,
2137
0
                                         bytes_str);
2138
0
    }
2139
13.7M
#endif
2140
2141
    /* quick and dirty upper bound for the number of digits
2142
       required to express a in base _PyLong_DECIMAL_BASE:
2143
2144
         #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
2145
2146
       But log2(a) < size_a * PyLong_SHIFT, and
2147
       log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
2148
                                  > 3.3 * _PyLong_DECIMAL_SHIFT
2149
2150
         size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
2151
             size_a + size_a / d < size_a + size_a / floor(d),
2152
       where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
2153
                 (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
2154
    */
2155
13.7M
    d = (33 * _PyLong_DECIMAL_SHIFT) /
2156
13.7M
        (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
2157
13.7M
    assert(size_a < PY_SSIZE_T_MAX/2);
2158
13.7M
    size = 1 + size_a + size_a / d;
2159
13.7M
    scratch = long_alloc(size);
2160
13.7M
    if (scratch == NULL)
2161
0
        return -1;
2162
2163
    /* convert array of base _PyLong_BASE digits in pin to an array of
2164
       base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
2165
       Volume 2 (3rd edn), section 4.4, Method 1b). */
2166
13.7M
    pin = a->long_value.ob_digit;
2167
13.7M
    pout = scratch->long_value.ob_digit;
2168
13.7M
    size = 0;
2169
27.4M
    for (i = size_a; --i >= 0; ) {
2170
13.6M
        digit hi = pin[i];
2171
15.3M
        for (j = 0; j < size; j++) {
2172
1.70M
            twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
2173
1.70M
            hi = (digit)(z / _PyLong_DECIMAL_BASE);
2174
1.70M
            pout[j] = (digit)(z - (twodigits)hi *
2175
1.70M
                              _PyLong_DECIMAL_BASE);
2176
1.70M
        }
2177
27.3M
        while (hi) {
2178
13.6M
            pout[size++] = hi % _PyLong_DECIMAL_BASE;
2179
13.6M
            hi /= _PyLong_DECIMAL_BASE;
2180
13.6M
        }
2181
        /* check for keyboard interrupt */
2182
13.6M
        SIGCHECK({
2183
13.6M
                Py_DECREF(scratch);
2184
13.6M
                return -1;
2185
13.6M
            });
2186
13.6M
    }
2187
    /* pout should have at least one digit, so that the case when a = 0
2188
       works correctly */
2189
13.7M
    if (size == 0)
2190
103k
        pout[size++] = 0;
2191
2192
    /* calculate exact length of output string, and allocate */
2193
13.7M
    strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
2194
13.7M
    tenpow = 10;
2195
13.7M
    rem = pout[size-1];
2196
54.2M
    while (rem >= tenpow) {
2197
40.5M
        tenpow *= 10;
2198
40.5M
        strlen++;
2199
40.5M
    }
2200
13.7M
    if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
2201
338
        PyInterpreterState *interp = _PyInterpreterState_GET();
2202
338
        int max_str_digits = interp->long_state.max_str_digits;
2203
338
        Py_ssize_t strlen_nosign = strlen - negative;
2204
338
        if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
2205
1
            Py_DECREF(scratch);
2206
1
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2207
1
                         max_str_digits);
2208
1
            return -1;
2209
1
        }
2210
338
    }
2211
13.7M
    if (writer) {
2212
8.77M
        if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
2213
0
            Py_DECREF(scratch);
2214
0
            return -1;
2215
0
        }
2216
8.77M
    }
2217
4.95M
    else if (bytes_writer) {
2218
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, strlen,
2219
0
                                                        *bytes_str);
2220
0
        if (*bytes_str == NULL) {
2221
0
            Py_DECREF(scratch);
2222
0
            return -1;
2223
0
        }
2224
0
    }
2225
4.95M
    else {
2226
4.95M
        str = PyUnicode_New(strlen, '9');
2227
4.95M
        if (str == NULL) {
2228
0
            Py_DECREF(scratch);
2229
0
            return -1;
2230
0
        }
2231
4.95M
    }
2232
2233
13.7M
#define WRITE_DIGITS(p)                                               \
2234
13.7M
    do {                                                              \
2235
        /* pout[0] through pout[size-2] contribute exactly            \
2236
           _PyLong_DECIMAL_SHIFT digits each */                       \
2237
13.7M
        for (i=0; i < size - 1; i++) {                                \
2238
49.6k
            rem = pout[i];                                            \
2239
496k
            for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
2240
446k
                *--p = '0' + rem % 10;                                \
2241
446k
                rem /= 10;                                            \
2242
446k
            }                                                         \
2243
49.6k
        }                                                             \
2244
        /* pout[size-1]: always produce at least one decimal digit */ \
2245
13.7M
        rem = pout[i];                                                \
2246
54.2M
        do {                                                          \
2247
54.2M
            *--p = '0' + rem % 10;                                    \
2248
54.2M
            rem /= 10;                                                \
2249
54.2M
        } while (rem != 0);                                           \
2250
13.7M
                                                                      \
2251
        /* and sign */                                                \
2252
13.7M
        if (negative)                                                 \
2253
13.7M
            *--p = '-';                                               \
2254
13.7M
    } while (0)
2255
2256
13.7M
#define WRITE_UNICODE_DIGITS(TYPE)                                    \
2257
13.7M
    do {                                                              \
2258
13.7M
        if (writer)                                                   \
2259
13.7M
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
2260
13.7M
        else                                                          \
2261
13.7M
            p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
2262
13.7M
                                                                      \
2263
13.7M
        WRITE_DIGITS(p);                                              \
2264
13.7M
                                                                      \
2265
        /* check we've counted correctly */                           \
2266
13.7M
        if (writer)                                                   \
2267
13.7M
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2268
13.7M
        else                                                          \
2269
13.7M
            assert(p == (TYPE*)PyUnicode_DATA(str));                  \
2270
13.7M
    } while (0)
2271
2272
    /* fill the string right-to-left */
2273
13.7M
    if (bytes_writer) {
2274
0
        char *p = *bytes_str + strlen;
2275
0
        WRITE_DIGITS(p);
2276
0
        assert(p == *bytes_str);
2277
0
    }
2278
13.7M
    else {
2279
13.7M
        int kind = writer ? writer->kind : PyUnicode_KIND(str);
2280
13.7M
        if (kind == PyUnicode_1BYTE_KIND) {
2281
13.7M
            Py_UCS1 *p;
2282
13.7M
            WRITE_UNICODE_DIGITS(Py_UCS1);
2283
13.7M
        }
2284
617
        else if (kind == PyUnicode_2BYTE_KIND) {
2285
437
            Py_UCS2 *p;
2286
437
            WRITE_UNICODE_DIGITS(Py_UCS2);
2287
437
        }
2288
180
        else {
2289
180
            assert (kind == PyUnicode_4BYTE_KIND);
2290
180
            Py_UCS4 *p;
2291
180
            WRITE_UNICODE_DIGITS(Py_UCS4);
2292
180
        }
2293
13.7M
    }
2294
2295
13.7M
#undef WRITE_DIGITS
2296
13.7M
#undef WRITE_UNICODE_DIGITS
2297
2298
13.7M
    _Py_DECREF_INT(scratch);
2299
13.7M
    if (writer) {
2300
8.77M
        writer->pos += strlen;
2301
8.77M
    }
2302
4.95M
    else if (bytes_writer) {
2303
0
        (*bytes_str) += strlen;
2304
0
    }
2305
4.95M
    else {
2306
4.95M
        assert(_PyUnicode_CheckConsistency(str, 1));
2307
4.95M
        *p_output = (PyObject *)str;
2308
4.95M
    }
2309
13.7M
    return 0;
2310
13.7M
}
2311
2312
static PyObject *
2313
long_to_decimal_string(PyObject *aa)
2314
212k
{
2315
212k
    PyObject *v;
2316
212k
    if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
2317
2
        return NULL;
2318
212k
    return v;
2319
212k
}
2320
2321
/* Convert an int object to a string, using a given conversion base,
2322
   which should be one of 2, 8 or 16.  Return a string object.
2323
   If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
2324
   if alternate is nonzero. */
2325
2326
static int
2327
long_format_binary(PyObject *aa, int base, int alternate,
2328
                   PyObject **p_output, _PyUnicodeWriter *writer,
2329
                   PyBytesWriter *bytes_writer, char **bytes_str)
2330
3.87M
{
2331
3.87M
    PyLongObject *a = (PyLongObject *)aa;
2332
3.87M
    PyObject *v = NULL;
2333
3.87M
    Py_ssize_t sz;
2334
3.87M
    Py_ssize_t size_a;
2335
3.87M
    int negative;
2336
3.87M
    int bits;
2337
2338
3.87M
    assert(base == 2 || base == 8 || base == 16);
2339
    // writer or bytes_writer can be used, but not both at the same time.
2340
3.87M
    assert(writer == NULL || bytes_writer == NULL);
2341
3.87M
    if (a == NULL || !PyLong_Check(a)) {
2342
0
        PyErr_BadInternalCall();
2343
0
        return -1;
2344
0
    }
2345
3.87M
    size_a = _PyLong_DigitCount(a);
2346
3.87M
    negative = _PyLong_IsNegative(a);
2347
2348
    /* Compute a rough upper bound for the length of the string */
2349
3.87M
    switch (base) {
2350
3.87M
    case 16:
2351
3.87M
        bits = 4;
2352
3.87M
        break;
2353
0
    case 8:
2354
0
        bits = 3;
2355
0
        break;
2356
0
    case 2:
2357
0
        bits = 1;
2358
0
        break;
2359
0
    default:
2360
0
        Py_UNREACHABLE();
2361
3.87M
    }
2362
2363
    /* Compute exact length 'sz' of output string. */
2364
3.87M
    if (size_a == 0) {
2365
4.54k
        sz = 1;
2366
4.54k
    }
2367
3.87M
    else {
2368
3.87M
        Py_ssize_t size_a_in_bits;
2369
        /* Ensure overflow doesn't occur during computation of sz. */
2370
3.87M
        if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
2371
0
            PyErr_SetString(PyExc_OverflowError,
2372
0
                            "int too large to format");
2373
0
            return -1;
2374
0
        }
2375
3.87M
        size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
2376
3.87M
                         bit_length_digit(a->long_value.ob_digit[size_a - 1]);
2377
        /* Allow 1 character for a '-' sign. */
2378
3.87M
        sz = negative + (size_a_in_bits + (bits - 1)) / bits;
2379
3.87M
    }
2380
3.87M
    if (alternate) {
2381
        /* 2 characters for prefix  */
2382
3.87M
        sz += 2;
2383
3.87M
    }
2384
2385
3.87M
    if (writer) {
2386
256
        if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
2387
0
            return -1;
2388
256
    }
2389
3.87M
    else if (bytes_writer) {
2390
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, sz,
2391
0
                                                        *bytes_str);
2392
0
        if (*bytes_str == NULL)
2393
0
            return -1;
2394
0
    }
2395
3.87M
    else {
2396
3.87M
        v = PyUnicode_New(sz, 'x');
2397
3.87M
        if (v == NULL)
2398
0
            return -1;
2399
3.87M
    }
2400
2401
3.87M
#define WRITE_DIGITS(p)                                                 \
2402
3.87M
    do {                                                                \
2403
3.87M
        if (size_a == 0) {                                              \
2404
4.54k
            *--p = '0';                                                 \
2405
4.54k
        }                                                               \
2406
3.87M
        else {                                                          \
2407
            /* JRH: special case for power-of-2 bases */                \
2408
3.87M
            twodigits accum = 0;                                        \
2409
3.87M
            int accumbits = 0;   /* # of bits in accum */               \
2410
3.87M
            Py_ssize_t i;                                               \
2411
7.75M
            for (i = 0; i < size_a; ++i) {                              \
2412
3.87M
                accum |= (twodigits)a->long_value.ob_digit[i] << accumbits;        \
2413
3.87M
                accumbits += PyLong_SHIFT;                              \
2414
3.87M
                assert(accumbits >= bits);                              \
2415
22.3M
                do {                                                    \
2416
22.3M
                    char cdigit;                                        \
2417
22.3M
                    cdigit = (char)(accum & (base - 1));                \
2418
22.3M
                    cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
2419
22.3M
                    *--p = cdigit;                                      \
2420
22.3M
                    accumbits -= bits;                                  \
2421
22.3M
                    accum >>= bits;                                     \
2422
22.3M
                } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
2423
3.87M
            }                                                           \
2424
3.87M
        }                                                               \
2425
3.87M
                                                                        \
2426
3.87M
        if (alternate) {                                                \
2427
3.87M
            if (base == 16)                                             \
2428
3.87M
                *--p = 'x';                                             \
2429
3.87M
            else if (base == 8)                                         \
2430
0
                *--p = 'o';                                             \
2431
0
            else /* (base == 2) */                                      \
2432
0
                *--p = 'b';                                             \
2433
3.87M
            *--p = '0';                                                 \
2434
3.87M
        }                                                               \
2435
3.87M
        if (negative)                                                   \
2436
3.87M
            *--p = '-';                                                 \
2437
3.87M
    } while (0)
2438
2439
3.87M
#define WRITE_UNICODE_DIGITS(TYPE)                                      \
2440
3.87M
    do {                                                                \
2441
3.87M
        if (writer)                                                     \
2442
3.87M
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
2443
3.87M
        else                                                            \
2444
3.87M
            p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
2445
3.87M
                                                                        \
2446
3.87M
        WRITE_DIGITS(p);                                                \
2447
3.87M
                                                                        \
2448
3.87M
        if (writer)                                                     \
2449
3.87M
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2450
3.87M
        else                                                            \
2451
3.87M
            assert(p == (TYPE*)PyUnicode_DATA(v));                      \
2452
3.87M
    } while (0)
2453
2454
3.87M
    if (bytes_writer) {
2455
0
        char *p = *bytes_str + sz;
2456
0
        WRITE_DIGITS(p);
2457
0
        assert(p == *bytes_str);
2458
0
    }
2459
3.87M
    else {
2460
3.87M
        int kind = writer ? writer->kind : PyUnicode_KIND(v);
2461
3.87M
        if (kind == PyUnicode_1BYTE_KIND) {
2462
3.87M
            Py_UCS1 *p;
2463
3.87M
            WRITE_UNICODE_DIGITS(Py_UCS1);
2464
3.87M
        }
2465
0
        else if (kind == PyUnicode_2BYTE_KIND) {
2466
0
            Py_UCS2 *p;
2467
0
            WRITE_UNICODE_DIGITS(Py_UCS2);
2468
0
        }
2469
0
        else {
2470
0
            assert (kind == PyUnicode_4BYTE_KIND);
2471
0
            Py_UCS4 *p;
2472
0
            WRITE_UNICODE_DIGITS(Py_UCS4);
2473
0
        }
2474
3.87M
    }
2475
2476
3.87M
#undef WRITE_DIGITS
2477
3.87M
#undef WRITE_UNICODE_DIGITS
2478
2479
3.87M
    if (writer) {
2480
256
        writer->pos += sz;
2481
256
    }
2482
3.87M
    else if (bytes_writer) {
2483
0
        (*bytes_str) += sz;
2484
0
    }
2485
3.87M
    else {
2486
3.87M
        assert(_PyUnicode_CheckConsistency(v, 1));
2487
3.87M
        *p_output = v;
2488
3.87M
    }
2489
3.87M
    return 0;
2490
3.87M
}
2491
2492
PyObject *
2493
_PyLong_Format(PyObject *obj, int base)
2494
8.62M
{
2495
8.62M
    PyObject *str;
2496
8.62M
    int err;
2497
8.62M
    if (base == 10)
2498
4.74M
        err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
2499
3.87M
    else
2500
3.87M
        err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
2501
8.62M
    if (err == -1)
2502
0
        return NULL;
2503
8.62M
    return str;
2504
8.62M
}
2505
2506
int
2507
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
2508
                     PyObject *obj,
2509
                     int base, int alternate)
2510
8.77M
{
2511
8.77M
    if (base == 10)
2512
8.77M
        return long_to_decimal_string_internal(obj, NULL, writer,
2513
8.77M
                                               NULL, NULL);
2514
256
    else
2515
256
        return long_format_binary(obj, base, alternate, NULL, writer,
2516
256
                                  NULL, NULL);
2517
8.77M
}
2518
2519
char*
2520
_PyLong_FormatBytesWriter(PyBytesWriter *writer, char *str,
2521
                          PyObject *obj,
2522
                          int base, int alternate)
2523
0
{
2524
0
    char *str2;
2525
0
    int res;
2526
0
    str2 = str;
2527
0
    if (base == 10)
2528
0
        res = long_to_decimal_string_internal(obj, NULL, NULL,
2529
0
                                              writer, &str2);
2530
0
    else
2531
0
        res = long_format_binary(obj, base, alternate, NULL, NULL,
2532
0
                                 writer, &str2);
2533
0
    if (res < 0)
2534
0
        return NULL;
2535
0
    assert(str2 != NULL);
2536
0
    return str2;
2537
0
}
2538
2539
/* Table of digit values for 8-bit string -> integer conversion.
2540
 * '0' maps to 0, ..., '9' maps to 9.
2541
 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
2542
 * All other indices map to 37.
2543
 * Note that when converting a base B string, a char c is a legitimate
2544
 * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
2545
 */
2546
unsigned char _PyLong_DigitValue[256] = {
2547
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2548
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2549
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2550
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
2551
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2552
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2553
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2554
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2555
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2556
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2557
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2558
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2559
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2560
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2561
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2562
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2563
};
2564
2565
/* `start` and `end` point to the start and end of a string of base `base`
2566
 * digits.  base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is
2567
 * returned in *res. The string should be already validated by the caller and
2568
 * consists only of valid digit characters and underscores. `digits` gives the
2569
 * number of digit characters.
2570
 *
2571
 * The point to this routine is that it takes time linear in the
2572
 * number of string characters.
2573
 *
2574
 * Return values:
2575
 *   -1 on syntax error (exception needs to be set, *res is untouched)
2576
 *   0 else (exception may be set, in that case *res is set to NULL)
2577
 */
2578
static int
2579
long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2580
2.26M
{
2581
2.26M
    const char *p;
2582
2.26M
    int bits_per_char;
2583
2.26M
    Py_ssize_t n;
2584
2.26M
    PyLongObject *z;
2585
2.26M
    twodigits accum;
2586
2.26M
    int bits_in_accum;
2587
2.26M
    digit *pdigit;
2588
2589
2.26M
    assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
2590
2.26M
    n = base;
2591
8.10M
    for (bits_per_char = -1; n; ++bits_per_char) {
2592
5.83M
        n >>= 1;
2593
5.83M
    }
2594
2595
    /* n <- the number of Python digits needed,
2596
            = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
2597
2.26M
    if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
2598
0
        PyErr_SetString(PyExc_ValueError,
2599
0
                        "int string too large to convert");
2600
0
        *res = NULL;
2601
0
        return 0;
2602
0
    }
2603
2.26M
    n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
2604
2.26M
    z = long_alloc(n);
2605
2.26M
    if (z == NULL) {
2606
0
        *res = NULL;
2607
0
        return 0;
2608
0
    }
2609
    /* Read string from right, and fill in int from left; i.e.,
2610
     * from least to most significant in both.
2611
     */
2612
2.26M
    accum = 0;
2613
2.26M
    bits_in_accum = 0;
2614
2.26M
    pdigit = z->long_value.ob_digit;
2615
2.26M
    p = end;
2616
73.7M
    while (--p >= start) {
2617
71.5M
        int k;
2618
71.5M
        if (*p == '_') {
2619
397
            continue;
2620
397
        }
2621
71.5M
        k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
2622
71.5M
        assert(k >= 0 && k < base);
2623
71.5M
        accum |= (twodigits)k << bits_in_accum;
2624
71.5M
        bits_in_accum += bits_per_char;
2625
71.5M
        if (bits_in_accum >= PyLong_SHIFT) {
2626
3.67M
            *pdigit++ = (digit)(accum & PyLong_MASK);
2627
3.67M
            assert(pdigit - z->long_value.ob_digit <= n);
2628
3.67M
            accum >>= PyLong_SHIFT;
2629
3.67M
            bits_in_accum -= PyLong_SHIFT;
2630
3.67M
            assert(bits_in_accum < PyLong_SHIFT);
2631
3.67M
        }
2632
71.5M
    }
2633
2.26M
    if (bits_in_accum) {
2634
2.26M
        assert(bits_in_accum <= PyLong_SHIFT);
2635
2.26M
        *pdigit++ = (digit)accum;
2636
2.26M
        assert(pdigit - z->long_value.ob_digit <= n);
2637
2.26M
    }
2638
2.26M
    while (pdigit - z->long_value.ob_digit < n)
2639
0
        *pdigit++ = 0;
2640
2.26M
    *res = z;
2641
2.26M
    return 0;
2642
2.26M
}
2643
2644
#ifdef WITH_PYLONG_MODULE
2645
/* asymptotically faster str-to-long conversion for base 10, using _pylong.py */
2646
static int
2647
pylong_int_from_string(const char *start, const char *end, PyLongObject **res)
2648
0
{
2649
0
    PyObject *mod = PyImport_ImportModule("_pylong");
2650
0
    if (mod == NULL) {
2651
0
        goto error;
2652
0
    }
2653
0
    PyObject *s = PyUnicode_FromStringAndSize(start, end-start);
2654
0
    if (s == NULL) {
2655
0
        Py_DECREF(mod);
2656
0
        goto error;
2657
0
    }
2658
0
    PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s);
2659
0
    Py_DECREF(s);
2660
0
    Py_DECREF(mod);
2661
0
    if (result == NULL) {
2662
0
        goto error;
2663
0
    }
2664
0
    if (!PyLong_Check(result)) {
2665
0
        Py_DECREF(result);
2666
0
        PyErr_SetString(PyExc_TypeError,
2667
0
                        "_pylong.int_from_string did not return an int");
2668
0
        goto error;
2669
0
    }
2670
0
    *res = (PyLongObject *)result;
2671
0
    return 0;
2672
0
error:
2673
0
    *res = NULL;
2674
0
    return 0;  // See the long_from_string_base() API comment.
2675
0
}
2676
#endif /* WITH_PYLONG_MODULE */
2677
2678
/***
2679
long_from_non_binary_base: parameters and return values are the same as
2680
long_from_binary_base.
2681
2682
Binary bases can be converted in time linear in the number of digits, because
2683
Python's representation base is binary.  Other bases (including decimal!) use
2684
the simple quadratic-time algorithm below, complicated by some speed tricks.
2685
2686
First some math:  the largest integer that can be expressed in N base-B digits
2687
is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
2688
case number of Python digits needed to hold it is the smallest integer n s.t.
2689
2690
    BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
2691
    BASE**n >= B**N      [taking logs to base BASE]
2692
    n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
2693
2694
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
2695
this quickly.  A Python int with that much space is reserved near the start,
2696
and the result is computed into it.
2697
2698
The input string is actually treated as being in base base**i (i.e., i digits
2699
are processed at a time), where two more static arrays hold:
2700
2701
    convwidth_base[base] = the largest integer i such that base**i <= BASE
2702
    convmultmax_base[base] = base ** convwidth_base[base]
2703
2704
The first of these is the largest i such that i consecutive input digits
2705
must fit in a single Python digit.  The second is effectively the input
2706
base we're really using.
2707
2708
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
2709
convmultmax_base[base], the result is "simply"
2710
2711
   (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
2712
2713
where B = convmultmax_base[base].
2714
2715
Error analysis:  as above, the number of Python digits `n` needed is worst-
2716
case
2717
2718
    n >= N * log(B)/log(BASE)
2719
2720
where `N` is the number of input digits in base `B`.  This is computed via
2721
2722
    size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
2723
2724
below.  Two numeric concerns are how much space this can waste, and whether
2725
the computed result can be too small.  To be concrete, assume BASE = 2**15,
2726
which is the default (and it's unlikely anyone changes that).
2727
2728
Waste isn't a problem:  provided the first input digit isn't 0, the difference
2729
between the worst-case input with N digits and the smallest input with N
2730
digits is about a factor of B, but B is small compared to BASE so at most
2731
one allocated Python digit can remain unused on that count.  If
2732
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
2733
and adding 1 returns a result 1 larger than necessary.  However, that can't
2734
happen:  whenever B is a power of 2, long_from_binary_base() is called
2735
instead, and it's impossible for B**i to be an integer power of 2**15 when
2736
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
2737
an exact integer when B is not a power of 2, since B**i has a prime factor
2738
other than 2 in that case, but (2**15)**j's only prime factor is 2).
2739
2740
The computed result can be too small if the true value of N*log(B)/log(BASE)
2741
is a little bit larger than an exact integer, but due to roundoff errors (in
2742
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
2743
yields a numeric result a little less than that integer.  Unfortunately, "how
2744
close can a transcendental function get to an integer over some range?"
2745
questions are generally theoretically intractable.  Computer analysis via
2746
continued fractions is practical:  expand log(B)/log(BASE) via continued
2747
fractions, giving a sequence i/j of "the best" rational approximations.  Then
2748
j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
2749
we can get very close to being in trouble, but very rarely.  For example,
2750
76573 is a denominator in one of the continued-fraction approximations to
2751
log(10)/log(2**15), and indeed:
2752
2753
    >>> log(10)/log(2**15)*76573
2754
    16958.000000654003
2755
2756
is very close to an integer.  If we were working with IEEE single-precision,
2757
rounding errors could kill us.  Finding worst cases in IEEE double-precision
2758
requires better-than-double-precision log() functions, and Tim didn't bother.
2759
Instead the code checks to see whether the allocated space is enough as each
2760
new Python digit is added, and copies the whole thing to a larger int if not.
2761
This should happen extremely rarely, and in fact I don't have a test case
2762
that triggers it(!).  Instead the code was tested by artificially allocating
2763
just 1 digit at the start, so that the copying code was exercised for every
2764
digit beyond the first.
2765
***/
2766
2767
// Tables are computed by Tools/scripts/long_conv_tables.py
2768
#if PYLONG_BITS_IN_DIGIT == 15
2769
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2770
        0.10566416671474375, 0.0, 0.15479520632582416,
2771
        0.17233083338141042, 0.18715699480384027, 0.0,
2772
        0.2113283334294875, 0.22146187299249084, 0.23062877457581984,
2773
        0.2389975000480771, 0.24669598120940617, 0.25382366147050694,
2774
        0.26045937304056793, 0.0, 0.27249752275002265,
2775
        0.27799500009615413, 0.2831951675629057, 0.28812853965915747,
2776
        0.29282116151858406, 0.2972954412424865, 0.3015707970704675,
2777
        0.3056641667147438, 0.30959041265164833, 0.3133626478760728,
2778
        0.31699250014423125, 0.3204903281371736, 0.3238653996751715,
2779
        0.3271260397072346, 0.3302797540257917, 0.0,
2780
        0.3362929412905636, 0.3391641894166893, 0.34195220112966446,
2781
        0.34466166676282084};
2782
    static const int convwidth_base[37] = {0, 0, 0, 9, 0, 6, 5, 5, 0,
2783
        4, 4, 4, 4, 4, 3, 3, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2784
        3, 3, 0, 2, 2, 2, 2};
2785
    static const twodigits convmultmax_base[37] = {0, 0, 0, 19683, 0,
2786
        15625, 7776, 16807, 0, 6561, 10000, 14641, 20736, 28561, 2744,
2787
        3375, 0, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824,
2788
        15625, 17576, 19683, 21952, 24389, 27000, 29791, 0, 1089,
2789
        1156, 1225, 1296};
2790
#elif PYLONG_BITS_IN_DIGIT == 30
2791
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2792
        0.05283208335737188, 0.0, 0.07739760316291208,
2793
        0.08616541669070521, 0.09357849740192013, 0.0,
2794
        0.10566416671474375, 0.11073093649624542, 0.11531438728790992,
2795
        0.11949875002403855, 0.12334799060470308, 0.12691183073525347,
2796
        0.13022968652028397, 0.0, 0.13624876137501132,
2797
        0.13899750004807707, 0.14159758378145285, 0.14406426982957873,
2798
        0.14641058075929203, 0.14864772062124326, 0.15078539853523376,
2799
        0.1528320833573719, 0.15479520632582416, 0.1566813239380364,
2800
        0.15849625007211562, 0.1602451640685868, 0.16193269983758574,
2801
        0.1635630198536173, 0.16513987701289584, 0.0,
2802
        0.1681464706452818, 0.16958209470834465, 0.17097610056483223,
2803
        0.17233083338141042};
2804
    static const int convwidth_base[37] = {0, 0, 0, 18, 0, 12, 11, 10,
2805
        0, 9, 9, 8, 8, 8, 7, 7, 0, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6,
2806
        6, 6, 6, 0, 5, 5, 5, 5};
2807
    static const twodigits convmultmax_base[37] = {0, 0, 0, 387420489,
2808
        0, 244140625, 362797056, 282475249, 0, 387420489, 1000000000,
2809
        214358881, 429981696, 815730721, 105413504, 170859375, 0,
2810
        410338673, 612220032, 893871739, 64000000, 85766121,
2811
        113379904, 148035889, 191102976, 244140625, 308915776,
2812
        387420489, 481890304, 594823321, 729000000, 887503681, 0,
2813
        39135393, 45435424, 52521875, 60466176};
2814
#else
2815
    #error "invalid PYLONG_BITS_IN_DIGIT value"
2816
#endif
2817
2818
static int
2819
long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2820
6.61M
{
2821
6.61M
    twodigits c;           /* current input character */
2822
6.61M
    Py_ssize_t size_z;
2823
6.61M
    int i;
2824
6.61M
    int convwidth;
2825
6.61M
    twodigits convmultmax, convmult;
2826
6.61M
    digit *pz, *pzstop;
2827
6.61M
    PyLongObject *z;
2828
6.61M
    const char *p;
2829
2830
6.61M
    assert(log_base_BASE[base] != 0.0);
2831
2832
    /* Create an int object that can contain the largest possible
2833
     * integer with this base and length.  Note that there's no
2834
     * need to initialize z->long_value.ob_digit -- no slot is read up before
2835
     * being stored into.
2836
     */
2837
6.61M
    double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
2838
6.61M
    if (fsize_z > (double)MAX_LONG_DIGITS) {
2839
        /* The same exception as in long_alloc(). */
2840
0
        PyErr_SetString(PyExc_OverflowError,
2841
0
                        "too many digits in integer");
2842
0
        *res = NULL;
2843
0
        return 0;
2844
0
    }
2845
6.61M
    size_z = (Py_ssize_t)fsize_z;
2846
    /* Uncomment next line to test exceedingly rare copy code */
2847
    /* size_z = 1; */
2848
6.61M
    assert(size_z > 0);
2849
6.61M
    z = long_alloc(size_z);
2850
6.61M
    if (z == NULL) {
2851
0
        *res = NULL;
2852
0
        return 0;
2853
0
    }
2854
6.61M
    _PyLong_SetSignAndDigitCount(z, 0, 0);
2855
2856
    /* `convwidth` consecutive input digits are treated as a single
2857
     * digit in base `convmultmax`.
2858
     */
2859
6.61M
    convwidth = convwidth_base[base];
2860
6.61M
    convmultmax = convmultmax_base[base];
2861
2862
    /* Work ;-) */
2863
6.61M
    p = start;
2864
13.5M
    while (p < end) {
2865
6.93M
        if (*p == '_') {
2866
251
            p++;
2867
251
            continue;
2868
251
        }
2869
        /* grab up to convwidth digits from the input string */
2870
6.93M
        c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)];
2871
10.1M
        for (i = 1; i < convwidth && p != end; ++p) {
2872
3.21M
            if (*p == '_') {
2873
1.85k
                continue;
2874
1.85k
            }
2875
3.21M
            i++;
2876
3.21M
            c = (twodigits)(c *  base +
2877
3.21M
                            (int)_PyLong_DigitValue[Py_CHARMASK(*p)]);
2878
3.21M
            assert(c < PyLong_BASE);
2879
3.21M
        }
2880
2881
6.93M
        convmult = convmultmax;
2882
        /* Calculate the shift only if we couldn't get
2883
         * convwidth digits.
2884
         */
2885
6.93M
        if (i != convwidth) {
2886
6.61M
            convmult = base;
2887
7.28M
            for ( ; i > 1; --i) {
2888
670k
                convmult *= base;
2889
670k
            }
2890
6.61M
        }
2891
2892
        /* Multiply z by convmult, and add c. */
2893
6.93M
        pz = z->long_value.ob_digit;
2894
6.93M
        pzstop = pz + _PyLong_DigitCount(z);
2895
13.9M
        for (; pz < pzstop; ++pz) {
2896
6.99M
            c += (twodigits)*pz * convmult;
2897
6.99M
            *pz = (digit)(c & PyLong_MASK);
2898
6.99M
            c >>= PyLong_SHIFT;
2899
6.99M
        }
2900
        /* carry off the current end? */
2901
6.93M
        if (c) {
2902
5.08M
            assert(c < PyLong_BASE);
2903
5.08M
            if (_PyLong_DigitCount(z) < size_z) {
2904
5.08M
                *pz = (digit)c;
2905
5.08M
                assert(!_PyLong_IsNegative(z));
2906
5.08M
                _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1);
2907
5.08M
            }
2908
0
            else {
2909
0
                PyLongObject *tmp;
2910
                /* Extremely rare.  Get more space. */
2911
0
                assert(_PyLong_DigitCount(z) == size_z);
2912
0
                tmp = long_alloc(size_z + 1);
2913
0
                if (tmp == NULL) {
2914
0
                    Py_DECREF(z);
2915
0
                    *res = NULL;
2916
0
                    return 0;
2917
0
                }
2918
0
                memcpy(tmp->long_value.ob_digit,
2919
0
                       z->long_value.ob_digit,
2920
0
                       sizeof(digit) * size_z);
2921
0
                Py_SETREF(z, tmp);
2922
0
                z->long_value.ob_digit[size_z] = (digit)c;
2923
0
                ++size_z;
2924
0
            }
2925
5.08M
        }
2926
6.93M
    }
2927
6.61M
    *res = z;
2928
6.61M
    return 0;
2929
6.61M
}
2930
2931
/* *str points to the first digit in a string of base `base` digits. base is an
2932
 * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes
2933
 * like 0x or leading +- signs. The string should be null terminated consisting
2934
 * of ASCII digits and separating underscores possibly with trailing whitespace
2935
 * but we have to validate all of those points here.
2936
 *
2937
 * If base is a power of 2 then the complexity is linear in the number of
2938
 * characters in the string. Otherwise a quadratic algorithm is used for
2939
 * non-binary bases.
2940
 *
2941
 * Return values:
2942
 *
2943
 *   - Returns -1 on syntax error (exception needs to be set, *res is untouched)
2944
 *   - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or
2945
 *     _pylong.int_from_string() errors.
2946
 *   - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!).
2947
 *
2948
 * Afterwards *str is set to point to the first non-digit (which may be *str!).
2949
 */
2950
static int
2951
long_from_string_base(const char **str, int base, PyLongObject **res)
2952
10.8M
{
2953
10.8M
    const char *start, *end, *p;
2954
10.8M
    char prev = 0;
2955
10.8M
    Py_ssize_t digits = 0;
2956
10.8M
    int is_binary_base = (base & (base - 1)) == 0;
2957
2958
    /* Here we do four things:
2959
     *
2960
     * - Find the `end` of the string.
2961
     * - Validate the string.
2962
     * - Count the number of `digits` (rather than underscores)
2963
     * - Point *str to the end-of-string or first invalid character.
2964
     */
2965
10.8M
    start = p = *str;
2966
    /* Leading underscore not allowed. */
2967
10.8M
    if (*start == '_') {
2968
9.80k
        return -1;
2969
9.80k
    }
2970
    /* Verify all characters are digits and underscores. */
2971
97.9M
    while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
2972
87.1M
        if (*p == '_') {
2973
            /* Double underscore not allowed. */
2974
6.85k
            if (prev == '_') {
2975
762
                *str = p - 1;
2976
762
                return -1;
2977
762
            }
2978
87.1M
        } else {
2979
87.1M
            ++digits;
2980
87.1M
        }
2981
87.1M
        prev = *p;
2982
87.1M
        ++p;
2983
87.1M
    }
2984
    /* Trailing underscore not allowed. */
2985
10.8M
    if (prev == '_') {
2986
689
        *str = p - 1;
2987
689
        return -1;
2988
689
    }
2989
10.8M
    *str = end = p;
2990
    /* Reject empty strings */
2991
10.8M
    if (start == end) {
2992
1.90M
        return -1;
2993
1.90M
    }
2994
    /* Allow only trailing whitespace after `end` */
2995
8.91M
    while (*p && Py_ISSPACE(*p)) {
2996
15.0k
        p++;
2997
15.0k
    }
2998
8.89M
    *str = p;
2999
8.89M
    if (*p != '\0') {
3000
9.36k
        return -1;
3001
9.36k
    }
3002
3003
    /*
3004
     * Pass a validated string consisting of only valid digits and underscores
3005
     * to long_from_xxx_base.
3006
     */
3007
8.88M
    if (is_binary_base) {
3008
        /* Use the linear algorithm for binary bases. */
3009
2.26M
        return long_from_binary_base(start, end, digits, base, res);
3010
2.26M
    }
3011
6.61M
    else {
3012
        /* Limit the size to avoid excessive computation attacks exploiting the
3013
         * quadratic algorithm. */
3014
6.61M
        if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
3015
1.51k
            PyInterpreterState *interp = _PyInterpreterState_GET();
3016
1.51k
            int max_str_digits = interp->long_state.max_str_digits;
3017
1.51k
            if ((max_str_digits > 0) && (digits > max_str_digits)) {
3018
54
                PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
3019
54
                             max_str_digits, digits);
3020
54
                *res = NULL;
3021
54
                return 0;
3022
54
            }
3023
1.51k
        }
3024
6.61M
#if WITH_PYLONG_MODULE
3025
6.61M
        if (digits > 6000 && base == 10) {
3026
            /* Switch to _pylong.int_from_string() */
3027
0
            return pylong_int_from_string(start, end, res);
3028
0
        }
3029
6.61M
#endif
3030
        /* Use the quadratic algorithm for non binary bases. */
3031
6.61M
        return long_from_non_binary_base(start, end, digits, base, res);
3032
6.61M
    }
3033
8.88M
}
3034
3035
/* Parses an int from a bytestring. Leading and trailing whitespace will be
3036
 * ignored.
3037
 *
3038
 * If successful, a PyLong object will be returned and 'pend' will be pointing
3039
 * to the first unused byte unless it's NULL.
3040
 *
3041
 * If unsuccessful, NULL will be returned.
3042
 */
3043
PyObject *
3044
PyLong_FromString(const char *str, char **pend, int base)
3045
10.8M
{
3046
10.8M
    int sign = 1, error_if_nonzero = 0;
3047
10.8M
    const char *orig_str = str;
3048
10.8M
    PyLongObject *z = NULL;
3049
10.8M
    PyObject *strobj;
3050
10.8M
    Py_ssize_t slen;
3051
3052
10.8M
    if ((base != 0 && base < 2) || base > 36) {
3053
0
        PyErr_SetString(PyExc_ValueError,
3054
0
                        "int() arg 2 must be >= 2 and <= 36");
3055
0
        return NULL;
3056
0
    }
3057
10.8M
    while (*str != '\0' && Py_ISSPACE(*str)) {
3058
602
        ++str;
3059
602
    }
3060
10.8M
    if (*str == '+') {
3061
3.86k
        ++str;
3062
3.86k
    }
3063
10.8M
    else if (*str == '-') {
3064
25.7k
        ++str;
3065
25.7k
        sign = -1;
3066
25.7k
    }
3067
10.8M
    if (base == 0) {
3068
85.5k
        if (str[0] != '0') {
3069
65.3k
            base = 10;
3070
65.3k
        }
3071
20.2k
        else if (str[1] == 'x' || str[1] == 'X') {
3072
1.26k
            base = 16;
3073
1.26k
        }
3074
18.9k
        else if (str[1] == 'o' || str[1] == 'O') {
3075
145
            base = 8;
3076
145
        }
3077
18.8k
        else if (str[1] == 'b' || str[1] == 'B') {
3078
156
            base = 2;
3079
156
        }
3080
18.6k
        else {
3081
            /* "old" (C-style) octal literal, now invalid.
3082
               it might still be zero though */
3083
18.6k
            error_if_nonzero = 1;
3084
18.6k
            base = 10;
3085
18.6k
        }
3086
85.5k
    }
3087
10.8M
    if (str[0] == '0' &&
3088
3.79M
        ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
3089
3.79M
         (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
3090
3.78M
         (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
3091
1.89k
        str += 2;
3092
        /* One underscore allowed here. */
3093
1.89k
        if (*str == '_') {
3094
0
            ++str;
3095
0
        }
3096
1.89k
    }
3097
3098
    /* long_from_string_base is the main workhorse here. */
3099
10.8M
    int ret = long_from_string_base(&str, base, &z);
3100
10.8M
    if (ret == -1) {
3101
        /* Syntax error. */
3102
1.92M
        goto onError;
3103
1.92M
    }
3104
8.88M
    if (z == NULL) {
3105
        /* Error. exception already set. */
3106
54
        return NULL;
3107
54
    }
3108
3109
8.88M
    if (error_if_nonzero) {
3110
        /* reset the base to 0, else the exception message
3111
           doesn't make too much sense */
3112
18.6k
        base = 0;
3113
18.6k
        if (!_PyLong_IsZero(z)) {
3114
0
            goto onError;
3115
0
        }
3116
        /* there might still be other problems, therefore base
3117
           remains zero here for the same reason */
3118
18.6k
    }
3119
3120
    /* Set sign and normalize */
3121
8.88M
    if (sign < 0) {
3122
23.5k
        _PyLong_FlipSign(z);
3123
23.5k
    }
3124
8.88M
    long_normalize(z);
3125
8.88M
    z = maybe_small_long(z);
3126
3127
8.88M
    if (pend != NULL) {
3128
5.82M
        *pend = (char *)str;
3129
5.82M
    }
3130
8.88M
    return (PyObject *) z;
3131
3132
1.92M
  onError:
3133
1.92M
    if (pend != NULL) {
3134
1.92M
        *pend = (char *)str;
3135
1.92M
    }
3136
1.92M
    Py_XDECREF(z);
3137
1.92M
    slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
3138
1.92M
    strobj = PyUnicode_FromStringAndSize(orig_str, slen);
3139
1.92M
    if (strobj == NULL) {
3140
0
        return NULL;
3141
0
    }
3142
1.92M
    PyErr_Format(PyExc_ValueError,
3143
1.92M
                 "invalid literal for int() with base %d: %.200R",
3144
1.92M
                 base, strobj);
3145
1.92M
    Py_DECREF(strobj);
3146
1.92M
    return NULL;
3147
1.92M
}
3148
3149
/* Since PyLong_FromString doesn't have a length parameter,
3150
 * check here for possible NULs in the string.
3151
 *
3152
 * Reports an invalid literal as a bytes object.
3153
 */
3154
PyObject *
3155
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
3156
1.75M
{
3157
1.75M
    PyObject *result, *strobj;
3158
1.75M
    char *end = NULL;
3159
3160
1.75M
    result = PyLong_FromString(s, &end, base);
3161
1.75M
    if (end == NULL || (result != NULL && end == s + len))
3162
1.75M
        return result;
3163
0
    Py_XDECREF(result);
3164
0
    strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
3165
0
    if (strobj != NULL) {
3166
0
        PyErr_Format(PyExc_ValueError,
3167
0
                     "invalid literal for int() with base %d: %.200R",
3168
0
                     base, strobj);
3169
0
        Py_DECREF(strobj);
3170
0
    }
3171
0
    return NULL;
3172
1.75M
}
3173
3174
PyObject *
3175
PyLong_FromUnicodeObject(PyObject *u, int base)
3176
5.99M
{
3177
5.99M
    PyObject *result, *asciidig;
3178
5.99M
    const char *buffer;
3179
5.99M
    char *end = NULL;
3180
5.99M
    Py_ssize_t buflen;
3181
3182
5.99M
    asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
3183
5.99M
    if (asciidig == NULL)
3184
0
        return NULL;
3185
5.99M
    assert(PyUnicode_IS_ASCII(asciidig));
3186
    /* Simply get a pointer to existing ASCII characters. */
3187
5.99M
    buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
3188
5.99M
    assert(buffer != NULL);
3189
3190
5.99M
    result = PyLong_FromString(buffer, &end, base);
3191
5.99M
    if (end == NULL || (result != NULL && end == buffer + buflen)) {
3192
4.06M
        Py_DECREF(asciidig);
3193
4.06M
        return result;
3194
4.06M
    }
3195
1.92M
    Py_DECREF(asciidig);
3196
1.92M
    Py_XDECREF(result);
3197
1.92M
    PyErr_Format(PyExc_ValueError,
3198
1.92M
                 "invalid literal for int() with base %d: %.200R",
3199
1.92M
                 base, u);
3200
1.92M
    return NULL;
3201
5.99M
}
3202
3203
/* Int division with remainder, top-level routine */
3204
3205
static int
3206
long_divrem(PyLongObject *a, PyLongObject *b,
3207
            PyLongObject **pdiv, PyLongObject **prem)
3208
382k
{
3209
382k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3210
382k
    PyLongObject *z;
3211
3212
382k
    if (size_b == 0) {
3213
0
        PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
3214
0
        return -1;
3215
0
    }
3216
382k
    if (size_a < size_b ||
3217
356
        (size_a == size_b &&
3218
381k
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3219
        /* |a| < |b|. */
3220
381k
        *prem = (PyLongObject *)long_long((PyObject *)a);
3221
381k
        if (*prem == NULL) {
3222
0
            return -1;
3223
0
        }
3224
381k
        *pdiv = (PyLongObject*)_PyLong_GetZero();
3225
381k
        return 0;
3226
381k
    }
3227
356
    if (size_b == 1) {
3228
356
        digit rem = 0;
3229
356
        z = divrem1(a, b->long_value.ob_digit[0], &rem);
3230
356
        if (z == NULL)
3231
0
            return -1;
3232
356
        *prem = (PyLongObject *) PyLong_FromLong((long)rem);
3233
356
        if (*prem == NULL) {
3234
0
            Py_DECREF(z);
3235
0
            return -1;
3236
0
        }
3237
356
    }
3238
0
    else {
3239
0
        z = x_divrem(a, b, prem);
3240
0
        *prem = maybe_small_long(*prem);
3241
0
        if (z == NULL)
3242
0
            return -1;
3243
0
    }
3244
    /* Set the signs.
3245
       The quotient z has the sign of a*b;
3246
       the remainder r has the sign of a,
3247
       so a = b*z + r. */
3248
356
    if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) {
3249
0
        _PyLong_Negate(&z);
3250
0
        if (z == NULL) {
3251
0
            Py_CLEAR(*prem);
3252
0
            return -1;
3253
0
        }
3254
0
    }
3255
356
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3256
0
        _PyLong_Negate(prem);
3257
0
        if (*prem == NULL) {
3258
0
            Py_DECREF(z);
3259
0
            Py_CLEAR(*prem);
3260
0
            return -1;
3261
0
        }
3262
0
    }
3263
356
    *pdiv = maybe_small_long(z);
3264
356
    return 0;
3265
356
}
3266
3267
/* Int remainder, top-level routine */
3268
3269
static int
3270
long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
3271
5.01M
{
3272
5.01M
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3273
3274
5.01M
    if (size_b == 0) {
3275
0
        PyErr_SetString(PyExc_ZeroDivisionError,
3276
0
                        "division by zero");
3277
0
        return -1;
3278
0
    }
3279
5.01M
    if (size_a < size_b ||
3280
60
        (size_a == size_b &&
3281
5.01M
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3282
        /* |a| < |b|. */
3283
5.01M
        *prem = (PyLongObject *)long_long((PyObject *)a);
3284
5.01M
        return -(*prem == NULL);
3285
5.01M
    }
3286
60
    if (size_b == 1) {
3287
60
        *prem = rem1(a, b->long_value.ob_digit[0]);
3288
60
        if (*prem == NULL)
3289
0
            return -1;
3290
60
    }
3291
0
    else {
3292
        /* Slow path using divrem. */
3293
0
        Py_XDECREF(x_divrem(a, b, prem));
3294
0
        *prem = maybe_small_long(*prem);
3295
0
        if (*prem == NULL)
3296
0
            return -1;
3297
0
    }
3298
    /* Set the sign. */
3299
60
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3300
0
        _PyLong_Negate(prem);
3301
0
        if (*prem == NULL) {
3302
0
            Py_CLEAR(*prem);
3303
0
            return -1;
3304
0
        }
3305
0
    }
3306
60
    return 0;
3307
60
}
3308
3309
/* Unsigned int division with remainder -- the algorithm.  The arguments v1
3310
   and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */
3311
3312
static PyLongObject *
3313
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
3314
0
{
3315
0
    PyLongObject *v, *w, *a;
3316
0
    Py_ssize_t i, k, size_v, size_w;
3317
0
    int d;
3318
0
    digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
3319
0
    twodigits vv;
3320
0
    sdigit zhi;
3321
0
    stwodigits z;
3322
3323
    /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
3324
       edn.), section 4.3.1, Algorithm D], except that we don't explicitly
3325
       handle the special case when the initial estimate q for a quotient
3326
       digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
3327
       that won't overflow a digit. */
3328
3329
    /* allocate space; w will also be used to hold the final remainder */
3330
0
    size_v = _PyLong_DigitCount(v1);
3331
0
    size_w = _PyLong_DigitCount(w1);
3332
0
    assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
3333
0
    v = long_alloc(size_v+1);
3334
0
    if (v == NULL) {
3335
0
        *prem = NULL;
3336
0
        return NULL;
3337
0
    }
3338
0
    w = long_alloc(size_w);
3339
0
    if (w == NULL) {
3340
0
        Py_DECREF(v);
3341
0
        *prem = NULL;
3342
0
        return NULL;
3343
0
    }
3344
3345
    /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
3346
       shift v1 left by the same amount.  Results go into w and v. */
3347
0
    d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]);
3348
0
    carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d);
3349
0
    assert(carry == 0);
3350
0
    carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d);
3351
0
    if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) {
3352
0
        v->long_value.ob_digit[size_v] = carry;
3353
0
        size_v++;
3354
0
    }
3355
3356
    /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has
3357
       at most (and usually exactly) k = size_v - size_w digits. */
3358
0
    k = size_v - size_w;
3359
0
    assert(k >= 0);
3360
0
    a = long_alloc(k);
3361
0
    if (a == NULL) {
3362
0
        Py_DECREF(w);
3363
0
        Py_DECREF(v);
3364
0
        *prem = NULL;
3365
0
        return NULL;
3366
0
    }
3367
0
    v0 = v->long_value.ob_digit;
3368
0
    w0 = w->long_value.ob_digit;
3369
0
    wm1 = w0[size_w-1];
3370
0
    wm2 = w0[size_w-2];
3371
0
    for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) {
3372
        /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
3373
           single-digit quotient q, remainder in vk[0:size_w]. */
3374
3375
0
        SIGCHECK({
3376
0
                Py_DECREF(a);
3377
0
                Py_DECREF(w);
3378
0
                Py_DECREF(v);
3379
0
                *prem = NULL;
3380
0
                return NULL;
3381
0
            });
3382
3383
        /* estimate quotient digit q; may overestimate by 1 (rare) */
3384
0
        vtop = vk[size_w];
3385
0
        assert(vtop <= wm1);
3386
0
        vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
3387
        /* The code used to compute the remainder via
3388
         *     r = (digit)(vv - (twodigits)wm1 * q);
3389
         * and compilers generally generated code to do the * and -.
3390
         * But modern processors generally compute q and r with a single
3391
         * instruction, and modern optimizing compilers exploit that if we
3392
         * _don't_ try to optimize it.
3393
         */
3394
0
        q = (digit)(vv / wm1);
3395
0
        r = (digit)(vv % wm1);
3396
0
        while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
3397
0
                                     | vk[size_w-2])) {
3398
0
            --q;
3399
0
            r += wm1;
3400
0
            if (r >= PyLong_BASE)
3401
0
                break;
3402
0
        }
3403
0
        assert(q <= PyLong_BASE);
3404
3405
        /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
3406
0
        zhi = 0;
3407
0
        for (i = 0; i < size_w; ++i) {
3408
            /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
3409
               -PyLong_BASE * q <= z < PyLong_BASE */
3410
0
            z = (sdigit)vk[i] + zhi -
3411
0
                (stwodigits)q * (stwodigits)w0[i];
3412
0
            vk[i] = (digit)z & PyLong_MASK;
3413
0
            zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
3414
0
                                                    z, PyLong_SHIFT);
3415
0
        }
3416
3417
        /* add w back if q was too large (this branch taken rarely) */
3418
0
        assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
3419
0
        if ((sdigit)vtop + zhi < 0) {
3420
0
            carry = 0;
3421
0
            for (i = 0; i < size_w; ++i) {
3422
0
                carry += vk[i] + w0[i];
3423
0
                vk[i] = carry & PyLong_MASK;
3424
0
                carry >>= PyLong_SHIFT;
3425
0
            }
3426
0
            --q;
3427
0
        }
3428
3429
        /* store quotient digit */
3430
0
        assert(q < PyLong_BASE);
3431
0
        *--ak = q;
3432
0
    }
3433
3434
    /* unshift remainder; we reuse w to store the result */
3435
0
    carry = v_rshift(w0, v0, size_w, d);
3436
0
    assert(carry==0);
3437
0
    Py_DECREF(v);
3438
3439
0
    *prem = long_normalize(w);
3440
0
    return long_normalize(a);
3441
0
}
3442
3443
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
3444
   abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
3445
   rounded to DBL_MANT_DIG significant bits using round-half-to-even.
3446
   If a == 0, return 0.0 and set *e = 0.  */
3447
3448
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
3449
#if DBL_MANT_DIG == 53
3450
0
#define EXP2_DBL_MANT_DIG 9007199254740992.0
3451
#else
3452
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
3453
#endif
3454
3455
double
3456
_PyLong_Frexp(PyLongObject *a, int64_t *e)
3457
0
{
3458
0
    Py_ssize_t a_size, shift_digits, x_size;
3459
0
    int shift_bits;
3460
0
    int64_t a_bits;
3461
    /* See below for why x_digits is always large enough. */
3462
0
    digit rem;
3463
0
    digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
3464
0
    double dx;
3465
    /* Correction term for round-half-to-even rounding.  For a digit x,
3466
       "x + half_even_correction[x & 7]" gives x rounded to the nearest
3467
       multiple of 4, rounding ties to a multiple of 8. */
3468
0
    static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
3469
3470
0
    a_size = _PyLong_DigitCount(a);
3471
0
    if (a_size == 0) {
3472
        /* Special case for 0: significand 0.0, exponent 0. */
3473
0
        *e = 0;
3474
0
        return 0.0;
3475
0
    }
3476
0
    a_bits = _PyLong_NumBits((PyObject *)a);
3477
3478
    /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
3479
       (shifting left if a_bits <= DBL_MANT_DIG + 2).
3480
3481
       Number of digits needed for result: write // for floor division.
3482
       Then if shifting left, we end up using
3483
3484
         1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
3485
3486
       digits.  If shifting right, we use
3487
3488
         a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
3489
3490
       digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
3491
       the inequalities
3492
3493
         m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
3494
         m // PyLong_SHIFT - n // PyLong_SHIFT <=
3495
                                          1 + (m - n - 1) // PyLong_SHIFT,
3496
3497
       valid for any integers m and n, we find that x_size satisfies
3498
3499
         x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
3500
3501
       in both cases.
3502
    */
3503
0
    if (a_bits <= DBL_MANT_DIG + 2) {
3504
0
        shift_digits = (DBL_MANT_DIG + 2 - (Py_ssize_t)a_bits) / PyLong_SHIFT;
3505
0
        shift_bits = (DBL_MANT_DIG + 2 - (int)a_bits) % PyLong_SHIFT;
3506
0
        x_size = shift_digits;
3507
0
        rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size,
3508
0
                       shift_bits);
3509
0
        x_size += a_size;
3510
0
        x_digits[x_size++] = rem;
3511
0
    }
3512
0
    else {
3513
0
        shift_digits = (Py_ssize_t)((a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT);
3514
0
        shift_bits = (int)((a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT);
3515
0
        rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits,
3516
0
                       a_size - shift_digits, shift_bits);
3517
0
        x_size = a_size - shift_digits;
3518
        /* For correct rounding below, we need the least significant
3519
           bit of x to be 'sticky' for this shift: if any of the bits
3520
           shifted out was nonzero, we set the least significant bit
3521
           of x. */
3522
0
        if (rem)
3523
0
            x_digits[0] |= 1;
3524
0
        else
3525
0
            while (shift_digits > 0)
3526
0
                if (a->long_value.ob_digit[--shift_digits]) {
3527
0
                    x_digits[0] |= 1;
3528
0
                    break;
3529
0
                }
3530
0
    }
3531
0
    assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
3532
3533
    /* Round, and convert to double. */
3534
0
    x_digits[0] += half_even_correction[x_digits[0] & 7];
3535
0
    dx = x_digits[--x_size];
3536
0
    while (x_size > 0)
3537
0
        dx = dx * PyLong_BASE + x_digits[--x_size];
3538
3539
    /* Rescale;  make correction if result is 1.0. */
3540
0
    dx /= 4.0 * EXP2_DBL_MANT_DIG;
3541
0
    if (dx == 1.0) {
3542
0
        assert(a_bits < INT64_MAX);
3543
0
        dx = 0.5;
3544
0
        a_bits += 1;
3545
0
    }
3546
3547
0
    *e = a_bits;
3548
0
    return _PyLong_IsNegative(a) ? -dx : dx;
3549
0
}
3550
3551
/* Get a C double from an int object.  Rounds to the nearest double,
3552
   using the round-half-to-even rule in the case of a tie. */
3553
3554
double
3555
PyLong_AsDouble(PyObject *v)
3556
4.01k
{
3557
4.01k
    int64_t exponent;
3558
4.01k
    double x;
3559
3560
4.01k
    if (v == NULL) {
3561
0
        PyErr_BadInternalCall();
3562
0
        return -1.0;
3563
0
    }
3564
4.01k
    if (!PyLong_Check(v)) {
3565
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
3566
0
        return -1.0;
3567
0
    }
3568
4.01k
    if (_PyLong_IsCompact((PyLongObject *)v)) {
3569
        /* Fast path; single digit long (31 bits) will cast safely
3570
           to double.  This improves performance of FP/long operations
3571
           by 20%.
3572
        */
3573
4.01k
        return (double)medium_value((PyLongObject *)v);
3574
4.01k
    }
3575
0
    x = _PyLong_Frexp((PyLongObject *)v, &exponent);
3576
0
    assert(exponent >= 0);
3577
0
    assert(!PyErr_Occurred());
3578
0
    if (exponent > DBL_MAX_EXP) {
3579
0
        PyErr_SetString(PyExc_OverflowError,
3580
0
                        "int too large to convert to float");
3581
0
        return -1.0;
3582
0
    }
3583
0
    return ldexp(x, (int)exponent);
3584
0
}
3585
3586
/* Methods */
3587
3588
/* if a < b, return a negative number
3589
   if a == b, return 0
3590
   if a > b, return a positive number */
3591
3592
static Py_ssize_t
3593
long_compare(PyLongObject *a, PyLongObject *b)
3594
138M
{
3595
138M
    if (_PyLong_BothAreCompact(a, b)) {
3596
132M
        return _PyLong_CompactValue(a) - _PyLong_CompactValue(b);
3597
132M
    }
3598
5.63M
    Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b);
3599
5.63M
    if (sign == 0) {
3600
743k
        Py_ssize_t i = _PyLong_DigitCount(a);
3601
743k
        sdigit diff = 0;
3602
2.18M
        while (--i >= 0) {
3603
1.51M
            diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i];
3604
1.51M
            if (diff) {
3605
72.8k
                break;
3606
72.8k
            }
3607
1.51M
        }
3608
743k
        sign = _PyLong_IsNegative(a) ? -diff : diff;
3609
743k
    }
3610
5.63M
    return sign;
3611
138M
}
3612
3613
static PyObject *
3614
long_richcompare(PyObject *self, PyObject *other, int op)
3615
147M
{
3616
147M
    Py_ssize_t result;
3617
147M
    CHECK_BINOP(self, other);
3618
146M
    if (self == other)
3619
7.94M
        result = 0;
3620
138M
    else
3621
138M
        result = long_compare((PyLongObject*)self, (PyLongObject*)other);
3622
146M
    Py_RETURN_RICHCOMPARE(result, 0, op);
3623
146M
}
3624
3625
static inline int
3626
/// Return 1 if the object is one of the immortal small ints
3627
_long_is_small_int(PyObject *op)
3628
1.42G
{
3629
1.42G
    PyLongObject *long_object = (PyLongObject *)op;
3630
1.42G
    int is_small_int = (long_object->long_value.lv_tag & IMMORTALITY_BIT_MASK) != 0;
3631
1.42G
    assert((!is_small_int) || PyLong_CheckExact(op));
3632
1.42G
    return is_small_int;
3633
1.42G
}
3634
3635
void
3636
_PyLong_ExactDealloc(PyObject *self)
3637
133M
{
3638
133M
    assert(PyLong_CheckExact(self));
3639
133M
    if (_long_is_small_int(self)) {
3640
        // See PEP 683, section Accidental De-Immortalizing for details
3641
0
        _Py_SetImmortal(self);
3642
0
        return;
3643
0
    }
3644
133M
    if (_PyLong_IsCompact((PyLongObject *)self)) {
3645
120M
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3646
120M
        return;
3647
120M
    }
3648
13.6M
    PyObject_Free(self);
3649
13.6M
}
3650
3651
static void
3652
long_dealloc(PyObject *self)
3653
1.29G
{
3654
1.29G
    if (_long_is_small_int(self)) {
3655
        /* This should never get called, but we also don't want to SEGV if
3656
         * we accidentally decref small Ints out of existence. Instead,
3657
         * since small Ints are immortal, re-set the reference count.
3658
         *
3659
         * See PEP 683, section Accidental De-Immortalizing for details
3660
         */
3661
0
        _Py_SetImmortal(self);
3662
0
        return;
3663
0
    }
3664
1.29G
    if (PyLong_CheckExact(self) && _PyLong_IsCompact((PyLongObject *)self)) {
3665
1.26G
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3666
1.26G
        return;
3667
1.26G
    }
3668
25.7M
    Py_TYPE(self)->tp_free(self);
3669
25.7M
}
3670
3671
static Py_hash_t
3672
long_hash(PyObject *obj)
3673
837M
{
3674
837M
    PyLongObject *v = (PyLongObject *)obj;
3675
837M
    Py_uhash_t x;
3676
837M
    Py_ssize_t i;
3677
837M
    int sign;
3678
3679
837M
    if (_PyLong_IsCompact(v)) {
3680
832M
        x = (Py_uhash_t)_PyLong_CompactValue(v);
3681
832M
        if (x == (Py_uhash_t)-1) {
3682
352k
            x = (Py_uhash_t)-2;
3683
352k
        }
3684
832M
        return x;
3685
832M
    }
3686
4.98M
    i = _PyLong_DigitCount(v);
3687
4.98M
    sign = _PyLong_NonCompactSign(v);
3688
3689
    // unroll first digit
3690
4.98M
    Py_BUILD_ASSERT(PyHASH_BITS > PyLong_SHIFT);
3691
4.98M
    assert(i >= 1);
3692
4.98M
    --i;
3693
4.98M
    x = v->long_value.ob_digit[i];
3694
4.98M
    assert(x < PyHASH_MODULUS);
3695
3696
4.98M
#if PyHASH_BITS >= 2 * PyLong_SHIFT
3697
    // unroll second digit
3698
4.98M
    assert(i >= 1);
3699
4.98M
    --i;
3700
4.98M
    x <<= PyLong_SHIFT;
3701
4.98M
    x += v->long_value.ob_digit[i];
3702
4.98M
    assert(x < PyHASH_MODULUS);
3703
4.98M
#endif
3704
3705
6.62M
    while (--i >= 0) {
3706
        /* Here x is a quantity in the range [0, PyHASH_MODULUS); we
3707
           want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
3708
           PyHASH_MODULUS.
3709
3710
           The computation of x * 2**PyLong_SHIFT % PyHASH_MODULUS
3711
           amounts to a rotation of the bits of x.  To see this, write
3712
3713
             x * 2**PyLong_SHIFT = y * 2**PyHASH_BITS + z
3714
3715
           where y = x >> (PyHASH_BITS - PyLong_SHIFT) gives the top
3716
           PyLong_SHIFT bits of x (those that are shifted out of the
3717
           original PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
3718
           PyHASH_MODULUS gives the bottom PyHASH_BITS - PyLong_SHIFT
3719
           bits of x, shifted up.  Then since 2**PyHASH_BITS is
3720
           congruent to 1 modulo PyHASH_MODULUS, y*2**PyHASH_BITS is
3721
           congruent to y modulo PyHASH_MODULUS.  So
3722
3723
             x * 2**PyLong_SHIFT = y + z (mod PyHASH_MODULUS).
3724
3725
           The right-hand side is just the result of rotating the
3726
           PyHASH_BITS bits of x left by PyLong_SHIFT places; since
3727
           not all PyHASH_BITS bits of x are 1s, the same is true
3728
           after rotation, so 0 <= y+z < PyHASH_MODULUS and y + z is
3729
           the reduction of x*2**PyLong_SHIFT modulo
3730
           PyHASH_MODULUS. */
3731
1.64M
        x = ((x << PyLong_SHIFT) & PyHASH_MODULUS) |
3732
1.64M
            (x >> (PyHASH_BITS - PyLong_SHIFT));
3733
1.64M
        x += v->long_value.ob_digit[i];
3734
1.64M
        if (x >= PyHASH_MODULUS)
3735
15.4k
            x -= PyHASH_MODULUS;
3736
1.64M
    }
3737
4.98M
    x = x * sign;
3738
4.98M
    if (x == (Py_uhash_t)-1)
3739
0
        x = (Py_uhash_t)-2;
3740
4.98M
    return (Py_hash_t)x;
3741
837M
}
3742
3743
3744
/* Add the absolute values of two integers. */
3745
3746
static PyLongObject *
3747
x_add(PyLongObject *a, PyLongObject *b)
3748
13.4M
{
3749
13.4M
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3750
13.4M
    PyLongObject *z;
3751
13.4M
    Py_ssize_t i;
3752
13.4M
    digit carry = 0;
3753
3754
    /* Ensure a is the larger of the two: */
3755
13.4M
    if (size_a < size_b) {
3756
12.0k
        { PyLongObject *temp = a; a = b; b = temp; }
3757
12.0k
        { Py_ssize_t size_temp = size_a;
3758
12.0k
            size_a = size_b;
3759
12.0k
            size_b = size_temp; }
3760
12.0k
    }
3761
13.4M
    z = long_alloc(size_a+1);
3762
13.4M
    if (z == NULL)
3763
0
        return NULL;
3764
32.6M
    for (i = 0; i < size_b; ++i) {
3765
19.1M
        carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i];
3766
19.1M
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3767
19.1M
        carry >>= PyLong_SHIFT;
3768
19.1M
    }
3769
36.0M
    for (; i < size_a; ++i) {
3770
22.5M
        carry += a->long_value.ob_digit[i];
3771
22.5M
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3772
22.5M
        carry >>= PyLong_SHIFT;
3773
22.5M
    }
3774
13.4M
    z->long_value.ob_digit[i] = carry;
3775
13.4M
    return long_normalize(z);
3776
13.4M
}
3777
3778
/* Subtract the absolute values of two integers. */
3779
3780
static PyLongObject *
3781
x_sub(PyLongObject *a, PyLongObject *b)
3782
1.07M
{
3783
1.07M
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3784
1.07M
    PyLongObject *z;
3785
1.07M
    Py_ssize_t i;
3786
1.07M
    int sign = 1;
3787
1.07M
    digit borrow = 0;
3788
3789
    /* Ensure a is the larger of the two: */
3790
1.07M
    if (size_a < size_b) {
3791
5.34k
        sign = -1;
3792
5.34k
        { PyLongObject *temp = a; a = b; b = temp; }
3793
5.34k
        { Py_ssize_t size_temp = size_a;
3794
5.34k
            size_a = size_b;
3795
5.34k
            size_b = size_temp; }
3796
5.34k
    }
3797
1.07M
    else if (size_a == size_b) {
3798
        /* Find highest digit where a and b differ: */
3799
1.06M
        i = size_a;
3800
1.07M
        while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i])
3801
6.33k
            ;
3802
1.06M
        if (i < 0)
3803
1.18k
            return (PyLongObject *)PyLong_FromLong(0);
3804
1.06M
        if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) {
3805
2.84k
            sign = -1;
3806
2.84k
            { PyLongObject *temp = a; a = b; b = temp; }
3807
2.84k
        }
3808
1.06M
        size_a = size_b = i+1;
3809
1.06M
    }
3810
1.07M
    z = long_alloc(size_a);
3811
1.07M
    if (z == NULL)
3812
0
        return NULL;
3813
3.24M
    for (i = 0; i < size_b; ++i) {
3814
        /* The following assumes unsigned arithmetic
3815
           works module 2**N for some N>PyLong_SHIFT. */
3816
2.17M
        borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow;
3817
2.17M
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3818
2.17M
        borrow >>= PyLong_SHIFT;
3819
2.17M
        borrow &= 1; /* Keep only one sign bit */
3820
2.17M
    }
3821
1.09M
    for (; i < size_a; ++i) {
3822
20.3k
        borrow = a->long_value.ob_digit[i] - borrow;
3823
20.3k
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3824
20.3k
        borrow >>= PyLong_SHIFT;
3825
20.3k
        borrow &= 1; /* Keep only one sign bit */
3826
20.3k
    }
3827
1.07M
    assert(borrow == 0);
3828
1.07M
    if (sign < 0) {
3829
8.18k
        _PyLong_FlipSign(z);
3830
8.18k
    }
3831
1.07M
    return maybe_small_long(long_normalize(z));
3832
1.07M
}
3833
3834
static PyLongObject *
3835
long_add(PyLongObject *a, PyLongObject *b)
3836
23.0M
{
3837
23.0M
    if (_PyLong_BothAreCompact(a, b)) {
3838
9.55M
        stwodigits z = medium_value(a) + medium_value(b);
3839
9.55M
        return _PyLong_FromSTwoDigits(z);
3840
9.55M
    }
3841
3842
13.4M
    PyLongObject *z;
3843
13.4M
    if (_PyLong_IsNegative(a)) {
3844
155
        if (_PyLong_IsNegative(b)) {
3845
0
            z = x_add(a, b);
3846
0
            if (z != NULL) {
3847
                /* x_add received at least one multiple-digit int,
3848
                   and thus z must be a multiple-digit int.
3849
                   That also means z is not an element of
3850
                   small_ints, so negating it in-place is safe. */
3851
0
                assert(Py_REFCNT(z) == 1);
3852
0
                _PyLong_FlipSign(z);
3853
0
            }
3854
0
        }
3855
155
        else
3856
155
            z = x_sub(b, a);
3857
155
    }
3858
13.4M
    else {
3859
13.4M
        if (_PyLong_IsNegative(b))
3860
15.2k
            z = x_sub(a, b);
3861
13.4M
        else
3862
13.4M
            z = x_add(a, b);
3863
13.4M
    }
3864
13.4M
    return z;
3865
23.0M
}
3866
3867
_PyStackRef
3868
_PyCompactLong_Add(PyLongObject *a, PyLongObject *b)
3869
819M
{
3870
819M
    assert(_PyLong_BothAreCompact(a, b));
3871
819M
    stwodigits v = medium_value(a) + medium_value(b);
3872
819M
    return medium_from_stwodigits(v);
3873
819M
}
3874
3875
static PyObject *
3876
long_add_method(PyObject *a, PyObject *b)
3877
23.0M
{
3878
23.0M
    CHECK_BINOP(a, b);
3879
23.0M
    return (PyObject*)long_add((PyLongObject*)a, (PyLongObject*)b);
3880
23.0M
}
3881
3882
3883
static PyLongObject *
3884
long_sub(PyLongObject *a, PyLongObject *b)
3885
1.06M
{
3886
1.06M
    if (_PyLong_BothAreCompact(a, b)) {
3887
3.19k
        return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
3888
3.19k
    }
3889
3890
1.06M
    PyLongObject *z;
3891
1.06M
    if (_PyLong_IsNegative(a)) {
3892
114
        if (_PyLong_IsNegative(b)) {
3893
0
            z = x_sub(b, a);
3894
0
        }
3895
114
        else {
3896
114
            z = x_add(a, b);
3897
114
            if (z != NULL) {
3898
114
                assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1);
3899
114
                _PyLong_FlipSign(z);
3900
114
            }
3901
114
        }
3902
114
    }
3903
1.06M
    else {
3904
1.06M
        if (_PyLong_IsNegative(b))
3905
0
            z = x_add(a, b);
3906
1.06M
        else
3907
1.06M
            z = x_sub(a, b);
3908
1.06M
    }
3909
1.06M
    return z;
3910
1.06M
}
3911
3912
_PyStackRef
3913
_PyCompactLong_Subtract(PyLongObject *a, PyLongObject *b)
3914
424M
{
3915
424M
    assert(_PyLong_BothAreCompact(a, b));
3916
424M
    stwodigits v = medium_value(a) - medium_value(b);
3917
424M
    return medium_from_stwodigits(v);
3918
424M
}
3919
3920
static PyObject *
3921
long_sub_method(PyObject *a, PyObject *b)
3922
1.06M
{
3923
1.06M
    CHECK_BINOP(a, b);
3924
1.06M
    return (PyObject*)long_sub((PyLongObject*)a, (PyLongObject*)b);
3925
1.06M
}
3926
3927
3928
/* Grade school multiplication, ignoring the signs.
3929
 * Returns the absolute value of the product, or NULL if error.
3930
 */
3931
static PyLongObject *
3932
x_mul(PyLongObject *a, PyLongObject *b)
3933
1.22M
{
3934
1.22M
    PyLongObject *z;
3935
1.22M
    Py_ssize_t size_a = _PyLong_DigitCount(a);
3936
1.22M
    Py_ssize_t size_b = _PyLong_DigitCount(b);
3937
1.22M
    Py_ssize_t i;
3938
3939
1.22M
    z = long_alloc(size_a + size_b);
3940
1.22M
    if (z == NULL)
3941
0
        return NULL;
3942
3943
1.22M
    memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit));
3944
1.22M
    if (a == b) {
3945
        /* Efficient squaring per HAC, Algorithm 14.16:
3946
         * https://cacr.uwaterloo.ca/hac/about/chap14.pdf
3947
         * Gives slightly less than a 2x speedup when a == b,
3948
         * via exploiting that each entry in the multiplication
3949
         * pyramid appears twice (except for the size_a squares).
3950
         */
3951
38.6k
        digit *paend = a->long_value.ob_digit + size_a;
3952
115k
        for (i = 0; i < size_a; ++i) {
3953
77.2k
            twodigits carry;
3954
77.2k
            twodigits f = a->long_value.ob_digit[i];
3955
77.2k
            digit *pz = z->long_value.ob_digit + (i << 1);
3956
77.2k
            digit *pa = a->long_value.ob_digit + i + 1;
3957
3958
77.2k
            SIGCHECK({
3959
77.2k
                    Py_DECREF(z);
3960
77.2k
                    return NULL;
3961
77.2k
                });
3962
3963
77.2k
            carry = *pz + f * f;
3964
77.2k
            *pz++ = (digit)(carry & PyLong_MASK);
3965
77.2k
            carry >>= PyLong_SHIFT;
3966
77.2k
            assert(carry <= PyLong_MASK);
3967
3968
            /* Now f is added in twice in each column of the
3969
             * pyramid it appears.  Same as adding f<<1 once.
3970
             */
3971
77.2k
            f <<= 1;
3972
115k
            while (pa < paend) {
3973
38.6k
                carry += *pz + *pa++ * f;
3974
38.6k
                *pz++ = (digit)(carry & PyLong_MASK);
3975
38.6k
                carry >>= PyLong_SHIFT;
3976
38.6k
                assert(carry <= (PyLong_MASK << 1));
3977
38.6k
            }
3978
77.2k
            if (carry) {
3979
                /* See comment below. pz points at the highest possible
3980
                 * carry position from the last outer loop iteration, so
3981
                 * *pz is at most 1.
3982
                 */
3983
0
                assert(*pz <= 1);
3984
0
                carry += *pz;
3985
0
                *pz = (digit)(carry & PyLong_MASK);
3986
0
                carry >>= PyLong_SHIFT;
3987
0
                if (carry) {
3988
                    /* If there's still a carry, it must be into a position
3989
                     * that still holds a 0. Where the base
3990
                     ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
3991
                     * more than 2*B - 2 to a stored digit no more than 1.
3992
                     * So the sum was no more than 2*B - 1, so the current
3993
                     * carry no more than floor((2*B - 1)/B) = 1.
3994
                     */
3995
0
                    assert(carry == 1);
3996
0
                    assert(pz[1] == 0);
3997
0
                    pz[1] = (digit)carry;
3998
0
                }
3999
0
            }
4000
77.2k
        }
4001
38.6k
    }
4002
1.18M
    else {      /* a is not the same as b -- gradeschool int mult */
4003
2.37M
        for (i = 0; i < size_a; ++i) {
4004
1.18M
            twodigits carry = 0;
4005
1.18M
            twodigits f = a->long_value.ob_digit[i];
4006
1.18M
            digit *pz = z->long_value.ob_digit + i;
4007
1.18M
            digit *pb = b->long_value.ob_digit;
4008
1.18M
            digit *pbend = b->long_value.ob_digit + size_b;
4009
4010
1.18M
            SIGCHECK({
4011
1.18M
                    Py_DECREF(z);
4012
1.18M
                    return NULL;
4013
1.18M
                });
4014
4015
14.9M
            while (pb < pbend) {
4016
13.7M
                carry += *pz + *pb++ * f;
4017
13.7M
                *pz++ = (digit)(carry & PyLong_MASK);
4018
13.7M
                carry >>= PyLong_SHIFT;
4019
13.7M
                assert(carry <= PyLong_MASK);
4020
13.7M
            }
4021
1.18M
            if (carry)
4022
12.1k
                *pz += (digit)(carry & PyLong_MASK);
4023
1.18M
            assert((carry >> PyLong_SHIFT) == 0);
4024
1.18M
        }
4025
1.18M
    }
4026
1.22M
    return long_normalize(z);
4027
1.22M
}
4028
4029
/* A helper for Karatsuba multiplication (k_mul).
4030
   Takes an int "n" and an integer "size" representing the place to
4031
   split, and sets low and high such that abs(n) == (high << size) + low,
4032
   viewing the shift as being by digits.  The sign bit is ignored, and
4033
   the return values are >= 0.
4034
   Returns 0 on success, -1 on failure.
4035
*/
4036
static int
4037
kmul_split(PyLongObject *n,
4038
           Py_ssize_t size,
4039
           PyLongObject **high,
4040
           PyLongObject **low)
4041
0
{
4042
0
    PyLongObject *hi, *lo;
4043
0
    Py_ssize_t size_lo, size_hi;
4044
0
    const Py_ssize_t size_n = _PyLong_DigitCount(n);
4045
4046
0
    size_lo = Py_MIN(size_n, size);
4047
0
    size_hi = size_n - size_lo;
4048
4049
0
    if ((hi = long_alloc(size_hi)) == NULL)
4050
0
        return -1;
4051
0
    if ((lo = long_alloc(size_lo)) == NULL) {
4052
0
        Py_DECREF(hi);
4053
0
        return -1;
4054
0
    }
4055
4056
0
    memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit));
4057
0
    memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit));
4058
4059
0
    *high = long_normalize(hi);
4060
0
    *low = long_normalize(lo);
4061
0
    return 0;
4062
0
}
4063
4064
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
4065
4066
/* Karatsuba multiplication.  Ignores the input signs, and returns the
4067
 * absolute value of the product (or NULL if error).
4068
 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
4069
 */
4070
static PyLongObject *
4071
k_mul(PyLongObject *a, PyLongObject *b)
4072
1.22M
{
4073
1.22M
    Py_ssize_t asize = _PyLong_DigitCount(a);
4074
1.22M
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4075
1.22M
    PyLongObject *ah = NULL;
4076
1.22M
    PyLongObject *al = NULL;
4077
1.22M
    PyLongObject *bh = NULL;
4078
1.22M
    PyLongObject *bl = NULL;
4079
1.22M
    PyLongObject *ret = NULL;
4080
1.22M
    PyLongObject *t1, *t2, *t3;
4081
1.22M
    Py_ssize_t shift;           /* the number of digits we split off */
4082
1.22M
    Py_ssize_t i;
4083
4084
    /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
4085
     * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
4086
     * Then the original product is
4087
     *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
4088
     * By picking X to be a power of 2, "*X" is just shifting, and it's
4089
     * been reduced to 3 multiplies on numbers half the size.
4090
     */
4091
4092
    /* We want to split based on the larger number; fiddle so that b
4093
     * is largest.
4094
     */
4095
1.22M
    if (asize > bsize) {
4096
1.14M
        t1 = a;
4097
1.14M
        a = b;
4098
1.14M
        b = t1;
4099
4100
1.14M
        i = asize;
4101
1.14M
        asize = bsize;
4102
1.14M
        bsize = i;
4103
1.14M
    }
4104
4105
    /* Use gradeschool math when either number is too small. */
4106
1.22M
    i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
4107
1.22M
    if (asize <= i) {
4108
1.22M
        if (asize == 0)
4109
121
            return (PyLongObject *)PyLong_FromLong(0);
4110
1.22M
        else
4111
1.22M
            return x_mul(a, b);
4112
1.22M
    }
4113
4114
    /* If a is small compared to b, splitting on b gives a degenerate
4115
     * case with ah==0, and Karatsuba may be (even much) less efficient
4116
     * than "grade school" then.  However, we can still win, by viewing
4117
     * b as a string of "big digits", each of the same width as a. That
4118
     * leads to a sequence of balanced calls to k_mul.
4119
     */
4120
0
    if (2 * asize <= bsize)
4121
0
        return k_lopsided_mul(a, b);
4122
4123
    /* Split a & b into hi & lo pieces. */
4124
0
    shift = bsize >> 1;
4125
0
    if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
4126
0
    assert(_PyLong_IsPositive(ah));        /* the split isn't degenerate */
4127
4128
0
    if (a == b) {
4129
0
        bh = (PyLongObject*)Py_NewRef(ah);
4130
0
        bl = (PyLongObject*)Py_NewRef(al);
4131
0
    }
4132
0
    else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
4133
4134
    /* The plan:
4135
     * 1. Allocate result space (asize + bsize digits:  that's always
4136
     *    enough).
4137
     * 2. Compute ah*bh, and copy into result at 2*shift.
4138
     * 3. Compute al*bl, and copy into result at 0.  Note that this
4139
     *    can't overlap with #2.
4140
     * 4. Subtract al*bl from the result, starting at shift.  This may
4141
     *    underflow (borrow out of the high digit), but we don't care:
4142
     *    we're effectively doing unsigned arithmetic mod
4143
     *    BASE**(sizea + sizeb), and so long as the *final* result fits,
4144
     *    borrows and carries out of the high digit can be ignored.
4145
     * 5. Subtract ah*bh from the result, starting at shift.
4146
     * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
4147
     *    at shift.
4148
     */
4149
4150
    /* 1. Allocate result space. */
4151
0
    ret = long_alloc(asize + bsize);
4152
0
    if (ret == NULL) goto fail;
4153
#ifdef Py_DEBUG
4154
    /* Fill with trash, to catch reference to uninitialized digits. */
4155
    memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit));
4156
#endif
4157
4158
    /* 2. t1 <- ah*bh, and copy into high digits of result. */
4159
0
    if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
4160
0
    assert(!_PyLong_IsNegative(t1));
4161
0
    assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret));
4162
0
    memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit,
4163
0
           _PyLong_DigitCount(t1) * sizeof(digit));
4164
4165
    /* Zero-out the digits higher than the ah*bh copy. */
4166
0
    i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1);
4167
0
    if (i)
4168
0
        memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0,
4169
0
               i * sizeof(digit));
4170
4171
    /* 3. t2 <- al*bl, and copy into the low digits. */
4172
0
    if ((t2 = k_mul(al, bl)) == NULL) {
4173
0
        Py_DECREF(t1);
4174
0
        goto fail;
4175
0
    }
4176
0
    assert(!_PyLong_IsNegative(t2));
4177
0
    assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */
4178
0
    memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit));
4179
4180
    /* Zero out remaining digits. */
4181
0
    i = 2*shift - _PyLong_DigitCount(t2);          /* number of uninitialized digits */
4182
0
    if (i)
4183
0
        memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit));
4184
4185
    /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
4186
     * because it's fresher in cache.
4187
     */
4188
0
    i = _PyLong_DigitCount(ret) - shift;  /* # digits after shift */
4189
0
    (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2));
4190
0
    _Py_DECREF_INT(t2);
4191
4192
0
    (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1));
4193
0
    _Py_DECREF_INT(t1);
4194
4195
    /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
4196
0
    if ((t1 = x_add(ah, al)) == NULL) goto fail;
4197
0
    _Py_DECREF_INT(ah);
4198
0
    _Py_DECREF_INT(al);
4199
0
    ah = al = NULL;
4200
4201
0
    if (a == b) {
4202
0
        t2 = (PyLongObject*)Py_NewRef(t1);
4203
0
    }
4204
0
    else if ((t2 = x_add(bh, bl)) == NULL) {
4205
0
        Py_DECREF(t1);
4206
0
        goto fail;
4207
0
    }
4208
0
    _Py_DECREF_INT(bh);
4209
0
    _Py_DECREF_INT(bl);
4210
0
    bh = bl = NULL;
4211
4212
0
    t3 = k_mul(t1, t2);
4213
0
    _Py_DECREF_INT(t1);
4214
0
    _Py_DECREF_INT(t2);
4215
0
    if (t3 == NULL) goto fail;
4216
0
    assert(!_PyLong_IsNegative(t3));
4217
4218
    /* Add t3.  It's not obvious why we can't run out of room here.
4219
     * See the (*) comment after this function.
4220
     */
4221
0
    (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3));
4222
0
    _Py_DECREF_INT(t3);
4223
4224
0
    return long_normalize(ret);
4225
4226
0
  fail:
4227
0
    Py_XDECREF(ret);
4228
0
    Py_XDECREF(ah);
4229
0
    Py_XDECREF(al);
4230
0
    Py_XDECREF(bh);
4231
0
    Py_XDECREF(bl);
4232
0
    return NULL;
4233
0
}
4234
4235
/* (*) Why adding t3 can't "run out of room" above.
4236
4237
Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
4238
to start with:
4239
4240
1. For any integer i, i = c(i/2) + f(i/2).  In particular,
4241
   bsize = c(bsize/2) + f(bsize/2).
4242
2. shift = f(bsize/2)
4243
3. asize <= bsize
4244
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
4245
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.
4246
4247
We allocated asize + bsize result digits, and add t3 into them at an offset
4248
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
4249
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
4250
asize + c(bsize/2) available digit positions.
4251
4252
bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
4253
at most c(bsize/2) digits + 1 bit.
4254
4255
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
4256
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
4257
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
4258
4259
The product (ah+al)*(bh+bl) therefore has at most
4260
4261
    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
4262
4263
and we have asize + c(bsize/2) available digit positions.  We need to show
4264
this is always enough.  An instance of c(bsize/2) cancels out in both, so
4265
the question reduces to whether asize digits is enough to hold
4266
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
4267
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
4268
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
4269
digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
4270
asize == bsize, then we're asking whether bsize digits is enough to hold
4271
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
4272
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
4273
bsize >= KARATSUBA_CUTOFF >= 2.
4274
4275
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
4276
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
4277
ah*bh and al*bl too.
4278
*/
4279
4280
/* b has at least twice the digits of a, and a is big enough that Karatsuba
4281
 * would pay off *if* the inputs had balanced sizes.  View b as a sequence
4282
 * of slices, each with the same number of digits as a, and multiply the
4283
 * slices by a, one at a time.  This gives k_mul balanced inputs to work with,
4284
 * and is also cache-friendly (we compute one double-width slice of the result
4285
 * at a time, then move on, never backtracking except for the helpful
4286
 * single-width slice overlap between successive partial sums).
4287
 */
4288
static PyLongObject *
4289
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
4290
0
{
4291
0
    const Py_ssize_t asize = _PyLong_DigitCount(a);
4292
0
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4293
0
    Py_ssize_t nbdone;          /* # of b digits already multiplied */
4294
0
    PyLongObject *ret;
4295
0
    PyLongObject *bslice = NULL;
4296
4297
0
    assert(asize > KARATSUBA_CUTOFF);
4298
0
    assert(2 * asize <= bsize);
4299
4300
    /* Allocate result space, and zero it out. */
4301
0
    ret = long_alloc(asize + bsize);
4302
0
    if (ret == NULL)
4303
0
        return NULL;
4304
0
    memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit));
4305
4306
    /* Successive slices of b are copied into bslice. */
4307
0
    bslice = long_alloc(asize);
4308
0
    if (bslice == NULL)
4309
0
        goto fail;
4310
4311
0
    nbdone = 0;
4312
0
    while (bsize > 0) {
4313
0
        PyLongObject *product;
4314
0
        const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
4315
4316
        /* Multiply the next slice of b by a. */
4317
0
        memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone,
4318
0
               nbtouse * sizeof(digit));
4319
0
        assert(nbtouse >= 0);
4320
0
        _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse);
4321
0
        product = k_mul(a, bslice);
4322
0
        if (product == NULL)
4323
0
            goto fail;
4324
4325
        /* Add into result. */
4326
0
        (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone,
4327
0
                     product->long_value.ob_digit, _PyLong_DigitCount(product));
4328
0
        _Py_DECREF_INT(product);
4329
4330
0
        bsize -= nbtouse;
4331
0
        nbdone += nbtouse;
4332
0
    }
4333
4334
0
    _Py_DECREF_INT(bslice);
4335
0
    return long_normalize(ret);
4336
4337
0
  fail:
4338
0
    Py_DECREF(ret);
4339
0
    Py_XDECREF(bslice);
4340
0
    return NULL;
4341
0
}
4342
4343
4344
static PyLongObject*
4345
long_mul(PyLongObject *a, PyLongObject *b)
4346
6.14M
{
4347
    /* fast path for single-digit multiplication */
4348
6.14M
    if (_PyLong_BothAreCompact(a, b)) {
4349
4.91M
        stwodigits v = medium_value(a) * medium_value(b);
4350
4.91M
        return _PyLong_FromSTwoDigits(v);
4351
4.91M
    }
4352
4353
1.22M
    PyLongObject *z = k_mul(a, b);
4354
    /* Negate if exactly one of the inputs is negative. */
4355
1.22M
    if (!_PyLong_SameSign(a, b) && z) {
4356
121
        _PyLong_Negate(&z);
4357
121
    }
4358
1.22M
    return z;
4359
6.14M
}
4360
4361
/* This function returns NULL if the result is not compact,
4362
 * or if it fails to allocate, but never raises */
4363
_PyStackRef
4364
_PyCompactLong_Multiply(PyLongObject *a, PyLongObject *b)
4365
2.04M
{
4366
2.04M
    assert(_PyLong_BothAreCompact(a, b));
4367
2.04M
    stwodigits v = medium_value(a) * medium_value(b);
4368
2.04M
    return medium_from_stwodigits(v);
4369
2.04M
}
4370
4371
static PyObject *
4372
long_mul_method(PyObject *a, PyObject *b)
4373
2.58M
{
4374
2.58M
    CHECK_BINOP(a, b);
4375
1.87M
    return (PyObject*)long_mul((PyLongObject*)a, (PyLongObject*)b);
4376
2.58M
}
4377
4378
/* Fast modulo division for single-digit longs. */
4379
static PyObject *
4380
fast_mod(PyLongObject *a, PyLongObject *b)
4381
1.48M
{
4382
1.48M
    sdigit left = a->long_value.ob_digit[0];
4383
1.48M
    sdigit right = b->long_value.ob_digit[0];
4384
1.48M
    sdigit mod;
4385
4386
1.48M
    assert(_PyLong_DigitCount(a) == 1);
4387
1.48M
    assert(_PyLong_DigitCount(b) == 1);
4388
1.48M
    sdigit sign = _PyLong_CompactSign(b);
4389
1.48M
    if (_PyLong_SameSign(a, b)) {
4390
1.48M
        mod = left % right;
4391
1.48M
    }
4392
0
    else {
4393
        /* Either 'a' or 'b' is negative. */
4394
0
        mod = right - 1 - (left - 1) % right;
4395
0
    }
4396
4397
1.48M
    return PyLong_FromLong(mod * sign);
4398
1.48M
}
4399
4400
/* Fast floor division for single-digit longs. */
4401
static PyObject *
4402
fast_floor_div(PyLongObject *a, PyLongObject *b)
4403
18.2M
{
4404
18.2M
    sdigit left = a->long_value.ob_digit[0];
4405
18.2M
    sdigit right = b->long_value.ob_digit[0];
4406
18.2M
    sdigit div;
4407
4408
18.2M
    assert(_PyLong_DigitCount(a) == 1);
4409
18.2M
    assert(_PyLong_DigitCount(b) == 1);
4410
4411
18.2M
    if (_PyLong_SameSign(a, b)) {
4412
18.2M
        div = left / right;
4413
18.2M
    }
4414
0
    else {
4415
        /* Either 'a' or 'b' is negative. */
4416
0
        div = -1 - (left - 1) / right;
4417
0
    }
4418
4419
18.2M
    return PyLong_FromLong(div);
4420
18.2M
}
4421
4422
#ifdef WITH_PYLONG_MODULE
4423
/* asymptotically faster divmod, using _pylong.py */
4424
static int
4425
pylong_int_divmod(PyLongObject *v, PyLongObject *w,
4426
                  PyLongObject **pdiv, PyLongObject **pmod)
4427
0
{
4428
0
    PyObject *mod = PyImport_ImportModule("_pylong");
4429
0
    if (mod == NULL) {
4430
0
        return -1;
4431
0
    }
4432
0
    PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w);
4433
0
    Py_DECREF(mod);
4434
0
    if (result == NULL) {
4435
0
        return -1;
4436
0
    }
4437
0
    if (!PyTuple_Check(result)) {
4438
0
        Py_DECREF(result);
4439
0
        PyErr_SetString(PyExc_ValueError,
4440
0
                        "tuple is required from int_divmod()");
4441
0
        return -1;
4442
0
    }
4443
0
    PyObject *q = PyTuple_GET_ITEM(result, 0);
4444
0
    PyObject *r = PyTuple_GET_ITEM(result, 1);
4445
0
    if (!PyLong_Check(q) || !PyLong_Check(r)) {
4446
0
        Py_DECREF(result);
4447
0
        PyErr_SetString(PyExc_ValueError,
4448
0
                        "tuple of int is required from int_divmod()");
4449
0
        return -1;
4450
0
    }
4451
0
    if (pdiv != NULL) {
4452
0
        *pdiv = (PyLongObject *)Py_NewRef(q);
4453
0
    }
4454
0
    if (pmod != NULL) {
4455
0
        *pmod = (PyLongObject *)Py_NewRef(r);
4456
0
    }
4457
0
    Py_DECREF(result);
4458
0
    return 0;
4459
0
}
4460
#endif /* WITH_PYLONG_MODULE */
4461
4462
/* The / and % operators are now defined in terms of divmod().
4463
   The expression a mod b has the value a - b*floor(a/b).
4464
   The long_divrem function gives the remainder after division of
4465
   |a| by |b|, with the sign of a.  This is also expressed
4466
   as a - b*trunc(a/b), if trunc truncates towards zero.
4467
   Some examples:
4468
     a           b      a rem b         a mod b
4469
     13          10      3               3
4470
    -13          10     -3               7
4471
     13         -10      3              -7
4472
    -13         -10     -3              -3
4473
   So, to get from rem to mod, we have to add b if a and b
4474
   have different signs.  We then subtract one from the 'div'
4475
   part of the outcome to keep the invariant intact. */
4476
4477
/* Compute
4478
 *     *pdiv, *pmod = divmod(v, w)
4479
 * NULL can be passed for pdiv or pmod, in which case that part of
4480
 * the result is simply thrown away.  The caller owns a reference to
4481
 * each of these it requests (does not pass NULL for).
4482
 */
4483
static int
4484
l_divmod(PyLongObject *v, PyLongObject *w,
4485
         PyLongObject **pdiv, PyLongObject **pmod)
4486
385k
{
4487
385k
    PyLongObject *div, *mod;
4488
4489
385k
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4490
        /* Fast path for single-digit longs */
4491
3.55k
        div = NULL;
4492
3.55k
        if (pdiv != NULL) {
4493
3.55k
            div = (PyLongObject *)fast_floor_div(v, w);
4494
3.55k
            if (div == NULL) {
4495
0
                return -1;
4496
0
            }
4497
3.55k
        }
4498
3.55k
        if (pmod != NULL) {
4499
3.55k
            mod = (PyLongObject *)fast_mod(v, w);
4500
3.55k
            if (mod == NULL) {
4501
0
                Py_XDECREF(div);
4502
0
                return -1;
4503
0
            }
4504
3.55k
            *pmod = mod;
4505
3.55k
        }
4506
3.55k
        if (pdiv != NULL) {
4507
            /* We only want to set `*pdiv` when `*pmod` is
4508
               set successfully. */
4509
3.55k
            *pdiv = div;
4510
3.55k
        }
4511
3.55k
        return 0;
4512
3.55k
    }
4513
382k
#if WITH_PYLONG_MODULE
4514
382k
    Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */
4515
382k
    Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */
4516
382k
    if (size_w > 300 && (size_v - size_w) > 150) {
4517
        /* Switch to _pylong.int_divmod().  If the quotient is small then
4518
          "schoolbook" division is linear-time so don't use in that case.
4519
          These limits are empirically determined and should be slightly
4520
          conservative so that _pylong is used in cases it is likely
4521
          to be faster. See Tools/scripts/divmod_threshold.py. */
4522
0
        return pylong_int_divmod(v, w, pdiv, pmod);
4523
0
    }
4524
382k
#endif
4525
382k
    if (long_divrem(v, w, &div, &mod) < 0)
4526
0
        return -1;
4527
382k
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4528
382k
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4529
0
        PyLongObject *temp;
4530
0
        temp = long_add(mod, w);
4531
0
        Py_SETREF(mod, temp);
4532
0
        if (mod == NULL) {
4533
0
            Py_DECREF(div);
4534
0
            return -1;
4535
0
        }
4536
0
        temp = long_sub(div, (PyLongObject *)_PyLong_GetOne());
4537
0
        if (temp == NULL) {
4538
0
            Py_DECREF(mod);
4539
0
            Py_DECREF(div);
4540
0
            return -1;
4541
0
        }
4542
0
        Py_SETREF(div, temp);
4543
0
    }
4544
382k
    if (pdiv != NULL)
4545
382k
        *pdiv = div;
4546
0
    else
4547
0
        Py_DECREF(div);
4548
4549
382k
    if (pmod != NULL)
4550
7.93k
        *pmod = mod;
4551
374k
    else
4552
374k
        Py_DECREF(mod);
4553
4554
382k
    return 0;
4555
382k
}
4556
4557
/* Compute
4558
 *     *pmod = v % w
4559
 * pmod cannot be NULL. The caller owns a reference to pmod.
4560
 */
4561
static int
4562
l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
4563
6.49M
{
4564
6.49M
    PyLongObject *mod;
4565
4566
6.49M
    assert(pmod);
4567
6.49M
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4568
        /* Fast path for single-digit longs */
4569
1.47M
        *pmod = (PyLongObject *)fast_mod(v, w);
4570
1.47M
        return -(*pmod == NULL);
4571
1.47M
    }
4572
5.01M
    if (long_rem(v, w, &mod) < 0)
4573
0
        return -1;
4574
5.01M
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4575
5.01M
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4576
0
        PyLongObject *temp;
4577
0
        temp = long_add(mod, w);
4578
0
        Py_SETREF(mod, temp);
4579
0
        if (mod == NULL)
4580
0
            return -1;
4581
0
    }
4582
5.01M
    *pmod = mod;
4583
4584
5.01M
    return 0;
4585
5.01M
}
4586
4587
static PyObject *
4588
long_div(PyObject *a, PyObject *b)
4589
18.6M
{
4590
18.6M
    PyLongObject *div;
4591
4592
18.6M
    CHECK_BINOP(a, b);
4593
4594
18.6M
    if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) {
4595
18.2M
        return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
4596
18.2M
    }
4597
4598
374k
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
4599
0
        div = NULL;
4600
374k
    return (PyObject *)div;
4601
18.6M
}
4602
4603
/* PyLong/PyLong -> float, with correctly rounded result. */
4604
4605
48.2k
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
4606
0
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
4607
4608
static PyObject *
4609
long_true_divide(PyObject *v, PyObject *w)
4610
12.0k
{
4611
12.0k
    PyLongObject *a, *b, *x;
4612
12.0k
    Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
4613
12.0k
    digit mask, low;
4614
12.0k
    int inexact, negate, a_is_small, b_is_small;
4615
12.0k
    double dx, result;
4616
4617
12.0k
    CHECK_BINOP(v, w);
4618
12.0k
    a = (PyLongObject *)v;
4619
12.0k
    b = (PyLongObject *)w;
4620
4621
    /*
4622
       Method in a nutshell:
4623
4624
         0. reduce to case a, b > 0; filter out obvious underflow/overflow
4625
         1. choose a suitable integer 'shift'
4626
         2. use integer arithmetic to compute x = floor(2**-shift*a/b)
4627
         3. adjust x for correct rounding
4628
         4. convert x to a double dx with the same value
4629
         5. return ldexp(dx, shift).
4630
4631
       In more detail:
4632
4633
       0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
4634
       returns either 0.0 or -0.0, depending on the sign of b.  For a and
4635
       b both nonzero, ignore signs of a and b, and add the sign back in
4636
       at the end.  Now write a_bits and b_bits for the bit lengths of a
4637
       and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
4638
       for b).  Then
4639
4640
          2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
4641
4642
       So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
4643
       so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
4644
       DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
4645
       the way, we can assume that
4646
4647
          DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
4648
4649
       1. The integer 'shift' is chosen so that x has the right number of
4650
       bits for a double, plus two or three extra bits that will be used
4651
       in the rounding decisions.  Writing a_bits and b_bits for the
4652
       number of significant bits in a and b respectively, a
4653
       straightforward formula for shift is:
4654
4655
          shift = a_bits - b_bits - DBL_MANT_DIG - 2
4656
4657
       This is fine in the usual case, but if a/b is smaller than the
4658
       smallest normal float then it can lead to double rounding on an
4659
       IEEE 754 platform, giving incorrectly rounded results.  So we
4660
       adjust the formula slightly.  The actual formula used is:
4661
4662
           shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
4663
4664
       2. The quantity x is computed by first shifting a (left -shift bits
4665
       if shift <= 0, right shift bits if shift > 0) and then dividing by
4666
       b.  For both the shift and the division, we keep track of whether
4667
       the result is inexact, in a flag 'inexact'; this information is
4668
       needed at the rounding stage.
4669
4670
       With the choice of shift above, together with our assumption that
4671
       a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
4672
       that x >= 1.
4673
4674
       3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
4675
       this with an exactly representable float of the form
4676
4677
          round(x/2**extra_bits) * 2**(extra_bits+shift).
4678
4679
       For float representability, we need x/2**extra_bits <
4680
       2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
4681
       DBL_MANT_DIG.  This translates to the condition:
4682
4683
          extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
4684
4685
       To round, we just modify the bottom digit of x in-place; this can
4686
       end up giving a digit with value > PyLONG_MASK, but that's not a
4687
       problem since digits can hold values up to 2*PyLONG_MASK+1.
4688
4689
       With the original choices for shift above, extra_bits will always
4690
       be 2 or 3.  Then rounding under the round-half-to-even rule, we
4691
       round up iff the most significant of the extra bits is 1, and
4692
       either: (a) the computation of x in step 2 had an inexact result,
4693
       or (b) at least one other of the extra bits is 1, or (c) the least
4694
       significant bit of x (above those to be rounded) is 1.
4695
4696
       4. Conversion to a double is straightforward; all floating-point
4697
       operations involved in the conversion are exact, so there's no
4698
       danger of rounding errors.
4699
4700
       5. Use ldexp(x, shift) to compute x*2**shift, the final result.
4701
       The result will always be exactly representable as a double, except
4702
       in the case that it overflows.  To avoid dependence on the exact
4703
       behaviour of ldexp on overflow, we check for overflow before
4704
       applying ldexp.  The result of ldexp is adjusted for sign before
4705
       returning.
4706
    */
4707
4708
    /* Reduce to case where a and b are both positive. */
4709
12.0k
    a_size = _PyLong_DigitCount(a);
4710
12.0k
    b_size = _PyLong_DigitCount(b);
4711
12.0k
    negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b));
4712
12.0k
    if (b_size == 0) {
4713
0
        PyErr_SetString(PyExc_ZeroDivisionError,
4714
0
                        "division by zero");
4715
0
        goto error;
4716
0
    }
4717
12.0k
    if (a_size == 0)
4718
3
        goto underflow_or_zero;
4719
4720
    /* Fast path for a and b small (exactly representable in a double).
4721
       Relies on floating-point division being correctly rounded; results
4722
       may be subject to double rounding on x86 machines that operate with
4723
       the x87 FPU set to 64-bit precision. */
4724
12.0k
    a_is_small = a_size <= MANT_DIG_DIGITS ||
4725
0
        (a_size == MANT_DIG_DIGITS+1 &&
4726
0
         a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4727
12.0k
    b_is_small = b_size <= MANT_DIG_DIGITS ||
4728
0
        (b_size == MANT_DIG_DIGITS+1 &&
4729
0
         b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4730
12.0k
    if (a_is_small && b_is_small) {
4731
12.0k
        double da, db;
4732
12.0k
        da = a->long_value.ob_digit[--a_size];
4733
12.0k
        while (a_size > 0)
4734
0
            da = da * PyLong_BASE + a->long_value.ob_digit[--a_size];
4735
12.0k
        db = b->long_value.ob_digit[--b_size];
4736
12.0k
        while (b_size > 0)
4737
0
            db = db * PyLong_BASE + b->long_value.ob_digit[--b_size];
4738
12.0k
        result = da / db;
4739
12.0k
        goto success;
4740
12.0k
    }
4741
4742
    /* Catch obvious cases of underflow and overflow */
4743
0
    diff = a_size - b_size;
4744
0
    if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
4745
        /* Extreme overflow */
4746
0
        goto overflow;
4747
0
    else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
4748
        /* Extreme underflow */
4749
0
        goto underflow_or_zero;
4750
    /* Next line is now safe from overflowing a Py_ssize_t */
4751
0
    diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) -
4752
0
        bit_length_digit(b->long_value.ob_digit[b_size - 1]);
4753
    /* Now diff = a_bits - b_bits. */
4754
0
    if (diff > DBL_MAX_EXP)
4755
0
        goto overflow;
4756
0
    else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
4757
0
        goto underflow_or_zero;
4758
4759
    /* Choose value for shift; see comments for step 1 above. */
4760
0
    shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
4761
4762
0
    inexact = 0;
4763
4764
    /* x = abs(a * 2**-shift) */
4765
0
    if (shift <= 0) {
4766
0
        Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
4767
0
        digit rem;
4768
        /* x = a << -shift */
4769
0
        if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
4770
            /* In practice, it's probably impossible to end up
4771
               here.  Both a and b would have to be enormous,
4772
               using close to SIZE_T_MAX bytes of memory each. */
4773
0
            PyErr_SetString(PyExc_OverflowError,
4774
0
                            "intermediate overflow during division");
4775
0
            goto error;
4776
0
        }
4777
0
        x = long_alloc(a_size + shift_digits + 1);
4778
0
        if (x == NULL)
4779
0
            goto error;
4780
0
        for (i = 0; i < shift_digits; i++)
4781
0
            x->long_value.ob_digit[i] = 0;
4782
0
        rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit,
4783
0
                       a_size, -shift % PyLong_SHIFT);
4784
0
        x->long_value.ob_digit[a_size + shift_digits] = rem;
4785
0
    }
4786
0
    else {
4787
0
        Py_ssize_t shift_digits = shift / PyLong_SHIFT;
4788
0
        digit rem;
4789
        /* x = a >> shift */
4790
0
        assert(a_size >= shift_digits);
4791
0
        x = long_alloc(a_size - shift_digits);
4792
0
        if (x == NULL)
4793
0
            goto error;
4794
0
        rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits,
4795
0
                       a_size - shift_digits, shift % PyLong_SHIFT);
4796
        /* set inexact if any of the bits shifted out is nonzero */
4797
0
        if (rem)
4798
0
            inexact = 1;
4799
0
        while (!inexact && shift_digits > 0)
4800
0
            if (a->long_value.ob_digit[--shift_digits])
4801
0
                inexact = 1;
4802
0
    }
4803
0
    long_normalize(x);
4804
0
    x_size = _PyLong_SignedDigitCount(x);
4805
4806
    /* x //= b. If the remainder is nonzero, set inexact.  We own the only
4807
       reference to x, so it's safe to modify it in-place. */
4808
0
    if (b_size == 1) {
4809
0
        digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size,
4810
0
                              b->long_value.ob_digit[0]);
4811
0
        long_normalize(x);
4812
0
        if (rem)
4813
0
            inexact = 1;
4814
0
    }
4815
0
    else {
4816
0
        PyLongObject *div, *rem;
4817
0
        div = x_divrem(x, b, &rem);
4818
0
        Py_SETREF(x, div);
4819
0
        if (x == NULL)
4820
0
            goto error;
4821
0
        if (!_PyLong_IsZero(rem))
4822
0
            inexact = 1;
4823
0
        Py_DECREF(rem);
4824
0
    }
4825
0
    x_size = _PyLong_DigitCount(x);
4826
0
    assert(x_size > 0); /* result of division is never zero */
4827
0
    x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]);
4828
4829
    /* The number of extra bits that have to be rounded away. */
4830
0
    extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
4831
0
    assert(extra_bits == 2 || extra_bits == 3);
4832
4833
    /* Round by directly modifying the low digit of x. */
4834
0
    mask = (digit)1 << (extra_bits - 1);
4835
0
    low = x->long_value.ob_digit[0] | inexact;
4836
0
    if ((low & mask) && (low & (3U*mask-1U)))
4837
0
        low += mask;
4838
0
    x->long_value.ob_digit[0] = low & ~(2U*mask-1U);
4839
4840
    /* Convert x to a double dx; the conversion is exact. */
4841
0
    dx = x->long_value.ob_digit[--x_size];
4842
0
    while (x_size > 0)
4843
0
        dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size];
4844
0
    Py_DECREF(x);
4845
4846
    /* Check whether ldexp result will overflow a double. */
4847
0
    if (shift + x_bits >= DBL_MAX_EXP &&
4848
0
        (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
4849
0
        goto overflow;
4850
0
    result = ldexp(dx, (int)shift);
4851
4852
12.0k
  success:
4853
12.0k
    return PyFloat_FromDouble(negate ? -result : result);
4854
4855
3
  underflow_or_zero:
4856
3
    return PyFloat_FromDouble(negate ? -0.0 : 0.0);
4857
4858
0
  overflow:
4859
0
    PyErr_SetString(PyExc_OverflowError,
4860
0
                    "integer division result too large for a float");
4861
0
  error:
4862
0
    return NULL;
4863
0
}
4864
4865
static PyObject *
4866
long_mod(PyObject *a, PyObject *b)
4867
6.49M
{
4868
6.49M
    PyLongObject *mod;
4869
4870
6.49M
    CHECK_BINOP(a, b);
4871
4872
6.49M
    if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
4873
0
        mod = NULL;
4874
6.49M
    return (PyObject *)mod;
4875
6.49M
}
4876
4877
static PyObject *
4878
long_divmod(PyObject *a, PyObject *b)
4879
11.4k
{
4880
11.4k
    PyLongObject *div, *mod;
4881
11.4k
    PyObject *z;
4882
4883
11.4k
    CHECK_BINOP(a, b);
4884
4885
11.4k
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
4886
0
        return NULL;
4887
0
    }
4888
11.4k
    z = PyTuple_New(2);
4889
11.4k
    if (z != NULL) {
4890
11.4k
        PyTuple_SET_ITEM(z, 0, (PyObject *) div);
4891
11.4k
        PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
4892
11.4k
    }
4893
0
    else {
4894
0
        Py_DECREF(div);
4895
0
        Py_DECREF(mod);
4896
0
    }
4897
11.4k
    return z;
4898
11.4k
}
4899
4900
4901
/* Compute an inverse to a modulo n, or raise ValueError if a is not
4902
   invertible modulo n. Assumes n is positive. The inverse returned
4903
   is whatever falls out of the extended Euclidean algorithm: it may
4904
   be either positive or negative, but will be smaller than n in
4905
   absolute value.
4906
4907
   Pure Python equivalent for long_invmod:
4908
4909
        def invmod(a, n):
4910
            b, c = 1, 0
4911
            while n:
4912
                q, r = divmod(a, n)
4913
                a, b, c, n = n, c, b - q*c, r
4914
4915
            # at this point a is the gcd of the original inputs
4916
            if a == 1:
4917
                return b
4918
            raise ValueError("Not invertible")
4919
*/
4920
4921
static PyLongObject *
4922
long_invmod(PyLongObject *a, PyLongObject *n)
4923
0
{
4924
    /* Should only ever be called for positive n */
4925
0
    assert(_PyLong_IsPositive(n));
4926
4927
0
    Py_INCREF(a);
4928
0
    PyLongObject *b = (PyLongObject *)Py_NewRef(_PyLong_GetOne());
4929
0
    PyLongObject *c = (PyLongObject *)Py_NewRef(_PyLong_GetZero());
4930
0
    Py_INCREF(n);
4931
4932
    /* references now owned: a, b, c, n */
4933
0
    while (!_PyLong_IsZero(n)) {
4934
0
        PyLongObject *q, *r, *s, *t;
4935
4936
0
        if (l_divmod(a, n, &q, &r) == -1) {
4937
0
            goto Error;
4938
0
        }
4939
0
        Py_SETREF(a, n);
4940
0
        n = r;
4941
0
        t = (PyLongObject *)long_mul(q, c);
4942
0
        Py_DECREF(q);
4943
0
        if (t == NULL) {
4944
0
            goto Error;
4945
0
        }
4946
0
        s = long_sub(b, t);
4947
0
        Py_DECREF(t);
4948
0
        if (s == NULL) {
4949
0
            goto Error;
4950
0
        }
4951
0
        Py_SETREF(b, c);
4952
0
        c = s;
4953
0
    }
4954
    /* references now owned: a, b, c, n */
4955
4956
0
    Py_DECREF(c);
4957
0
    Py_DECREF(n);
4958
0
    if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
4959
        /* a != 1; we don't have an inverse. */
4960
0
        Py_DECREF(a);
4961
0
        Py_DECREF(b);
4962
0
        PyErr_SetString(PyExc_ValueError,
4963
0
                        "base is not invertible for the given modulus");
4964
0
        return NULL;
4965
0
    }
4966
0
    else {
4967
        /* a == 1; b gives an inverse modulo n */
4968
0
        Py_DECREF(a);
4969
0
        return b;
4970
0
    }
4971
4972
0
  Error:
4973
0
    Py_DECREF(a);
4974
0
    Py_DECREF(b);
4975
0
    Py_DECREF(c);
4976
0
    Py_DECREF(n);
4977
0
    return NULL;
4978
0
}
4979
4980
4981
/* pow(v, w, x) */
4982
static PyObject *
4983
long_pow(PyObject *v, PyObject *w, PyObject *x)
4984
1.05M
{
4985
1.05M
    PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
4986
1.05M
    int negativeOutput = 0;  /* if x<0 return negative output */
4987
4988
1.05M
    PyLongObject *z = NULL;  /* accumulated result */
4989
1.05M
    Py_ssize_t i, j;             /* counters */
4990
1.05M
    PyLongObject *temp = NULL;
4991
1.05M
    PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
4992
4993
    /* k-ary values.  If the exponent is large enough, table is
4994
     * precomputed so that table[i] == a**(2*i+1) % c for i in
4995
     * range(EXP_TABLE_LEN).
4996
     * Note: this is uninitialized stack trash: don't pay to set it to known
4997
     * values unless it's needed. Instead ensure that num_table_entries is
4998
     * set to the number of entries actually filled whenever a branch to the
4999
     * Error or Done labels is possible.
5000
     */
5001
1.05M
    PyLongObject *table[EXP_TABLE_LEN];
5002
1.05M
    Py_ssize_t num_table_entries = 0;
5003
5004
    /* a, b, c = v, w, x */
5005
1.05M
    CHECK_BINOP(v, w);
5006
1.05M
    a = (PyLongObject*)Py_NewRef(v);
5007
1.05M
    b = (PyLongObject*)Py_NewRef(w);
5008
1.05M
    if (PyLong_Check(x)) {
5009
0
        c = (PyLongObject *)Py_NewRef(x);
5010
0
    }
5011
1.05M
    else if (x == Py_None)
5012
1.05M
        c = NULL;
5013
0
    else {
5014
0
        Py_DECREF(a);
5015
0
        Py_DECREF(b);
5016
0
        Py_RETURN_NOTIMPLEMENTED;
5017
0
    }
5018
5019
1.05M
    if (_PyLong_IsNegative(b) && c == NULL) {
5020
        /* if exponent is negative and there's no modulus:
5021
               return a float.  This works because we know
5022
               that this calls float_pow() which converts its
5023
               arguments to double. */
5024
6
        Py_DECREF(a);
5025
6
        Py_DECREF(b);
5026
6
        return PyFloat_Type.tp_as_number->nb_power(v, w, x);
5027
6
    }
5028
5029
1.05M
    if (c) {
5030
        /* if modulus == 0:
5031
               raise ValueError() */
5032
0
        if (_PyLong_IsZero(c)) {
5033
0
            PyErr_SetString(PyExc_ValueError,
5034
0
                            "pow() 3rd argument cannot be 0");
5035
0
            goto Error;
5036
0
        }
5037
5038
        /* if modulus < 0:
5039
               negativeOutput = True
5040
               modulus = -modulus */
5041
0
        if (_PyLong_IsNegative(c)) {
5042
0
            negativeOutput = 1;
5043
0
            temp = (PyLongObject *)_PyLong_Copy(c);
5044
0
            if (temp == NULL)
5045
0
                goto Error;
5046
0
            Py_SETREF(c, temp);
5047
0
            temp = NULL;
5048
0
            _PyLong_Negate(&c);
5049
0
            if (c == NULL)
5050
0
                goto Error;
5051
0
        }
5052
5053
        /* if modulus == 1:
5054
               return 0 */
5055
0
        if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) {
5056
0
            z = (PyLongObject *)PyLong_FromLong(0L);
5057
0
            goto Done;
5058
0
        }
5059
5060
        /* if exponent is negative, negate the exponent and
5061
           replace the base with a modular inverse */
5062
0
        if (_PyLong_IsNegative(b)) {
5063
0
            temp = (PyLongObject *)_PyLong_Copy(b);
5064
0
            if (temp == NULL)
5065
0
                goto Error;
5066
0
            Py_SETREF(b, temp);
5067
0
            temp = NULL;
5068
0
            _PyLong_Negate(&b);
5069
0
            if (b == NULL)
5070
0
                goto Error;
5071
5072
0
            temp = long_invmod(a, c);
5073
0
            if (temp == NULL)
5074
0
                goto Error;
5075
0
            Py_SETREF(a, temp);
5076
0
            temp = NULL;
5077
0
        }
5078
5079
        /* Reduce base by modulus in some cases:
5080
           1. If base < 0.  Forcing the base non-negative makes things easier.
5081
           2. If base is obviously larger than the modulus.  The "small
5082
              exponent" case later can multiply directly by base repeatedly,
5083
              while the "large exponent" case multiplies directly by base 31
5084
              times.  It can be unboundedly faster to multiply by
5085
              base % modulus instead.
5086
           We could _always_ do this reduction, but l_mod() isn't cheap,
5087
           so we only do it when it buys something. */
5088
0
        if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) {
5089
0
            if (l_mod(a, c, &temp) < 0)
5090
0
                goto Error;
5091
0
            Py_SETREF(a, temp);
5092
0
            temp = NULL;
5093
0
        }
5094
0
    }
5095
5096
    /* At this point a, b, and c are guaranteed non-negative UNLESS
5097
       c is NULL, in which case a may be negative. */
5098
5099
1.05M
    z = (PyLongObject *)PyLong_FromLong(1L);
5100
1.05M
    if (z == NULL)
5101
0
        goto Error;
5102
5103
    /* Perform a modular reduction, X = X % c, but leave X alone if c
5104
     * is NULL.
5105
     */
5106
1.05M
#define REDUCE(X)                                       \
5107
4.27M
    do {                                                \
5108
4.27M
        if (c != NULL) {                                \
5109
0
            if (l_mod(X, c, &temp) < 0)                 \
5110
0
                goto Error;                             \
5111
0
            Py_XDECREF(X);                              \
5112
0
            X = temp;                                   \
5113
0
            temp = NULL;                                \
5114
0
        }                                               \
5115
4.27M
    } while(0)
5116
5117
    /* Multiply two values, then reduce the result:
5118
       result = X*Y % c.  If c is NULL, skip the mod. */
5119
1.05M
#define MULT(X, Y, result)                      \
5120
4.27M
    do {                                        \
5121
4.27M
        temp = (PyLongObject *)long_mul(X, Y);  \
5122
4.27M
        if (temp == NULL)                       \
5123
4.27M
            goto Error;                         \
5124
4.27M
        Py_XDECREF(result);                     \
5125
4.27M
        result = temp;                          \
5126
4.27M
        temp = NULL;                            \
5127
4.27M
        REDUCE(result);                         \
5128
4.27M
    } while(0)
5129
5130
1.05M
    i = _PyLong_SignedDigitCount(b);
5131
1.05M
    digit bi = i ? b->long_value.ob_digit[i-1] : 0;
5132
1.05M
    digit bit;
5133
1.05M
    if (i <= 1 && bi <= 3) {
5134
        /* aim for minimal overhead */
5135
6
        if (bi >= 2) {
5136
2
            MULT(a, a, z);
5137
2
            if (bi == 3) {
5138
2
                MULT(z, a, z);
5139
2
            }
5140
2
        }
5141
4
        else if (bi == 1) {
5142
            /* Multiplying by 1 serves two purposes: if `a` is of an int
5143
             * subclass, makes the result an int (e.g., pow(False, 1) returns
5144
             * 0 instead of False), and potentially reduces `a` by the modulus.
5145
             */
5146
2
            MULT(a, z, z);
5147
2
        }
5148
        /* else bi is 0, and z==1 is correct */
5149
6
    }
5150
1.05M
    else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
5151
        /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
5152
        /* https://cacr.uwaterloo.ca/hac/about/chap14.pdf            */
5153
5154
        /* Find the first significant exponent bit. Search right to left
5155
         * because we're primarily trying to cut overhead for small powers.
5156
         */
5157
1.05M
        assert(bi);  /* else there is no significant bit */
5158
1.05M
        Py_SETREF(z, (PyLongObject*)Py_NewRef(a));
5159
3.21M
        for (bit = 2; ; bit <<= 1) {
5160
3.21M
            if (bit > bi) { /* found the first bit */
5161
1.05M
                assert((bi & bit) == 0);
5162
1.05M
                bit >>= 1;
5163
1.05M
                assert(bi & bit);
5164
1.05M
                break;
5165
1.05M
            }
5166
3.21M
        }
5167
1.05M
        for (--i, bit >>= 1;;) {
5168
3.21M
            for (; bit != 0; bit >>= 1) {
5169
2.15M
                MULT(z, z, z);
5170
2.15M
                if (bi & bit) {
5171
2.11M
                    MULT(z, a, z);
5172
2.11M
                }
5173
2.15M
            }
5174
1.05M
            if (--i < 0) {
5175
1.05M
                break;
5176
1.05M
            }
5177
0
            bi = b->long_value.ob_digit[i];
5178
0
            bit = (digit)1 << (PyLong_SHIFT-1);
5179
0
        }
5180
1.05M
    }
5181
0
    else {
5182
        /* Left-to-right k-ary sliding window exponentiation
5183
         * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
5184
         */
5185
0
        table[0] = (PyLongObject*)Py_NewRef(a);
5186
0
        num_table_entries = 1;
5187
0
        MULT(a, a, a2);
5188
        /* table[i] == a**(2*i + 1) % c */
5189
0
        for (i = 1; i < EXP_TABLE_LEN; ++i) {
5190
0
            table[i] = NULL; /* must set to known value for MULT */
5191
0
            MULT(table[i-1], a2, table[i]);
5192
0
            ++num_table_entries; /* incremented iff MULT succeeded */
5193
0
        }
5194
0
        Py_CLEAR(a2);
5195
5196
        /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
5197
         * into `pending`, starting with the next 1 bit.  The current bit
5198
         * length of `pending` is `blen`.
5199
         */
5200
0
        int pending = 0, blen = 0;
5201
0
#define ABSORB_PENDING  do { \
5202
0
            int ntz = 0; /* number of trailing zeroes in `pending` */ \
5203
0
            assert(pending && blen); \
5204
0
            assert(pending >> (blen - 1)); \
5205
0
            assert(pending >> blen == 0); \
5206
0
            while ((pending & 1) == 0) { \
5207
0
                ++ntz; \
5208
0
                pending >>= 1; \
5209
0
            } \
5210
0
            assert(ntz < blen); \
5211
0
            blen -= ntz; \
5212
0
            do { \
5213
0
                MULT(z, z, z); \
5214
0
            } while (--blen); \
5215
0
            MULT(z, table[pending >> 1], z); \
5216
0
            while (ntz-- > 0) \
5217
0
                MULT(z, z, z); \
5218
0
            assert(blen == 0); \
5219
0
            pending = 0; \
5220
0
        } while(0)
5221
5222
0
        for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) {
5223
0
            const digit bi = b->long_value.ob_digit[i];
5224
0
            for (j = PyLong_SHIFT - 1; j >= 0; --j) {
5225
0
                const int bit = (bi >> j) & 1;
5226
0
                pending = (pending << 1) | bit;
5227
0
                if (pending) {
5228
0
                    ++blen;
5229
0
                    if (blen == EXP_WINDOW_SIZE)
5230
0
                        ABSORB_PENDING;
5231
0
                }
5232
0
                else /* absorb strings of 0 bits */
5233
0
                    MULT(z, z, z);
5234
0
            }
5235
0
        }
5236
0
        if (pending)
5237
0
            ABSORB_PENDING;
5238
0
    }
5239
5240
1.05M
    if (negativeOutput && !_PyLong_IsZero(z)) {
5241
0
        temp = long_sub(z, c);
5242
0
        if (temp == NULL)
5243
0
            goto Error;
5244
0
        Py_SETREF(z, temp);
5245
0
        temp = NULL;
5246
0
    }
5247
1.05M
    goto Done;
5248
5249
1.05M
  Error:
5250
0
    Py_CLEAR(z);
5251
    /* fall through */
5252
1.05M
  Done:
5253
1.05M
    for (i = 0; i < num_table_entries; ++i)
5254
0
        Py_DECREF(table[i]);
5255
1.05M
    Py_DECREF(a);
5256
1.05M
    Py_DECREF(b);
5257
1.05M
    Py_XDECREF(c);
5258
1.05M
    Py_XDECREF(a2);
5259
1.05M
    Py_XDECREF(temp);
5260
1.05M
    return (PyObject *)z;
5261
0
}
5262
5263
static PyObject *
5264
long_invert(PyObject *self)
5265
30.1k
{
5266
30.1k
    PyLongObject *v = _PyLong_CAST(self);
5267
5268
    /* Implement ~x as -(x+1) */
5269
30.1k
    if (_PyLong_IsCompact(v))
5270
30.1k
        return (PyObject*)_PyLong_FromSTwoDigits(~medium_value(v));
5271
5272
0
    PyLongObject *x = long_add(v, (PyLongObject *)_PyLong_GetOne());
5273
0
    if (x == NULL)
5274
0
        return NULL;
5275
0
    _PyLong_Negate(&x);
5276
    /* No need for maybe_small_long here, since any small longs
5277
       will have been caught in the _PyLong_IsCompact() fast path. */
5278
0
    return (PyObject *)x;
5279
0
}
5280
5281
static PyLongObject *
5282
long_neg(PyLongObject *v)
5283
1.14M
{
5284
1.14M
    if (_PyLong_IsCompact(v)) {
5285
1.02M
        return _PyLong_FromSTwoDigits(-medium_value(v));
5286
1.02M
    }
5287
5288
118k
    PyLongObject *z = (PyLongObject *)_PyLong_Copy(v);
5289
118k
    if (z != NULL) {
5290
118k
        _PyLong_FlipSign(z);
5291
118k
    }
5292
118k
    return z;
5293
1.14M
}
5294
5295
static PyObject *
5296
long_neg_method(PyObject *v)
5297
1.14M
{
5298
1.14M
    return (PyObject*)long_neg(_PyLong_CAST(v));
5299
1.14M
}
5300
5301
static PyLongObject*
5302
long_abs(PyLongObject *v)
5303
0
{
5304
0
    if (_PyLong_IsNegative(v))
5305
0
        return long_neg(v);
5306
0
    else
5307
0
        return (PyLongObject*)long_long((PyObject *)v);
5308
0
}
5309
5310
static PyObject *
5311
long_abs_method(PyObject *v)
5312
0
{
5313
0
    return (PyObject*)long_abs(_PyLong_CAST(v));
5314
0
}
5315
5316
static int
5317
long_bool(PyObject *v)
5318
715k
{
5319
715k
    return !_PyLong_IsZero(_PyLong_CAST(v));
5320
715k
}
5321
5322
/* Inner function for both long_rshift and _PyLong_Rshift, shifting an
5323
   integer right by PyLong_SHIFT*wordshift + remshift bits.
5324
   wordshift should be nonnegative. */
5325
5326
static PyObject *
5327
long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5328
232k
{
5329
232k
    PyLongObject *z = NULL;
5330
232k
    Py_ssize_t newsize, hishift, size_a;
5331
232k
    twodigits accum;
5332
232k
    int a_negative;
5333
5334
    /* Total number of bits shifted must be nonnegative. */
5335
232k
    assert(wordshift >= 0);
5336
232k
    assert(remshift < PyLong_SHIFT);
5337
5338
    /* Fast path for small a. */
5339
232k
    if (_PyLong_IsCompact(a)) {
5340
232k
        stwodigits m, x;
5341
232k
        digit shift;
5342
232k
        m = medium_value(a);
5343
232k
        shift = wordshift == 0 ? remshift : PyLong_SHIFT;
5344
232k
        x = m < 0 ? ~(~m >> shift) : m >> shift;
5345
232k
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5346
232k
    }
5347
5348
173
    a_negative = _PyLong_IsNegative(a);
5349
173
    size_a = _PyLong_DigitCount(a);
5350
5351
173
    if (a_negative) {
5352
        /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
5353
           while keeping PyLong_SHIFT*wordshift + remshift the same. This
5354
           ensures that 'newsize' is computed correctly below. */
5355
0
        if (remshift == 0) {
5356
0
            if (wordshift == 0) {
5357
                /* Can only happen if the original shift was 0. */
5358
0
                return long_long((PyObject *)a);
5359
0
            }
5360
0
            remshift = PyLong_SHIFT;
5361
0
            --wordshift;
5362
0
        }
5363
0
    }
5364
5365
173
    assert(wordshift >= 0);
5366
173
    newsize = size_a - wordshift;
5367
173
    if (newsize <= 0) {
5368
        /* Shifting all the bits of 'a' out gives either -1 or 0. */
5369
0
        return PyLong_FromLong(-a_negative);
5370
0
    }
5371
173
    z = long_alloc(newsize);
5372
173
    if (z == NULL) {
5373
0
        return NULL;
5374
0
    }
5375
173
    hishift = PyLong_SHIFT - remshift;
5376
5377
173
    accum = a->long_value.ob_digit[wordshift];
5378
173
    if (a_negative) {
5379
        /*
5380
            For a positive integer a and nonnegative shift, we have:
5381
5382
                (-a) >> shift == -((a + 2**shift - 1) >> shift).
5383
5384
            In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
5385
            `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
5386
            from the bottom `wordshift` digits when at least one of the least
5387
            significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
5388
            of `2**shift - 1` has value `PyLong_MASK >> hishift`.
5389
        */
5390
0
        _PyLong_SetSignAndDigitCount(z, -1, newsize);
5391
5392
0
        digit sticky = 0;
5393
0
        for (Py_ssize_t j = 0; j < wordshift; j++) {
5394
0
            sticky |= a->long_value.ob_digit[j];
5395
0
        }
5396
0
        accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
5397
0
    }
5398
5399
173
    accum >>= remshift;
5400
574
    for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
5401
401
        accum += (twodigits)a->long_value.ob_digit[j] << hishift;
5402
401
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5403
401
        accum >>= PyLong_SHIFT;
5404
401
    }
5405
173
    assert(accum <= PyLong_MASK);
5406
173
    z->long_value.ob_digit[newsize - 1] = (digit)accum;
5407
5408
173
    z = maybe_small_long(long_normalize(z));
5409
173
    return (PyObject *)z;
5410
173
}
5411
5412
static PyObject *
5413
long_rshift(PyObject *a, PyObject *b)
5414
268k
{
5415
268k
    int64_t shiftby;
5416
5417
268k
    CHECK_BINOP(a, b);
5418
5419
268k
    if (_PyLong_IsNegative((PyLongObject *)b)) {
5420
0
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5421
0
        return NULL;
5422
0
    }
5423
268k
    if (_PyLong_IsZero((PyLongObject *)a)) {
5424
36.1k
        return PyLong_FromLong(0);
5425
36.1k
    }
5426
232k
    if (PyLong_AsInt64(b, &shiftby) < 0) {
5427
0
        if (!PyErr_ExceptionMatches(PyExc_OverflowError)) {
5428
0
            return NULL;
5429
0
        }
5430
0
        PyErr_Clear();
5431
0
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5432
0
            return PyLong_FromLong(-1);
5433
0
        }
5434
0
        else {
5435
0
            return PyLong_FromLong(0);
5436
0
        }
5437
0
    }
5438
232k
    return _PyLong_Rshift(a, shiftby);
5439
232k
}
5440
5441
/* Return a >> shiftby. */
5442
PyObject *
5443
_PyLong_Rshift(PyObject *a, int64_t shiftby)
5444
232k
{
5445
232k
    Py_ssize_t wordshift;
5446
232k
    digit remshift;
5447
5448
232k
    assert(PyLong_Check(a));
5449
232k
    assert(shiftby >= 0);
5450
232k
    if (_PyLong_IsZero((PyLongObject *)a)) {
5451
0
        return PyLong_FromLong(0);
5452
0
    }
5453
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5454
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5455
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5456
            return PyLong_FromLong(-1);
5457
        }
5458
        else {
5459
            return PyLong_FromLong(0);
5460
        }
5461
    }
5462
#endif
5463
232k
    wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5464
232k
    remshift = (digit)(shiftby % PyLong_SHIFT);
5465
232k
    return long_rshift1((PyLongObject *)a, wordshift, remshift);
5466
232k
}
5467
5468
static PyObject *
5469
long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5470
6.52M
{
5471
6.52M
    PyLongObject *z = NULL;
5472
6.52M
    Py_ssize_t oldsize, newsize, i, j;
5473
6.52M
    twodigits accum;
5474
5475
6.52M
    if (wordshift == 0 && _PyLong_IsCompact(a)) {
5476
3.18M
        stwodigits m = medium_value(a);
5477
        // bypass undefined shift operator behavior
5478
3.18M
        stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
5479
3.18M
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5480
3.18M
    }
5481
5482
3.33M
    oldsize = _PyLong_DigitCount(a);
5483
3.33M
    newsize = oldsize + wordshift;
5484
3.33M
    if (remshift)
5485
3.33M
        ++newsize;
5486
3.33M
    z = long_alloc(newsize);
5487
3.33M
    if (z == NULL)
5488
0
        return NULL;
5489
3.33M
    if (_PyLong_IsNegative(a)) {
5490
1
        assert(Py_REFCNT(z) == 1);
5491
1
        _PyLong_FlipSign(z);
5492
1
    }
5493
3.33M
    for (i = 0; i < wordshift; i++)
5494
1.52k
        z->long_value.ob_digit[i] = 0;
5495
3.33M
    accum = 0;
5496
10.1M
    for (j = 0; j < oldsize; i++, j++) {
5497
6.78M
        accum |= (twodigits)a->long_value.ob_digit[j] << remshift;
5498
6.78M
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5499
6.78M
        accum >>= PyLong_SHIFT;
5500
6.78M
    }
5501
3.33M
    if (remshift)
5502
3.33M
        z->long_value.ob_digit[newsize-1] = (digit)accum;
5503
1
    else
5504
3.33M
        assert(!accum);
5505
3.33M
    z = long_normalize(z);
5506
3.33M
    return (PyObject *) maybe_small_long(z);
5507
3.33M
}
5508
5509
5510
static PyObject *
5511
long_lshift_method(PyObject *aa, PyObject *bb)
5512
7.59M
{
5513
7.59M
    CHECK_BINOP(aa, bb);
5514
7.59M
    PyLongObject *a = (PyLongObject*)aa;
5515
7.59M
    PyLongObject *b = (PyLongObject*)bb;
5516
5517
7.59M
    if (_PyLong_IsNegative(b)) {
5518
0
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5519
0
        return NULL;
5520
0
    }
5521
7.59M
    if (_PyLong_IsZero(a)) {
5522
1.06M
        return PyLong_FromLong(0);
5523
1.06M
    }
5524
5525
6.52M
    int64_t shiftby;
5526
6.52M
    if (PyLong_AsInt64(bb, &shiftby) < 0) {
5527
0
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
5528
0
            PyErr_SetString(PyExc_OverflowError,
5529
0
                            "too many digits in integer");
5530
0
        }
5531
0
        return NULL;
5532
0
    }
5533
6.52M
    return long_lshift_int64(a, shiftby);
5534
6.52M
}
5535
5536
/* Return a << shiftby. */
5537
static PyObject *
5538
long_lshift_int64(PyLongObject *a, int64_t shiftby)
5539
6.52M
{
5540
6.52M
    assert(shiftby >= 0);
5541
5542
6.52M
    if (_PyLong_IsZero(a)) {
5543
0
        return PyLong_FromLong(0);
5544
0
    }
5545
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5546
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5547
        PyErr_SetString(PyExc_OverflowError,
5548
                        "too many digits in integer");
5549
        return NULL;
5550
    }
5551
#endif
5552
6.52M
    Py_ssize_t wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5553
6.52M
    digit remshift = (digit)(shiftby % PyLong_SHIFT);
5554
6.52M
    return long_lshift1(a, wordshift, remshift);
5555
6.52M
}
5556
5557
PyObject *
5558
_PyLong_Lshift(PyObject *a, int64_t shiftby)
5559
0
{
5560
0
    return long_lshift_int64(_PyLong_CAST(a), shiftby);
5561
0
}
5562
5563
5564
/* Compute two's complement of digit vector a[0:m], writing result to
5565
   z[0:m].  The digit vector a need not be normalized, but should not
5566
   be entirely zero.  a and z may point to the same digit vector. */
5567
5568
static void
5569
v_complement(digit *z, digit *a, Py_ssize_t m)
5570
11
{
5571
11
    Py_ssize_t i;
5572
11
    digit carry = 1;
5573
33
    for (i = 0; i < m; ++i) {
5574
22
        carry += a[i] ^ PyLong_MASK;
5575
22
        z[i] = carry & PyLong_MASK;
5576
22
        carry >>= PyLong_SHIFT;
5577
22
    }
5578
11
    assert(carry == 0);
5579
11
}
5580
5581
/* Bitwise and/xor/or operations */
5582
5583
static PyObject *
5584
long_bitwise(PyLongObject *a,
5585
             char op,  /* '&', '|', '^' */
5586
             PyLongObject *b)
5587
27.8k
{
5588
27.8k
    int nega, negb, negz;
5589
27.8k
    Py_ssize_t size_a, size_b, size_z, i;
5590
27.8k
    PyLongObject *z;
5591
5592
    /* Bitwise operations for negative numbers operate as though
5593
       on a two's complement representation.  So convert arguments
5594
       from sign-magnitude to two's complement, and convert the
5595
       result back to sign-magnitude at the end. */
5596
5597
    /* If a is negative, replace it by its two's complement. */
5598
27.8k
    size_a = _PyLong_DigitCount(a);
5599
27.8k
    nega = _PyLong_IsNegative(a);
5600
27.8k
    if (nega) {
5601
11
        z = long_alloc(size_a);
5602
11
        if (z == NULL)
5603
0
            return NULL;
5604
11
        v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a);
5605
11
        a = z;
5606
11
    }
5607
27.8k
    else
5608
        /* Keep reference count consistent. */
5609
27.8k
        Py_INCREF(a);
5610
5611
    /* Same for b. */
5612
27.8k
    size_b = _PyLong_DigitCount(b);
5613
27.8k
    negb = _PyLong_IsNegative(b);
5614
27.8k
    if (negb) {
5615
0
        z = long_alloc(size_b);
5616
0
        if (z == NULL) {
5617
0
            Py_DECREF(a);
5618
0
            return NULL;
5619
0
        }
5620
0
        v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b);
5621
0
        b = z;
5622
0
    }
5623
27.8k
    else
5624
27.8k
        Py_INCREF(b);
5625
5626
    /* Swap a and b if necessary to ensure size_a >= size_b. */
5627
27.8k
    if (size_a < size_b) {
5628
20.7k
        z = a; a = b; b = z;
5629
20.7k
        size_z = size_a; size_a = size_b; size_b = size_z;
5630
20.7k
        negz = nega; nega = negb; negb = negz;
5631
20.7k
    }
5632
5633
    /* JRH: The original logic here was to allocate the result value (z)
5634
       as the longer of the two operands.  However, there are some cases
5635
       where the result is guaranteed to be shorter than that: AND of two
5636
       positives, OR of two negatives: use the shorter number.  AND with
5637
       mixed signs: use the positive number.  OR with mixed signs: use the
5638
       negative number.
5639
    */
5640
27.8k
    switch (op) {
5641
156
    case '^':
5642
156
        negz = nega ^ negb;
5643
156
        size_z = size_a;
5644
156
        break;
5645
27.6k
    case '&':
5646
27.6k
        negz = nega & negb;
5647
27.6k
        size_z = negb ? size_a : size_b;
5648
27.6k
        break;
5649
64
    case '|':
5650
64
        negz = nega | negb;
5651
64
        size_z = negb ? size_b : size_a;
5652
64
        break;
5653
0
    default:
5654
0
        Py_UNREACHABLE();
5655
27.8k
    }
5656
5657
    /* We allow an extra digit if z is negative, to make sure that
5658
       the final two's complement of z doesn't overflow. */
5659
27.8k
    z = long_alloc(size_z + negz);
5660
27.8k
    if (z == NULL) {
5661
0
        Py_DECREF(a);
5662
0
        Py_DECREF(b);
5663
0
        return NULL;
5664
0
    }
5665
5666
    /* Compute digits for overlap of a and b. */
5667
27.8k
    switch(op) {
5668
27.6k
    case '&':
5669
48.5k
        for (i = 0; i < size_b; ++i)
5670
20.9k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i];
5671
27.6k
        break;
5672
64
    case '|':
5673
112
        for (i = 0; i < size_b; ++i)
5674
48
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i];
5675
64
        break;
5676
156
    case '^':
5677
594
        for (i = 0; i < size_b; ++i)
5678
438
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i];
5679
156
        break;
5680
0
    default:
5681
0
        Py_UNREACHABLE();
5682
27.8k
    }
5683
5684
    /* Copy any remaining digits of a, inverting if necessary. */
5685
27.8k
    if (op == '^' && negb)
5686
0
        for (; i < size_z; ++i)
5687
0
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK;
5688
27.8k
    else if (i < size_z)
5689
182
        memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i],
5690
182
               (size_z-i)*sizeof(digit));
5691
5692
    /* Complement result if negative. */
5693
27.8k
    if (negz) {
5694
0
        _PyLong_FlipSign(z);
5695
0
        z->long_value.ob_digit[size_z] = PyLong_MASK;
5696
0
        v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1);
5697
0
    }
5698
5699
27.8k
    Py_DECREF(a);
5700
27.8k
    Py_DECREF(b);
5701
27.8k
    return (PyObject *)maybe_small_long(long_normalize(z));
5702
27.8k
}
5703
5704
static PyObject *
5705
long_and(PyObject *a, PyObject *b)
5706
28.3k
{
5707
28.3k
    CHECK_BINOP(a, b);
5708
28.3k
    PyLongObject *x = (PyLongObject*)a;
5709
28.3k
    PyLongObject *y = (PyLongObject*)b;
5710
28.3k
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5711
777
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
5712
777
    }
5713
27.6k
    return long_bitwise(x, '&', y);
5714
28.3k
}
5715
5716
static PyObject *
5717
long_xor(PyObject *a, PyObject *b)
5718
183
{
5719
183
    CHECK_BINOP(a, b);
5720
183
    PyLongObject *x = (PyLongObject*)a;
5721
183
    PyLongObject *y = (PyLongObject*)b;
5722
183
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5723
27
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
5724
27
    }
5725
156
    return long_bitwise(x, '^', y);
5726
183
}
5727
5728
static PyObject *
5729
long_or(PyObject *a, PyObject *b)
5730
569
{
5731
569
    CHECK_BINOP(a, b);
5732
569
    PyLongObject *x = (PyLongObject*)a;
5733
569
    PyLongObject *y = (PyLongObject*)b;
5734
569
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5735
505
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
5736
505
    }
5737
64
    return long_bitwise(x, '|', y);
5738
569
}
5739
5740
static PyObject *
5741
long_long(PyObject *v)
5742
5.39M
{
5743
5.39M
    if (PyLong_CheckExact(v)) {
5744
5.39M
        return Py_NewRef(v);
5745
5.39M
    }
5746
0
    else {
5747
0
        return _PyLong_Copy((PyLongObject *)v);
5748
0
    }
5749
5.39M
}
5750
5751
PyObject *
5752
_PyLong_GCD(PyObject *aarg, PyObject *barg)
5753
0
{
5754
0
    PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
5755
0
    stwodigits x, y, q, s, t, c_carry, d_carry;
5756
0
    stwodigits A, B, C, D, T;
5757
0
    int nbits, k;
5758
0
    digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
5759
5760
0
    a = (PyLongObject *)aarg;
5761
0
    b = (PyLongObject *)barg;
5762
0
    if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) {
5763
0
        Py_INCREF(a);
5764
0
        Py_INCREF(b);
5765
0
        goto simple;
5766
0
    }
5767
5768
    /* Initial reduction: make sure that 0 <= b <= a. */
5769
0
    a = long_abs(a);
5770
0
    if (a == NULL)
5771
0
        return NULL;
5772
0
    b = long_abs(b);
5773
0
    if (b == NULL) {
5774
0
        Py_DECREF(a);
5775
0
        return NULL;
5776
0
    }
5777
0
    if (long_compare(a, b) < 0) {
5778
0
        r = a;
5779
0
        a = b;
5780
0
        b = r;
5781
0
    }
5782
    /* We now own references to a and b */
5783
5784
0
    Py_ssize_t size_a, size_b, alloc_a, alloc_b;
5785
0
    alloc_a = _PyLong_DigitCount(a);
5786
0
    alloc_b = _PyLong_DigitCount(b);
5787
    /* reduce until a fits into 2 digits */
5788
0
    while ((size_a = _PyLong_DigitCount(a)) > 2) {
5789
0
        nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]);
5790
        /* extract top 2*PyLong_SHIFT bits of a into x, along with
5791
           corresponding bits of b into y */
5792
0
        size_b = _PyLong_DigitCount(b);
5793
0
        assert(size_b <= size_a);
5794
0
        if (size_b == 0) {
5795
0
            if (size_a < alloc_a) {
5796
0
                r = (PyLongObject *)_PyLong_Copy(a);
5797
0
                Py_DECREF(a);
5798
0
            }
5799
0
            else
5800
0
                r = a;
5801
0
            Py_DECREF(b);
5802
0
            Py_XDECREF(c);
5803
0
            Py_XDECREF(d);
5804
0
            return (PyObject *)r;
5805
0
        }
5806
0
        x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
5807
0
             ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
5808
0
             (a->long_value.ob_digit[size_a-3] >> nbits));
5809
5810
0
        y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) |
5811
0
             (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
5812
0
             (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
5813
5814
        /* inner loop of Lehmer's algorithm; A, B, C, D never grow
5815
           larger than PyLong_MASK during the algorithm. */
5816
0
        A = 1; B = 0; C = 0; D = 1;
5817
0
        for (k=0;; k++) {
5818
0
            if (y-C == 0)
5819
0
                break;
5820
0
            q = (x+(A-1))/(y-C);
5821
0
            s = B+q*D;
5822
0
            t = x-q*y;
5823
0
            if (s > t)
5824
0
                break;
5825
0
            x = y; y = t;
5826
0
            t = A+q*C; A = D; B = C; C = s; D = t;
5827
0
        }
5828
5829
0
        if (k == 0) {
5830
            /* no progress; do a Euclidean step */
5831
0
            if (l_mod(a, b, &r) < 0)
5832
0
                goto error;
5833
0
            Py_SETREF(a, b);
5834
0
            b = r;
5835
0
            alloc_a = alloc_b;
5836
0
            alloc_b = _PyLong_DigitCount(b);
5837
0
            continue;
5838
0
        }
5839
5840
        /*
5841
          a, b = A*b-B*a, D*a-C*b if k is odd
5842
          a, b = A*a-B*b, D*b-C*a if k is even
5843
        */
5844
0
        if (k&1) {
5845
0
            T = -A; A = -B; B = T;
5846
0
            T = -C; C = -D; D = T;
5847
0
        }
5848
0
        if (c != NULL) {
5849
0
            assert(size_a >= 0);
5850
0
            _PyLong_SetSignAndDigitCount(c, 1, size_a);
5851
0
        }
5852
0
        else if (_PyObject_IsUniquelyReferenced((PyObject *)a)) {
5853
0
            c = (PyLongObject*)Py_NewRef(a);
5854
0
        }
5855
0
        else {
5856
0
            alloc_a = size_a;
5857
0
            c = long_alloc(size_a);
5858
0
            if (c == NULL)
5859
0
                goto error;
5860
0
        }
5861
5862
0
        if (d != NULL) {
5863
0
            assert(size_a >= 0);
5864
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5865
0
        }
5866
0
        else if (_PyObject_IsUniquelyReferenced((PyObject *)b)
5867
0
                 && size_a <= alloc_b) {
5868
0
            d = (PyLongObject*)Py_NewRef(b);
5869
0
            assert(size_a >= 0);
5870
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5871
0
        }
5872
0
        else {
5873
0
            alloc_b = size_a;
5874
0
            d = long_alloc(size_a);
5875
0
            if (d == NULL)
5876
0
                goto error;
5877
0
        }
5878
0
        a_end = a->long_value.ob_digit + size_a;
5879
0
        b_end = b->long_value.ob_digit + size_b;
5880
5881
        /* compute new a and new b in parallel */
5882
0
        a_digit = a->long_value.ob_digit;
5883
0
        b_digit = b->long_value.ob_digit;
5884
0
        c_digit = c->long_value.ob_digit;
5885
0
        d_digit = d->long_value.ob_digit;
5886
0
        c_carry = 0;
5887
0
        d_carry = 0;
5888
0
        while (b_digit < b_end) {
5889
0
            c_carry += (A * *a_digit) - (B * *b_digit);
5890
0
            d_carry += (D * *b_digit++) - (C * *a_digit++);
5891
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5892
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5893
0
            c_carry >>= PyLong_SHIFT;
5894
0
            d_carry >>= PyLong_SHIFT;
5895
0
        }
5896
0
        while (a_digit < a_end) {
5897
0
            c_carry += A * *a_digit;
5898
0
            d_carry -= C * *a_digit++;
5899
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5900
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5901
0
            c_carry >>= PyLong_SHIFT;
5902
0
            d_carry >>= PyLong_SHIFT;
5903
0
        }
5904
0
        assert(c_carry == 0);
5905
0
        assert(d_carry == 0);
5906
5907
0
        Py_INCREF(c);
5908
0
        Py_INCREF(d);
5909
0
        Py_DECREF(a);
5910
0
        Py_DECREF(b);
5911
0
        a = long_normalize(c);
5912
0
        b = long_normalize(d);
5913
0
    }
5914
0
    Py_XDECREF(c);
5915
0
    Py_XDECREF(d);
5916
5917
0
simple:
5918
0
    assert(Py_REFCNT(a) > 0);
5919
0
    assert(Py_REFCNT(b) > 0);
5920
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
5921
   undefined behaviour when LONG_MAX type is smaller than 60 bits */
5922
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5923
    /* a fits into a long, so b must too */
5924
0
    x = PyLong_AsLong((PyObject *)a);
5925
0
    y = PyLong_AsLong((PyObject *)b);
5926
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5927
    x = PyLong_AsLongLong((PyObject *)a);
5928
    y = PyLong_AsLongLong((PyObject *)b);
5929
#else
5930
# error "_PyLong_GCD"
5931
#endif
5932
0
    x = Py_ABS(x);
5933
0
    y = Py_ABS(y);
5934
0
    Py_DECREF(a);
5935
0
    Py_DECREF(b);
5936
5937
    /* usual Euclidean algorithm for longs */
5938
0
    while (y != 0) {
5939
0
        t = y;
5940
0
        y = x % y;
5941
0
        x = t;
5942
0
    }
5943
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5944
0
    return PyLong_FromLong(x);
5945
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5946
    return PyLong_FromLongLong(x);
5947
#else
5948
# error "_PyLong_GCD"
5949
#endif
5950
5951
0
error:
5952
0
    Py_DECREF(a);
5953
0
    Py_DECREF(b);
5954
0
    Py_XDECREF(c);
5955
0
    Py_XDECREF(d);
5956
0
    return NULL;
5957
0
}
5958
5959
static PyObject *
5960
long_float(PyObject *v)
5961
0
{
5962
0
    double result;
5963
0
    result = PyLong_AsDouble(v);
5964
0
    if (result == -1.0 && PyErr_Occurred())
5965
0
        return NULL;
5966
0
    return PyFloat_FromDouble(result);
5967
0
}
5968
5969
static PyObject *
5970
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
5971
5972
/*[clinic input]
5973
@classmethod
5974
int.__new__ as long_new
5975
    x: object(c_default="NULL") = 0
5976
    /
5977
    base as obase: object(c_default="NULL") = 10
5978
[clinic start generated code]*/
5979
5980
static PyObject *
5981
long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
5982
/*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
5983
4.28M
{
5984
4.28M
    Py_ssize_t base;
5985
5986
4.28M
    if (type != &PyLong_Type)
5987
3.36k
        return long_subtype_new(type, x, obase); /* Wimp out */
5988
4.27M
    if (x == NULL) {
5989
24
        if (obase != NULL) {
5990
0
            PyErr_SetString(PyExc_TypeError,
5991
0
                            "int() missing string argument");
5992
0
            return NULL;
5993
0
        }
5994
24
        return PyLong_FromLong(0L);
5995
24
    }
5996
    /* default base and limit, forward to standard implementation */
5997
4.27M
    if (obase == NULL)
5998
3.34k
        return PyNumber_Long(x);
5999
6000
4.27M
    base = PyNumber_AsSsize_t(obase, NULL);
6001
4.27M
    if (base == -1 && PyErr_Occurred())
6002
0
        return NULL;
6003
4.27M
    if ((base != 0 && base < 2) || base > 36) {
6004
0
        PyErr_SetString(PyExc_ValueError,
6005
0
                        "int() base must be >= 2 and <= 36, or 0");
6006
0
        return NULL;
6007
0
    }
6008
6009
4.27M
    if (PyUnicode_Check(x))
6010
2.52M
        return PyLong_FromUnicodeObject(x, (int)base);
6011
1.74M
    else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
6012
1.74M
        const char *string;
6013
1.74M
        if (PyByteArray_Check(x))
6014
1.74M
            string = PyByteArray_AS_STRING(x);
6015
0
        else
6016
0
            string = PyBytes_AS_STRING(x);
6017
1.74M
        return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
6018
1.74M
    }
6019
0
    else {
6020
0
        PyErr_SetString(PyExc_TypeError,
6021
0
                        "int() can't convert non-string with explicit base");
6022
0
        return NULL;
6023
0
    }
6024
4.27M
}
6025
6026
/* Wimpy, slow approach to tp_new calls for subtypes of int:
6027
   first create a regular int from whatever arguments we got,
6028
   then allocate a subtype instance and initialize it from
6029
   the regular int.  The regular int is then thrown away.
6030
*/
6031
static PyObject *
6032
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
6033
3.36k
{
6034
3.36k
    PyLongObject *tmp, *newobj;
6035
3.36k
    Py_ssize_t i, n;
6036
6037
3.36k
    assert(PyType_IsSubtype(type, &PyLong_Type));
6038
3.36k
    tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
6039
3.36k
    if (tmp == NULL)
6040
0
        return NULL;
6041
3.36k
    assert(PyLong_Check(tmp));
6042
3.36k
    n = _PyLong_DigitCount(tmp);
6043
    /* Fast operations for single digit integers (including zero)
6044
     * assume that there is always at least one digit present. */
6045
3.36k
    if (n == 0) {
6046
160
        n = 1;
6047
160
    }
6048
3.36k
    newobj = (PyLongObject *)type->tp_alloc(type, n);
6049
3.36k
    if (newobj == NULL) {
6050
0
        Py_DECREF(tmp);
6051
0
        return NULL;
6052
0
    }
6053
3.36k
    assert(PyLong_Check(newobj));
6054
3.36k
    newobj->long_value.lv_tag = tmp->long_value.lv_tag & ~IMMORTALITY_BIT_MASK;
6055
6.77k
    for (i = 0; i < n; i++) {
6056
3.40k
        newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i];
6057
3.40k
    }
6058
3.36k
    Py_DECREF(tmp);
6059
3.36k
    return (PyObject *)newobj;
6060
3.36k
}
6061
6062
/*[clinic input]
6063
int.__getnewargs__
6064
[clinic start generated code]*/
6065
6066
static PyObject *
6067
int___getnewargs___impl(PyObject *self)
6068
/*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
6069
0
{
6070
0
    return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
6071
0
}
6072
6073
static PyObject *
6074
long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
6075
0
{
6076
0
    return PyLong_FromLong(0L);
6077
0
}
6078
6079
static PyObject *
6080
long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
6081
0
{
6082
0
    return PyLong_FromLong(1L);
6083
0
}
6084
6085
/*[clinic input]
6086
int.__format__
6087
6088
    format_spec: unicode
6089
    /
6090
6091
Convert to a string according to format_spec.
6092
[clinic start generated code]*/
6093
6094
static PyObject *
6095
int___format___impl(PyObject *self, PyObject *format_spec)
6096
/*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/
6097
236
{
6098
236
    _PyUnicodeWriter writer;
6099
236
    int ret;
6100
6101
236
    _PyUnicodeWriter_Init(&writer);
6102
236
    ret = _PyLong_FormatAdvancedWriter(
6103
236
        &writer,
6104
236
        self,
6105
236
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
6106
236
    if (ret == -1) {
6107
0
        _PyUnicodeWriter_Dealloc(&writer);
6108
0
        return NULL;
6109
0
    }
6110
236
    return _PyUnicodeWriter_Finish(&writer);
6111
236
}
6112
6113
/* Return a pair (q, r) such that a = b * q + r, and
6114
   abs(r) <= abs(b)/2, with equality possible only if q is even.
6115
   In other words, q == a / b, rounded to the nearest integer using
6116
   round-half-to-even. */
6117
6118
PyObject *
6119
_PyLong_DivmodNear(PyObject *a, PyObject *b)
6120
0
{
6121
0
    PyLongObject *quo = NULL, *rem = NULL;
6122
0
    PyObject *twice_rem, *result, *temp;
6123
0
    int quo_is_odd, quo_is_neg;
6124
0
    Py_ssize_t cmp;
6125
6126
    /* Equivalent Python code:
6127
6128
       def divmod_near(a, b):
6129
           q, r = divmod(a, b)
6130
           # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
6131
           # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
6132
           # positive, 2 * r < b if b negative.
6133
           greater_than_half = 2*r > b if b > 0 else 2*r < b
6134
           exactly_half = 2*r == b
6135
           if greater_than_half or exactly_half and q % 2 == 1:
6136
               q += 1
6137
               r -= b
6138
           return q, r
6139
6140
    */
6141
0
    if (!PyLong_Check(a) || !PyLong_Check(b)) {
6142
0
        PyErr_SetString(PyExc_TypeError,
6143
0
                        "non-integer arguments in division");
6144
0
        return NULL;
6145
0
    }
6146
6147
    /* Do a and b have different signs?  If so, quotient is negative. */
6148
0
    quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b));
6149
6150
0
    if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
6151
0
        goto error;
6152
6153
    /* compare twice the remainder with the divisor, to see
6154
       if we need to adjust the quotient and remainder */
6155
0
    twice_rem = long_lshift_int64(rem, 1);
6156
0
    if (twice_rem == NULL)
6157
0
        goto error;
6158
0
    if (quo_is_neg) {
6159
0
        temp = (PyObject*)long_neg((PyLongObject*)twice_rem);
6160
0
        Py_SETREF(twice_rem, temp);
6161
0
        if (twice_rem == NULL)
6162
0
            goto error;
6163
0
    }
6164
0
    cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
6165
0
    Py_DECREF(twice_rem);
6166
6167
0
    quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0;
6168
0
    if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
6169
        /* fix up quotient */
6170
0
        PyObject *one = _PyLong_GetOne();  // borrowed reference
6171
0
        if (quo_is_neg)
6172
0
            temp = (PyObject*)long_sub(quo, (PyLongObject *)one);
6173
0
        else
6174
0
            temp = (PyObject*)long_add(quo, (PyLongObject *)one);
6175
0
        Py_SETREF(quo, (PyLongObject *)temp);
6176
0
        if (quo == NULL)
6177
0
            goto error;
6178
        /* and remainder */
6179
0
        if (quo_is_neg)
6180
0
            temp = (PyObject*)long_add(rem, (PyLongObject *)b);
6181
0
        else
6182
0
            temp = (PyObject*)long_sub(rem, (PyLongObject *)b);
6183
0
        Py_SETREF(rem, (PyLongObject *)temp);
6184
0
        if (rem == NULL)
6185
0
            goto error;
6186
0
    }
6187
6188
0
    result = PyTuple_New(2);
6189
0
    if (result == NULL)
6190
0
        goto error;
6191
6192
    /* PyTuple_SET_ITEM steals references */
6193
0
    PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
6194
0
    PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
6195
0
    return result;
6196
6197
0
  error:
6198
0
    Py_XDECREF(quo);
6199
0
    Py_XDECREF(rem);
6200
0
    return NULL;
6201
0
}
6202
6203
/*[clinic input]
6204
int.__round__
6205
6206
    ndigits as o_ndigits: object = None
6207
    /
6208
6209
Rounding an Integral returns itself.
6210
6211
Rounding with an ndigits argument also returns an integer.
6212
[clinic start generated code]*/
6213
6214
static PyObject *
6215
int___round___impl(PyObject *self, PyObject *o_ndigits)
6216
/*[clinic end generated code: output=954fda6b18875998 input=30c2aec788263144]*/
6217
0
{
6218
    /* To round an integer m to the nearest 10**n (n positive), we make use of
6219
     * the divmod_near operation, defined by:
6220
     *
6221
     *   divmod_near(a, b) = (q, r)
6222
     *
6223
     * where q is the nearest integer to the quotient a / b (the
6224
     * nearest even integer in the case of a tie) and r == a - q * b.
6225
     * Hence q * b = a - r is the nearest multiple of b to a,
6226
     * preferring even multiples in the case of a tie.
6227
     *
6228
     * So the nearest multiple of 10**n to m is:
6229
     *
6230
     *   m - divmod_near(m, 10**n)[1].
6231
     */
6232
0
    if (o_ndigits == Py_None)
6233
0
        return long_long(self);
6234
6235
0
    PyObject *ndigits = _PyNumber_Index(o_ndigits);
6236
0
    if (ndigits == NULL)
6237
0
        return NULL;
6238
6239
    /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
6240
0
    if (!_PyLong_IsNegative((PyLongObject *)ndigits)) {
6241
0
        Py_DECREF(ndigits);
6242
0
        return long_long(self);
6243
0
    }
6244
6245
    /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
6246
0
    PyObject *temp = (PyObject*)long_neg((PyLongObject*)ndigits);
6247
0
    Py_SETREF(ndigits, temp);
6248
0
    if (ndigits == NULL)
6249
0
        return NULL;
6250
6251
0
    PyObject *result = PyLong_FromLong(10);
6252
0
    if (result == NULL) {
6253
0
        Py_DECREF(ndigits);
6254
0
        return NULL;
6255
0
    }
6256
6257
0
    temp = long_pow(result, ndigits, Py_None);
6258
0
    Py_DECREF(ndigits);
6259
0
    Py_SETREF(result, temp);
6260
0
    if (result == NULL)
6261
0
        return NULL;
6262
6263
0
    temp = _PyLong_DivmodNear(self, result);
6264
0
    Py_SETREF(result, temp);
6265
0
    if (result == NULL)
6266
0
        return NULL;
6267
6268
0
    temp = (PyObject*)long_sub((PyLongObject*)self,
6269
0
                               (PyLongObject*)PyTuple_GET_ITEM(result, 1));
6270
0
    Py_SETREF(result, temp);
6271
6272
0
    return result;
6273
0
}
6274
6275
/*[clinic input]
6276
int.__sizeof__ -> Py_ssize_t
6277
6278
Returns size in memory, in bytes.
6279
[clinic start generated code]*/
6280
6281
static Py_ssize_t
6282
int___sizeof___impl(PyObject *self)
6283
/*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
6284
0
{
6285
    /* using Py_MAX(..., 1) because we always allocate space for at least
6286
       one digit, even though the integer zero has a digit count of 0 */
6287
0
    Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1);
6288
0
    return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits;
6289
0
}
6290
6291
/*[clinic input]
6292
int.bit_length
6293
6294
Number of bits necessary to represent self in binary.
6295
6296
>>> bin(37)
6297
'0b100101'
6298
>>> (37).bit_length()
6299
6
6300
[clinic start generated code]*/
6301
6302
static PyObject *
6303
int_bit_length_impl(PyObject *self)
6304
/*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
6305
78
{
6306
78
    int64_t nbits = _PyLong_NumBits(self);
6307
78
    assert(nbits >= 0);
6308
78
    assert(!PyErr_Occurred());
6309
78
    return PyLong_FromInt64(nbits);
6310
78
}
6311
6312
static int
6313
popcount_digit(digit d)
6314
0
{
6315
    // digit can be larger than uint32_t, but only PyLong_SHIFT bits
6316
    // of it will be ever used.
6317
0
    static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
6318
0
    return _Py_popcount32((uint32_t)d);
6319
0
}
6320
6321
/*[clinic input]
6322
@permit_long_summary
6323
int.bit_count
6324
6325
Number of ones in the binary representation of the absolute value of self.
6326
6327
Also known as the population count.
6328
6329
>>> bin(13)
6330
'0b1101'
6331
>>> (13).bit_count()
6332
3
6333
[clinic start generated code]*/
6334
6335
static PyObject *
6336
int_bit_count_impl(PyObject *self)
6337
/*[clinic end generated code: output=2e571970daf1e5c3 input=f2510a306761db15]*/
6338
0
{
6339
0
    assert(self != NULL);
6340
0
    assert(PyLong_Check(self));
6341
6342
0
    PyLongObject *z = (PyLongObject *)self;
6343
0
    Py_ssize_t ndigits = _PyLong_DigitCount(z);
6344
0
    int64_t bit_count = 0;
6345
6346
0
    for (Py_ssize_t i = 0; i < ndigits; i++) {
6347
0
        bit_count += popcount_digit(z->long_value.ob_digit[i]);
6348
0
    }
6349
6350
0
    return PyLong_FromInt64(bit_count);
6351
0
}
6352
6353
/*[clinic input]
6354
int.as_integer_ratio
6355
6356
Return a pair of integers, whose ratio is equal to the original int.
6357
6358
The ratio is in lowest terms and has a positive denominator.
6359
6360
>>> (10).as_integer_ratio()
6361
(10, 1)
6362
>>> (-10).as_integer_ratio()
6363
(-10, 1)
6364
>>> (0).as_integer_ratio()
6365
(0, 1)
6366
[clinic start generated code]*/
6367
6368
static PyObject *
6369
int_as_integer_ratio_impl(PyObject *self)
6370
/*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/
6371
0
{
6372
0
    PyObject *ratio_tuple;
6373
0
    PyObject *numerator = long_long(self);
6374
0
    if (numerator == NULL) {
6375
0
        return NULL;
6376
0
    }
6377
0
    ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
6378
0
    Py_DECREF(numerator);
6379
0
    return ratio_tuple;
6380
0
}
6381
6382
/*[clinic input]
6383
int.to_bytes
6384
6385
    length: Py_ssize_t(allow_negative=False) = 1
6386
        Length of bytes object to use.  An OverflowError is raised if the
6387
        integer is not representable with the given number of bytes.  Default
6388
        is length 1.
6389
    byteorder: unicode(c_default="NULL") = "big"
6390
        The byte order used to represent the integer.  If byteorder is 'big',
6391
        the most significant byte is at the beginning of the byte array.  If
6392
        byteorder is 'little', the most significant byte is at the end of the
6393
        byte array.  To request the native byte order of the host system, use
6394
        sys.byteorder as the byte order value.  Default is to use 'big'.
6395
    *
6396
    signed as is_signed: bool = False
6397
        Determines whether two's complement is used to represent the integer.
6398
        If signed is False and a negative integer is given, an OverflowError
6399
        is raised.
6400
6401
Return an array of bytes representing an integer.
6402
[clinic start generated code]*/
6403
6404
static PyObject *
6405
int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
6406
                  int is_signed)
6407
/*[clinic end generated code: output=89c801df114050a3 input=66f9d0c20529b44f]*/
6408
844
{
6409
844
    int little_endian;
6410
844
    if (byteorder == NULL)
6411
0
        little_endian = 0;
6412
844
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6413
844
        little_endian = 1;
6414
0
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6415
0
        little_endian = 0;
6416
0
    else {
6417
0
        PyErr_SetString(PyExc_ValueError,
6418
0
            "byteorder must be either 'little' or 'big'");
6419
0
        return NULL;
6420
0
    }
6421
6422
844
    PyBytesWriter *writer = PyBytesWriter_Create(length);
6423
844
    if (writer == NULL) {
6424
0
        return NULL;
6425
0
    }
6426
6427
844
    if (_PyLong_AsByteArray((PyLongObject *)self,
6428
844
                            PyBytesWriter_GetData(writer),
6429
844
                            length, little_endian, is_signed, 1) < 0) {
6430
0
        PyBytesWriter_Discard(writer);
6431
0
        return NULL;
6432
0
    }
6433
6434
844
    return PyBytesWriter_Finish(writer);
6435
844
}
6436
6437
/*[clinic input]
6438
@classmethod
6439
int.from_bytes
6440
6441
    bytes as bytes_obj: object
6442
        Holds the array of bytes to convert.  The argument must either
6443
        support the buffer protocol or be an iterable object producing bytes.
6444
        Bytes and bytearray are examples of built-in objects that support the
6445
        buffer protocol.
6446
    byteorder: unicode(c_default="NULL") = "big"
6447
        The byte order used to represent the integer.  If byteorder is 'big',
6448
        the most significant byte is at the beginning of the byte array.  If
6449
        byteorder is 'little', the most significant byte is at the end of the
6450
        byte array.  To request the native byte order of the host system, use
6451
        sys.byteorder as the byte order value.  Default is to use 'big'.
6452
    *
6453
    signed as is_signed: bool = False
6454
        Indicates whether two's complement is used to represent the integer.
6455
6456
Return the integer represented by the given array of bytes.
6457
[clinic start generated code]*/
6458
6459
static PyObject *
6460
int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
6461
                    PyObject *byteorder, int is_signed)
6462
/*[clinic end generated code: output=efc5d68e31f9314f input=2ff527997fe7b0c5]*/
6463
23.2k
{
6464
23.2k
    int little_endian;
6465
23.2k
    PyObject *long_obj, *bytes;
6466
6467
23.2k
    if (byteorder == NULL)
6468
0
        little_endian = 0;
6469
23.2k
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6470
18.4k
        little_endian = 1;
6471
4.81k
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6472
4.81k
        little_endian = 0;
6473
0
    else {
6474
0
        PyErr_SetString(PyExc_ValueError,
6475
0
            "byteorder must be either 'little' or 'big'");
6476
0
        return NULL;
6477
0
    }
6478
6479
23.2k
    bytes = PyObject_Bytes(bytes_obj);
6480
23.2k
    if (bytes == NULL)
6481
0
        return NULL;
6482
6483
23.2k
    long_obj = _PyLong_FromByteArray(
6484
23.2k
        (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
6485
23.2k
        little_endian, is_signed);
6486
23.2k
    Py_DECREF(bytes);
6487
6488
23.2k
    if (long_obj != NULL && type != &PyLong_Type) {
6489
0
        Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
6490
0
    }
6491
6492
23.2k
    return long_obj;
6493
23.2k
}
6494
6495
static PyObject *
6496
long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
6497
0
{
6498
0
    return long_long(self);
6499
0
}
6500
6501
static PyObject *
6502
long_long_getter(PyObject *self, void *Py_UNUSED(ignored))
6503
0
{
6504
0
    return long_long(self);
6505
0
}
6506
6507
/*[clinic input]
6508
int.is_integer
6509
6510
Returns True. Exists for duck type compatibility with float.is_integer.
6511
[clinic start generated code]*/
6512
6513
static PyObject *
6514
int_is_integer_impl(PyObject *self)
6515
/*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/
6516
0
{
6517
0
    Py_RETURN_TRUE;
6518
0
}
6519
6520
static PyObject *
6521
long_vectorcall(PyObject *type, PyObject * const*args,
6522
                 size_t nargsf, PyObject *kwnames)
6523
7.77M
{
6524
7.77M
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
6525
7.77M
    if (kwnames != NULL) {
6526
0
        PyThreadState *tstate = PyThreadState_GET();
6527
0
        return _PyObject_MakeTpCall(tstate, type, args, nargs, kwnames);
6528
0
    }
6529
7.77M
    switch (nargs) {
6530
0
        case 0:
6531
0
            return _PyLong_GetZero();
6532
3.49M
        case 1:
6533
3.49M
            return PyNumber_Long(args[0]);
6534
4.27M
        case 2:
6535
4.27M
            return long_new_impl(_PyType_CAST(type), args[0], args[1]);
6536
0
        default:
6537
0
            return PyErr_Format(PyExc_TypeError,
6538
0
                                "int expected at most 2 arguments, got %zd",
6539
0
                                nargs);
6540
7.77M
    }
6541
7.77M
}
6542
6543
static PyMethodDef long_methods[] = {
6544
    {"conjugate",       long_long_meth, METH_NOARGS,
6545
     "Returns self, the complex conjugate of any int."},
6546
    INT_BIT_LENGTH_METHODDEF
6547
    INT_BIT_COUNT_METHODDEF
6548
    INT_TO_BYTES_METHODDEF
6549
    INT_FROM_BYTES_METHODDEF
6550
    INT_AS_INTEGER_RATIO_METHODDEF
6551
    {"__trunc__",       long_long_meth, METH_NOARGS,
6552
     "Truncating an Integral returns itself."},
6553
    {"__floor__",       long_long_meth, METH_NOARGS,
6554
     "Flooring an Integral returns itself."},
6555
    {"__ceil__",        long_long_meth, METH_NOARGS,
6556
     "Ceiling of an Integral returns itself."},
6557
    INT___ROUND___METHODDEF
6558
    INT___GETNEWARGS___METHODDEF
6559
    INT___FORMAT___METHODDEF
6560
    INT___SIZEOF___METHODDEF
6561
    INT_IS_INTEGER_METHODDEF
6562
    {NULL,              NULL}           /* sentinel */
6563
};
6564
6565
static PyGetSetDef long_getset[] = {
6566
    {"real",
6567
     long_long_getter, NULL,
6568
     "the real part of a complex number",
6569
     NULL},
6570
    {"imag",
6571
     long_get0, NULL,
6572
     "the imaginary part of a complex number",
6573
     NULL},
6574
    {"numerator",
6575
     long_long_getter, NULL,
6576
     "the numerator of a rational number in lowest terms",
6577
     NULL},
6578
    {"denominator",
6579
     long_get1, NULL,
6580
     "the denominator of a rational number in lowest terms",
6581
     NULL},
6582
    {NULL}  /* Sentinel */
6583
};
6584
6585
PyDoc_STRVAR(long_doc,
6586
"int([x]) -> integer\n\
6587
int(x, base=10) -> integer\n\
6588
\n\
6589
Convert a number or string to an integer, or return 0 if no arguments\n\
6590
are given.  If x is a number, return x.__int__().  For floating-point\n\
6591
numbers, this truncates towards zero.\n\
6592
\n\
6593
If x is not a number or if base is given, then x must be a string,\n\
6594
bytes, or bytearray instance representing an integer literal in the\n\
6595
given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
6596
by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
6597
Base 0 means to interpret the base from the string as an integer literal.\n\
6598
>>> int('0b100', base=0)\n\
6599
4");
6600
6601
static PyNumberMethods long_as_number = {
6602
    long_add_method,            /*nb_add*/
6603
    long_sub_method,            /*nb_subtract*/
6604
    long_mul_method,            /*nb_multiply*/
6605
    long_mod,                   /*nb_remainder*/
6606
    long_divmod,                /*nb_divmod*/
6607
    long_pow,                   /*nb_power*/
6608
    long_neg_method,            /*nb_negative*/
6609
    long_long,                  /*tp_positive*/
6610
    long_abs_method,            /*tp_absolute*/
6611
    long_bool,                  /*tp_bool*/
6612
    long_invert,                /*nb_invert*/
6613
    long_lshift_method,         /*nb_lshift*/
6614
    long_rshift,                /*nb_rshift*/
6615
    long_and,                   /*nb_and*/
6616
    long_xor,                   /*nb_xor*/
6617
    long_or,                    /*nb_or*/
6618
    long_long,                  /*nb_int*/
6619
    0,                          /*nb_reserved*/
6620
    long_float,                 /*nb_float*/
6621
    0,                          /* nb_inplace_add */
6622
    0,                          /* nb_inplace_subtract */
6623
    0,                          /* nb_inplace_multiply */
6624
    0,                          /* nb_inplace_remainder */
6625
    0,                          /* nb_inplace_power */
6626
    0,                          /* nb_inplace_lshift */
6627
    0,                          /* nb_inplace_rshift */
6628
    0,                          /* nb_inplace_and */
6629
    0,                          /* nb_inplace_xor */
6630
    0,                          /* nb_inplace_or */
6631
    long_div,                   /* nb_floor_divide */
6632
    long_true_divide,           /* nb_true_divide */
6633
    0,                          /* nb_inplace_floor_divide */
6634
    0,                          /* nb_inplace_true_divide */
6635
    long_long,                  /* nb_index */
6636
};
6637
6638
PyTypeObject PyLong_Type = {
6639
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
6640
    "int",                                      /* tp_name */
6641
    offsetof(PyLongObject, long_value.ob_digit),  /* tp_basicsize */
6642
    sizeof(digit),                              /* tp_itemsize */
6643
    long_dealloc,                               /* tp_dealloc */
6644
    0,                                          /* tp_vectorcall_offset */
6645
    0,                                          /* tp_getattr */
6646
    0,                                          /* tp_setattr */
6647
    0,                                          /* tp_as_async */
6648
    long_to_decimal_string,                     /* tp_repr */
6649
    &long_as_number,                            /* tp_as_number */
6650
    0,                                          /* tp_as_sequence */
6651
    0,                                          /* tp_as_mapping */
6652
    long_hash,                                  /* tp_hash */
6653
    0,                                          /* tp_call */
6654
    0,                                          /* tp_str */
6655
    PyObject_GenericGetAttr,                    /* tp_getattro */
6656
    0,                                          /* tp_setattro */
6657
    0,                                          /* tp_as_buffer */
6658
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
6659
        Py_TPFLAGS_LONG_SUBCLASS |
6660
        _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
6661
    long_doc,                                   /* tp_doc */
6662
    0,                                          /* tp_traverse */
6663
    0,                                          /* tp_clear */
6664
    long_richcompare,                           /* tp_richcompare */
6665
    0,                                          /* tp_weaklistoffset */
6666
    0,                                          /* tp_iter */
6667
    0,                                          /* tp_iternext */
6668
    long_methods,                               /* tp_methods */
6669
    0,                                          /* tp_members */
6670
    long_getset,                                /* tp_getset */
6671
    0,                                          /* tp_base */
6672
    0,                                          /* tp_dict */
6673
    0,                                          /* tp_descr_get */
6674
    0,                                          /* tp_descr_set */
6675
    0,                                          /* tp_dictoffset */
6676
    0,                                          /* tp_init */
6677
    0,                                          /* tp_alloc */
6678
    long_new,                                   /* tp_new */
6679
    PyObject_Free,                              /* tp_free */
6680
    .tp_vectorcall = long_vectorcall,
6681
    .tp_version_tag = _Py_TYPE_VERSION_INT,
6682
};
6683
6684
static PyTypeObject Int_InfoType;
6685
6686
PyDoc_STRVAR(int_info__doc__,
6687
"sys.int_info\n\
6688
\n\
6689
A named tuple that holds information about Python's\n\
6690
internal representation of integers.  The attributes are read only.");
6691
6692
static PyStructSequence_Field int_info_fields[] = {
6693
    {"bits_per_digit", "size of a digit in bits"},
6694
    {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
6695
    {"default_max_str_digits", "maximum string conversion digits limitation"},
6696
    {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
6697
    {NULL, NULL}
6698
};
6699
6700
static PyStructSequence_Desc int_info_desc = {
6701
    "sys.int_info",   /* name */
6702
    int_info__doc__,  /* doc */
6703
    int_info_fields,  /* fields */
6704
    4                 /* number of fields */
6705
};
6706
6707
PyObject *
6708
PyLong_GetInfo(void)
6709
28
{
6710
28
    PyObject* int_info;
6711
28
    int field = 0;
6712
28
    int_info = PyStructSequence_New(&Int_InfoType);
6713
28
    if (int_info == NULL)
6714
0
        return NULL;
6715
28
    PyStructSequence_SET_ITEM(int_info, field++,
6716
28
                              PyLong_FromLong(PyLong_SHIFT));
6717
28
    PyStructSequence_SET_ITEM(int_info, field++,
6718
28
                              PyLong_FromLong(sizeof(digit)));
6719
    /*
6720
     * The following two fields were added after investigating uses of
6721
     * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
6722
     * numba using sys.int_info.bits_per_digit as attribute access rather than
6723
     * sequence unpacking. Cython and sympy also refer to sys.int_info but only
6724
     * as info for debugging. No concern about adding these in a backport.
6725
     */
6726
28
    PyStructSequence_SET_ITEM(int_info, field++,
6727
28
                              PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
6728
28
    PyStructSequence_SET_ITEM(int_info, field++,
6729
28
                              PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
6730
28
    if (PyErr_Occurred()) {
6731
0
        Py_CLEAR(int_info);
6732
0
        return NULL;
6733
0
    }
6734
28
    return int_info;
6735
28
}
6736
6737
6738
/* runtime lifecycle */
6739
6740
PyStatus
6741
_PyLong_InitTypes(PyInterpreterState *interp)
6742
28
{
6743
    /* initialize int_info */
6744
28
    if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType,
6745
28
                                      &int_info_desc) < 0)
6746
0
    {
6747
0
        return _PyStatus_ERR("can't init int info type");
6748
0
    }
6749
6750
28
    return _PyStatus_OK();
6751
28
}
6752
6753
6754
void
6755
_PyLong_FiniTypes(PyInterpreterState *interp)
6756
0
{
6757
0
    _PyStructSequence_FiniBuiltin(interp, &Int_InfoType);
6758
0
}
6759
6760
#undef PyUnstable_Long_IsCompact
6761
6762
int
6763
0
PyUnstable_Long_IsCompact(const PyLongObject* op) {
6764
0
    return _PyLong_IsCompact((PyLongObject*)op);
6765
0
}
6766
6767
#undef PyUnstable_Long_CompactValue
6768
6769
Py_ssize_t
6770
0
PyUnstable_Long_CompactValue(const PyLongObject* op) {
6771
0
    return _PyLong_CompactValue((PyLongObject*)op);
6772
0
}
6773
6774
6775
PyObject* PyLong_FromInt32(int32_t value)
6776
0
{
6777
0
    PYLONG_FROM_INT(uint32_t, int32_t, value);
6778
0
}
6779
6780
PyObject* PyLong_FromUInt32(uint32_t value)
6781
0
{
6782
0
    PYLONG_FROM_UINT(uint32_t, value);
6783
0
}
6784
6785
PyObject* PyLong_FromInt64(int64_t value)
6786
78
{
6787
78
    PYLONG_FROM_INT(uint64_t, int64_t, value);
6788
78
}
6789
6790
PyObject* PyLong_FromUInt64(uint64_t value)
6791
0
{
6792
0
    PYLONG_FROM_UINT(uint64_t, value);
6793
0
}
6794
6795
#define LONG_TO_INT(obj, value, type_name) \
6796
6.75M
    do { \
6797
6.75M
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6798
6.75M
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6799
6.75M
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6800
6.75M
        if (bytes < 0) { \
6801
0
            return -1; \
6802
0
        } \
6803
6.75M
        if ((size_t)bytes > sizeof(*value)) { \
6804
0
            PyErr_SetString(PyExc_OverflowError, \
6805
0
                            "Python int too large to convert to " type_name); \
6806
0
            return -1; \
6807
0
        } \
6808
6.75M
        return 0; \
6809
6.75M
    } while (0)
6810
6811
int PyLong_AsInt32(PyObject *obj, int32_t *value)
6812
0
{
6813
0
    LONG_TO_INT(obj, value, "C int32_t");
6814
0
}
6815
6816
int PyLong_AsInt64(PyObject *obj, int64_t *value)
6817
6.75M
{
6818
6.75M
    LONG_TO_INT(obj, value, "C int64_t");
6819
6.75M
}
6820
6821
#define LONG_TO_UINT(obj, value, type_name) \
6822
0
    do { \
6823
0
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6824
0
                     | Py_ASNATIVEBYTES_UNSIGNED_BUFFER \
6825
0
                     | Py_ASNATIVEBYTES_REJECT_NEGATIVE \
6826
0
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6827
0
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6828
0
        if (bytes < 0) { \
6829
0
            return -1; \
6830
0
        } \
6831
0
        if ((size_t)bytes > sizeof(*value)) { \
6832
0
            PyErr_SetString(PyExc_OverflowError, \
6833
0
                            "Python int too large to convert to " type_name); \
6834
0
            return -1; \
6835
0
        } \
6836
0
        return 0; \
6837
0
    } while (0)
6838
6839
int PyLong_AsUInt32(PyObject *obj, uint32_t *value)
6840
0
{
6841
0
    LONG_TO_UINT(obj, value, "C uint32_t");
6842
0
}
6843
6844
int PyLong_AsUInt64(PyObject *obj, uint64_t *value)
6845
0
{
6846
0
    LONG_TO_UINT(obj, value, "C uint64_t");
6847
0
}
6848
6849
6850
static const PyLongLayout PyLong_LAYOUT = {
6851
    .bits_per_digit = PyLong_SHIFT,
6852
    .digits_order = -1,  // least significant first
6853
    .digit_endianness = PY_LITTLE_ENDIAN ? -1 : 1,
6854
    .digit_size = sizeof(digit),
6855
};
6856
6857
6858
const PyLongLayout*
6859
PyLong_GetNativeLayout(void)
6860
169
{
6861
169
    return &PyLong_LAYOUT;
6862
169
}
6863
6864
6865
int
6866
PyLong_Export(PyObject *obj, PyLongExport *export_long)
6867
24
{
6868
24
    if (!PyLong_Check(obj)) {
6869
0
        memset(export_long, 0, sizeof(*export_long));
6870
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", obj);
6871
0
        return -1;
6872
0
    }
6873
6874
    // Fast-path: try to convert to a int64_t
6875
24
    int overflow;
6876
24
#if SIZEOF_LONG == 8
6877
24
    long value = PyLong_AsLongAndOverflow(obj, &overflow);
6878
#else
6879
    // Windows has 32-bit long, so use 64-bit long long instead
6880
    long long value = PyLong_AsLongLongAndOverflow(obj, &overflow);
6881
#endif
6882
24
    Py_BUILD_ASSERT(sizeof(value) == sizeof(int64_t));
6883
    // the function cannot fail since obj is a PyLongObject
6884
24
    assert(!(value == -1 && PyErr_Occurred()));
6885
6886
24
    if (!overflow) {
6887
12
        export_long->value = value;
6888
12
        export_long->negative = 0;
6889
12
        export_long->ndigits = 0;
6890
12
        export_long->digits = NULL;
6891
12
        export_long->_reserved = 0;
6892
12
    }
6893
12
    else {
6894
12
        PyLongObject *self = (PyLongObject*)obj;
6895
12
        export_long->value = 0;
6896
12
        export_long->negative = _PyLong_IsNegative(self);
6897
12
        export_long->ndigits = _PyLong_DigitCount(self);
6898
12
        if (export_long->ndigits == 0) {
6899
0
            export_long->ndigits = 1;
6900
0
        }
6901
12
        export_long->digits = self->long_value.ob_digit;
6902
12
        export_long->_reserved = (Py_uintptr_t)Py_NewRef(obj);
6903
12
    }
6904
24
    return 0;
6905
24
}
6906
6907
6908
void
6909
PyLong_FreeExport(PyLongExport *export_long)
6910
12
{
6911
12
    PyObject *obj = (PyObject*)export_long->_reserved;
6912
12
    if (obj) {
6913
12
        export_long->_reserved = 0;
6914
12
        Py_DECREF(obj);
6915
12
    }
6916
12
}
6917
6918
6919
/* --- PyLongWriter API --------------------------------------------------- */
6920
6921
PyLongWriter*
6922
PyLongWriter_Create(int negative, Py_ssize_t ndigits, void **digits)
6923
157
{
6924
157
    if (ndigits <= 0) {
6925
0
        PyErr_SetString(PyExc_ValueError, "ndigits must be positive");
6926
0
        goto error;
6927
0
    }
6928
157
    assert(digits != NULL);
6929
6930
157
    PyLongObject *obj = long_alloc(ndigits);
6931
157
    if (obj == NULL) {
6932
0
        goto error;
6933
0
    }
6934
157
    if (negative) {
6935
1
        _PyLong_FlipSign(obj);
6936
1
    }
6937
6938
157
    *digits = obj->long_value.ob_digit;
6939
157
    return (PyLongWriter*)obj;
6940
6941
0
error:
6942
0
    *digits = NULL;
6943
0
    return NULL;
6944
157
}
6945
6946
6947
void
6948
PyLongWriter_Discard(PyLongWriter *writer)
6949
0
{
6950
0
    if (writer == NULL) {
6951
0
        return;
6952
0
    }
6953
6954
0
    PyLongObject *obj = (PyLongObject *)writer;
6955
0
    assert(Py_REFCNT(obj) == 1);
6956
0
    Py_DECREF(obj);
6957
0
}
6958
6959
6960
PyObject*
6961
PyLongWriter_Finish(PyLongWriter *writer)
6962
157
{
6963
157
    PyLongObject *obj = (PyLongObject *)writer;
6964
157
    assert(Py_REFCNT(obj) == 1);
6965
6966
    // Normalize and get singleton if possible
6967
157
    obj = maybe_small_long(long_normalize(obj));
6968
6969
157
    return (PyObject*)obj;
6970
157
}