Coverage Report

Created: 2025-12-07 07:03

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython/Python/dtoa.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
57
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
2.28M
#define word0(x) (x)->L[1]
181
1.50M
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
5.40M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
132k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
733k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
2.49M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
275k
#define Exp_shift  20
235
91.2k
#define Exp_shift1 20
236
857k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
1.30M
#define Exp_mask  0x7ff00000
239
622k
#define P 53
240
#define Nbits 53
241
335k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
505k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
164k
#define Exp_1  0x3ff00000
246
41.3k
#define Exp_11 0x3ff00000
247
400k
#define Ebits 11
248
255k
#define Frac_mask  0xfffff
249
43.1k
#define Frac_mask1 0xfffff
250
1.42M
#define Ten_pmax 22
251
92
#define Bletch 0x10
252
80.9k
#define Bndry_mask  0xfffff
253
6.52k
#define Bndry_mask1 0xfffff
254
68.2k
#define Sign_bit 0x80000000
255
6.18k
#define Log2P 1
256
#define Tiny0 0
257
72.2k
#define Tiny1 1
258
45.7k
#define Quick_max 14
259
27.7k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
762k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
2.84k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
1.79k
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
22.6M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
9.50M
#define freelist interp->dtoa.freelist
336
363
#define private_mem interp->dtoa.preallocated
337
975
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
2.37M
{
344
2.37M
    int x;
345
2.37M
    Bigint *rv;
346
2.37M
    unsigned int len;
347
2.37M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
2.37M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
2.37M
        freelist[k] = rv->next;
351
363
    else {
352
363
        x = 1 << k;
353
363
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
363
            /sizeof(double);
355
363
        if (k <= Bigint_Kmax &&
356
363
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
363
        ) {
358
306
            rv = (Bigint*)pmem_next;
359
306
            pmem_next += len;
360
306
        }
361
57
        else {
362
57
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
57
            if (rv == NULL)
364
0
                return NULL;
365
57
        }
366
363
        rv->k = k;
367
363
        rv->maxwds = x;
368
363
    }
369
2.37M
    rv->sign = rv->wds = 0;
370
2.37M
    return rv;
371
2.37M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
5.86M
{
378
5.86M
    if (v) {
379
2.37M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
2.37M
        else {
382
2.37M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
2.37M
            v->next = freelist[v->k];
384
2.37M
            freelist[v->k] = v;
385
2.37M
        }
386
2.37M
    }
387
5.86M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
181k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
181k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
1.54M
{
445
1.54M
    int i, wds;
446
1.54M
    ULong *x;
447
1.54M
    ULLong carry, y;
448
1.54M
    Bigint *b1;
449
450
1.54M
    wds = b->wds;
451
1.54M
    x = b->x;
452
1.54M
    i = 0;
453
1.54M
    carry = a;
454
5.24M
    do {
455
5.24M
        y = *x * (ULLong)m + carry;
456
5.24M
        carry = y >> 32;
457
5.24M
        *x++ = (ULong)(y & FFFFFFFF);
458
5.24M
    }
459
5.24M
    while(++i < wds);
460
1.54M
    if (carry) {
461
94.9k
        if (wds >= b->maxwds) {
462
6.01k
            b1 = Balloc(b->k+1);
463
6.01k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
6.01k
            Bcopy(b1, b);
468
6.01k
            Bfree(b);
469
6.01k
            b = b1;
470
6.01k
        }
471
94.9k
        b->x[wds++] = (ULong)carry;
472
94.9k
        b->wds = wds;
473
94.9k
    }
474
1.54M
    return b;
475
1.54M
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
132k
{
486
132k
    Bigint *b;
487
132k
    int i, k;
488
132k
    Long x, y;
489
490
132k
    x = (nd + 8) / 9;
491
197k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
132k
    b = Balloc(k);
493
132k
    if (b == NULL)
494
0
        return NULL;
495
132k
    b->x[0] = y9;
496
132k
    b->wds = 1;
497
498
132k
    if (nd <= 9)
499
83.9k
      return b;
500
501
48.8k
    s += 9;
502
486k
    for (i = 9; i < nd0; i++) {
503
437k
        b = multadd(b, 10, *s++ - '0');
504
437k
        if (b == NULL)
505
0
            return NULL;
506
437k
    }
507
48.8k
    s++;
508
187k
    for(; i < nd; i++) {
509
138k
        b = multadd(b, 10, *s++ - '0');
510
138k
        if (b == NULL)
511
0
            return NULL;
512
138k
    }
513
48.8k
    return b;
514
48.8k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
218k
{
521
218k
    int k = 0;
522
523
218k
    if (!(x & 0xffff0000)) {
524
113k
        k = 16;
525
113k
        x <<= 16;
526
113k
    }
527
218k
    if (!(x & 0xff000000)) {
528
126k
        k += 8;
529
126k
        x <<= 8;
530
126k
    }
531
218k
    if (!(x & 0xf0000000)) {
532
118k
        k += 4;
533
118k
        x <<= 4;
534
118k
    }
535
218k
    if (!(x & 0xc0000000)) {
536
134k
        k += 2;
537
134k
        x <<= 2;
538
134k
    }
539
218k
    if (!(x & 0x80000000)) {
540
115k
        k++;
541
115k
        if (!(x & 0x40000000))
542
0
            return 32;
543
115k
    }
544
218k
    return k;
545
218k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
45.6k
{
553
45.6k
    int k;
554
45.6k
    ULong x = *y;
555
556
45.6k
    if (x & 7) {
557
25.5k
        if (x & 1)
558
13.9k
            return 0;
559
11.6k
        if (x & 2) {
560
6.98k
            *y = x >> 1;
561
6.98k
            return 1;
562
6.98k
        }
563
4.61k
        *y = x >> 2;
564
4.61k
        return 2;
565
11.6k
    }
566
20.0k
    k = 0;
567
20.0k
    if (!(x & 0xffff)) {
568
7.94k
        k = 16;
569
7.94k
        x >>= 16;
570
7.94k
    }
571
20.0k
    if (!(x & 0xff)) {
572
4.12k
        k += 8;
573
4.12k
        x >>= 8;
574
4.12k
    }
575
20.0k
    if (!(x & 0xf)) {
576
10.7k
        k += 4;
577
10.7k
        x >>= 4;
578
10.7k
    }
579
20.0k
    if (!(x & 0x3)) {
580
10.3k
        k += 2;
581
10.3k
        x >>= 2;
582
10.3k
    }
583
20.0k
    if (!(x & 1)) {
584
14.0k
        k++;
585
14.0k
        x >>= 1;
586
14.0k
        if (!x)
587
0
            return 32;
588
14.0k
    }
589
20.0k
    *y = x;
590
20.0k
    return k;
591
20.0k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
275k
{
598
275k
    Bigint *b;
599
600
275k
    b = Balloc(1);
601
275k
    if (b == NULL)
602
0
        return NULL;
603
275k
    b->x[0] = i;
604
275k
    b->wds = 1;
605
275k
    return b;
606
275k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
640k
{
614
640k
    Bigint *c;
615
640k
    int k, wa, wb, wc;
616
640k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
640k
    ULong y;
618
640k
    ULLong carry, z;
619
620
640k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
4.97k
        c = Balloc(0);
622
4.97k
        if (c == NULL)
623
0
            return NULL;
624
4.97k
        c->wds = 1;
625
4.97k
        c->x[0] = 0;
626
4.97k
        return c;
627
4.97k
    }
628
629
635k
    if (a->wds < b->wds) {
630
313k
        c = a;
631
313k
        a = b;
632
313k
        b = c;
633
313k
    }
634
635k
    k = a->k;
635
635k
    wa = a->wds;
636
635k
    wb = b->wds;
637
635k
    wc = wa + wb;
638
635k
    if (wc > a->maxwds)
639
351k
        k++;
640
635k
    c = Balloc(k);
641
635k
    if (c == NULL)
642
0
        return NULL;
643
4.98M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
4.34M
        *x = 0;
645
635k
    xa = a->x;
646
635k
    xae = xa + wa;
647
635k
    xb = b->x;
648
635k
    xbe = xb + wb;
649
635k
    xc0 = c->x;
650
1.90M
    for(; xb < xbe; xc0++) {
651
1.26M
        if ((y = *xb++)) {
652
1.25M
            x = xa;
653
1.25M
            xc = xc0;
654
1.25M
            carry = 0;
655
10.0M
            do {
656
10.0M
                z = *x++ * (ULLong)y + *xc + carry;
657
10.0M
                carry = z >> 32;
658
10.0M
                *xc++ = (ULong)(z & FFFFFFFF);
659
10.0M
            }
660
10.0M
            while(x < xae);
661
1.25M
            *xc = (ULong)carry;
662
1.25M
        }
663
1.26M
    }
664
1.07M
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
635k
    c->wds = wc;
666
635k
    return c;
667
635k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
233k
{
678
233k
    Bigint *b1, *p5, **p5s;
679
233k
    int i;
680
233k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
233k
    assert(0 <= k && k < 1024);
688
689
233k
    if ((i = k & 3)) {
690
173k
        b = multadd(b, p05[i-1], 0);
691
173k
        if (b == NULL)
692
0
            return NULL;
693
173k
    }
694
695
233k
    if (!(k >>= 2))
696
11.5k
        return b;
697
221k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
221k
    p5s = interp->dtoa.p5s;
699
978k
    for(;;) {
700
978k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
978k
        p5 = *p5s;
702
978k
        p5s++;
703
978k
        if (k & 1) {
704
566k
            b1 = mult(b, p5);
705
566k
            Bfree(b);
706
566k
            b = b1;
707
566k
            if (b == NULL)
708
0
                return NULL;
709
566k
        }
710
978k
        if (!(k >>= 1))
711
221k
            break;
712
978k
    }
713
221k
    return b;
714
221k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
553k
{
775
553k
    int i, k1, n, n1;
776
553k
    Bigint *b1;
777
553k
    ULong *x, *x1, *xe, z;
778
779
553k
    if (!k || (!b->x[0] && b->wds == 1))
780
5.38k
        return b;
781
782
548k
    n = k >> 5;
783
548k
    k1 = b->k;
784
548k
    n1 = n + b->wds + 1;
785
1.28M
    for(i = b->maxwds; n1 > i; i <<= 1)
786
741k
        k1++;
787
548k
    b1 = Balloc(k1);
788
548k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
548k
    x1 = b1->x;
793
2.53M
    for(i = 0; i < n; i++)
794
1.98M
        *x1++ = 0;
795
548k
    x = b->x;
796
548k
    xe = x + b->wds;
797
548k
    if (k &= 0x1f) {
798
542k
        k1 = 32 - k;
799
542k
        z = 0;
800
1.98M
        do {
801
1.98M
            *x1++ = *x << k | z;
802
1.98M
            z = *x++ >> k1;
803
1.98M
        }
804
1.98M
        while(x < xe);
805
542k
        if ((*x1 = z))
806
85.7k
            ++n1;
807
542k
    }
808
5.15k
    else do
809
10.3k
             *x1++ = *x++;
810
10.3k
        while(x < xe);
811
548k
    b1->wds = n1 - 1;
812
548k
    Bfree(b);
813
548k
    return b1;
814
548k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
1.47M
{
822
1.47M
    ULong *xa, *xa0, *xb, *xb0;
823
1.47M
    int i, j;
824
825
1.47M
    i = a->wds;
826
1.47M
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
1.47M
    if (i -= j)
834
177k
        return i;
835
1.29M
    xa0 = a->x;
836
1.29M
    xa = xa0 + j;
837
1.29M
    xb0 = b->x;
838
1.29M
    xb = xb0 + j;
839
1.57M
    for(;;) {
840
1.57M
        if (*--xa != *--xb)
841
1.27M
            return *xa < *xb ? -1 : 1;
842
300k
        if (xa <= xa0)
843
17.1k
            break;
844
300k
    }
845
17.1k
    return 0;
846
1.29M
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
292k
{
855
292k
    Bigint *c;
856
292k
    int i, wa, wb;
857
292k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
292k
    ULLong borrow, y;
859
860
292k
    i = cmp(a,b);
861
292k
    if (!i) {
862
3.38k
        c = Balloc(0);
863
3.38k
        if (c == NULL)
864
0
            return NULL;
865
3.38k
        c->wds = 1;
866
3.38k
        c->x[0] = 0;
867
3.38k
        return c;
868
3.38k
    }
869
288k
    if (i < 0) {
870
85.5k
        c = a;
871
85.5k
        a = b;
872
85.5k
        b = c;
873
85.5k
        i = 1;
874
85.5k
    }
875
203k
    else
876
203k
        i = 0;
877
288k
    c = Balloc(a->k);
878
288k
    if (c == NULL)
879
0
        return NULL;
880
288k
    c->sign = i;
881
288k
    wa = a->wds;
882
288k
    xa = a->x;
883
288k
    xae = xa + wa;
884
288k
    wb = b->wds;
885
288k
    xb = b->x;
886
288k
    xbe = xb + wb;
887
288k
    xc = c->x;
888
288k
    borrow = 0;
889
2.03M
    do {
890
2.03M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
2.03M
        borrow = y >> 32 & (ULong)1;
892
2.03M
        *xc++ = (ULong)(y & FFFFFFFF);
893
2.03M
    }
894
2.03M
    while(xb < xbe);
895
519k
    while(xa < xae) {
896
230k
        y = *xa++ - borrow;
897
230k
        borrow = y >> 32 & (ULong)1;
898
230k
        *xc++ = (ULong)(y & FFFFFFFF);
899
230k
    }
900
532k
    while(!*--xc)
901
243k
        wa--;
902
288k
    c->wds = wa;
903
288k
    return c;
904
288k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
76.1k
{
912
76.1k
    Long L;
913
76.1k
    U u;
914
915
76.1k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
76.1k
    word0(&u) = L;
917
76.1k
    word1(&u) = 0;
918
76.1k
    return dval(&u);
919
76.1k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
146k
{
926
146k
    ULong *xa, *xa0, w, y, z;
927
146k
    int k;
928
146k
    U d;
929
930
146k
    xa0 = a->x;
931
146k
    xa = xa0 + a->wds;
932
146k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
146k
    k = hi0bits(y);
937
146k
    *e = 32 - k;
938
146k
    if (k < Ebits) {
939
54.0k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
54.0k
        w = xa > xa0 ? *--xa : 0;
941
54.0k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
54.0k
        goto ret_d;
943
54.0k
    }
944
92.1k
    z = xa > xa0 ? *--xa : 0;
945
92.1k
    if (k -= Ebits) {
946
87.9k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
87.9k
        y = xa > xa0 ? *--xa : 0;
948
87.9k
        word1(&d) = z << k | y >> (32 - k);
949
87.9k
    }
950
4.14k
    else {
951
4.14k
        word0(&d) = Exp_1 | y;
952
4.14k
        word1(&d) = z;
953
4.14k
    }
954
146k
  ret_d:
955
146k
    return dval(&d);
956
92.1k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
209k
{
982
209k
    Bigint *b;
983
984
209k
    b = Balloc(1);
985
209k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
209k
    b->wds = 2;
990
209k
    b->x[0] = word1(d);
991
209k
    b->x[1] = word0(d) & Frac_mask;
992
209k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
209k
    if (*e < Etiny)
994
5.38k
        *e = Etiny;
995
204k
    else
996
204k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
209k
    if (scale && (b->x[0] || b->x[1])) {
1000
29.3k
        *e -= scale;
1001
29.3k
        if (*e < Etiny) {
1002
25.9k
            scale = Etiny - *e;
1003
25.9k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
25.9k
            assert(0 < scale && scale <= P - 1);
1006
25.9k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
12.8k
                assert(b->x[0] == 0);
1009
12.8k
                b->x[0] = b->x[1];
1010
12.8k
                b->x[1] = 0;
1011
12.8k
                scale -= 32;
1012
12.8k
            }
1013
25.9k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
24.4k
                assert(b->x[0] << (32 - scale) == 0);
1016
24.4k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
24.4k
                b->x[1] >>= scale;
1018
24.4k
            }
1019
25.9k
        }
1020
29.3k
    }
1021
    /* Ensure b is normalized. */
1022
209k
    if (!b->x[1])
1023
21.8k
        b->wds = 1;
1024
1025
209k
    return b;
1026
209k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
45.6k
{
1040
45.6k
    Bigint *b;
1041
45.6k
    int de, k;
1042
45.6k
    ULong *x, y, z;
1043
45.6k
    int i;
1044
1045
45.6k
    b = Balloc(1);
1046
45.6k
    if (b == NULL)
1047
0
        return NULL;
1048
45.6k
    x = b->x;
1049
1050
45.6k
    z = word0(d) & Frac_mask;
1051
45.6k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
45.6k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
41.3k
        z |= Exp_msk1;
1054
45.6k
    if ((y = word1(d))) {
1055
33.0k
        if ((k = lo0bits(&y))) {
1056
19.8k
            x[0] = y | z << (32 - k);
1057
19.8k
            z >>= k;
1058
19.8k
        }
1059
13.2k
        else
1060
13.2k
            x[0] = y;
1061
33.0k
        i =
1062
33.0k
            b->wds = (x[1] = z) ? 2 : 1;
1063
33.0k
    }
1064
12.5k
    else {
1065
12.5k
        k = lo0bits(&z);
1066
12.5k
        x[0] = z;
1067
12.5k
        i =
1068
12.5k
            b->wds = 1;
1069
12.5k
        k += 32;
1070
12.5k
    }
1071
45.6k
    if (de) {
1072
41.3k
        *e = de - Bias - (P-1) + k;
1073
41.3k
        *bits = P - k;
1074
41.3k
    }
1075
4.23k
    else {
1076
4.23k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.23k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.23k
    }
1079
45.6k
    return b;
1080
45.6k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
73.0k
{
1088
73.0k
    U da, db;
1089
73.0k
    int k, ka, kb;
1090
1091
73.0k
    dval(&da) = b2d(a, &ka);
1092
73.0k
    dval(&db) = b2d(b, &kb);
1093
73.0k
    k = ka - kb + 32*(a->wds - b->wds);
1094
73.0k
    if (k > 0)
1095
30.7k
        word0(&da) += k*Exp_msk1;
1096
42.3k
    else {
1097
42.3k
        k = -k;
1098
42.3k
        word0(&db) += k*Exp_msk1;
1099
42.3k
    }
1100
73.0k
    return dval(&da) / dval(&db);
1101
73.0k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
23.4k
#define Scale_Bit 0x10
1119
24.5k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
68.4k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
68.4k
{
1129
68.4k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
68.4k
    if (p2 > 0)
1131
25.0k
        rv -= p2;
1132
68.4k
    return rv & kmask;
1133
68.4k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
735k
{
1142
735k
    int n;
1143
735k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
735k
    ULLong borrow, carry, y, ys;
1145
1146
735k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
735k
    if (b->wds < n)
1152
30.6k
        return 0;
1153
704k
    sx = S->x;
1154
704k
    sxe = sx + --n;
1155
704k
    bx = b->x;
1156
704k
    bxe = bx + n;
1157
704k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
704k
    if (q) {
1163
462k
        borrow = 0;
1164
462k
        carry = 0;
1165
2.34M
        do {
1166
2.34M
            ys = *sx++ * (ULLong)q + carry;
1167
2.34M
            carry = ys >> 32;
1168
2.34M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
2.34M
            borrow = y >> 32 & (ULong)1;
1170
2.34M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
2.34M
        }
1172
2.34M
        while(sx <= sxe);
1173
462k
        if (!*bxe) {
1174
1.57k
            bx = b->x;
1175
1.57k
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
1.57k
            b->wds = n;
1178
1.57k
        }
1179
462k
    }
1180
704k
    if (cmp(b, S) >= 0) {
1181
36.9k
        q++;
1182
36.9k
        borrow = 0;
1183
36.9k
        carry = 0;
1184
36.9k
        bx = b->x;
1185
36.9k
        sx = S->x;
1186
213k
        do {
1187
213k
            ys = *sx++ + carry;
1188
213k
            carry = ys >> 32;
1189
213k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
213k
            borrow = y >> 32 & (ULong)1;
1191
213k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
213k
        }
1193
213k
        while(sx <= sxe);
1194
36.9k
        bx = b->x;
1195
36.9k
        bxe = bx + n;
1196
36.9k
        if (!*bxe) {
1197
27.6k
            while(--bxe > bx && !*bxe)
1198
1.58k
                --n;
1199
26.0k
            b->wds = n;
1200
26.0k
        }
1201
36.9k
    }
1202
704k
    return q;
1203
735k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
3.52k
{
1214
3.52k
    U u;
1215
1216
3.52k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
406
        word0(&u) = (P+2)*Exp_msk1;
1219
406
        word1(&u) = 0;
1220
406
        return u.d;
1221
406
    }
1222
3.11k
    else {
1223
3.11k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
3.11k
        return ulp(x);
1225
3.11k
    }
1226
3.52k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
35.6k
{
1277
35.6k
    Bigint *b, *d;
1278
35.6k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
35.6k
    nd = bc->nd;
1281
35.6k
    nd0 = bc->nd0;
1282
35.6k
    p5 = nd + bc->e0;
1283
35.6k
    b = sd2b(rv, bc->scale, &p2);
1284
35.6k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
35.6k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
35.6k
    b = lshift(b, 1);
1294
35.6k
    if (b == NULL)
1295
0
        return -1;
1296
35.6k
    b->x[0] |= 1;
1297
35.6k
    p2--;
1298
1299
35.6k
    p2 -= p5;
1300
35.6k
    d = i2b(1);
1301
35.6k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
35.6k
    if (p5 > 0) {
1309
33.3k
        d = pow5mult(d, p5);
1310
33.3k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
33.3k
    }
1315
2.27k
    else if (p5 < 0) {
1316
1.59k
        b = pow5mult(b, -p5);
1317
1.59k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.59k
    }
1322
35.6k
    if (p2 > 0) {
1323
31.1k
        b2 = p2;
1324
31.1k
        d2 = 0;
1325
31.1k
    }
1326
4.43k
    else {
1327
4.43k
        b2 = 0;
1328
4.43k
        d2 = -p2;
1329
4.43k
    }
1330
35.6k
    i = dshift(d, d2);
1331
35.6k
    if ((b2 += i) > 0) {
1332
35.3k
        b = lshift(b, b2);
1333
35.3k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
35.3k
    }
1338
35.6k
    if ((d2 += i) > 0) {
1339
34.8k
        d = lshift(d, d2);
1340
34.8k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
34.8k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
35.6k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
872
        dd = -1;
1352
34.7k
    else {
1353
34.7k
        i = 0;
1354
616k
        for(;;) {
1355
616k
            b = multadd(b, 10, 0);
1356
616k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
616k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
616k
            i++;
1362
1363
616k
            if (dd)
1364
33.1k
                break;
1365
583k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
848
                dd = i < nd;
1368
848
                break;
1369
848
            }
1370
582k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
702
                dd = -1;
1373
702
                break;
1374
702
            }
1375
582k
        }
1376
34.7k
    }
1377
35.6k
    Bfree(b);
1378
35.6k
    Bfree(d);
1379
35.6k
    if (dd > 0 || (dd == 0 && odd))
1380
1.98k
        dval(rv) += sulp(rv, bc);
1381
35.6k
    return 0;
1382
35.6k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
831k
{
1388
831k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
831k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
831k
    const char *s, *s0, *s1;
1391
831k
    double aadj, aadj1;
1392
831k
    U aadj2, adj, rv, rv0;
1393
831k
    ULong y, z, abs_exp;
1394
831k
    Long L;
1395
831k
    BCinfo bc;
1396
831k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
831k
    size_t ndigits, fraclen;
1398
831k
    double result;
1399
1400
831k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
831k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
831k
    sign = 0;
1407
831k
    switch (c) {
1408
632k
    case '-':
1409
632k
        sign = 1;
1410
632k
        _Py_FALLTHROUGH;
1411
632k
    case '+':
1412
632k
        c = *++s;
1413
831k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
831k
    s1 = s;
1417
854k
    while (c == '0')
1418
23.6k
        c = *++s;
1419
831k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
831k
    s0 = s1 = s;
1426
8.53M
    while ('0' <= c && c <= '9')
1427
7.70M
        c = *++s;
1428
831k
    ndigits = s - s1;
1429
831k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
831k
    if (c == '.') {
1433
95.1k
        c = *++s;
1434
95.1k
        if (!ndigits) {
1435
25.5k
            s1 = s;
1436
2.58M
            while (c == '0')
1437
2.55M
                c = *++s;
1438
25.5k
            lz = lz || s != s1;
1439
25.5k
            fraclen += (s - s1);
1440
25.5k
            s0 = s;
1441
25.5k
        }
1442
95.1k
        s1 = s;
1443
29.8M
        while ('0' <= c && c <= '9')
1444
29.8M
            c = *++s;
1445
95.1k
        ndigits += s - s1;
1446
95.1k
        fraclen += s - s1;
1447
95.1k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
831k
    if (!ndigits && !lz) {
1453
19
        if (se)
1454
19
            *se = (char *)s00;
1455
19
        goto parse_error;
1456
19
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
831k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
831k
    nd = (int)ndigits;
1466
831k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
831k
    e = 0;
1470
831k
    if (c == 'e' || c == 'E') {
1471
733k
        s00 = s;
1472
733k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
733k
        esign = 0;
1476
733k
        switch (c) {
1477
27.8k
        case '-':
1478
27.8k
            esign = 1;
1479
27.8k
            _Py_FALLTHROUGH;
1480
40.6k
        case '+':
1481
40.6k
            c = *++s;
1482
733k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
733k
        s1 = s;
1486
967k
        while (c == '0')
1487
233k
            c = *++s;
1488
733k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
733k
        s1 = s;
1492
733k
        abs_exp = 0;
1493
8.34M
        while ('0' <= c && c <= '9') {
1494
7.61M
            abs_exp = 10*abs_exp + (c - '0');
1495
7.61M
            c = *++s;
1496
7.61M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
733k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
5.31k
            e = (int)MAX_ABS_EXP;
1503
727k
        else
1504
727k
            e = (int)abs_exp;
1505
733k
        if (esign)
1506
27.8k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
733k
        if (s == s1 && !lz)
1510
0
            s = s00;
1511
733k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
831k
    e -= nd - nd0;
1515
831k
    if (nd0 <= 0)
1516
30.1k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
831k
    if (se)
1520
831k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
831k
    if (!nd)
1525
12.0k
        goto ret;
1526
9.29M
    for (i = nd; i > 0; ) {
1527
9.29M
        --i;
1528
9.29M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
819k
            ++i;
1530
819k
            break;
1531
819k
        }
1532
9.29M
    }
1533
819k
    e += nd - i;
1534
819k
    nd = i;
1535
819k
    if (nd0 > nd)
1536
20.8k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
819k
    bc.e0 = e1 = e;
1575
819k
    y = z = 0;
1576
3.03M
    for (i = 0; i < nd; i++) {
1577
2.28M
        if (i < 9)
1578
1.67M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
606k
        else if (i < DBL_DIG+1)
1580
540k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
66.4k
        else
1582
66.4k
            break;
1583
2.28M
    }
1584
1585
819k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
819k
    dval(&rv) = y;
1587
819k
    if (k > 9) {
1588
84.8k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
84.8k
    }
1590
819k
    if (nd <= DBL_DIG
1591
745k
        && Flt_Rounds == 1
1592
819k
        ) {
1593
745k
        if (!e)
1594
12.5k
            goto ret;
1595
733k
        if (e > 0) {
1596
684k
            if (e <= Ten_pmax) {
1597
26.7k
                dval(&rv) *= tens[e];
1598
26.7k
                goto ret;
1599
26.7k
            }
1600
657k
            i = DBL_DIG - nd;
1601
657k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
2.81k
                e -= i;
1606
2.81k
                dval(&rv) *= tens[i];
1607
2.81k
                dval(&rv) *= tens[e];
1608
2.81k
                goto ret;
1609
2.81k
            }
1610
657k
        }
1611
49.0k
        else if (e >= -Ten_pmax) {
1612
29.6k
            dval(&rv) /= tens[-e];
1613
29.6k
            goto ret;
1614
29.6k
        }
1615
733k
    }
1616
747k
    e1 += nd - k;
1617
1618
747k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
747k
    if (e1 > 0) {
1623
709k
        if ((i = e1 & 15))
1624
691k
            dval(&rv) *= tens[i];
1625
709k
        if (e1 &= ~15) {
1626
692k
            if (e1 > DBL_MAX_10_EXP)
1627
612k
                goto ovfl;
1628
79.9k
            e1 >>= 4;
1629
193k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
113k
                if (e1 & 1)
1631
44.5k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
79.9k
            word0(&rv) -= P*Exp_msk1;
1634
79.9k
            dval(&rv) *= bigtens[j];
1635
79.9k
            if ((z = word0(&rv) & Exp_mask)
1636
79.9k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
689
                goto ovfl;
1638
79.2k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
455
                word0(&rv) = Big0;
1642
455
                word1(&rv) = Big1;
1643
455
            }
1644
78.8k
            else
1645
78.8k
                word0(&rv) += P*Exp_msk1;
1646
79.2k
        }
1647
709k
    }
1648
38.2k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
34.6k
        e1 = -e1;
1660
34.6k
        if ((i = e1 & 15))
1661
30.6k
            dval(&rv) /= tens[i];
1662
34.6k
        if (e1 >>= 4) {
1663
24.5k
            if (e1 >= 1 << n_bigtens)
1664
1.09k
                goto undfl;
1665
23.4k
            if (e1 & Scale_Bit)
1666
18.3k
                bc.scale = 2*P;
1667
123k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
99.9k
                if (e1 & 1)
1669
59.0k
                    dval(&rv) *= tinytens[j];
1670
23.4k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
18.3k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
16.9k
                if (j >= 32) {
1674
10.0k
                    word1(&rv) = 0;
1675
10.0k
                    if (j >= 53)
1676
5.49k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
4.52k
                    else
1678
4.52k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
10.0k
                }
1680
6.94k
                else
1681
6.94k
                    word1(&rv) &= 0xffffffff << j;
1682
16.9k
            }
1683
23.4k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
23.4k
        }
1686
34.6k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
132k
    bc.nd = nd;
1693
132k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
132k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
336k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
336k
            --i;
1708
336k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
44.2k
                ++i;
1710
44.2k
                break;
1711
44.2k
            }
1712
336k
        }
1713
44.2k
        e += nd - i;
1714
44.2k
        nd = i;
1715
44.2k
        if (nd0 > nd)
1716
40.9k
            nd0 = nd;
1717
44.2k
        if (nd < 9) { /* must recompute y */
1718
25.0k
            y = 0;
1719
186k
            for(i = 0; i < nd0; ++i)
1720
161k
                y = 10*y + s0[i] - '0';
1721
32.8k
            for(; i < nd; ++i)
1722
7.84k
                y = 10*y + s0[i+1] - '0';
1723
25.0k
        }
1724
44.2k
    }
1725
132k
    bd0 = s2b(s0, nd0, nd, y);
1726
132k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
173k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
173k
        bd = Balloc(bd0->k);
1758
173k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
173k
        Bcopy(bd, bd0);
1762
173k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
173k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
173k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
173k
        bs = i2b(1);
1772
173k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
173k
        if (e >= 0) {
1777
113k
            bb2 = bb5 = 0;
1778
113k
            bd2 = bd5 = e;
1779
113k
        }
1780
60.3k
        else {
1781
60.3k
            bb2 = bb5 = -e;
1782
60.3k
            bd2 = bd5 = 0;
1783
60.3k
        }
1784
173k
        if (bbe >= 0)
1785
122k
            bb2 += bbe;
1786
50.9k
        else
1787
50.9k
            bd2 -= bbe;
1788
173k
        bs2 = bb2;
1789
173k
        bb2++;
1790
173k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
173k
        i = bb2 < bd2 ? bb2 : bd2;
1811
173k
        if (i > bs2)
1812
49.8k
            i = bs2;
1813
173k
        if (i > 0) {
1814
172k
            bb2 -= i;
1815
172k
            bd2 -= i;
1816
172k
            bs2 -= i;
1817
172k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
173k
        if (bb5 > 0) {
1821
60.3k
            bs = pow5mult(bs, bb5);
1822
60.3k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
60.3k
            Bigint *bb1 = mult(bs, bb);
1826
60.3k
            Bfree(bb);
1827
60.3k
            bb = bb1;
1828
60.3k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
60.3k
        }
1832
173k
        if (bb2 > 0) {
1833
173k
            bb = lshift(bb, bb2);
1834
173k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
173k
        }
1838
173k
        if (bd5 > 0) {
1839
107k
            bd = pow5mult(bd, bd5);
1840
107k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
107k
        }
1844
173k
        if (bd2 > 0) {
1845
49.8k
            bd = lshift(bd, bd2);
1846
49.8k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
49.8k
        }
1850
173k
        if (bs2 > 0) {
1851
120k
            bs = lshift(bs, bs2);
1852
120k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
120k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
173k
        delta = diff(bb, bd);
1862
173k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
173k
        dsign = delta->sign;
1866
173k
        delta->sign = 0;
1867
173k
        i = cmp(delta, bs);
1868
173k
        if (bc.nd > nd && i <= 0) {
1869
44.2k
            if (dsign)
1870
34.6k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
9.56k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
1.25k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
1.25k
                if (j - bc.scale >= 2) {
1890
964
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
964
                    break; /* Use bigcomp. */
1892
964
                }
1893
1.25k
            }
1894
1895
8.60k
            {
1896
8.60k
                bc.nd = nd;
1897
8.60k
                i = -1; /* Discarded digits make delta smaller. */
1898
8.60k
            }
1899
8.60k
        }
1900
1901
138k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
61.8k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
4.62k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
61.8k
                ) {
1908
58.7k
                break;
1909
58.7k
            }
1910
3.17k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
479
                break;
1913
479
            }
1914
2.69k
            delta = lshift(delta,Log2P);
1915
2.69k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
2.69k
            if (cmp(delta, bs) > 0)
1919
1.01k
                goto drop_down;
1920
1.68k
            break;
1921
2.69k
        }
1922
76.3k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
3.32k
            if (dsign) {
1925
1.83k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
830
                    &&  word1(&rv) == (
1927
830
                        (bc.scale &&
1928
0
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
830
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
466
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
466
                        + Exp_msk1
1934
466
                        ;
1935
466
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
466
                    break;
1938
466
                }
1939
1.83k
            }
1940
1.48k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
1.01k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
1.01k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
1.01k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
1.01k
                word0(&rv) = L | Bndry_mask1;
1958
1.01k
                word1(&rv) = 0xffffffff;
1959
1.01k
                break;
1960
1.01k
            }
1961
2.85k
            if (!odd)
1962
2.28k
                break;
1963
576
            if (dsign)
1964
338
                dval(&rv) += sulp(&rv, &bc);
1965
238
            else {
1966
238
                dval(&rv) -= sulp(&rv, &bc);
1967
238
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
238
            }
1973
            /* dsign = 1 - dsign; */
1974
576
            break;
1975
576
        }
1976
73.0k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
56.4k
            if (dsign)
1978
15.3k
                aadj = aadj1 = 1.;
1979
41.0k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
36.1k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
36.1k
                aadj = 1.;
1986
36.1k
                aadj1 = -1.;
1987
36.1k
            }
1988
4.97k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
4.97k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
4.97k
                else
1995
4.97k
                    aadj *= 0.5;
1996
4.97k
                aadj1 = -aadj;
1997
4.97k
            }
1998
56.4k
        }
1999
16.6k
        else {
2000
16.6k
            aadj *= 0.5;
2001
16.6k
            aadj1 = dsign ? aadj : -aadj;
2002
16.6k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
16.6k
        }
2005
73.0k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
73.0k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
1.91k
            dval(&rv0) = dval(&rv);
2011
1.91k
            word0(&rv) -= P*Exp_msk1;
2012
1.91k
            adj.d = aadj1 * ulp(&rv);
2013
1.91k
            dval(&rv) += adj.d;
2014
1.91k
            if ((word0(&rv) & Exp_mask) >=
2015
1.91k
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
1.04k
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
750
                    goto ovfl;
2018
750
                }
2019
295
                word0(&rv) = Big0;
2020
295
                word1(&rv) = Big1;
2021
295
                goto cont;
2022
1.04k
            }
2023
872
            else
2024
872
                word0(&rv) += P*Exp_msk1;
2025
1.91k
        }
2026
71.1k
        else {
2027
71.1k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
14.0k
                if (aadj <= 0x7fffffff) {
2029
14.0k
                    if ((z = (ULong)aadj) <= 0)
2030
729
                        z = 1;
2031
14.0k
                    aadj = z;
2032
14.0k
                    aadj1 = dsign ? aadj : -aadj;
2033
14.0k
                }
2034
14.0k
                dval(&aadj2) = aadj1;
2035
14.0k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
14.0k
                aadj1 = dval(&aadj2);
2037
14.0k
            }
2038
71.1k
            adj.d = aadj1 * ulp(&rv);
2039
71.1k
            dval(&rv) += adj.d;
2040
71.1k
        }
2041
72.0k
        z = word0(&rv) & Exp_mask;
2042
72.0k
        if (bc.nd == nd) {
2043
47.6k
            if (!bc.scale)
2044
33.5k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
32.0k
                    L = (Long)aadj;
2047
32.0k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
32.0k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
32.0k
                        if (aadj < .4999999 || aadj > .5000001)
2051
31.1k
                            break;
2052
32.0k
                    }
2053
15
                    else if (aadj < .4999999/FLT_RADIX)
2054
15
                        break;
2055
32.0k
                }
2056
47.6k
        }
2057
41.1k
      cont:
2058
41.1k
        Bfree(bb); bb = NULL;
2059
41.1k
        Bfree(bd); bd = NULL;
2060
41.1k
        Bfree(bs); bs = NULL;
2061
41.1k
        Bfree(delta); delta = NULL;
2062
41.1k
    }
2063
132k
    if (bc.nd > nd) {
2064
35.6k
        error = bigcomp(&rv, s0, &bc);
2065
35.6k
        if (error)
2066
0
            goto failed_malloc;
2067
35.6k
    }
2068
2069
132k
    if (bc.scale) {
2070
18.3k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
18.3k
        word1(&rv0) = 0;
2072
18.3k
        dval(&rv) *= dval(&rv0);
2073
18.3k
    }
2074
2075
215k
  ret:
2076
215k
    result = sign ? -dval(&rv) : dval(&rv);
2077
215k
    goto done;
2078
2079
19
  parse_error:
2080
19
    result = 0.0;
2081
19
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
1.09k
  undfl:
2089
1.09k
    result = sign ? -0.0 : 0.0;
2090
1.09k
    goto done;
2091
2092
614k
  ovfl:
2093
614k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
614k
    word0(&rv) = Exp_mask;
2096
614k
    word1(&rv) = 0;
2097
614k
    result = sign ? -dval(&rv) : dval(&rv);
2098
614k
    goto done;
2099
2100
831k
  done:
2101
831k
    Bfree(bb);
2102
831k
    Bfree(bd);
2103
831k
    Bfree(bs);
2104
831k
    Bfree(bd0);
2105
831k
    Bfree(delta);
2106
831k
    return result;
2107
2108
132k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
51.8k
{
2113
51.8k
    int j, k, *r;
2114
2115
51.8k
    j = sizeof(ULong);
2116
51.8k
    for(k = 0;
2117
51.8k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
51.8k
        j <<= 1)
2119
0
        k++;
2120
51.8k
    r = (int*)Balloc(k);
2121
51.8k
    if (r == NULL)
2122
0
        return NULL;
2123
51.8k
    *r = k;
2124
51.8k
    return (char *)(r+1);
2125
51.8k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
6.25k
{
2130
6.25k
    char *rv, *t;
2131
2132
6.25k
    rv = rv_alloc(n);
2133
6.25k
    if (rv == NULL)
2134
0
        return NULL;
2135
6.25k
    t = rv;
2136
15.8k
    while((*t = *s++)) t++;
2137
6.25k
    if (rve)
2138
6.25k
        *rve = t;
2139
6.25k
    return rv;
2140
6.25k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
51.8k
{
2151
51.8k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
51.8k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
51.8k
    Bfree(b);
2154
51.8k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
51.8k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
51.8k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
51.8k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
51.8k
        spec_case, try_quick;
2235
51.8k
    Long L;
2236
51.8k
    int denorm;
2237
51.8k
    ULong x;
2238
51.8k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
51.8k
    U d2, eps, u;
2240
51.8k
    double ds;
2241
51.8k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
51.8k
    mlo = mhi = S = 0;
2246
51.8k
    s0 = 0;
2247
2248
51.8k
    u.d = dd;
2249
51.8k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
16.3k
        *sign = 1;
2252
16.3k
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
16.3k
    }
2254
35.4k
    else
2255
35.4k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
51.8k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
478
    {
2260
        /* Infinity or NaN */
2261
478
        *decpt = 9999;
2262
478
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
478
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
478
    }
2266
51.3k
    if (!dval(&u)) {
2267
5.77k
        *decpt = 1;
2268
5.77k
        return nrv_alloc("0", rve, 1);
2269
5.77k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
45.6k
    b = d2b(&u, &be, &bbits);
2274
45.6k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
45.6k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
41.3k
        dval(&d2) = dval(&u);
2278
41.3k
        word0(&d2) &= Frac_mask1;
2279
41.3k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
41.3k
        i -= Bias;
2304
41.3k
        denorm = 0;
2305
41.3k
    }
2306
4.23k
    else {
2307
        /* d is denormalized */
2308
2309
4.23k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.23k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.23k
            : word1(&u) << (32 - i);
2312
4.23k
        dval(&d2) = x;
2313
4.23k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.23k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.23k
        denorm = 1;
2316
4.23k
    }
2317
45.6k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
45.6k
        i*0.301029995663981;
2319
45.6k
    k = (int)ds;
2320
45.6k
    if (ds < 0. && ds != k)
2321
13.3k
        k--;    /* want k = floor(ds) */
2322
45.6k
    k_check = 1;
2323
45.6k
    if (k >= 0 && k <= Ten_pmax) {
2324
20.5k
        if (dval(&u) < tens[k])
2325
2.29k
            k--;
2326
20.5k
        k_check = 0;
2327
20.5k
    }
2328
45.6k
    j = bbits - i - 1;
2329
45.6k
    if (j >= 0) {
2330
19.7k
        b2 = 0;
2331
19.7k
        s2 = j;
2332
19.7k
    }
2333
25.8k
    else {
2334
25.8k
        b2 = -j;
2335
25.8k
        s2 = 0;
2336
25.8k
    }
2337
45.6k
    if (k >= 0) {
2338
31.5k
        b5 = 0;
2339
31.5k
        s5 = k;
2340
31.5k
        s2 += k;
2341
31.5k
    }
2342
14.0k
    else {
2343
14.0k
        b2 -= k;
2344
14.0k
        b5 = -k;
2345
14.0k
        s5 = 0;
2346
14.0k
    }
2347
45.6k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
45.6k
    try_quick = 1;
2351
2352
45.6k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
45.6k
    leftright = 1;
2357
45.6k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
45.6k
    switch(mode) {
2360
45.4k
    case 0:
2361
45.4k
    case 1:
2362
45.4k
        i = 18;
2363
45.4k
        ndigits = 0;
2364
45.4k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
113
    case 3:
2374
113
        leftright = 0;
2375
113
        _Py_FALLTHROUGH;
2376
113
    case 5:
2377
113
        i = ndigits + k + 1;
2378
113
        ilim = i;
2379
113
        ilim1 = i - 1;
2380
113
        if (i <= 0)
2381
0
            i = 1;
2382
45.6k
    }
2383
45.6k
    s0 = rv_alloc(i);
2384
45.6k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
45.6k
    s = s0;
2387
2388
2389
45.6k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
113
        i = 0;
2394
113
        dval(&d2) = dval(&u);
2395
113
        k0 = k;
2396
113
        ilim0 = ilim;
2397
113
        ieps = 2; /* conservative */
2398
113
        if (k > 0) {
2399
92
            ds = tens[k&0xf];
2400
92
            j = k >> 4;
2401
92
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
92
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
92
            dval(&u) /= ds;
2413
92
        }
2414
21
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
113
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
113
        dval(&eps) = ieps*dval(&u) + 7.;
2431
113
        word0(&eps) -= (P-1)*Exp_msk1;
2432
113
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
113
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
113
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
113
            dval(&eps) *= tens[ilim-1];
2463
307
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
307
                L = (Long)(dval(&u));
2465
307
                if (!(dval(&u) -= L))
2466
15
                    ilim = i;
2467
307
                *s++ = '0' + (int)L;
2468
307
                if (i == ilim) {
2469
113
                    if (dval(&u) > 0.5 + dval(&eps))
2470
58
                        goto bump_up;
2471
55
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
60
                        while(*--s == '0');
2473
55
                        s++;
2474
55
                        goto ret1;
2475
55
                    }
2476
0
                    break;
2477
113
                }
2478
307
            }
2479
113
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
45.4k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
12.6k
        ds = tens[k];
2492
12.6k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
18.9k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
18.9k
            L = (Long)(dval(&u) / ds);
2500
18.9k
            dval(&u) -= L*ds;
2501
18.9k
            *s++ = '0' + (int)L;
2502
18.9k
            if (!dval(&u)) {
2503
12.6k
                break;
2504
12.6k
            }
2505
6.29k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
58
                  bump_up:
2509
60
                    while(*--s == '9')
2510
2
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
58
                    ++*s++;
2516
58
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
58
                break;
2526
0
            }
2527
6.29k
        }
2528
12.7k
        goto ret1;
2529
12.6k
    }
2530
2531
32.8k
    m2 = b2;
2532
32.8k
    m5 = b5;
2533
32.8k
    if (leftright) {
2534
32.8k
        i =
2535
32.8k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
32.8k
            1 + P - bbits;
2537
32.8k
        b2 += i;
2538
32.8k
        s2 += i;
2539
32.8k
        mhi = i2b(1);
2540
32.8k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
32.8k
    }
2543
32.8k
    if (m2 > 0 && s2 > 0) {
2544
29.1k
        i = m2 < s2 ? m2 : s2;
2545
29.1k
        b2 -= i;
2546
29.1k
        m2 -= i;
2547
29.1k
        s2 -= i;
2548
29.1k
    }
2549
32.8k
    if (b5 > 0) {
2550
14.0k
        if (leftright) {
2551
14.0k
            if (m5 > 0) {
2552
14.0k
                mhi = pow5mult(mhi, m5);
2553
14.0k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
14.0k
                b1 = mult(mhi, b);
2556
14.0k
                Bfree(b);
2557
14.0k
                b = b1;
2558
14.0k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
14.0k
            }
2561
14.0k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
14.0k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
14.0k
    }
2573
32.8k
    S = i2b(1);
2574
32.8k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
32.8k
    if (s5 > 0) {
2577
16.6k
        S = pow5mult(S, s5);
2578
16.6k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
16.6k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
32.8k
    spec_case = 0;
2585
32.8k
    if ((mode < 2 || leftright)
2586
32.8k
        ) {
2587
32.8k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
1.42k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
32.8k
            ) {
2590
            /* The special case */
2591
1.16k
            b2 += Log2P;
2592
1.16k
            s2 += Log2P;
2593
1.16k
            spec_case = 1;
2594
1.16k
        }
2595
32.8k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
32.8k
#define iInc 28
2605
32.8k
    i = dshift(S, s2);
2606
32.8k
    b2 += i;
2607
32.8k
    m2 += i;
2608
32.8k
    s2 += i;
2609
32.8k
    if (b2 > 0) {
2610
32.8k
        b = lshift(b, b2);
2611
32.8k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
32.8k
    }
2614
32.8k
    if (s2 > 0) {
2615
32.2k
        S = lshift(S, s2);
2616
32.2k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
32.2k
    }
2619
32.8k
    if (k_check) {
2620
25.0k
        if (cmp(b,S) < 0) {
2621
2.40k
            k--;
2622
2.40k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
2.40k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
2.40k
            if (leftright) {
2626
2.40k
                mhi = multadd(mhi, 10, 0);
2627
2.40k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
2.40k
            }
2630
2.40k
            ilim = ilim1;
2631
2.40k
        }
2632
25.0k
    }
2633
32.8k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
32.8k
    if (leftright) {
2653
32.8k
        if (m2 > 0) {
2654
31.8k
            mhi = lshift(mhi, m2);
2655
31.8k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
31.8k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
32.8k
        mlo = mhi;
2664
32.8k
        if (spec_case) {
2665
1.16k
            mhi = Balloc(mhi->k);
2666
1.16k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.16k
            Bcopy(mhi, mlo);
2669
1.16k
            mhi = lshift(mhi, Log2P);
2670
1.16k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.16k
        }
2673
2674
118k
        for(i = 1;;i++) {
2675
118k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
118k
            j = cmp(b, mlo);
2680
118k
            delta = diff(S, mhi);
2681
118k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
118k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
118k
            Bfree(delta);
2685
118k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
118k
                ) {
2687
2.03k
                if (dig == '9')
2688
396
                    goto round_9_up;
2689
1.64k
                if (j > 0)
2690
698
                    dig++;
2691
1.64k
                *s++ = dig;
2692
1.64k
                goto ret;
2693
2.03k
            }
2694
116k
            if (j < 0 || (j == 0 && mode != 1
2695
1.79k
                          && !(word1(&u) & 1)
2696
98.2k
                    )) {
2697
18.9k
                if (!b->x[0] && b->wds <= 1) {
2698
2.75k
                    goto accept_dig;
2699
2.75k
                }
2700
16.1k
                if (j1 > 0) {
2701
3.00k
                    b = lshift(b, 1);
2702
3.00k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
3.00k
                    j1 = cmp(b, S);
2705
3.00k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
1.80k
                        && dig++ == '9')
2707
299
                        goto round_9_up;
2708
3.00k
                }
2709
18.6k
              accept_dig:
2710
18.6k
                *s++ = dig;
2711
18.6k
                goto ret;
2712
16.1k
            }
2713
97.4k
            if (j1 > 0) {
2714
11.8k
                if (dig == '9') { /* possible if i == 1 */
2715
2.34k
                  round_9_up:
2716
2.34k
                    *s++ = '9';
2717
2.34k
                    goto roundoff;
2718
1.64k
                }
2719
10.2k
                *s++ = dig + 1;
2720
10.2k
                goto ret;
2721
11.8k
            }
2722
85.5k
            *s++ = dig;
2723
85.5k
            if (i == ilim)
2724
0
                break;
2725
85.5k
            b = multadd(b, 10, 0);
2726
85.5k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
85.5k
            if (mlo == mhi) {
2729
82.6k
                mlo = mhi = multadd(mhi, 10, 0);
2730
82.6k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
82.6k
            }
2733
2.96k
            else {
2734
2.96k
                mlo = multadd(mlo, 10, 0);
2735
2.96k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
2.96k
                mhi = multadd(mhi, 10, 0);
2738
2.96k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
2.96k
            }
2741
85.5k
        }
2742
32.8k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
2.34k
      roundoff:
2764
2.34k
        while(*--s == '9')
2765
2.34k
            if (s == s0) {
2766
2.34k
                k++;
2767
2.34k
                *s++ = '1';
2768
2.34k
                goto ret;
2769
2.34k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
32.8k
  ret:
2777
32.8k
    Bfree(S);
2778
32.8k
    if (mhi) {
2779
32.8k
        if (mlo && mlo != mhi)
2780
1.16k
            Bfree(mlo);
2781
32.8k
        Bfree(mhi);
2782
32.8k
    }
2783
45.6k
  ret1:
2784
45.6k
    Bfree(b);
2785
45.6k
    *s = 0;
2786
45.6k
    *decpt = k + 1;
2787
45.6k
    if (rve)
2788
45.6k
        *rve = s;
2789
45.6k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
32.8k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
28
{
2809
28
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
28
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
28
    Bigint *p5 = i2b(625);
2814
28
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
28
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
224
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
196
        p5 = mult(p5, p5);
2822
196
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
196
        p5s[i] = p5;
2826
196
    }
2827
2828
28
#endif
2829
28
    return PyStatus_Ok();
2830
28
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}