/src/cpython/Objects/obmalloc.c
Line | Count | Source |
1 | | /* Python's malloc wrappers (see pymem.h) */ |
2 | | |
3 | | #include "Python.h" |
4 | | #include "pycore_interp.h" // _PyInterpreterState_HasFeature |
5 | | #include "pycore_mmap.h" // _PyAnnotateMemoryMap() |
6 | | #include "pycore_object.h" // _PyDebugAllocatorStats() definition |
7 | | #include "pycore_obmalloc.h" |
8 | | #include "pycore_obmalloc_init.h" |
9 | | #include "pycore_pyerrors.h" // _Py_FatalErrorFormat() |
10 | | #include "pycore_pymem.h" |
11 | | #include "pycore_pystate.h" // _PyInterpreterState_GET |
12 | | #include "pycore_stats.h" // OBJECT_STAT_INC_COND() |
13 | | |
14 | | #include <stdlib.h> // malloc() |
15 | | #include <stdbool.h> |
16 | | #ifdef WITH_MIMALLOC |
17 | | // Forward declarations of functions used in our mimalloc modifications |
18 | | static void _PyMem_mi_page_clear_qsbr(mi_page_t *page); |
19 | | static bool _PyMem_mi_page_is_safe_to_free(mi_page_t *page); |
20 | | static bool _PyMem_mi_page_maybe_free(mi_page_t *page, mi_page_queue_t *pq, bool force); |
21 | | static void _PyMem_mi_page_reclaimed(mi_page_t *page); |
22 | | static void _PyMem_mi_heap_collect_qsbr(mi_heap_t *heap); |
23 | | # include "pycore_mimalloc.h" |
24 | | # include "mimalloc/static.c" |
25 | | # include "mimalloc/internal.h" // for stats |
26 | | #endif |
27 | | |
28 | | #if defined(Py_GIL_DISABLED) && !defined(WITH_MIMALLOC) |
29 | | # error "Py_GIL_DISABLED requires WITH_MIMALLOC" |
30 | | #endif |
31 | | |
32 | | #undef uint |
33 | 1.98G | #define uint pymem_uint |
34 | | |
35 | | |
36 | | /* Defined in tracemalloc.c */ |
37 | | extern void _PyMem_DumpTraceback(int fd, const void *ptr); |
38 | | |
39 | | static void _PyObject_DebugDumpAddress(const void *p); |
40 | | static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p); |
41 | | |
42 | | |
43 | | static void set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain); |
44 | | static void set_up_debug_hooks_unlocked(void); |
45 | | static void get_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); |
46 | | static void set_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); |
47 | | |
48 | | |
49 | | /***************************************/ |
50 | | /* low-level allocator implementations */ |
51 | | /***************************************/ |
52 | | |
53 | | /* the default raw allocator (wraps malloc) */ |
54 | | |
55 | | void * |
56 | | _PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size) |
57 | 248M | { |
58 | | /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL |
59 | | for malloc(0), which would be treated as an error. Some platforms would |
60 | | return a pointer with no memory behind it, which would break pymalloc. |
61 | | To solve these problems, allocate an extra byte. */ |
62 | 248M | if (size == 0) |
63 | 43.6M | size = 1; |
64 | 248M | return malloc(size); |
65 | 248M | } |
66 | | |
67 | | void * |
68 | | _PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize) |
69 | 113k | { |
70 | | /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL |
71 | | for calloc(0, 0), which would be treated as an error. Some platforms |
72 | | would return a pointer with no memory behind it, which would break |
73 | | pymalloc. To solve these problems, allocate an extra byte. */ |
74 | 113k | if (nelem == 0 || elsize == 0) { |
75 | 2 | nelem = 1; |
76 | 2 | elsize = 1; |
77 | 2 | } |
78 | 113k | return calloc(nelem, elsize); |
79 | 113k | } |
80 | | |
81 | | void * |
82 | | _PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size) |
83 | 8.91M | { |
84 | 8.91M | if (size == 0) |
85 | 0 | size = 1; |
86 | 8.91M | return realloc(ptr, size); |
87 | 8.91M | } |
88 | | |
89 | | void |
90 | | _PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr) |
91 | 248M | { |
92 | 248M | free(ptr); |
93 | 248M | } |
94 | | |
95 | | #ifdef WITH_MIMALLOC |
96 | | |
97 | | static void |
98 | | _PyMem_mi_page_clear_qsbr(mi_page_t *page) |
99 | 0 | { |
100 | | #ifdef Py_GIL_DISABLED |
101 | | // Clear the QSBR goal and remove the page from the QSBR linked list. |
102 | | page->qsbr_goal = 0; |
103 | | if (page->qsbr_node.next != NULL) { |
104 | | llist_remove(&page->qsbr_node); |
105 | | } |
106 | | #endif |
107 | 0 | } |
108 | | |
109 | | // Check if an empty, newly reclaimed page is safe to free now. |
110 | | static bool |
111 | | _PyMem_mi_page_is_safe_to_free(mi_page_t *page) |
112 | 0 | { |
113 | 0 | assert(mi_page_all_free(page)); |
114 | | #ifdef Py_GIL_DISABLED |
115 | | assert(page->qsbr_node.next == NULL); |
116 | | if (page->use_qsbr && page->qsbr_goal != 0) { |
117 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
118 | | if (tstate == NULL) { |
119 | | return false; |
120 | | } |
121 | | return _Py_qbsr_goal_reached(tstate->qsbr, page->qsbr_goal); |
122 | | } |
123 | | #endif |
124 | 0 | return true; |
125 | |
|
126 | 0 | } |
127 | | |
128 | | #ifdef Py_GIL_DISABLED |
129 | | |
130 | | // If we are deferring collection of more than this amount of memory for |
131 | | // mimalloc pages, advance the write sequence. Advancing allows these |
132 | | // pages to be re-used in a different thread or for a different size class. |
133 | | #define QSBR_PAGE_MEM_LIMIT 4096*20 |
134 | | |
135 | | // Return true if the global write sequence should be advanced for a mimalloc |
136 | | // page that is deferred from collection. |
137 | | static bool |
138 | | should_advance_qsbr_for_page(struct _qsbr_thread_state *qsbr, mi_page_t *page) |
139 | | { |
140 | | size_t bsize = mi_page_block_size(page); |
141 | | size_t page_size = page->capacity*bsize; |
142 | | if (page_size > QSBR_PAGE_MEM_LIMIT) { |
143 | | qsbr->deferred_page_memory = 0; |
144 | | return true; |
145 | | } |
146 | | qsbr->deferred_page_memory += page_size; |
147 | | if (qsbr->deferred_page_memory > QSBR_PAGE_MEM_LIMIT) { |
148 | | qsbr->deferred_page_memory = 0; |
149 | | return true; |
150 | | } |
151 | | return false; |
152 | | } |
153 | | #endif |
154 | | |
155 | | static bool |
156 | | _PyMem_mi_page_maybe_free(mi_page_t *page, mi_page_queue_t *pq, bool force) |
157 | 0 | { |
158 | | #ifdef Py_GIL_DISABLED |
159 | | assert(mi_page_all_free(page)); |
160 | | if (page->use_qsbr) { |
161 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)PyThreadState_GET(); |
162 | | if (page->qsbr_goal != 0 && _Py_qbsr_goal_reached(tstate->qsbr, page->qsbr_goal)) { |
163 | | _PyMem_mi_page_clear_qsbr(page); |
164 | | _mi_page_free(page, pq, force); |
165 | | return true; |
166 | | } |
167 | | |
168 | | _PyMem_mi_page_clear_qsbr(page); |
169 | | page->retire_expire = 0; |
170 | | |
171 | | if (should_advance_qsbr_for_page(tstate->qsbr, page)) { |
172 | | page->qsbr_goal = _Py_qsbr_advance(tstate->qsbr->shared); |
173 | | } |
174 | | else { |
175 | | page->qsbr_goal = _Py_qsbr_shared_next(tstate->qsbr->shared); |
176 | | } |
177 | | |
178 | | llist_insert_tail(&tstate->mimalloc.page_list, &page->qsbr_node); |
179 | | return false; |
180 | | } |
181 | | #endif |
182 | 0 | _mi_page_free(page, pq, force); |
183 | 0 | return true; |
184 | 0 | } |
185 | | |
186 | | static void |
187 | | _PyMem_mi_page_reclaimed(mi_page_t *page) |
188 | 0 | { |
189 | | #ifdef Py_GIL_DISABLED |
190 | | assert(page->qsbr_node.next == NULL); |
191 | | if (page->qsbr_goal != 0) { |
192 | | if (mi_page_all_free(page)) { |
193 | | assert(page->qsbr_node.next == NULL); |
194 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)PyThreadState_GET(); |
195 | | page->retire_expire = 0; |
196 | | llist_insert_tail(&tstate->mimalloc.page_list, &page->qsbr_node); |
197 | | } |
198 | | else { |
199 | | page->qsbr_goal = 0; |
200 | | } |
201 | | } |
202 | | #endif |
203 | 0 | } |
204 | | |
205 | | static void |
206 | | _PyMem_mi_heap_collect_qsbr(mi_heap_t *heap) |
207 | 0 | { |
208 | | #ifdef Py_GIL_DISABLED |
209 | | if (!heap->page_use_qsbr) { |
210 | | return; |
211 | | } |
212 | | |
213 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
214 | | struct llist_node *head = &tstate->mimalloc.page_list; |
215 | | if (llist_empty(head)) { |
216 | | return; |
217 | | } |
218 | | |
219 | | struct llist_node *node; |
220 | | llist_for_each_safe(node, head) { |
221 | | mi_page_t *page = llist_data(node, mi_page_t, qsbr_node); |
222 | | if (!mi_page_all_free(page)) { |
223 | | // We allocated from this page some point after the delayed free |
224 | | _PyMem_mi_page_clear_qsbr(page); |
225 | | continue; |
226 | | } |
227 | | |
228 | | if (!_Py_qsbr_poll(tstate->qsbr, page->qsbr_goal)) { |
229 | | return; |
230 | | } |
231 | | |
232 | | _PyMem_mi_page_clear_qsbr(page); |
233 | | _mi_page_free(page, mi_page_queue_of(page), false); |
234 | | } |
235 | | #endif |
236 | 0 | } |
237 | | |
238 | | void * |
239 | | _PyMem_MiMalloc(void *ctx, size_t size) |
240 | 0 | { |
241 | | #ifdef Py_GIL_DISABLED |
242 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
243 | | mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM]; |
244 | | return mi_heap_malloc(heap, size); |
245 | | #else |
246 | 0 | return mi_malloc(size); |
247 | 0 | #endif |
248 | 0 | } |
249 | | |
250 | | void * |
251 | | _PyMem_MiCalloc(void *ctx, size_t nelem, size_t elsize) |
252 | 0 | { |
253 | | #ifdef Py_GIL_DISABLED |
254 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
255 | | mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM]; |
256 | | return mi_heap_calloc(heap, nelem, elsize); |
257 | | #else |
258 | 0 | return mi_calloc(nelem, elsize); |
259 | 0 | #endif |
260 | 0 | } |
261 | | |
262 | | void * |
263 | | _PyMem_MiRealloc(void *ctx, void *ptr, size_t size) |
264 | 0 | { |
265 | | #ifdef Py_GIL_DISABLED |
266 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
267 | | mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM]; |
268 | | return mi_heap_realloc(heap, ptr, size); |
269 | | #else |
270 | 0 | return mi_realloc(ptr, size); |
271 | 0 | #endif |
272 | 0 | } |
273 | | |
274 | | void |
275 | | _PyMem_MiFree(void *ctx, void *ptr) |
276 | 0 | { |
277 | 0 | mi_free(ptr); |
278 | 0 | } |
279 | | |
280 | | void * |
281 | | _PyObject_MiMalloc(void *ctx, size_t nbytes) |
282 | 0 | { |
283 | | #ifdef Py_GIL_DISABLED |
284 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
285 | | mi_heap_t *heap = tstate->mimalloc.current_object_heap; |
286 | | return mi_heap_malloc(heap, nbytes); |
287 | | #else |
288 | 0 | return mi_malloc(nbytes); |
289 | 0 | #endif |
290 | 0 | } |
291 | | |
292 | | void * |
293 | | _PyObject_MiCalloc(void *ctx, size_t nelem, size_t elsize) |
294 | 0 | { |
295 | | #ifdef Py_GIL_DISABLED |
296 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
297 | | mi_heap_t *heap = tstate->mimalloc.current_object_heap; |
298 | | return mi_heap_calloc(heap, nelem, elsize); |
299 | | #else |
300 | 0 | return mi_calloc(nelem, elsize); |
301 | 0 | #endif |
302 | 0 | } |
303 | | |
304 | | |
305 | | void * |
306 | | _PyObject_MiRealloc(void *ctx, void *ptr, size_t nbytes) |
307 | 0 | { |
308 | | #ifdef Py_GIL_DISABLED |
309 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
310 | | // Implement our own realloc logic so that we can copy PyObject header |
311 | | // in a thread-safe way. |
312 | | size_t size = mi_usable_size(ptr); |
313 | | if (nbytes <= size && nbytes >= (size / 2) && nbytes > 0) { |
314 | | return ptr; |
315 | | } |
316 | | |
317 | | mi_heap_t *heap = tstate->mimalloc.current_object_heap; |
318 | | void* newp = mi_heap_malloc(heap, nbytes); |
319 | | if (newp == NULL) { |
320 | | return NULL; |
321 | | } |
322 | | |
323 | | // Free threaded Python allows access from other threads to the PyObject reference count |
324 | | // fields for a period of time after the object is freed (see InternalDocs/qsbr.md). |
325 | | // These fields are typically initialized by PyObject_Init() using relaxed |
326 | | // atomic stores. We need to copy these fields in a thread-safe way here. |
327 | | // We use the "debug_offset" to determine how many bytes to copy -- it |
328 | | // includes the PyObject header and plus any extra pre-headers. |
329 | | size_t offset = heap->debug_offset; |
330 | | assert(offset % sizeof(void*) == 0); |
331 | | |
332 | | size_t copy_size = (size < nbytes ? size : nbytes); |
333 | | if (copy_size >= offset) { |
334 | | for (size_t i = 0; i != offset; i += sizeof(void*)) { |
335 | | // Use memcpy to avoid strict-aliasing issues. However, we probably |
336 | | // still have unavoidable strict-aliasing issues with |
337 | | // _Py_atomic_store_ptr_relaxed here. |
338 | | void *word; |
339 | | memcpy(&word, (char*)ptr + i, sizeof(void*)); |
340 | | _Py_atomic_store_ptr_relaxed((void**)((char*)newp + i), word); |
341 | | } |
342 | | _mi_memcpy((char*)newp + offset, (char*)ptr + offset, copy_size - offset); |
343 | | } |
344 | | else { |
345 | | _mi_memcpy(newp, ptr, copy_size); |
346 | | } |
347 | | mi_free(ptr); |
348 | | return newp; |
349 | | #else |
350 | 0 | return mi_realloc(ptr, nbytes); |
351 | 0 | #endif |
352 | 0 | } |
353 | | |
354 | | void |
355 | | _PyObject_MiFree(void *ctx, void *ptr) |
356 | 0 | { |
357 | 0 | mi_free(ptr); |
358 | 0 | } |
359 | | |
360 | | #endif // WITH_MIMALLOC |
361 | | |
362 | | |
363 | 0 | #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} |
364 | | |
365 | | |
366 | | #ifdef WITH_MIMALLOC |
367 | 0 | # define MIMALLOC_ALLOC {NULL, _PyMem_MiMalloc, _PyMem_MiCalloc, _PyMem_MiRealloc, _PyMem_MiFree} |
368 | 0 | # define MIMALLOC_OBJALLOC {NULL, _PyObject_MiMalloc, _PyObject_MiCalloc, _PyObject_MiRealloc, _PyObject_MiFree} |
369 | | #endif |
370 | | |
371 | | /* the pymalloc allocator */ |
372 | | |
373 | | // The actual implementation is further down. |
374 | | |
375 | | #if defined(WITH_PYMALLOC) |
376 | | void* _PyObject_Malloc(void *ctx, size_t size); |
377 | | void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); |
378 | | void _PyObject_Free(void *ctx, void *p); |
379 | | void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); |
380 | 0 | # define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} |
381 | | #endif // WITH_PYMALLOC |
382 | | |
383 | | #if defined(Py_GIL_DISABLED) |
384 | | // Py_GIL_DISABLED requires using mimalloc for "mem" and "obj" domains. |
385 | | # define PYRAW_ALLOC MALLOC_ALLOC |
386 | | # define PYMEM_ALLOC MIMALLOC_ALLOC |
387 | | # define PYOBJ_ALLOC MIMALLOC_OBJALLOC |
388 | | #elif defined(WITH_PYMALLOC) |
389 | 0 | # define PYRAW_ALLOC MALLOC_ALLOC |
390 | 0 | # define PYMEM_ALLOC PYMALLOC_ALLOC |
391 | 0 | # define PYOBJ_ALLOC PYMALLOC_ALLOC |
392 | | #else |
393 | | # define PYRAW_ALLOC MALLOC_ALLOC |
394 | | # define PYMEM_ALLOC MALLOC_ALLOC |
395 | | # define PYOBJ_ALLOC MALLOC_ALLOC |
396 | | #endif |
397 | | |
398 | | |
399 | | /* the default debug allocators */ |
400 | | |
401 | | // The actual implementation is further down. |
402 | | |
403 | | void* _PyMem_DebugRawMalloc(void *ctx, size_t size); |
404 | | void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); |
405 | | void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); |
406 | | void _PyMem_DebugRawFree(void *ctx, void *ptr); |
407 | | |
408 | | void* _PyMem_DebugMalloc(void *ctx, size_t size); |
409 | | void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); |
410 | | void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); |
411 | | void _PyMem_DebugFree(void *ctx, void *p); |
412 | | |
413 | | #define PYDBGRAW_ALLOC \ |
414 | 0 | {&_PyRuntime.allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} |
415 | | #define PYDBGMEM_ALLOC \ |
416 | 0 | {&_PyRuntime.allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} |
417 | | #define PYDBGOBJ_ALLOC \ |
418 | 0 | {&_PyRuntime.allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} |
419 | | |
420 | | /* default raw allocator (not swappable) */ |
421 | | |
422 | | void * |
423 | | _PyMem_DefaultRawMalloc(size_t size) |
424 | 224 | { |
425 | | #ifdef Py_DEBUG |
426 | | return _PyMem_DebugRawMalloc(&_PyRuntime.allocators.debug.raw, size); |
427 | | #else |
428 | 224 | return _PyMem_RawMalloc(NULL, size); |
429 | 224 | #endif |
430 | 224 | } |
431 | | |
432 | | void * |
433 | | _PyMem_DefaultRawCalloc(size_t nelem, size_t elsize) |
434 | 0 | { |
435 | | #ifdef Py_DEBUG |
436 | | return _PyMem_DebugRawCalloc(&_PyRuntime.allocators.debug.raw, nelem, elsize); |
437 | | #else |
438 | 0 | return _PyMem_RawCalloc(NULL, nelem, elsize); |
439 | 0 | #endif |
440 | 0 | } |
441 | | |
442 | | void * |
443 | | _PyMem_DefaultRawRealloc(void *ptr, size_t size) |
444 | 0 | { |
445 | | #ifdef Py_DEBUG |
446 | | return _PyMem_DebugRawRealloc(&_PyRuntime.allocators.debug.raw, ptr, size); |
447 | | #else |
448 | 0 | return _PyMem_RawRealloc(NULL, ptr, size); |
449 | 0 | #endif |
450 | 0 | } |
451 | | |
452 | | void |
453 | | _PyMem_DefaultRawFree(void *ptr) |
454 | 252 | { |
455 | | #ifdef Py_DEBUG |
456 | | _PyMem_DebugRawFree(&_PyRuntime.allocators.debug.raw, ptr); |
457 | | #else |
458 | 252 | _PyMem_RawFree(NULL, ptr); |
459 | 252 | #endif |
460 | 252 | } |
461 | | |
462 | | wchar_t* |
463 | | _PyMem_DefaultRawWcsdup(const wchar_t *str) |
464 | 168 | { |
465 | 168 | assert(str != NULL); |
466 | | |
467 | 168 | size_t len = wcslen(str); |
468 | 168 | if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { |
469 | 0 | return NULL; |
470 | 0 | } |
471 | | |
472 | 168 | size_t size = (len + 1) * sizeof(wchar_t); |
473 | 168 | wchar_t *str2 = _PyMem_DefaultRawMalloc(size); |
474 | 168 | if (str2 == NULL) { |
475 | 0 | return NULL; |
476 | 0 | } |
477 | | |
478 | 168 | memcpy(str2, str, size); |
479 | 168 | return str2; |
480 | 168 | } |
481 | | |
482 | | /* the low-level virtual memory allocator */ |
483 | | |
484 | | #ifdef WITH_PYMALLOC |
485 | | # ifdef MS_WINDOWS |
486 | | # include <windows.h> |
487 | | # elif defined(HAVE_MMAP) |
488 | | # include <sys/mman.h> |
489 | | # ifdef MAP_ANONYMOUS |
490 | | # define ARENAS_USE_MMAP |
491 | | # endif |
492 | | # endif |
493 | | #endif |
494 | | |
495 | | void * |
496 | | _PyMem_ArenaAlloc(void *Py_UNUSED(ctx), size_t size) |
497 | 295k | { |
498 | | #ifdef MS_WINDOWS |
499 | | return VirtualAlloc(NULL, size, |
500 | | MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
501 | | #elif defined(ARENAS_USE_MMAP) |
502 | | void *ptr; |
503 | 295k | ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, |
504 | 295k | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
505 | 295k | if (ptr == MAP_FAILED) |
506 | 0 | return NULL; |
507 | 295k | assert(ptr != NULL); |
508 | 295k | (void)_PyAnnotateMemoryMap(ptr, size, "cpython:pymalloc"); |
509 | 295k | return ptr; |
510 | | #else |
511 | | return malloc(size); |
512 | | #endif |
513 | 295k | } |
514 | | |
515 | | void |
516 | | _PyMem_ArenaFree(void *Py_UNUSED(ctx), void *ptr, |
517 | | #if defined(ARENAS_USE_MMAP) |
518 | | size_t size |
519 | | #else |
520 | | size_t Py_UNUSED(size) |
521 | | #endif |
522 | | ) |
523 | 294k | { |
524 | | #ifdef MS_WINDOWS |
525 | | /* Unlike free(), VirtualFree() does not special-case NULL to noop. */ |
526 | | if (ptr == NULL) { |
527 | | return; |
528 | | } |
529 | | VirtualFree(ptr, 0, MEM_RELEASE); |
530 | | #elif defined(ARENAS_USE_MMAP) |
531 | | /* Unlike free(), munmap() does not special-case NULL to noop. */ |
532 | 294k | if (ptr == NULL) { |
533 | 0 | return; |
534 | 0 | } |
535 | 294k | munmap(ptr, size); |
536 | | #else |
537 | | free(ptr); |
538 | | #endif |
539 | 294k | } |
540 | | |
541 | | /*******************************************/ |
542 | | /* end low-level allocator implementations */ |
543 | | /*******************************************/ |
544 | | |
545 | | |
546 | 56 | #define ALLOCATORS_MUTEX (_PyRuntime.allocators.mutex) |
547 | 1.01G | #define _PyMem_Raw (_PyRuntime.allocators.standard.raw) |
548 | 2.23G | #define _PyMem (_PyRuntime.allocators.standard.mem) |
549 | 5.93G | #define _PyObject (_PyRuntime.allocators.standard.obj) |
550 | 0 | #define _PyMem_Debug (_PyRuntime.allocators.debug) |
551 | 1.18M | #define _PyObject_Arena (_PyRuntime.allocators.obj_arena) |
552 | | |
553 | | |
554 | | /***************************/ |
555 | | /* managing the allocators */ |
556 | | /***************************/ |
557 | | |
558 | | static int |
559 | | set_default_allocator_unlocked(PyMemAllocatorDomain domain, int debug, |
560 | | PyMemAllocatorEx *old_alloc) |
561 | 0 | { |
562 | 0 | if (old_alloc != NULL) { |
563 | 0 | get_allocator_unlocked(domain, old_alloc); |
564 | 0 | } |
565 | | |
566 | |
|
567 | 0 | PyMemAllocatorEx new_alloc; |
568 | 0 | switch(domain) |
569 | 0 | { |
570 | 0 | case PYMEM_DOMAIN_RAW: |
571 | 0 | new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; |
572 | 0 | break; |
573 | 0 | case PYMEM_DOMAIN_MEM: |
574 | 0 | new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; |
575 | 0 | break; |
576 | 0 | case PYMEM_DOMAIN_OBJ: |
577 | 0 | new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; |
578 | 0 | break; |
579 | 0 | default: |
580 | | /* unknown domain */ |
581 | 0 | return -1; |
582 | 0 | } |
583 | 0 | set_allocator_unlocked(domain, &new_alloc); |
584 | 0 | if (debug) { |
585 | 0 | set_up_debug_hooks_domain_unlocked(domain); |
586 | 0 | } |
587 | 0 | return 0; |
588 | 0 | } |
589 | | |
590 | | |
591 | | #ifdef Py_DEBUG |
592 | | static const int pydebug = 1; |
593 | | #else |
594 | | static const int pydebug = 0; |
595 | | #endif |
596 | | |
597 | | int |
598 | | _PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator) |
599 | 0 | { |
600 | 0 | if (name == NULL || *name == '\0') { |
601 | | /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line |
602 | | nameions): use default memory allocators */ |
603 | 0 | *allocator = PYMEM_ALLOCATOR_DEFAULT; |
604 | 0 | } |
605 | 0 | else if (strcmp(name, "default") == 0) { |
606 | 0 | *allocator = PYMEM_ALLOCATOR_DEFAULT; |
607 | 0 | } |
608 | 0 | else if (strcmp(name, "debug") == 0) { |
609 | 0 | *allocator = PYMEM_ALLOCATOR_DEBUG; |
610 | 0 | } |
611 | 0 | #if defined(WITH_PYMALLOC) && !defined(Py_GIL_DISABLED) |
612 | 0 | else if (strcmp(name, "pymalloc") == 0) { |
613 | 0 | *allocator = PYMEM_ALLOCATOR_PYMALLOC; |
614 | 0 | } |
615 | 0 | else if (strcmp(name, "pymalloc_debug") == 0) { |
616 | 0 | *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG; |
617 | 0 | } |
618 | 0 | #endif |
619 | 0 | #ifdef WITH_MIMALLOC |
620 | 0 | else if (strcmp(name, "mimalloc") == 0) { |
621 | 0 | *allocator = PYMEM_ALLOCATOR_MIMALLOC; |
622 | 0 | } |
623 | 0 | else if (strcmp(name, "mimalloc_debug") == 0) { |
624 | 0 | *allocator = PYMEM_ALLOCATOR_MIMALLOC_DEBUG; |
625 | 0 | } |
626 | 0 | #endif |
627 | 0 | #ifndef Py_GIL_DISABLED |
628 | 0 | else if (strcmp(name, "malloc") == 0) { |
629 | 0 | *allocator = PYMEM_ALLOCATOR_MALLOC; |
630 | 0 | } |
631 | 0 | else if (strcmp(name, "malloc_debug") == 0) { |
632 | 0 | *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG; |
633 | 0 | } |
634 | 0 | #endif |
635 | 0 | else { |
636 | | /* unknown allocator */ |
637 | 0 | return -1; |
638 | 0 | } |
639 | 0 | return 0; |
640 | 0 | } |
641 | | |
642 | | |
643 | | static int |
644 | | set_up_allocators_unlocked(PyMemAllocatorName allocator) |
645 | 0 | { |
646 | 0 | switch (allocator) { |
647 | 0 | case PYMEM_ALLOCATOR_NOT_SET: |
648 | | /* do nothing */ |
649 | 0 | break; |
650 | | |
651 | 0 | case PYMEM_ALLOCATOR_DEFAULT: |
652 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, pydebug, NULL); |
653 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, pydebug, NULL); |
654 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, pydebug, NULL); |
655 | 0 | _PyRuntime.allocators.is_debug_enabled = pydebug; |
656 | 0 | break; |
657 | | |
658 | 0 | case PYMEM_ALLOCATOR_DEBUG: |
659 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, 1, NULL); |
660 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, 1, NULL); |
661 | 0 | (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, 1, NULL); |
662 | 0 | _PyRuntime.allocators.is_debug_enabled = 1; |
663 | 0 | break; |
664 | | |
665 | 0 | #ifdef WITH_PYMALLOC |
666 | 0 | case PYMEM_ALLOCATOR_PYMALLOC: |
667 | 0 | case PYMEM_ALLOCATOR_PYMALLOC_DEBUG: |
668 | 0 | { |
669 | 0 | PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
670 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); |
671 | |
|
672 | 0 | PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; |
673 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc); |
674 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &pymalloc); |
675 | |
|
676 | 0 | int is_debug = (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG); |
677 | 0 | _PyRuntime.allocators.is_debug_enabled = is_debug; |
678 | 0 | if (is_debug) { |
679 | 0 | set_up_debug_hooks_unlocked(); |
680 | 0 | } |
681 | 0 | break; |
682 | 0 | } |
683 | 0 | #endif |
684 | 0 | #ifdef WITH_MIMALLOC |
685 | 0 | case PYMEM_ALLOCATOR_MIMALLOC: |
686 | 0 | case PYMEM_ALLOCATOR_MIMALLOC_DEBUG: |
687 | 0 | { |
688 | 0 | PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
689 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); |
690 | |
|
691 | 0 | PyMemAllocatorEx pymalloc = MIMALLOC_ALLOC; |
692 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc); |
693 | |
|
694 | 0 | PyMemAllocatorEx objmalloc = MIMALLOC_OBJALLOC; |
695 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &objmalloc); |
696 | |
|
697 | 0 | int is_debug = (allocator == PYMEM_ALLOCATOR_MIMALLOC_DEBUG); |
698 | 0 | _PyRuntime.allocators.is_debug_enabled = is_debug; |
699 | 0 | if (is_debug) { |
700 | 0 | set_up_debug_hooks_unlocked(); |
701 | 0 | } |
702 | |
|
703 | 0 | break; |
704 | 0 | } |
705 | 0 | #endif |
706 | | |
707 | 0 | case PYMEM_ALLOCATOR_MALLOC: |
708 | 0 | case PYMEM_ALLOCATOR_MALLOC_DEBUG: |
709 | 0 | { |
710 | 0 | PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
711 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); |
712 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_MEM, &malloc_alloc); |
713 | 0 | set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &malloc_alloc); |
714 | |
|
715 | 0 | int is_debug = (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG); |
716 | 0 | _PyRuntime.allocators.is_debug_enabled = is_debug; |
717 | 0 | if (is_debug) { |
718 | 0 | set_up_debug_hooks_unlocked(); |
719 | 0 | } |
720 | 0 | break; |
721 | 0 | } |
722 | | |
723 | 0 | default: |
724 | | /* unknown allocator */ |
725 | 0 | return -1; |
726 | 0 | } |
727 | | |
728 | 0 | return 0; |
729 | 0 | } |
730 | | |
731 | | int |
732 | | _PyMem_SetupAllocators(PyMemAllocatorName allocator) |
733 | 0 | { |
734 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
735 | 0 | int res = set_up_allocators_unlocked(allocator); |
736 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
737 | 0 | return res; |
738 | 0 | } |
739 | | |
740 | | |
741 | | static int |
742 | | pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) |
743 | 0 | { |
744 | 0 | return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); |
745 | 0 | } |
746 | | |
747 | | |
748 | | static const char* |
749 | | get_current_allocator_name_unlocked(void) |
750 | 0 | { |
751 | 0 | PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
752 | 0 | #ifdef WITH_PYMALLOC |
753 | 0 | PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; |
754 | 0 | #endif |
755 | 0 | #ifdef WITH_MIMALLOC |
756 | 0 | PyMemAllocatorEx mimalloc = MIMALLOC_ALLOC; |
757 | 0 | PyMemAllocatorEx mimalloc_obj = MIMALLOC_OBJALLOC; |
758 | 0 | #endif |
759 | |
|
760 | 0 | if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && |
761 | 0 | pymemallocator_eq(&_PyMem, &malloc_alloc) && |
762 | 0 | pymemallocator_eq(&_PyObject, &malloc_alloc)) |
763 | 0 | { |
764 | 0 | return "malloc"; |
765 | 0 | } |
766 | 0 | #ifdef WITH_PYMALLOC |
767 | 0 | if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && |
768 | 0 | pymemallocator_eq(&_PyMem, &pymalloc) && |
769 | 0 | pymemallocator_eq(&_PyObject, &pymalloc)) |
770 | 0 | { |
771 | 0 | return "pymalloc"; |
772 | 0 | } |
773 | 0 | #endif |
774 | 0 | #ifdef WITH_MIMALLOC |
775 | 0 | if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && |
776 | 0 | pymemallocator_eq(&_PyMem, &mimalloc) && |
777 | 0 | pymemallocator_eq(&_PyObject, &mimalloc_obj)) |
778 | 0 | { |
779 | 0 | return "mimalloc"; |
780 | 0 | } |
781 | 0 | #endif |
782 | | |
783 | 0 | PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; |
784 | 0 | PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; |
785 | 0 | PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; |
786 | |
|
787 | 0 | if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && |
788 | 0 | pymemallocator_eq(&_PyMem, &dbg_mem) && |
789 | 0 | pymemallocator_eq(&_PyObject, &dbg_obj)) |
790 | 0 | { |
791 | | /* Debug hooks installed */ |
792 | 0 | if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && |
793 | 0 | pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && |
794 | 0 | pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) |
795 | 0 | { |
796 | 0 | return "malloc_debug"; |
797 | 0 | } |
798 | 0 | #ifdef WITH_PYMALLOC |
799 | 0 | if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && |
800 | 0 | pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && |
801 | 0 | pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) |
802 | 0 | { |
803 | 0 | return "pymalloc_debug"; |
804 | 0 | } |
805 | 0 | #endif |
806 | 0 | #ifdef WITH_MIMALLOC |
807 | 0 | if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && |
808 | 0 | pymemallocator_eq(&_PyMem_Debug.mem.alloc, &mimalloc) && |
809 | 0 | pymemallocator_eq(&_PyMem_Debug.obj.alloc, &mimalloc_obj)) |
810 | 0 | { |
811 | 0 | return "mimalloc_debug"; |
812 | 0 | } |
813 | 0 | #endif |
814 | 0 | } |
815 | 0 | return NULL; |
816 | 0 | } |
817 | | |
818 | | const char* |
819 | | _PyMem_GetCurrentAllocatorName(void) |
820 | 0 | { |
821 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
822 | 0 | const char *name = get_current_allocator_name_unlocked(); |
823 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
824 | 0 | return name; |
825 | 0 | } |
826 | | |
827 | | |
828 | | int |
829 | | _PyMem_DebugEnabled(void) |
830 | 0 | { |
831 | 0 | return _PyRuntime.allocators.is_debug_enabled; |
832 | 0 | } |
833 | | |
834 | | #ifdef WITH_PYMALLOC |
835 | | static int |
836 | | _PyMem_PymallocEnabled(void) |
837 | 0 | { |
838 | 0 | if (_PyMem_DebugEnabled()) { |
839 | 0 | return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); |
840 | 0 | } |
841 | 0 | else { |
842 | 0 | return (_PyObject.malloc == _PyObject_Malloc); |
843 | 0 | } |
844 | 0 | } |
845 | | |
846 | | #ifdef WITH_MIMALLOC |
847 | | static int |
848 | | _PyMem_MimallocEnabled(void) |
849 | 0 | { |
850 | | #ifdef Py_GIL_DISABLED |
851 | | return 1; |
852 | | #else |
853 | 0 | if (_PyMem_DebugEnabled()) { |
854 | 0 | return (_PyMem_Debug.obj.alloc.malloc == _PyObject_MiMalloc); |
855 | 0 | } |
856 | 0 | else { |
857 | 0 | return (_PyObject.malloc == _PyObject_MiMalloc); |
858 | 0 | } |
859 | 0 | #endif |
860 | 0 | } |
861 | | #endif // WITH_MIMALLOC |
862 | | |
863 | | #endif // WITH_PYMALLOC |
864 | | |
865 | | |
866 | | static void |
867 | | set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain) |
868 | 0 | { |
869 | 0 | PyMemAllocatorEx alloc; |
870 | |
|
871 | 0 | if (domain == PYMEM_DOMAIN_RAW) { |
872 | 0 | if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { |
873 | 0 | return; |
874 | 0 | } |
875 | | |
876 | 0 | get_allocator_unlocked(domain, &_PyMem_Debug.raw.alloc); |
877 | 0 | alloc.ctx = &_PyMem_Debug.raw; |
878 | 0 | alloc.malloc = _PyMem_DebugRawMalloc; |
879 | 0 | alloc.calloc = _PyMem_DebugRawCalloc; |
880 | 0 | alloc.realloc = _PyMem_DebugRawRealloc; |
881 | 0 | alloc.free = _PyMem_DebugRawFree; |
882 | 0 | set_allocator_unlocked(domain, &alloc); |
883 | 0 | } |
884 | 0 | else if (domain == PYMEM_DOMAIN_MEM) { |
885 | 0 | if (_PyMem.malloc == _PyMem_DebugMalloc) { |
886 | 0 | return; |
887 | 0 | } |
888 | | |
889 | 0 | get_allocator_unlocked(domain, &_PyMem_Debug.mem.alloc); |
890 | 0 | alloc.ctx = &_PyMem_Debug.mem; |
891 | 0 | alloc.malloc = _PyMem_DebugMalloc; |
892 | 0 | alloc.calloc = _PyMem_DebugCalloc; |
893 | 0 | alloc.realloc = _PyMem_DebugRealloc; |
894 | 0 | alloc.free = _PyMem_DebugFree; |
895 | 0 | set_allocator_unlocked(domain, &alloc); |
896 | 0 | } |
897 | 0 | else if (domain == PYMEM_DOMAIN_OBJ) { |
898 | 0 | if (_PyObject.malloc == _PyMem_DebugMalloc) { |
899 | 0 | return; |
900 | 0 | } |
901 | | |
902 | 0 | get_allocator_unlocked(domain, &_PyMem_Debug.obj.alloc); |
903 | 0 | alloc.ctx = &_PyMem_Debug.obj; |
904 | 0 | alloc.malloc = _PyMem_DebugMalloc; |
905 | 0 | alloc.calloc = _PyMem_DebugCalloc; |
906 | 0 | alloc.realloc = _PyMem_DebugRealloc; |
907 | 0 | alloc.free = _PyMem_DebugFree; |
908 | 0 | set_allocator_unlocked(domain, &alloc); |
909 | 0 | } |
910 | 0 | } |
911 | | |
912 | | |
913 | | static void |
914 | | set_up_debug_hooks_unlocked(void) |
915 | 0 | { |
916 | 0 | set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_RAW); |
917 | 0 | set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_MEM); |
918 | 0 | set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_OBJ); |
919 | 0 | _PyRuntime.allocators.is_debug_enabled = 1; |
920 | 0 | } |
921 | | |
922 | | void |
923 | | PyMem_SetupDebugHooks(void) |
924 | 0 | { |
925 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
926 | 0 | set_up_debug_hooks_unlocked(); |
927 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
928 | 0 | } |
929 | | |
930 | | static void |
931 | | get_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
932 | 28 | { |
933 | 28 | switch(domain) |
934 | 28 | { |
935 | 28 | case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; |
936 | 0 | case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; |
937 | 0 | case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; |
938 | 0 | default: |
939 | | /* unknown domain: set all attributes to NULL */ |
940 | 0 | allocator->ctx = NULL; |
941 | 0 | allocator->malloc = NULL; |
942 | 0 | allocator->calloc = NULL; |
943 | 0 | allocator->realloc = NULL; |
944 | 0 | allocator->free = NULL; |
945 | 28 | } |
946 | 28 | } |
947 | | |
948 | | static void |
949 | | set_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
950 | 0 | { |
951 | 0 | switch(domain) |
952 | 0 | { |
953 | 0 | case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; |
954 | 0 | case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; |
955 | 0 | case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; |
956 | | /* ignore unknown domain */ |
957 | 0 | } |
958 | 0 | } |
959 | | |
960 | | void |
961 | | PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
962 | 28 | { |
963 | 28 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
964 | 28 | get_allocator_unlocked(domain, allocator); |
965 | 28 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
966 | 28 | } |
967 | | |
968 | | void |
969 | | PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
970 | 0 | { |
971 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
972 | 0 | set_allocator_unlocked(domain, allocator); |
973 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
974 | 0 | } |
975 | | |
976 | | void |
977 | | PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) |
978 | 0 | { |
979 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
980 | 0 | *allocator = _PyObject_Arena; |
981 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
982 | 0 | } |
983 | | |
984 | | void |
985 | | PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) |
986 | 0 | { |
987 | 0 | PyMutex_Lock(&ALLOCATORS_MUTEX); |
988 | 0 | _PyObject_Arena = *allocator; |
989 | 0 | PyMutex_Unlock(&ALLOCATORS_MUTEX); |
990 | 0 | } |
991 | | |
992 | | |
993 | | /* Note that there is a possible, but very unlikely, race in any place |
994 | | * below where we call one of the allocator functions. We access two |
995 | | * fields in each case: "malloc", etc. and "ctx". |
996 | | * |
997 | | * It is unlikely that the allocator will be changed while one of those |
998 | | * calls is happening, much less in that very narrow window. |
999 | | * Furthermore, the likelihood of a race is drastically reduced by the |
1000 | | * fact that the allocator may not be changed after runtime init |
1001 | | * (except with a wrapper). |
1002 | | * |
1003 | | * With the above in mind, we currently don't worry about locking |
1004 | | * around these uses of the runtime-global allocators state. */ |
1005 | | |
1006 | | |
1007 | | /*************************/ |
1008 | | /* the "arena" allocator */ |
1009 | | /*************************/ |
1010 | | |
1011 | | void * |
1012 | | _PyObject_VirtualAlloc(size_t size) |
1013 | 289k | { |
1014 | 289k | return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size); |
1015 | 289k | } |
1016 | | |
1017 | | void |
1018 | | _PyObject_VirtualFree(void *obj, size_t size) |
1019 | 289k | { |
1020 | 289k | _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size); |
1021 | 289k | } |
1022 | | |
1023 | | |
1024 | | /***********************/ |
1025 | | /* the "raw" allocator */ |
1026 | | /***********************/ |
1027 | | |
1028 | | void * |
1029 | | PyMem_RawMalloc(size_t size) |
1030 | 248M | { |
1031 | | /* |
1032 | | * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. |
1033 | | * Most python internals blindly use a signed Py_ssize_t to track |
1034 | | * things without checking for overflows or negatives. |
1035 | | * As size_t is unsigned, checking for size < 0 is not required. |
1036 | | */ |
1037 | 248M | if (size > (size_t)PY_SSIZE_T_MAX) |
1038 | 0 | return NULL; |
1039 | 248M | return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); |
1040 | 248M | } |
1041 | | |
1042 | | void * |
1043 | | PyMem_RawCalloc(size_t nelem, size_t elsize) |
1044 | 113k | { |
1045 | | /* see PyMem_RawMalloc() */ |
1046 | 113k | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
1047 | 0 | return NULL; |
1048 | 113k | return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); |
1049 | 113k | } |
1050 | | |
1051 | | void* |
1052 | | PyMem_RawRealloc(void *ptr, size_t new_size) |
1053 | 8.91M | { |
1054 | | /* see PyMem_RawMalloc() */ |
1055 | 8.91M | if (new_size > (size_t)PY_SSIZE_T_MAX) |
1056 | 0 | return NULL; |
1057 | 8.91M | return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); |
1058 | 8.91M | } |
1059 | | |
1060 | | void PyMem_RawFree(void *ptr) |
1061 | 248M | { |
1062 | 248M | _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); |
1063 | 248M | } |
1064 | | |
1065 | | |
1066 | | /***********************/ |
1067 | | /* the "mem" allocator */ |
1068 | | /***********************/ |
1069 | | |
1070 | | void * |
1071 | | PyMem_Malloc(size_t size) |
1072 | 252M | { |
1073 | | /* see PyMem_RawMalloc() */ |
1074 | 252M | if (size > (size_t)PY_SSIZE_T_MAX) |
1075 | 0 | return NULL; |
1076 | 252M | OBJECT_STAT_INC_COND(allocations512, size < 512); |
1077 | 252M | OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); |
1078 | 252M | OBJECT_STAT_INC_COND(allocations_big, size >= 4094); |
1079 | 252M | OBJECT_STAT_INC(allocations); |
1080 | 252M | return _PyMem.malloc(_PyMem.ctx, size); |
1081 | 252M | } |
1082 | | |
1083 | | void * |
1084 | | PyMem_Calloc(size_t nelem, size_t elsize) |
1085 | 50.1M | { |
1086 | | /* see PyMem_RawMalloc() */ |
1087 | 50.1M | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
1088 | 0 | return NULL; |
1089 | 50.1M | OBJECT_STAT_INC_COND(allocations512, elsize < 512); |
1090 | 50.1M | OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); |
1091 | 50.1M | OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); |
1092 | 50.1M | OBJECT_STAT_INC(allocations); |
1093 | 50.1M | return _PyMem.calloc(_PyMem.ctx, nelem, elsize); |
1094 | 50.1M | } |
1095 | | |
1096 | | void * |
1097 | | PyMem_Realloc(void *ptr, size_t new_size) |
1098 | 273M | { |
1099 | | /* see PyMem_RawMalloc() */ |
1100 | 273M | if (new_size > (size_t)PY_SSIZE_T_MAX) |
1101 | 0 | return NULL; |
1102 | 273M | return _PyMem.realloc(_PyMem.ctx, ptr, new_size); |
1103 | 273M | } |
1104 | | |
1105 | | void |
1106 | | PyMem_Free(void *ptr) |
1107 | 540M | { |
1108 | 540M | OBJECT_STAT_INC(frees); |
1109 | 540M | _PyMem.free(_PyMem.ctx, ptr); |
1110 | 540M | } |
1111 | | |
1112 | | |
1113 | | /***************************/ |
1114 | | /* pymem utility functions */ |
1115 | | /***************************/ |
1116 | | |
1117 | | wchar_t* |
1118 | | _PyMem_RawWcsdup(const wchar_t *str) |
1119 | 1.12k | { |
1120 | 1.12k | assert(str != NULL); |
1121 | | |
1122 | 1.12k | size_t len = wcslen(str); |
1123 | 1.12k | if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { |
1124 | 0 | return NULL; |
1125 | 0 | } |
1126 | | |
1127 | 1.12k | size_t size = (len + 1) * sizeof(wchar_t); |
1128 | 1.12k | wchar_t *str2 = PyMem_RawMalloc(size); |
1129 | 1.12k | if (str2 == NULL) { |
1130 | 0 | return NULL; |
1131 | 0 | } |
1132 | | |
1133 | 1.12k | memcpy(str2, str, size); |
1134 | 1.12k | return str2; |
1135 | 1.12k | } |
1136 | | |
1137 | | char * |
1138 | | _PyMem_RawStrdup(const char *str) |
1139 | 84 | { |
1140 | 84 | assert(str != NULL); |
1141 | 84 | size_t size = strlen(str) + 1; |
1142 | 84 | char *copy = PyMem_RawMalloc(size); |
1143 | 84 | if (copy == NULL) { |
1144 | 0 | return NULL; |
1145 | 0 | } |
1146 | 84 | memcpy(copy, str, size); |
1147 | 84 | return copy; |
1148 | 84 | } |
1149 | | |
1150 | | char * |
1151 | | _PyMem_Strdup(const char *str) |
1152 | 0 | { |
1153 | 0 | assert(str != NULL); |
1154 | 0 | size_t size = strlen(str) + 1; |
1155 | 0 | char *copy = PyMem_Malloc(size); |
1156 | 0 | if (copy == NULL) { |
1157 | 0 | return NULL; |
1158 | 0 | } |
1159 | 0 | memcpy(copy, str, size); |
1160 | 0 | return copy; |
1161 | 0 | } |
1162 | | |
1163 | | /***********************************************/ |
1164 | | /* Delayed freeing support for Py_GIL_DISABLED */ |
1165 | | /***********************************************/ |
1166 | | |
1167 | | // So that sizeof(struct _mem_work_chunk) is 4096 bytes on 64-bit platforms. |
1168 | | #define WORK_ITEMS_PER_CHUNK 254 |
1169 | | |
1170 | | // A pointer to be freed once the QSBR read sequence reaches qsbr_goal. |
1171 | | struct _mem_work_item { |
1172 | | uintptr_t ptr; // lowest bit tagged 1 for objects freed with PyObject_Free |
1173 | | uint64_t qsbr_goal; |
1174 | | }; |
1175 | | |
1176 | | // A fixed-size buffer of pointers to be freed |
1177 | | struct _mem_work_chunk { |
1178 | | // Linked list node of chunks in queue |
1179 | | struct llist_node node; |
1180 | | |
1181 | | Py_ssize_t rd_idx; // index of next item to read |
1182 | | Py_ssize_t wr_idx; // index of next item to write |
1183 | | struct _mem_work_item array[WORK_ITEMS_PER_CHUNK]; |
1184 | | }; |
1185 | | |
1186 | | static int |
1187 | | work_item_should_decref(uintptr_t ptr) |
1188 | 0 | { |
1189 | 0 | return ptr & 0x01; |
1190 | 0 | } |
1191 | | |
1192 | | static void |
1193 | | free_work_item(uintptr_t ptr, delayed_dealloc_cb cb, void *state) |
1194 | 0 | { |
1195 | 0 | if (work_item_should_decref(ptr)) { |
1196 | 0 | PyObject *obj = (PyObject *)(ptr - 1); |
1197 | | #ifdef Py_GIL_DISABLED |
1198 | | if (cb == NULL) { |
1199 | | assert(!_PyInterpreterState_GET()->stoptheworld.world_stopped); |
1200 | | Py_DECREF(obj); |
1201 | | return; |
1202 | | } |
1203 | | assert(_PyInterpreterState_GET()->stoptheworld.world_stopped); |
1204 | | Py_ssize_t refcount = _Py_ExplicitMergeRefcount(obj, -1); |
1205 | | if (refcount == 0) { |
1206 | | cb(obj, state); |
1207 | | } |
1208 | | #else |
1209 | 0 | Py_DECREF(obj); |
1210 | 0 | #endif |
1211 | 0 | } |
1212 | 0 | else { |
1213 | 0 | PyMem_Free((void *)ptr); |
1214 | 0 | } |
1215 | 0 | } |
1216 | | |
1217 | | |
1218 | | #ifdef Py_GIL_DISABLED |
1219 | | |
1220 | | // For deferred advance on free: the number of deferred items before advancing |
1221 | | // the write sequence. This is based on WORK_ITEMS_PER_CHUNK. We ideally |
1222 | | // want to process a chunk before it overflows. |
1223 | | #define QSBR_DEFERRED_LIMIT 127 |
1224 | | |
1225 | | // If the deferred memory exceeds 1 MiB, advance the write sequence. This |
1226 | | // helps limit memory usage due to QSBR delaying frees too long. |
1227 | | #define QSBR_FREE_MEM_LIMIT 1024*1024 |
1228 | | |
1229 | | // Return true if the global write sequence should be advanced for a deferred |
1230 | | // memory free. |
1231 | | static bool |
1232 | | should_advance_qsbr_for_free(struct _qsbr_thread_state *qsbr, size_t size) |
1233 | | { |
1234 | | if (size > QSBR_FREE_MEM_LIMIT) { |
1235 | | qsbr->deferred_count = 0; |
1236 | | qsbr->deferred_memory = 0; |
1237 | | qsbr->should_process = true; |
1238 | | return true; |
1239 | | } |
1240 | | qsbr->deferred_count++; |
1241 | | qsbr->deferred_memory += size; |
1242 | | if (qsbr->deferred_count > QSBR_DEFERRED_LIMIT || |
1243 | | qsbr->deferred_memory > QSBR_FREE_MEM_LIMIT) { |
1244 | | qsbr->deferred_count = 0; |
1245 | | qsbr->deferred_memory = 0; |
1246 | | qsbr->should_process = true; |
1247 | | return true; |
1248 | | } |
1249 | | return false; |
1250 | | } |
1251 | | #endif |
1252 | | |
1253 | | static void |
1254 | | free_delayed(uintptr_t ptr, size_t size) |
1255 | 0 | { |
1256 | 0 | #ifndef Py_GIL_DISABLED |
1257 | 0 | free_work_item(ptr, NULL, NULL); |
1258 | | #else |
1259 | | PyInterpreterState *interp = _PyInterpreterState_GET(); |
1260 | | if (_PyInterpreterState_GetFinalizing(interp) != NULL || |
1261 | | interp->stoptheworld.world_stopped) |
1262 | | { |
1263 | | // Free immediately during interpreter shutdown or if the world is |
1264 | | // stopped. |
1265 | | assert(!interp->stoptheworld.world_stopped || !work_item_should_decref(ptr)); |
1266 | | free_work_item(ptr, NULL, NULL); |
1267 | | return; |
1268 | | } |
1269 | | |
1270 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
1271 | | struct llist_node *head = &tstate->mem_free_queue; |
1272 | | |
1273 | | struct _mem_work_chunk *buf = NULL; |
1274 | | if (!llist_empty(head)) { |
1275 | | // Try to re-use the last buffer |
1276 | | buf = llist_data(head->prev, struct _mem_work_chunk, node); |
1277 | | if (buf->wr_idx == WORK_ITEMS_PER_CHUNK) { |
1278 | | // already full |
1279 | | buf = NULL; |
1280 | | } |
1281 | | } |
1282 | | |
1283 | | if (buf == NULL) { |
1284 | | buf = PyMem_Calloc(1, sizeof(*buf)); |
1285 | | if (buf != NULL) { |
1286 | | llist_insert_tail(head, &buf->node); |
1287 | | } |
1288 | | } |
1289 | | |
1290 | | if (buf == NULL) { |
1291 | | // failed to allocate a buffer, free immediately |
1292 | | PyObject *to_dealloc = NULL; |
1293 | | _PyEval_StopTheWorld(tstate->base.interp); |
1294 | | if (work_item_should_decref(ptr)) { |
1295 | | PyObject *obj = (PyObject *)(ptr - 1); |
1296 | | Py_ssize_t refcount = _Py_ExplicitMergeRefcount(obj, -1); |
1297 | | if (refcount == 0) { |
1298 | | to_dealloc = obj; |
1299 | | } |
1300 | | } |
1301 | | else { |
1302 | | PyMem_Free((void *)ptr); |
1303 | | } |
1304 | | _PyEval_StartTheWorld(tstate->base.interp); |
1305 | | if (to_dealloc != NULL) { |
1306 | | _Py_Dealloc(to_dealloc); |
1307 | | } |
1308 | | return; |
1309 | | } |
1310 | | |
1311 | | assert(buf != NULL && buf->wr_idx < WORK_ITEMS_PER_CHUNK); |
1312 | | uint64_t seq; |
1313 | | if (should_advance_qsbr_for_free(tstate->qsbr, size)) { |
1314 | | seq = _Py_qsbr_advance(tstate->qsbr->shared); |
1315 | | } |
1316 | | else { |
1317 | | seq = _Py_qsbr_shared_next(tstate->qsbr->shared); |
1318 | | } |
1319 | | buf->array[buf->wr_idx].ptr = ptr; |
1320 | | buf->array[buf->wr_idx].qsbr_goal = seq; |
1321 | | buf->wr_idx++; |
1322 | | |
1323 | | if (buf->wr_idx == WORK_ITEMS_PER_CHUNK) { |
1324 | | // Normally the processing of delayed items is done from the eval |
1325 | | // breaker. Processing here is a safety measure to ensure too much |
1326 | | // work does not accumulate. |
1327 | | _PyMem_ProcessDelayed((PyThreadState *)tstate); |
1328 | | } |
1329 | | #endif |
1330 | 0 | } |
1331 | | |
1332 | | void |
1333 | | _PyMem_FreeDelayed(void *ptr, size_t size) |
1334 | 0 | { |
1335 | 0 | assert(!((uintptr_t)ptr & 0x01)); |
1336 | 0 | if (ptr != NULL) { |
1337 | 0 | free_delayed((uintptr_t)ptr, size); |
1338 | 0 | } |
1339 | 0 | } |
1340 | | |
1341 | | #ifdef Py_GIL_DISABLED |
1342 | | void |
1343 | | _PyObject_XDecRefDelayed(PyObject *ptr) |
1344 | | { |
1345 | | assert(!((uintptr_t)ptr & 0x01)); |
1346 | | if (ptr != NULL) { |
1347 | | // We use 0 as the size since we don't have an easy way to know the |
1348 | | // actual size. If we are freeing many objects, the write sequence |
1349 | | // will be advanced due to QSBR_DEFERRED_LIMIT. |
1350 | | free_delayed(((uintptr_t)ptr)|0x01, 0); |
1351 | | } |
1352 | | } |
1353 | | #endif |
1354 | | |
1355 | | #ifdef Py_GIL_DISABLED |
1356 | | void |
1357 | | _PyObject_XSetRefDelayed(PyObject **ptr, PyObject *value) |
1358 | | { |
1359 | | PyObject *old = *ptr; |
1360 | | FT_ATOMIC_STORE_PTR_RELEASE(*ptr, value); |
1361 | | if (old == NULL) { |
1362 | | return; |
1363 | | } |
1364 | | if (!_Py_IsImmortal(old)) { |
1365 | | _PyObject_XDecRefDelayed(old); |
1366 | | } |
1367 | | } |
1368 | | #endif |
1369 | | |
1370 | | static struct _mem_work_chunk * |
1371 | | work_queue_first(struct llist_node *head) |
1372 | 0 | { |
1373 | 0 | return llist_data(head->next, struct _mem_work_chunk, node); |
1374 | 0 | } |
1375 | | |
1376 | | static void |
1377 | | process_queue(struct llist_node *head, _PyThreadStateImpl *tstate, |
1378 | | bool keep_empty, delayed_dealloc_cb cb, void *state) |
1379 | 0 | { |
1380 | 0 | while (!llist_empty(head)) { |
1381 | 0 | struct _mem_work_chunk *buf = work_queue_first(head); |
1382 | |
|
1383 | 0 | if (buf->rd_idx < buf->wr_idx) { |
1384 | 0 | struct _mem_work_item *item = &buf->array[buf->rd_idx]; |
1385 | 0 | if (!_Py_qsbr_poll(tstate->qsbr, item->qsbr_goal)) { |
1386 | 0 | return; |
1387 | 0 | } |
1388 | | |
1389 | 0 | buf->rd_idx++; |
1390 | | // NB: free_work_item may re-enter or execute arbitrary code |
1391 | 0 | free_work_item(item->ptr, cb, state); |
1392 | 0 | continue; |
1393 | 0 | } |
1394 | | |
1395 | 0 | assert(buf->rd_idx == buf->wr_idx); |
1396 | 0 | if (keep_empty && buf->node.next == head) { |
1397 | | // Keep the last buffer in the queue to reduce re-allocations |
1398 | 0 | buf->rd_idx = buf->wr_idx = 0; |
1399 | 0 | return; |
1400 | 0 | } |
1401 | | |
1402 | 0 | llist_remove(&buf->node); |
1403 | 0 | PyMem_Free(buf); |
1404 | 0 | } |
1405 | 0 | } |
1406 | | |
1407 | | static void |
1408 | | process_interp_queue(struct _Py_mem_interp_free_queue *queue, |
1409 | | _PyThreadStateImpl *tstate, delayed_dealloc_cb cb, |
1410 | | void *state) |
1411 | 0 | { |
1412 | 0 | assert(PyMutex_IsLocked(&queue->mutex)); |
1413 | 0 | process_queue(&queue->head, tstate, false, cb, state); |
1414 | |
|
1415 | 0 | int more_work = !llist_empty(&queue->head); |
1416 | 0 | _Py_atomic_store_int_relaxed(&queue->has_work, more_work); |
1417 | 0 | } |
1418 | | |
1419 | | static void |
1420 | | maybe_process_interp_queue(struct _Py_mem_interp_free_queue *queue, |
1421 | | _PyThreadStateImpl *tstate, delayed_dealloc_cb cb, |
1422 | | void *state) |
1423 | 0 | { |
1424 | 0 | if (!_Py_atomic_load_int_relaxed(&queue->has_work)) { |
1425 | 0 | return; |
1426 | 0 | } |
1427 | | |
1428 | | // Try to acquire the lock, but don't block if it's already held. |
1429 | 0 | if (_PyMutex_LockTimed(&queue->mutex, 0, 0) == PY_LOCK_ACQUIRED) { |
1430 | 0 | process_interp_queue(queue, tstate, cb, state); |
1431 | 0 | PyMutex_Unlock(&queue->mutex); |
1432 | 0 | } |
1433 | 0 | } |
1434 | | |
1435 | | void |
1436 | | _PyMem_ProcessDelayed(PyThreadState *tstate) |
1437 | 0 | { |
1438 | 0 | PyInterpreterState *interp = tstate->interp; |
1439 | 0 | _PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate; |
1440 | |
|
1441 | 0 | tstate_impl->qsbr->should_process = false; |
1442 | | |
1443 | | // Process thread-local work |
1444 | 0 | process_queue(&tstate_impl->mem_free_queue, tstate_impl, true, NULL, NULL); |
1445 | | |
1446 | | // Process shared interpreter work |
1447 | 0 | maybe_process_interp_queue(&interp->mem_free_queue, tstate_impl, NULL, NULL); |
1448 | 0 | } |
1449 | | |
1450 | | void |
1451 | | _PyMem_ProcessDelayedNoDealloc(PyThreadState *tstate, delayed_dealloc_cb cb, void *state) |
1452 | 0 | { |
1453 | 0 | PyInterpreterState *interp = tstate->interp; |
1454 | 0 | _PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate; |
1455 | | |
1456 | | // Process thread-local work |
1457 | 0 | process_queue(&tstate_impl->mem_free_queue, tstate_impl, true, cb, state); |
1458 | | |
1459 | | // Process shared interpreter work |
1460 | 0 | maybe_process_interp_queue(&interp->mem_free_queue, tstate_impl, cb, state); |
1461 | 0 | } |
1462 | | |
1463 | | void |
1464 | | _PyMem_AbandonDelayed(PyThreadState *tstate) |
1465 | 0 | { |
1466 | 0 | PyInterpreterState *interp = tstate->interp; |
1467 | 0 | struct llist_node *queue = &((_PyThreadStateImpl *)tstate)->mem_free_queue; |
1468 | |
|
1469 | 0 | if (llist_empty(queue)) { |
1470 | 0 | return; |
1471 | 0 | } |
1472 | | |
1473 | | // Check if the queue contains one empty buffer |
1474 | 0 | struct _mem_work_chunk *buf = work_queue_first(queue); |
1475 | 0 | if (buf->rd_idx == buf->wr_idx) { |
1476 | 0 | llist_remove(&buf->node); |
1477 | 0 | PyMem_Free(buf); |
1478 | 0 | assert(llist_empty(queue)); |
1479 | 0 | return; |
1480 | 0 | } |
1481 | | |
1482 | 0 | PyMutex_Lock(&interp->mem_free_queue.mutex); |
1483 | | |
1484 | | // Merge the thread's work queue into the interpreter's work queue. |
1485 | 0 | llist_concat(&interp->mem_free_queue.head, queue); |
1486 | | |
1487 | | // Process the merged queue now (see gh-130794). |
1488 | 0 | _PyThreadStateImpl *this_tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
1489 | 0 | process_interp_queue(&interp->mem_free_queue, this_tstate, NULL, NULL); |
1490 | |
|
1491 | 0 | PyMutex_Unlock(&interp->mem_free_queue.mutex); |
1492 | |
|
1493 | 0 | assert(llist_empty(queue)); // the thread's queue is now empty |
1494 | 0 | } |
1495 | | |
1496 | | void |
1497 | | _PyMem_FiniDelayed(PyInterpreterState *interp) |
1498 | 0 | { |
1499 | 0 | struct llist_node *head = &interp->mem_free_queue.head; |
1500 | 0 | while (!llist_empty(head)) { |
1501 | 0 | struct _mem_work_chunk *buf = work_queue_first(head); |
1502 | |
|
1503 | 0 | if (buf->rd_idx < buf->wr_idx) { |
1504 | | // Free the remaining items immediately. There should be no other |
1505 | | // threads accessing the memory at this point during shutdown. |
1506 | 0 | struct _mem_work_item *item = &buf->array[buf->rd_idx]; |
1507 | 0 | buf->rd_idx++; |
1508 | | // NB: free_work_item may re-enter or execute arbitrary code |
1509 | 0 | free_work_item(item->ptr, NULL, NULL); |
1510 | 0 | continue; |
1511 | 0 | } |
1512 | | |
1513 | 0 | llist_remove(&buf->node); |
1514 | 0 | PyMem_Free(buf); |
1515 | 0 | } |
1516 | 0 | } |
1517 | | |
1518 | | /**************************/ |
1519 | | /* the "object" allocator */ |
1520 | | /**************************/ |
1521 | | |
1522 | | void * |
1523 | | PyObject_Malloc(size_t size) |
1524 | 1.44G | { |
1525 | | /* see PyMem_RawMalloc() */ |
1526 | 1.44G | if (size > (size_t)PY_SSIZE_T_MAX) |
1527 | 0 | return NULL; |
1528 | 1.44G | OBJECT_STAT_INC_COND(allocations512, size < 512); |
1529 | 1.44G | OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); |
1530 | 1.44G | OBJECT_STAT_INC_COND(allocations_big, size >= 4094); |
1531 | 1.44G | OBJECT_STAT_INC(allocations); |
1532 | 1.44G | return _PyObject.malloc(_PyObject.ctx, size); |
1533 | 1.44G | } |
1534 | | |
1535 | | void * |
1536 | | PyObject_Calloc(size_t nelem, size_t elsize) |
1537 | 0 | { |
1538 | | /* see PyMem_RawMalloc() */ |
1539 | 0 | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
1540 | 0 | return NULL; |
1541 | 0 | OBJECT_STAT_INC_COND(allocations512, elsize < 512); |
1542 | 0 | OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); |
1543 | 0 | OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); |
1544 | 0 | OBJECT_STAT_INC(allocations); |
1545 | 0 | return _PyObject.calloc(_PyObject.ctx, nelem, elsize); |
1546 | 0 | } |
1547 | | |
1548 | | void * |
1549 | | PyObject_Realloc(void *ptr, size_t new_size) |
1550 | 71.4M | { |
1551 | | /* see PyMem_RawMalloc() */ |
1552 | 71.4M | if (new_size > (size_t)PY_SSIZE_T_MAX) |
1553 | 0 | return NULL; |
1554 | 71.4M | return _PyObject.realloc(_PyObject.ctx, ptr, new_size); |
1555 | 71.4M | } |
1556 | | |
1557 | | void |
1558 | | PyObject_Free(void *ptr) |
1559 | 1.44G | { |
1560 | 1.44G | OBJECT_STAT_INC(frees); |
1561 | 1.44G | _PyObject.free(_PyObject.ctx, ptr); |
1562 | 1.44G | } |
1563 | | |
1564 | | |
1565 | | /* Use __builtin_expect() where available to reduce overhead of |
1566 | | the valgrind checks */ |
1567 | | #if (defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 2))) && defined(__OPTIMIZE__) |
1568 | 12.2G | # define UNLIKELY(value) __builtin_expect((value), 0) |
1569 | 5.53G | # define LIKELY(value) __builtin_expect((value), 1) |
1570 | | #else |
1571 | | # define UNLIKELY(value) (value) |
1572 | | # define LIKELY(value) (value) |
1573 | | #endif |
1574 | | |
1575 | | #ifdef WITH_PYMALLOC |
1576 | | |
1577 | | #ifdef WITH_VALGRIND |
1578 | | #include <valgrind/valgrind.h> |
1579 | | |
1580 | | /* -1 indicates that we haven't checked that we're running on valgrind yet. */ |
1581 | | static int running_on_valgrind = -1; |
1582 | | #endif |
1583 | | |
1584 | | typedef struct _obmalloc_state OMState; |
1585 | | |
1586 | | /* obmalloc state for main interpreter and shared by all interpreters without |
1587 | | * their own obmalloc state. By not explicitly initializing this structure, it |
1588 | | * will be allocated in the BSS which is a small performance win. The radix |
1589 | | * tree arrays are fairly large but are sparsely used. */ |
1590 | | static struct _obmalloc_state obmalloc_state_main; |
1591 | | static bool obmalloc_state_initialized; |
1592 | | |
1593 | | static inline int |
1594 | | has_own_state(PyInterpreterState *interp) |
1595 | 0 | { |
1596 | 0 | return (_Py_IsMainInterpreter(interp) || |
1597 | 0 | !(interp->feature_flags & Py_RTFLAGS_USE_MAIN_OBMALLOC) || |
1598 | 0 | _Py_IsMainInterpreterFinalizing(interp)); |
1599 | 0 | } |
1600 | | |
1601 | | static inline OMState * |
1602 | | get_state(void) |
1603 | 4.23G | { |
1604 | 4.23G | PyInterpreterState *interp = _PyInterpreterState_GET(); |
1605 | 4.23G | assert(interp->obmalloc != NULL); // otherwise not initialized or freed |
1606 | 4.23G | return interp->obmalloc; |
1607 | 4.23G | } |
1608 | | |
1609 | | // These macros all rely on a local "state" variable. |
1610 | 1.98G | #define usedpools (state->pools.used) |
1611 | 2.84M | #define allarenas (state->mgmt.arenas) |
1612 | 272 | #define maxarenas (state->mgmt.maxarenas) |
1613 | 27.9k | #define unused_arena_objects (state->mgmt.unused_arena_objects) |
1614 | 24.2M | #define usable_arenas (state->mgmt.usable_arenas) |
1615 | 17.0M | #define nfp2lasta (state->mgmt.nfp2lasta) |
1616 | 17.5k | #define narenas_currently_allocated (state->mgmt.narenas_currently_allocated) |
1617 | 5.74k | #define ntimes_arena_allocated (state->mgmt.ntimes_arena_allocated) |
1618 | 6.44k | #define narenas_highwater (state->mgmt.narenas_highwater) |
1619 | 496M | #define raw_allocated_blocks (state->mgmt.raw_allocated_blocks) |
1620 | | |
1621 | | #ifdef WITH_MIMALLOC |
1622 | | static bool count_blocks( |
1623 | | const mi_heap_t* heap, const mi_heap_area_t* area, |
1624 | | void* block, size_t block_size, void* allocated_blocks) |
1625 | 0 | { |
1626 | 0 | *(size_t *)allocated_blocks += area->used; |
1627 | 0 | return 1; |
1628 | 0 | } |
1629 | | |
1630 | | static Py_ssize_t |
1631 | | get_mimalloc_allocated_blocks(PyInterpreterState *interp) |
1632 | 0 | { |
1633 | 0 | size_t allocated_blocks = 0; |
1634 | | #ifdef Py_GIL_DISABLED |
1635 | | _Py_FOR_EACH_TSTATE_UNLOCKED(interp, t) { |
1636 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)t; |
1637 | | for (int i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) { |
1638 | | mi_heap_t *heap = &tstate->mimalloc.heaps[i]; |
1639 | | mi_heap_visit_blocks(heap, false, &count_blocks, &allocated_blocks); |
1640 | | } |
1641 | | } |
1642 | | |
1643 | | mi_abandoned_pool_t *pool = &interp->mimalloc.abandoned_pool; |
1644 | | for (uint8_t tag = 0; tag < _Py_MIMALLOC_HEAP_COUNT; tag++) { |
1645 | | _mi_abandoned_pool_visit_blocks(pool, tag, false, &count_blocks, |
1646 | | &allocated_blocks); |
1647 | | } |
1648 | | #else |
1649 | | // TODO(sgross): this only counts the current thread's blocks. |
1650 | 0 | mi_heap_t *heap = mi_heap_get_default(); |
1651 | 0 | mi_heap_visit_blocks(heap, false, &count_blocks, &allocated_blocks); |
1652 | 0 | #endif |
1653 | 0 | return allocated_blocks; |
1654 | 0 | } |
1655 | | #endif |
1656 | | |
1657 | | Py_ssize_t |
1658 | | _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *interp) |
1659 | 0 | { |
1660 | 0 | #ifdef WITH_MIMALLOC |
1661 | 0 | if (_PyMem_MimallocEnabled()) { |
1662 | 0 | return get_mimalloc_allocated_blocks(interp); |
1663 | 0 | } |
1664 | 0 | #endif |
1665 | | |
1666 | | #ifdef Py_DEBUG |
1667 | | assert(has_own_state(interp)); |
1668 | | #else |
1669 | 0 | if (!has_own_state(interp)) { |
1670 | 0 | _Py_FatalErrorFunc(__func__, |
1671 | 0 | "the interpreter doesn't have its own allocator"); |
1672 | 0 | } |
1673 | 0 | #endif |
1674 | 0 | OMState *state = interp->obmalloc; |
1675 | |
|
1676 | 0 | if (state == NULL) { |
1677 | 0 | return 0; |
1678 | 0 | } |
1679 | | |
1680 | 0 | Py_ssize_t n = raw_allocated_blocks; |
1681 | | /* add up allocated blocks for used pools */ |
1682 | 0 | for (uint i = 0; i < maxarenas; ++i) { |
1683 | | /* Skip arenas which are not allocated. */ |
1684 | 0 | if (allarenas[i].address == 0) { |
1685 | 0 | continue; |
1686 | 0 | } |
1687 | | |
1688 | 0 | uintptr_t base = (uintptr_t)_Py_ALIGN_UP(allarenas[i].address, POOL_SIZE); |
1689 | | |
1690 | | /* visit every pool in the arena */ |
1691 | 0 | assert(base <= (uintptr_t) allarenas[i].pool_address); |
1692 | 0 | for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { |
1693 | 0 | poolp p = (poolp)base; |
1694 | 0 | n += p->ref.count; |
1695 | 0 | } |
1696 | 0 | } |
1697 | 0 | return n; |
1698 | 0 | } |
1699 | | |
1700 | | static void free_obmalloc_arenas(PyInterpreterState *interp); |
1701 | | |
1702 | | void |
1703 | | _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *interp) |
1704 | 0 | { |
1705 | 0 | #ifdef WITH_MIMALLOC |
1706 | 0 | if (_PyMem_MimallocEnabled()) { |
1707 | 0 | Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp); |
1708 | 0 | interp->runtime->obmalloc.interpreter_leaks += leaked; |
1709 | 0 | return; |
1710 | 0 | } |
1711 | 0 | #endif |
1712 | 0 | if (has_own_state(interp) && interp->obmalloc != NULL) { |
1713 | 0 | Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp); |
1714 | 0 | assert(has_own_state(interp) || leaked == 0); |
1715 | 0 | interp->runtime->obmalloc.interpreter_leaks += leaked; |
1716 | 0 | if (_PyMem_obmalloc_state_on_heap(interp) && leaked == 0) { |
1717 | | // free the obmalloc arenas and radix tree nodes. If leaked > 0 |
1718 | | // then some of the memory allocated by obmalloc has not been |
1719 | | // freed. It might be safe to free the arenas in that case but |
1720 | | // it's possible that extension modules are still using that |
1721 | | // memory. So, it is safer to not free and to leak. Perhaps there |
1722 | | // should be warning when this happens. It should be possible to |
1723 | | // use a tool like "-fsanitize=address" to track down these leaks. |
1724 | 0 | free_obmalloc_arenas(interp); |
1725 | 0 | } |
1726 | 0 | } |
1727 | 0 | } |
1728 | | |
1729 | | static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *); |
1730 | | |
1731 | | /* We preserve the number of blocks leaked during runtime finalization, |
1732 | | so they can be reported if the runtime is initialized again. */ |
1733 | | // XXX We don't lose any information by dropping this, |
1734 | | // so we should consider doing so. |
1735 | | static Py_ssize_t last_final_leaks = 0; |
1736 | | |
1737 | | void |
1738 | | _Py_FinalizeAllocatedBlocks(_PyRuntimeState *runtime) |
1739 | 0 | { |
1740 | 0 | last_final_leaks = get_num_global_allocated_blocks(runtime); |
1741 | 0 | runtime->obmalloc.interpreter_leaks = 0; |
1742 | 0 | } |
1743 | | |
1744 | | static Py_ssize_t |
1745 | | get_num_global_allocated_blocks(_PyRuntimeState *runtime) |
1746 | 0 | { |
1747 | 0 | Py_ssize_t total = 0; |
1748 | 0 | if (_PyRuntimeState_GetFinalizing(runtime) != NULL) { |
1749 | 0 | PyInterpreterState *interp = _PyInterpreterState_Main(); |
1750 | 0 | if (interp == NULL) { |
1751 | | /* We are at the very end of runtime finalization. |
1752 | | We can't rely on finalizing->interp since that thread |
1753 | | state is probably already freed, so we don't worry |
1754 | | about it. */ |
1755 | 0 | assert(PyInterpreterState_Head() == NULL); |
1756 | 0 | } |
1757 | 0 | else { |
1758 | 0 | assert(interp != NULL); |
1759 | | /* It is probably the last interpreter but not necessarily. */ |
1760 | 0 | assert(PyInterpreterState_Next(interp) == NULL); |
1761 | 0 | total += _PyInterpreterState_GetAllocatedBlocks(interp); |
1762 | 0 | } |
1763 | 0 | } |
1764 | 0 | else { |
1765 | 0 | _PyEval_StopTheWorldAll(&_PyRuntime); |
1766 | 0 | HEAD_LOCK(runtime); |
1767 | 0 | PyInterpreterState *interp = PyInterpreterState_Head(); |
1768 | 0 | assert(interp != NULL); |
1769 | | #ifdef Py_DEBUG |
1770 | | int got_main = 0; |
1771 | | #endif |
1772 | 0 | for (; interp != NULL; interp = PyInterpreterState_Next(interp)) { |
1773 | | #ifdef Py_DEBUG |
1774 | | if (_Py_IsMainInterpreter(interp)) { |
1775 | | assert(!got_main); |
1776 | | got_main = 1; |
1777 | | assert(has_own_state(interp)); |
1778 | | } |
1779 | | #endif |
1780 | 0 | if (has_own_state(interp)) { |
1781 | 0 | total += _PyInterpreterState_GetAllocatedBlocks(interp); |
1782 | 0 | } |
1783 | 0 | } |
1784 | 0 | HEAD_UNLOCK(runtime); |
1785 | 0 | _PyEval_StartTheWorldAll(&_PyRuntime); |
1786 | | #ifdef Py_DEBUG |
1787 | | assert(got_main); |
1788 | | #endif |
1789 | 0 | } |
1790 | 0 | total += runtime->obmalloc.interpreter_leaks; |
1791 | 0 | total += last_final_leaks; |
1792 | 0 | return total; |
1793 | 0 | } |
1794 | | |
1795 | | Py_ssize_t |
1796 | | _Py_GetGlobalAllocatedBlocks(void) |
1797 | 0 | { |
1798 | 0 | return get_num_global_allocated_blocks(&_PyRuntime); |
1799 | 0 | } |
1800 | | |
1801 | | #if WITH_PYMALLOC_RADIX_TREE |
1802 | | /*==========================================================================*/ |
1803 | | /* radix tree for tracking arena usage. */ |
1804 | | |
1805 | 6.25G | #define arena_map_root (state->usage.arena_map_root) |
1806 | | #ifdef USE_INTERIOR_NODES |
1807 | 28 | #define arena_map_mid_count (state->usage.arena_map_mid_count) |
1808 | 28 | #define arena_map_bot_count (state->usage.arena_map_bot_count) |
1809 | | #endif |
1810 | | |
1811 | | /* Return a pointer to a bottom tree node, return NULL if it doesn't exist or |
1812 | | * it cannot be created */ |
1813 | | static inline Py_ALWAYS_INLINE arena_map_bot_t * |
1814 | | arena_map_get(OMState *state, pymem_block *p, int create) |
1815 | 2.16G | { |
1816 | 2.16G | #ifdef USE_INTERIOR_NODES |
1817 | | /* sanity check that IGNORE_BITS is correct */ |
1818 | 2.16G | assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root)); |
1819 | 2.16G | int i1 = MAP_TOP_INDEX(p); |
1820 | 2.16G | if (arena_map_root.ptrs[i1] == NULL) { |
1821 | 28 | if (!create) { |
1822 | 0 | return NULL; |
1823 | 0 | } |
1824 | 28 | arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t)); |
1825 | 28 | if (n == NULL) { |
1826 | 0 | return NULL; |
1827 | 0 | } |
1828 | 28 | arena_map_root.ptrs[i1] = n; |
1829 | 28 | arena_map_mid_count++; |
1830 | 28 | } |
1831 | 2.16G | int i2 = MAP_MID_INDEX(p); |
1832 | 2.16G | if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) { |
1833 | 257M | if (!create) { |
1834 | 257M | return NULL; |
1835 | 257M | } |
1836 | 28 | arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t)); |
1837 | 28 | if (n == NULL) { |
1838 | 0 | return NULL; |
1839 | 0 | } |
1840 | 28 | arena_map_root.ptrs[i1]->ptrs[i2] = n; |
1841 | 28 | arena_map_bot_count++; |
1842 | 28 | } |
1843 | 1.91G | return arena_map_root.ptrs[i1]->ptrs[i2]; |
1844 | | #else |
1845 | | return &arena_map_root; |
1846 | | #endif |
1847 | 2.16G | } |
1848 | | |
1849 | | |
1850 | | /* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw |
1851 | | * away 24 bits of the address. That reduces the space requirement of |
1852 | | * the tree compared to similar radix tree page-map schemes. In |
1853 | | * exchange for slashing the space requirement, it needs more |
1854 | | * computation to check an address. |
1855 | | * |
1856 | | * Tracking coverage is done by "ideal" arena address. It is easier to |
1857 | | * explain in decimal so let's say that the arena size is 100 bytes. |
1858 | | * Then, ideal addresses are 100, 200, 300, etc. For checking if a |
1859 | | * pointer address is inside an actual arena, we have to check two ideal |
1860 | | * arena addresses. E.g. if pointer is 357, we need to check 200 and |
1861 | | * 300. In the rare case that an arena is aligned in the ideal way |
1862 | | * (e.g. base address of arena is 200) then we only have to check one |
1863 | | * ideal address. |
1864 | | * |
1865 | | * The tree nodes for 200 and 300 both store the address of arena. |
1866 | | * There are two cases: the arena starts at a lower ideal arena and |
1867 | | * extends to this one, or the arena starts in this arena and extends to |
1868 | | * the next ideal arena. The tail_lo and tail_hi members correspond to |
1869 | | * these two cases. |
1870 | | */ |
1871 | | |
1872 | | |
1873 | | /* mark or unmark addresses covered by arena */ |
1874 | | static int |
1875 | | arena_map_mark_used(OMState *state, uintptr_t arena_base, int is_used) |
1876 | 11.1k | { |
1877 | | /* sanity check that IGNORE_BITS is correct */ |
1878 | 11.1k | assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root)); |
1879 | 11.1k | arena_map_bot_t *n_hi = arena_map_get( |
1880 | 11.1k | state, (pymem_block *)arena_base, is_used); |
1881 | 11.1k | if (n_hi == NULL) { |
1882 | 0 | assert(is_used); /* otherwise node should already exist */ |
1883 | 0 | return 0; /* failed to allocate space for node */ |
1884 | 0 | } |
1885 | 11.1k | int i3 = MAP_BOT_INDEX((pymem_block *)arena_base); |
1886 | 11.1k | int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK); |
1887 | 11.1k | if (tail == 0) { |
1888 | | /* is ideal arena address */ |
1889 | 60 | n_hi->arenas[i3].tail_hi = is_used ? -1 : 0; |
1890 | 60 | } |
1891 | 11.0k | else { |
1892 | | /* arena_base address is not ideal (aligned to arena size) and |
1893 | | * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node |
1894 | | * for the next arena. Note that it might be in different MAP_TOP |
1895 | | * and MAP_MID nodes as well so we need to call arena_map_get() |
1896 | | * again (do the full tree traversal). |
1897 | | */ |
1898 | 11.0k | n_hi->arenas[i3].tail_hi = is_used ? tail : 0; |
1899 | 11.0k | uintptr_t arena_base_next = arena_base + ARENA_SIZE; |
1900 | | /* If arena_base is a legit arena address, so is arena_base_next - 1 |
1901 | | * (last address in arena). If arena_base_next overflows then it |
1902 | | * must overflow to 0. However, that would mean arena_base was |
1903 | | * "ideal" and we should not be in this case. */ |
1904 | 11.0k | assert(arena_base < arena_base_next); |
1905 | 11.0k | arena_map_bot_t *n_lo = arena_map_get( |
1906 | 11.0k | state, (pymem_block *)arena_base_next, is_used); |
1907 | 11.0k | if (n_lo == NULL) { |
1908 | 0 | assert(is_used); /* otherwise should already exist */ |
1909 | 0 | n_hi->arenas[i3].tail_hi = 0; |
1910 | 0 | return 0; /* failed to allocate space for node */ |
1911 | 0 | } |
1912 | 11.0k | int i3_next = MAP_BOT_INDEX(arena_base_next); |
1913 | 11.0k | n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0; |
1914 | 11.0k | } |
1915 | 11.1k | return 1; |
1916 | 11.1k | } |
1917 | | |
1918 | | /* Return true if 'p' is a pointer inside an obmalloc arena. |
1919 | | * _PyObject_Free() calls this so it needs to be very fast. */ |
1920 | | static int |
1921 | | arena_map_is_used(OMState *state, pymem_block *p) |
1922 | 2.16G | { |
1923 | 2.16G | arena_map_bot_t *n = arena_map_get(state, p, 0); |
1924 | 2.16G | if (n == NULL) { |
1925 | 257M | return 0; |
1926 | 257M | } |
1927 | 1.91G | int i3 = MAP_BOT_INDEX(p); |
1928 | | /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */ |
1929 | 1.91G | int32_t hi = n->arenas[i3].tail_hi; |
1930 | 1.91G | int32_t lo = n->arenas[i3].tail_lo; |
1931 | 1.91G | int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK); |
1932 | 1.91G | return (tail < lo) || (tail >= hi && hi != 0); |
1933 | 2.16G | } |
1934 | | |
1935 | | /* end of radix tree logic */ |
1936 | | /*==========================================================================*/ |
1937 | | #endif /* WITH_PYMALLOC_RADIX_TREE */ |
1938 | | |
1939 | | |
1940 | | /* Allocate a new arena. If we run out of memory, return NULL. Else |
1941 | | * allocate a new arena, and return the address of an arena_object |
1942 | | * describing the new arena. It's expected that the caller will set |
1943 | | * `usable_arenas` to the return value. |
1944 | | */ |
1945 | | static struct arena_object* |
1946 | | new_arena(OMState *state) |
1947 | 5.74k | { |
1948 | 5.74k | struct arena_object* arenaobj; |
1949 | 5.74k | uint excess; /* number of bytes above pool alignment */ |
1950 | 5.74k | void *address; |
1951 | | |
1952 | 5.74k | int debug_stats = _PyRuntime.obmalloc.dump_debug_stats; |
1953 | 5.74k | if (debug_stats == -1) { |
1954 | 28 | const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); |
1955 | 28 | debug_stats = (opt != NULL && *opt != '\0'); |
1956 | 28 | _PyRuntime.obmalloc.dump_debug_stats = debug_stats; |
1957 | 28 | } |
1958 | 5.74k | if (debug_stats) { |
1959 | 0 | _PyObject_DebugMallocStats(stderr); |
1960 | 0 | } |
1961 | | |
1962 | 5.74k | if (unused_arena_objects == NULL) { |
1963 | 50 | uint i; |
1964 | 50 | uint numarenas; |
1965 | 50 | size_t nbytes; |
1966 | | |
1967 | | /* Double the number of arena objects on each allocation. |
1968 | | * Note that it's possible for `numarenas` to overflow. |
1969 | | */ |
1970 | 50 | numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; |
1971 | 50 | if (numarenas <= maxarenas) |
1972 | 0 | return NULL; /* overflow */ |
1973 | | #if SIZEOF_SIZE_T <= SIZEOF_INT |
1974 | | if (numarenas > SIZE_MAX / sizeof(*allarenas)) |
1975 | | return NULL; /* overflow */ |
1976 | | #endif |
1977 | 50 | nbytes = numarenas * sizeof(*allarenas); |
1978 | 50 | arenaobj = (struct arena_object *)PyMem_RawRealloc(allarenas, nbytes); |
1979 | 50 | if (arenaobj == NULL) |
1980 | 0 | return NULL; |
1981 | 50 | allarenas = arenaobj; |
1982 | | |
1983 | | /* We might need to fix pointers that were copied. However, |
1984 | | * new_arena only gets called when all the pages in the |
1985 | | * previous arenas are full. Thus, there are *no* pointers |
1986 | | * into the old array. Thus, we don't have to worry about |
1987 | | * invalid pointers. Just to be sure, some asserts: |
1988 | | */ |
1989 | 50 | assert(usable_arenas == NULL); |
1990 | 50 | assert(unused_arena_objects == NULL); |
1991 | | |
1992 | | /* Put the new arenas on the unused_arena_objects list. */ |
1993 | 1.17k | for (i = maxarenas; i < numarenas; ++i) { |
1994 | 1.12k | allarenas[i].address = 0; /* mark as unassociated */ |
1995 | 1.12k | allarenas[i].nextarena = i < numarenas - 1 ? |
1996 | 1.12k | &allarenas[i+1] : NULL; |
1997 | 1.12k | } |
1998 | | |
1999 | | /* Update globals. */ |
2000 | 50 | unused_arena_objects = &allarenas[maxarenas]; |
2001 | 50 | maxarenas = numarenas; |
2002 | 50 | } |
2003 | | |
2004 | | /* Take the next available arena object off the head of the list. */ |
2005 | 5.74k | assert(unused_arena_objects != NULL); |
2006 | 5.74k | arenaobj = unused_arena_objects; |
2007 | 5.74k | unused_arena_objects = arenaobj->nextarena; |
2008 | 5.74k | assert(arenaobj->address == 0); |
2009 | 5.74k | address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); |
2010 | 5.74k | #if WITH_PYMALLOC_RADIX_TREE |
2011 | 5.74k | if (address != NULL) { |
2012 | 5.74k | if (!arena_map_mark_used(state, (uintptr_t)address, 1)) { |
2013 | | /* marking arena in radix tree failed, abort */ |
2014 | 0 | _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE); |
2015 | 0 | address = NULL; |
2016 | 0 | } |
2017 | 5.74k | } |
2018 | 5.74k | #endif |
2019 | 5.74k | if (address == NULL) { |
2020 | | /* The allocation failed: return NULL after putting the |
2021 | | * arenaobj back. |
2022 | | */ |
2023 | 0 | arenaobj->nextarena = unused_arena_objects; |
2024 | 0 | unused_arena_objects = arenaobj; |
2025 | 0 | return NULL; |
2026 | 0 | } |
2027 | 5.74k | arenaobj->address = (uintptr_t)address; |
2028 | | |
2029 | 5.74k | ++narenas_currently_allocated; |
2030 | 5.74k | ++ntimes_arena_allocated; |
2031 | 5.74k | if (narenas_currently_allocated > narenas_highwater) |
2032 | 699 | narenas_highwater = narenas_currently_allocated; |
2033 | 5.74k | arenaobj->freepools = NULL; |
2034 | | /* pool_address <- first pool-aligned address in the arena |
2035 | | nfreepools <- number of whole pools that fit after alignment */ |
2036 | 5.74k | arenaobj->pool_address = (pymem_block*)arenaobj->address; |
2037 | 5.74k | arenaobj->nfreepools = MAX_POOLS_IN_ARENA; |
2038 | 5.74k | excess = (uint)(arenaobj->address & POOL_SIZE_MASK); |
2039 | 5.74k | if (excess != 0) { |
2040 | 2.38k | --arenaobj->nfreepools; |
2041 | 2.38k | arenaobj->pool_address += POOL_SIZE - excess; |
2042 | 2.38k | } |
2043 | 5.74k | arenaobj->ntotalpools = arenaobj->nfreepools; |
2044 | | |
2045 | 5.74k | return arenaobj; |
2046 | 5.74k | } |
2047 | | |
2048 | | |
2049 | | |
2050 | | #if WITH_PYMALLOC_RADIX_TREE |
2051 | | /* Return true if and only if P is an address that was allocated by |
2052 | | pymalloc. When the radix tree is used, 'poolp' is unused. |
2053 | | */ |
2054 | | static bool |
2055 | | address_in_range(OMState *state, void *p, poolp Py_UNUSED(pool)) |
2056 | 2.16G | { |
2057 | 2.16G | return arena_map_is_used(state, p); |
2058 | 2.16G | } |
2059 | | #else |
2060 | | /* |
2061 | | address_in_range(P, POOL) |
2062 | | |
2063 | | Return true if and only if P is an address that was allocated by pymalloc. |
2064 | | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) |
2065 | | (the caller is asked to compute this because the macro expands POOL more than |
2066 | | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a |
2067 | | variable and pass the latter to the macro; because address_in_range is |
2068 | | called on every alloc/realloc/free, micro-efficiency is important here). |
2069 | | |
2070 | | Tricky: Let B be the arena base address associated with the pool, B = |
2071 | | arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if |
2072 | | |
2073 | | B <= P < B + ARENA_SIZE |
2074 | | |
2075 | | Subtracting B throughout, this is true iff |
2076 | | |
2077 | | 0 <= P-B < ARENA_SIZE |
2078 | | |
2079 | | By using unsigned arithmetic, the "0 <=" half of the test can be skipped. |
2080 | | |
2081 | | Obscure: A PyMem "free memory" function can call the pymalloc free or realloc |
2082 | | before the first arena has been allocated. `arenas` is still NULL in that |
2083 | | case. We're relying on that maxarenas is also 0 in that case, so that |
2084 | | (POOL)->arenaindex < maxarenas must be false, saving us from trying to index |
2085 | | into a NULL arenas. |
2086 | | |
2087 | | Details: given P and POOL, the arena_object corresponding to P is AO = |
2088 | | arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild |
2089 | | stores, etc), POOL is the correct address of P's pool, AO.address is the |
2090 | | correct base address of the pool's arena, and P must be within ARENA_SIZE of |
2091 | | AO.address. In addition, AO.address is not 0 (no arena can start at address 0 |
2092 | | (NULL)). Therefore address_in_range correctly reports that obmalloc |
2093 | | controls P. |
2094 | | |
2095 | | Now suppose obmalloc does not control P (e.g., P was obtained via a direct |
2096 | | call to the system malloc() or realloc()). (POOL)->arenaindex may be anything |
2097 | | in this case -- it may even be uninitialized trash. If the trash arenaindex |
2098 | | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't |
2099 | | control P. |
2100 | | |
2101 | | Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an |
2102 | | allocated arena, obmalloc controls all the memory in slice AO.address : |
2103 | | AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, |
2104 | | so P doesn't lie in that slice, so the macro correctly reports that P is not |
2105 | | controlled by obmalloc. |
2106 | | |
2107 | | Finally, if P is not controlled by obmalloc and AO corresponds to an unused |
2108 | | arena_object (one not currently associated with an allocated arena), |
2109 | | AO.address is 0, and the second test in the macro reduces to: |
2110 | | |
2111 | | P < ARENA_SIZE |
2112 | | |
2113 | | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes |
2114 | | that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part |
2115 | | of the test still passes, and the third clause (AO.address != 0) is necessary |
2116 | | to get the correct result: AO.address is 0 in this case, so the macro |
2117 | | correctly reports that P is not controlled by obmalloc (despite that P lies in |
2118 | | slice AO.address : AO.address + ARENA_SIZE). |
2119 | | |
2120 | | Note: The third (AO.address != 0) clause was added in Python 2.5. Before |
2121 | | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always |
2122 | | corresponded to a currently-allocated arena, so the "P is not controlled by |
2123 | | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case |
2124 | | was impossible. |
2125 | | |
2126 | | Note that the logic is excruciating, and reading up possibly uninitialized |
2127 | | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) |
2128 | | creates problems for some memory debuggers. The overwhelming advantage is |
2129 | | that this test determines whether an arbitrary address is controlled by |
2130 | | obmalloc in a small constant time, independent of the number of arenas |
2131 | | obmalloc controls. Since this test is needed at every entry point, it's |
2132 | | extremely desirable that it be this fast. |
2133 | | */ |
2134 | | |
2135 | | static bool _Py_NO_SANITIZE_ADDRESS |
2136 | | _Py_NO_SANITIZE_THREAD |
2137 | | _Py_NO_SANITIZE_MEMORY |
2138 | | address_in_range(OMState *state, void *p, poolp pool) |
2139 | | { |
2140 | | // Since address_in_range may be reading from memory which was not allocated |
2141 | | // by Python, it is important that pool->arenaindex is read only once, as |
2142 | | // another thread may be concurrently modifying the value without holding |
2143 | | // the GIL. The following dance forces the compiler to read pool->arenaindex |
2144 | | // only once. |
2145 | | uint arenaindex = *((volatile uint *)&pool->arenaindex); |
2146 | | return arenaindex < maxarenas && |
2147 | | (uintptr_t)p - allarenas[arenaindex].address < ARENA_SIZE && |
2148 | | allarenas[arenaindex].address != 0; |
2149 | | } |
2150 | | |
2151 | | #endif /* !WITH_PYMALLOC_RADIX_TREE */ |
2152 | | |
2153 | | /*==========================================================================*/ |
2154 | | |
2155 | | // Called when freelist is exhausted. Extend the freelist if there is |
2156 | | // space for a block. Otherwise, remove this pool from usedpools. |
2157 | | static void |
2158 | | pymalloc_pool_extend(poolp pool, uint size) |
2159 | 376M | { |
2160 | 376M | if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) { |
2161 | | /* There is room for another block. */ |
2162 | 213M | pool->freeblock = (pymem_block*)pool + pool->nextoffset; |
2163 | 213M | pool->nextoffset += INDEX2SIZE(size); |
2164 | 213M | *(pymem_block **)(pool->freeblock) = NULL; |
2165 | 213M | return; |
2166 | 213M | } |
2167 | | |
2168 | | /* Pool is full, unlink from used pools. */ |
2169 | 163M | poolp next; |
2170 | 163M | next = pool->nextpool; |
2171 | 163M | pool = pool->prevpool; |
2172 | 163M | next->prevpool = pool; |
2173 | 163M | pool->nextpool = next; |
2174 | 163M | } |
2175 | | |
2176 | | /* called when pymalloc_alloc can not allocate a block from usedpool. |
2177 | | * This function takes new pool and allocate a block from it. |
2178 | | */ |
2179 | | static void* |
2180 | | allocate_from_new_pool(OMState *state, uint size) |
2181 | 2.49M | { |
2182 | | /* There isn't a pool of the right size class immediately |
2183 | | * available: use a free pool. |
2184 | | */ |
2185 | 2.49M | if (UNLIKELY(usable_arenas == NULL)) { |
2186 | | /* No arena has a free pool: allocate a new arena. */ |
2187 | | #ifdef WITH_MEMORY_LIMITS |
2188 | | if (narenas_currently_allocated >= MAX_ARENAS) { |
2189 | | return NULL; |
2190 | | } |
2191 | | #endif |
2192 | 5.74k | usable_arenas = new_arena(state); |
2193 | 5.74k | if (usable_arenas == NULL) { |
2194 | 0 | return NULL; |
2195 | 0 | } |
2196 | 5.74k | usable_arenas->nextarena = usable_arenas->prevarena = NULL; |
2197 | 5.74k | assert(nfp2lasta[usable_arenas->nfreepools] == NULL); |
2198 | 5.74k | nfp2lasta[usable_arenas->nfreepools] = usable_arenas; |
2199 | 5.74k | } |
2200 | 2.49M | assert(usable_arenas->address != 0); |
2201 | | |
2202 | | /* This arena already had the smallest nfreepools value, so decreasing |
2203 | | * nfreepools doesn't change that, and we don't need to rearrange the |
2204 | | * usable_arenas list. However, if the arena becomes wholly allocated, |
2205 | | * we need to remove its arena_object from usable_arenas. |
2206 | | */ |
2207 | 2.49M | assert(usable_arenas->nfreepools > 0); |
2208 | 2.49M | if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { |
2209 | | /* It's the last of this size, so there won't be any. */ |
2210 | 2.48M | nfp2lasta[usable_arenas->nfreepools] = NULL; |
2211 | 2.48M | } |
2212 | | /* If any free pools will remain, it will be the new smallest. */ |
2213 | 2.49M | if (usable_arenas->nfreepools > 1) { |
2214 | 2.37M | assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL); |
2215 | 2.37M | nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas; |
2216 | 2.37M | } |
2217 | | |
2218 | | /* Try to get a cached free pool. */ |
2219 | 2.49M | poolp pool = usable_arenas->freepools; |
2220 | 2.49M | if (LIKELY(pool != NULL)) { |
2221 | | /* Unlink from cached pools. */ |
2222 | 2.13M | usable_arenas->freepools = pool->nextpool; |
2223 | 2.13M | usable_arenas->nfreepools--; |
2224 | 2.13M | if (UNLIKELY(usable_arenas->nfreepools == 0)) { |
2225 | | /* Wholly allocated: remove. */ |
2226 | 114k | assert(usable_arenas->freepools == NULL); |
2227 | 114k | assert(usable_arenas->nextarena == NULL || |
2228 | 114k | usable_arenas->nextarena->prevarena == |
2229 | 114k | usable_arenas); |
2230 | 114k | usable_arenas = usable_arenas->nextarena; |
2231 | 114k | if (usable_arenas != NULL) { |
2232 | 112k | usable_arenas->prevarena = NULL; |
2233 | 112k | assert(usable_arenas->address != 0); |
2234 | 112k | } |
2235 | 114k | } |
2236 | 2.02M | else { |
2237 | | /* nfreepools > 0: it must be that freepools |
2238 | | * isn't NULL, or that we haven't yet carved |
2239 | | * off all the arena's pools for the first |
2240 | | * time. |
2241 | | */ |
2242 | 2.02M | assert(usable_arenas->freepools != NULL || |
2243 | 2.02M | usable_arenas->pool_address <= |
2244 | 2.02M | (pymem_block*)usable_arenas->address + |
2245 | 2.02M | ARENA_SIZE - POOL_SIZE); |
2246 | 2.02M | } |
2247 | 2.13M | } |
2248 | 358k | else { |
2249 | | /* Carve off a new pool. */ |
2250 | 358k | assert(usable_arenas->nfreepools > 0); |
2251 | 358k | assert(usable_arenas->freepools == NULL); |
2252 | 358k | pool = (poolp)usable_arenas->pool_address; |
2253 | 358k | assert((pymem_block*)pool <= (pymem_block*)usable_arenas->address + |
2254 | 358k | ARENA_SIZE - POOL_SIZE); |
2255 | 358k | pool->arenaindex = (uint)(usable_arenas - allarenas); |
2256 | 358k | assert(&allarenas[pool->arenaindex] == usable_arenas); |
2257 | 358k | pool->szidx = DUMMY_SIZE_IDX; |
2258 | 358k | usable_arenas->pool_address += POOL_SIZE; |
2259 | 358k | --usable_arenas->nfreepools; |
2260 | | |
2261 | 358k | if (usable_arenas->nfreepools == 0) { |
2262 | 5.54k | assert(usable_arenas->nextarena == NULL || |
2263 | 5.54k | usable_arenas->nextarena->prevarena == |
2264 | 5.54k | usable_arenas); |
2265 | | /* Unlink the arena: it is completely allocated. */ |
2266 | 5.54k | usable_arenas = usable_arenas->nextarena; |
2267 | 5.54k | if (usable_arenas != NULL) { |
2268 | 320 | usable_arenas->prevarena = NULL; |
2269 | 320 | assert(usable_arenas->address != 0); |
2270 | 320 | } |
2271 | 5.54k | } |
2272 | 358k | } |
2273 | | |
2274 | | /* Frontlink to used pools. */ |
2275 | 2.49M | pymem_block *bp; |
2276 | 2.49M | poolp next = usedpools[size + size]; /* == prev */ |
2277 | 2.49M | pool->nextpool = next; |
2278 | 2.49M | pool->prevpool = next; |
2279 | 2.49M | next->nextpool = pool; |
2280 | 2.49M | next->prevpool = pool; |
2281 | 2.49M | pool->ref.count = 1; |
2282 | 2.49M | if (pool->szidx == size) { |
2283 | | /* Luckily, this pool last contained blocks |
2284 | | * of the same size class, so its header |
2285 | | * and free list are already initialized. |
2286 | | */ |
2287 | 1.49M | bp = pool->freeblock; |
2288 | 1.49M | assert(bp != NULL); |
2289 | 1.49M | pool->freeblock = *(pymem_block **)bp; |
2290 | 1.49M | return bp; |
2291 | 1.49M | } |
2292 | | /* |
2293 | | * Initialize the pool header, set up the free list to |
2294 | | * contain just the second block, and return the first |
2295 | | * block. |
2296 | | */ |
2297 | 1.00M | pool->szidx = size; |
2298 | 1.00M | size = INDEX2SIZE(size); |
2299 | 1.00M | bp = (pymem_block *)pool + POOL_OVERHEAD; |
2300 | 1.00M | pool->nextoffset = POOL_OVERHEAD + (size << 1); |
2301 | 1.00M | pool->maxnextoffset = POOL_SIZE - size; |
2302 | 1.00M | pool->freeblock = bp + size; |
2303 | 1.00M | *(pymem_block **)(pool->freeblock) = NULL; |
2304 | 1.00M | return bp; |
2305 | 2.49M | } |
2306 | | |
2307 | | /* pymalloc allocator |
2308 | | |
2309 | | Return a pointer to newly allocated memory if pymalloc allocated memory. |
2310 | | |
2311 | | Return NULL if pymalloc failed to allocate the memory block: on bigger |
2312 | | requests, on error in the code below (as a last chance to serve the request) |
2313 | | or when the max memory limit has been reached. |
2314 | | */ |
2315 | | static inline void* |
2316 | | pymalloc_alloc(OMState *state, void *Py_UNUSED(ctx), size_t nbytes) |
2317 | 2.06G | { |
2318 | | #ifdef WITH_VALGRIND |
2319 | | if (UNLIKELY(running_on_valgrind == -1)) { |
2320 | | running_on_valgrind = RUNNING_ON_VALGRIND; |
2321 | | } |
2322 | | if (UNLIKELY(running_on_valgrind)) { |
2323 | | return NULL; |
2324 | | } |
2325 | | #endif |
2326 | | |
2327 | 2.06G | if (UNLIKELY(nbytes == 0)) { |
2328 | 43.6M | return NULL; |
2329 | 43.6M | } |
2330 | 2.02G | if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) { |
2331 | 204M | return NULL; |
2332 | 204M | } |
2333 | | |
2334 | 1.81G | uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; |
2335 | 1.81G | poolp pool = usedpools[size + size]; |
2336 | 1.81G | pymem_block *bp; |
2337 | | |
2338 | 1.81G | if (LIKELY(pool != pool->nextpool)) { |
2339 | | /* |
2340 | | * There is a used pool for this size class. |
2341 | | * Pick up the head block of its free list. |
2342 | | */ |
2343 | 1.81G | ++pool->ref.count; |
2344 | 1.81G | bp = pool->freeblock; |
2345 | 1.81G | assert(bp != NULL); |
2346 | | |
2347 | 1.81G | if (UNLIKELY((pool->freeblock = *(pymem_block **)bp) == NULL)) { |
2348 | | // Reached the end of the free list, try to extend it. |
2349 | 376M | pymalloc_pool_extend(pool, size); |
2350 | 376M | } |
2351 | 1.81G | } |
2352 | 2.49M | else { |
2353 | | /* There isn't a pool of the right size class immediately |
2354 | | * available: use a free pool. |
2355 | | */ |
2356 | 2.49M | bp = allocate_from_new_pool(state, size); |
2357 | 2.49M | } |
2358 | | |
2359 | 1.81G | return (void *)bp; |
2360 | 2.02G | } |
2361 | | |
2362 | | |
2363 | | void * |
2364 | | _PyObject_Malloc(void *ctx, size_t nbytes) |
2365 | 2.01G | { |
2366 | 2.01G | OMState *state = get_state(); |
2367 | 2.01G | void* ptr = pymalloc_alloc(state, ctx, nbytes); |
2368 | 2.01G | if (LIKELY(ptr != NULL)) { |
2369 | 1.76G | return ptr; |
2370 | 1.76G | } |
2371 | | |
2372 | 248M | ptr = PyMem_RawMalloc(nbytes); |
2373 | 248M | if (ptr != NULL) { |
2374 | 248M | raw_allocated_blocks++; |
2375 | 248M | } |
2376 | 248M | return ptr; |
2377 | 2.01G | } |
2378 | | |
2379 | | |
2380 | | void * |
2381 | | _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) |
2382 | 50.1M | { |
2383 | 50.1M | assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); |
2384 | 50.1M | size_t nbytes = nelem * elsize; |
2385 | | |
2386 | 50.1M | OMState *state = get_state(); |
2387 | 50.1M | void* ptr = pymalloc_alloc(state, ctx, nbytes); |
2388 | 50.1M | if (LIKELY(ptr != NULL)) { |
2389 | 50.0M | memset(ptr, 0, nbytes); |
2390 | 50.0M | return ptr; |
2391 | 50.0M | } |
2392 | | |
2393 | 112k | ptr = PyMem_RawCalloc(nelem, elsize); |
2394 | 112k | if (ptr != NULL) { |
2395 | 112k | raw_allocated_blocks++; |
2396 | 112k | } |
2397 | 112k | return ptr; |
2398 | 50.1M | } |
2399 | | |
2400 | | |
2401 | | static void |
2402 | | insert_to_usedpool(OMState *state, poolp pool) |
2403 | 163M | { |
2404 | 163M | assert(pool->ref.count > 0); /* else the pool is empty */ |
2405 | | |
2406 | 163M | uint size = pool->szidx; |
2407 | 163M | poolp next = usedpools[size + size]; |
2408 | 163M | poolp prev = next->prevpool; |
2409 | | |
2410 | | /* insert pool before next: prev <-> pool <-> next */ |
2411 | 163M | pool->nextpool = next; |
2412 | 163M | pool->prevpool = prev; |
2413 | 163M | next->prevpool = pool; |
2414 | 163M | prev->nextpool = pool; |
2415 | 163M | } |
2416 | | |
2417 | | static void |
2418 | | insert_to_freepool(OMState *state, poolp pool) |
2419 | 2.47M | { |
2420 | 2.47M | poolp next = pool->nextpool; |
2421 | 2.47M | poolp prev = pool->prevpool; |
2422 | 2.47M | next->prevpool = prev; |
2423 | 2.47M | prev->nextpool = next; |
2424 | | |
2425 | | /* Link the pool to freepools. This is a singly-linked |
2426 | | * list, and pool->prevpool isn't used there. |
2427 | | */ |
2428 | 2.47M | struct arena_object *ao = &allarenas[pool->arenaindex]; |
2429 | 2.47M | pool->nextpool = ao->freepools; |
2430 | 2.47M | ao->freepools = pool; |
2431 | 2.47M | uint nf = ao->nfreepools; |
2432 | | /* If this is the rightmost arena with this number of free pools, |
2433 | | * nfp2lasta[nf] needs to change. Caution: if nf is 0, there |
2434 | | * are no arenas in usable_arenas with that value. |
2435 | | */ |
2436 | 2.47M | struct arena_object* lastnf = nfp2lasta[nf]; |
2437 | 2.47M | assert((nf == 0 && lastnf == NULL) || |
2438 | 2.47M | (nf > 0 && |
2439 | 2.47M | lastnf != NULL && |
2440 | 2.47M | lastnf->nfreepools == nf && |
2441 | 2.47M | (lastnf->nextarena == NULL || |
2442 | 2.47M | nf < lastnf->nextarena->nfreepools))); |
2443 | 2.47M | if (lastnf == ao) { /* it is the rightmost */ |
2444 | 2.31M | struct arena_object* p = ao->prevarena; |
2445 | 2.31M | nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL; |
2446 | 2.31M | } |
2447 | 2.47M | ao->nfreepools = ++nf; |
2448 | | |
2449 | | /* All the rest is arena management. We just freed |
2450 | | * a pool, and there are 4 cases for arena mgmt: |
2451 | | * 1. If all the pools are free, return the arena to |
2452 | | * the system free(). Except if this is the last |
2453 | | * arena in the list, keep it to avoid thrashing: |
2454 | | * keeping one wholly free arena in the list avoids |
2455 | | * pathological cases where a simple loop would |
2456 | | * otherwise provoke needing to allocate and free an |
2457 | | * arena on every iteration. See bpo-37257. |
2458 | | * 2. If this is the only free pool in the arena, |
2459 | | * add the arena back to the `usable_arenas` list. |
2460 | | * 3. If the "next" arena has a smaller count of free |
2461 | | * pools, we have to "slide this arena right" to |
2462 | | * restore that usable_arenas is sorted in order of |
2463 | | * nfreepools. |
2464 | | * 4. Else there's nothing more to do. |
2465 | | */ |
2466 | 2.47M | if (nf == ao->ntotalpools && ao->nextarena != NULL) { |
2467 | | /* Case 1. First unlink ao from usable_arenas. |
2468 | | */ |
2469 | 5.35k | assert(ao->prevarena == NULL || |
2470 | 5.35k | ao->prevarena->address != 0); |
2471 | 5.35k | assert(ao ->nextarena == NULL || |
2472 | 5.35k | ao->nextarena->address != 0); |
2473 | | |
2474 | | /* Fix the pointer in the prevarena, or the |
2475 | | * usable_arenas pointer. |
2476 | | */ |
2477 | 5.35k | if (ao->prevarena == NULL) { |
2478 | 1.57k | usable_arenas = ao->nextarena; |
2479 | 1.57k | assert(usable_arenas == NULL || |
2480 | 1.57k | usable_arenas->address != 0); |
2481 | 1.57k | } |
2482 | 3.77k | else { |
2483 | 3.77k | assert(ao->prevarena->nextarena == ao); |
2484 | 3.77k | ao->prevarena->nextarena = |
2485 | 3.77k | ao->nextarena; |
2486 | 3.77k | } |
2487 | | /* Fix the pointer in the nextarena. */ |
2488 | 5.35k | if (ao->nextarena != NULL) { |
2489 | 5.35k | assert(ao->nextarena->prevarena == ao); |
2490 | 5.35k | ao->nextarena->prevarena = |
2491 | 5.35k | ao->prevarena; |
2492 | 5.35k | } |
2493 | | /* Record that this arena_object slot is |
2494 | | * available to be reused. |
2495 | | */ |
2496 | 5.35k | ao->nextarena = unused_arena_objects; |
2497 | 5.35k | unused_arena_objects = ao; |
2498 | | |
2499 | 5.35k | #if WITH_PYMALLOC_RADIX_TREE |
2500 | | /* mark arena region as not under control of obmalloc */ |
2501 | 5.35k | arena_map_mark_used(state, ao->address, 0); |
2502 | 5.35k | #endif |
2503 | | |
2504 | | /* Free the entire arena. */ |
2505 | 5.35k | _PyObject_Arena.free(_PyObject_Arena.ctx, |
2506 | 5.35k | (void *)ao->address, ARENA_SIZE); |
2507 | 5.35k | ao->address = 0; /* mark unassociated */ |
2508 | 5.35k | --narenas_currently_allocated; |
2509 | | |
2510 | 5.35k | return; |
2511 | 5.35k | } |
2512 | | |
2513 | 2.47M | if (nf == 1) { |
2514 | | /* Case 2. Put ao at the head of |
2515 | | * usable_arenas. Note that because |
2516 | | * ao->nfreepools was 0 before, ao isn't |
2517 | | * currently on the usable_arenas list. |
2518 | | */ |
2519 | 120k | ao->nextarena = usable_arenas; |
2520 | 120k | ao->prevarena = NULL; |
2521 | 120k | if (usable_arenas) |
2522 | 117k | usable_arenas->prevarena = ao; |
2523 | 120k | usable_arenas = ao; |
2524 | 120k | assert(usable_arenas->address != 0); |
2525 | 120k | if (nfp2lasta[1] == NULL) { |
2526 | 116k | nfp2lasta[1] = ao; |
2527 | 116k | } |
2528 | | |
2529 | 120k | return; |
2530 | 120k | } |
2531 | | |
2532 | | /* If this arena is now out of order, we need to keep |
2533 | | * the list sorted. The list is kept sorted so that |
2534 | | * the "most full" arenas are used first, which allows |
2535 | | * the nearly empty arenas to be completely freed. In |
2536 | | * a few un-scientific tests, it seems like this |
2537 | | * approach allowed a lot more memory to be freed. |
2538 | | */ |
2539 | | /* If this is the only arena with nf, record that. */ |
2540 | 2.35M | if (nfp2lasta[nf] == NULL) { |
2541 | 2.29M | nfp2lasta[nf] = ao; |
2542 | 2.29M | } /* else the rightmost with nf doesn't change */ |
2543 | | /* If this was the rightmost of the old size, it remains in place. */ |
2544 | 2.35M | if (ao == lastnf) { |
2545 | | /* Case 4. Nothing to do. */ |
2546 | 2.30M | return; |
2547 | 2.30M | } |
2548 | | /* If ao were the only arena in the list, the last block would have |
2549 | | * gotten us out. |
2550 | | */ |
2551 | 2.35M | assert(ao->nextarena != NULL); |
2552 | | |
2553 | | /* Case 3: We have to move the arena towards the end of the list, |
2554 | | * because it has more free pools than the arena to its right. It needs |
2555 | | * to move to follow lastnf. |
2556 | | * First unlink ao from usable_arenas. |
2557 | | */ |
2558 | 44.5k | if (ao->prevarena != NULL) { |
2559 | | /* ao isn't at the head of the list */ |
2560 | 31.0k | assert(ao->prevarena->nextarena == ao); |
2561 | 31.0k | ao->prevarena->nextarena = ao->nextarena; |
2562 | 31.0k | } |
2563 | 13.4k | else { |
2564 | | /* ao is at the head of the list */ |
2565 | 13.4k | assert(usable_arenas == ao); |
2566 | 13.4k | usable_arenas = ao->nextarena; |
2567 | 13.4k | } |
2568 | 44.5k | ao->nextarena->prevarena = ao->prevarena; |
2569 | | /* And insert after lastnf. */ |
2570 | 44.5k | ao->prevarena = lastnf; |
2571 | 44.5k | ao->nextarena = lastnf->nextarena; |
2572 | 44.5k | if (ao->nextarena != NULL) { |
2573 | 43.1k | ao->nextarena->prevarena = ao; |
2574 | 43.1k | } |
2575 | 44.5k | lastnf->nextarena = ao; |
2576 | | /* Verify that the swaps worked. */ |
2577 | 44.5k | assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); |
2578 | 44.5k | assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); |
2579 | 44.5k | assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); |
2580 | 44.5k | assert((usable_arenas == ao && ao->prevarena == NULL) |
2581 | 44.5k | || ao->prevarena->nextarena == ao); |
2582 | 44.5k | } |
2583 | | |
2584 | | /* Free a memory block allocated by pymalloc_alloc(). |
2585 | | Return 1 if it was freed. |
2586 | | Return 0 if the block was not allocated by pymalloc_alloc(). */ |
2587 | | static inline int |
2588 | | pymalloc_free(OMState *state, void *Py_UNUSED(ctx), void *p) |
2589 | 2.06G | { |
2590 | 2.06G | assert(p != NULL); |
2591 | | |
2592 | | #ifdef WITH_VALGRIND |
2593 | | if (UNLIKELY(running_on_valgrind > 0)) { |
2594 | | return 0; |
2595 | | } |
2596 | | #endif |
2597 | | |
2598 | 2.06G | poolp pool = POOL_ADDR(p); |
2599 | 2.06G | if (UNLIKELY(!address_in_range(state, p, pool))) { |
2600 | 248M | return 0; |
2601 | 248M | } |
2602 | | /* We allocated this address. */ |
2603 | | |
2604 | | /* Link p to the start of the pool's freeblock list. Since |
2605 | | * the pool had at least the p block outstanding, the pool |
2606 | | * wasn't empty (so it's already in a usedpools[] list, or |
2607 | | * was full and is in no list -- it's not in the freeblocks |
2608 | | * list in any case). |
2609 | | */ |
2610 | 2.06G | assert(pool->ref.count > 0); /* else it was empty */ |
2611 | 1.81G | pymem_block *lastfree = pool->freeblock; |
2612 | 1.81G | *(pymem_block **)p = lastfree; |
2613 | 1.81G | pool->freeblock = (pymem_block *)p; |
2614 | 1.81G | pool->ref.count--; |
2615 | | |
2616 | 1.81G | if (UNLIKELY(lastfree == NULL)) { |
2617 | | /* Pool was full, so doesn't currently live in any list: |
2618 | | * link it to the front of the appropriate usedpools[] list. |
2619 | | * This mimics LRU pool usage for new allocations and |
2620 | | * targets optimal filling when several pools contain |
2621 | | * blocks of the same size class. |
2622 | | */ |
2623 | 163M | insert_to_usedpool(state, pool); |
2624 | 163M | return 1; |
2625 | 163M | } |
2626 | | |
2627 | | /* freeblock wasn't NULL, so the pool wasn't full, |
2628 | | * and the pool is in a usedpools[] list. |
2629 | | */ |
2630 | 1.64G | if (LIKELY(pool->ref.count != 0)) { |
2631 | | /* pool isn't empty: leave it in usedpools */ |
2632 | 1.64G | return 1; |
2633 | 1.64G | } |
2634 | | |
2635 | | /* Pool is now empty: unlink from usedpools, and |
2636 | | * link to the front of freepools. This ensures that |
2637 | | * previously freed pools will be allocated later |
2638 | | * (being not referenced, they are perhaps paged out). |
2639 | | */ |
2640 | 2.47M | insert_to_freepool(state, pool); |
2641 | 2.47M | return 1; |
2642 | 1.64G | } |
2643 | | |
2644 | | |
2645 | | void |
2646 | | _PyObject_Free(void *ctx, void *p) |
2647 | 2.06G | { |
2648 | | /* PyObject_Free(NULL) has no effect */ |
2649 | 2.06G | if (p == NULL) { |
2650 | 2.16M | return; |
2651 | 2.16M | } |
2652 | | |
2653 | 2.06G | OMState *state = get_state(); |
2654 | 2.06G | if (UNLIKELY(!pymalloc_free(state, ctx, p))) { |
2655 | | /* pymalloc didn't allocate this address */ |
2656 | 248M | PyMem_RawFree(p); |
2657 | 248M | raw_allocated_blocks--; |
2658 | 248M | } |
2659 | 2.06G | } |
2660 | | |
2661 | | |
2662 | | /* pymalloc realloc. |
2663 | | |
2664 | | If nbytes==0, then as the Python docs promise, we do not treat this like |
2665 | | free(p), and return a non-NULL result. |
2666 | | |
2667 | | Return 1 if pymalloc reallocated memory and wrote the new pointer into |
2668 | | newptr_p. |
2669 | | |
2670 | | Return 0 if pymalloc didn't allocated p. */ |
2671 | | static int |
2672 | | pymalloc_realloc(OMState *state, void *ctx, |
2673 | | void **newptr_p, void *p, size_t nbytes) |
2674 | 107M | { |
2675 | 107M | void *bp; |
2676 | 107M | poolp pool; |
2677 | 107M | size_t size; |
2678 | | |
2679 | 107M | assert(p != NULL); |
2680 | | |
2681 | | #ifdef WITH_VALGRIND |
2682 | | /* Treat running_on_valgrind == -1 the same as 0 */ |
2683 | | if (UNLIKELY(running_on_valgrind > 0)) { |
2684 | | return 0; |
2685 | | } |
2686 | | #endif |
2687 | | |
2688 | 107M | pool = POOL_ADDR(p); |
2689 | 107M | if (!address_in_range(state, p, pool)) { |
2690 | | /* pymalloc is not managing this block. |
2691 | | |
2692 | | If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take |
2693 | | over this block. However, if we do, we need to copy the valid data |
2694 | | from the C-managed block to one of our blocks, and there's no |
2695 | | portable way to know how much of the memory space starting at p is |
2696 | | valid. |
2697 | | |
2698 | | As bug 1185883 pointed out the hard way, it's possible that the |
2699 | | C-managed block is "at the end" of allocated VM space, so that a |
2700 | | memory fault can occur if we try to copy nbytes bytes starting at p. |
2701 | | Instead we punt: let C continue to manage this block. */ |
2702 | 8.91M | return 0; |
2703 | 8.91M | } |
2704 | | |
2705 | | /* pymalloc is in charge of this block */ |
2706 | 98.9M | size = INDEX2SIZE(pool->szidx); |
2707 | 98.9M | if (nbytes <= size) { |
2708 | | /* The block is staying the same or shrinking. |
2709 | | |
2710 | | If it's shrinking, there's a tradeoff: it costs cycles to copy the |
2711 | | block to a smaller size class, but it wastes memory not to copy it. |
2712 | | |
2713 | | The compromise here is to copy on shrink only if at least 25% of |
2714 | | size can be shaved off. */ |
2715 | 68.6M | if (4 * nbytes > 3 * size) { |
2716 | | /* It's the same, or shrinking and new/old > 3/4. */ |
2717 | 21.8M | *newptr_p = p; |
2718 | 21.8M | return 1; |
2719 | 21.8M | } |
2720 | 46.7M | size = nbytes; |
2721 | 46.7M | } |
2722 | | |
2723 | 77.1M | bp = _PyObject_Malloc(ctx, nbytes); |
2724 | 77.1M | if (bp != NULL) { |
2725 | 77.1M | memcpy(bp, p, size); |
2726 | 77.1M | _PyObject_Free(ctx, p); |
2727 | 77.1M | } |
2728 | 77.1M | *newptr_p = bp; |
2729 | 77.1M | return 1; |
2730 | 98.9M | } |
2731 | | |
2732 | | |
2733 | | void * |
2734 | | _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) |
2735 | 345M | { |
2736 | 345M | void *ptr2; |
2737 | | |
2738 | 345M | if (ptr == NULL) { |
2739 | 237M | return _PyObject_Malloc(ctx, nbytes); |
2740 | 237M | } |
2741 | | |
2742 | 107M | OMState *state = get_state(); |
2743 | 107M | if (pymalloc_realloc(state, ctx, &ptr2, ptr, nbytes)) { |
2744 | 98.9M | return ptr2; |
2745 | 98.9M | } |
2746 | | |
2747 | 8.91M | return PyMem_RawRealloc(ptr, nbytes); |
2748 | 107M | } |
2749 | | |
2750 | | #else /* ! WITH_PYMALLOC */ |
2751 | | |
2752 | | /*==========================================================================*/ |
2753 | | /* pymalloc not enabled: Redirect the entry points to malloc. These will |
2754 | | * only be used by extensions that are compiled with pymalloc enabled. */ |
2755 | | |
2756 | | Py_ssize_t |
2757 | | _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) |
2758 | | { |
2759 | | return 0; |
2760 | | } |
2761 | | |
2762 | | Py_ssize_t |
2763 | | _Py_GetGlobalAllocatedBlocks(void) |
2764 | | { |
2765 | | return 0; |
2766 | | } |
2767 | | |
2768 | | void |
2769 | | _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) |
2770 | | { |
2771 | | return; |
2772 | | } |
2773 | | |
2774 | | void |
2775 | | _Py_FinalizeAllocatedBlocks(_PyRuntimeState *Py_UNUSED(runtime)) |
2776 | | { |
2777 | | return; |
2778 | | } |
2779 | | |
2780 | | #endif /* WITH_PYMALLOC */ |
2781 | | |
2782 | | |
2783 | | /*==========================================================================*/ |
2784 | | /* A x-platform debugging allocator. This doesn't manage memory directly, |
2785 | | * it wraps a real allocator, adding extra debugging info to the memory blocks. |
2786 | | */ |
2787 | | |
2788 | | /* Uncomment this define to add the "serialno" field */ |
2789 | | /* #define PYMEM_DEBUG_SERIALNO */ |
2790 | | |
2791 | | #ifdef PYMEM_DEBUG_SERIALNO |
2792 | | static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ |
2793 | | |
2794 | | /* serialno is always incremented via calling this routine. The point is |
2795 | | * to supply a single place to set a breakpoint. |
2796 | | */ |
2797 | | static void |
2798 | | bumpserialno(void) |
2799 | | { |
2800 | | ++serialno; |
2801 | | } |
2802 | | #endif |
2803 | | |
2804 | 0 | #define SST SIZEOF_SIZE_T |
2805 | | |
2806 | | #ifdef PYMEM_DEBUG_SERIALNO |
2807 | | # define PYMEM_DEBUG_EXTRA_BYTES 4 * SST |
2808 | | #else |
2809 | 0 | # define PYMEM_DEBUG_EXTRA_BYTES 3 * SST |
2810 | | #endif |
2811 | | |
2812 | | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */ |
2813 | | static size_t |
2814 | | read_size_t(const void *p) |
2815 | 0 | { |
2816 | 0 | const uint8_t *q = (const uint8_t *)p; |
2817 | 0 | size_t result = *q++; |
2818 | 0 | int i; |
2819 | |
|
2820 | 0 | for (i = SST; --i > 0; ++q) |
2821 | 0 | result = (result << 8) | *q; |
2822 | 0 | return result; |
2823 | 0 | } |
2824 | | |
2825 | | /* Write n as a big-endian size_t, MSB at address p, LSB at |
2826 | | * p + sizeof(size_t) - 1. |
2827 | | */ |
2828 | | static void |
2829 | | write_size_t(void *p, size_t n) |
2830 | 0 | { |
2831 | 0 | uint8_t *q = (uint8_t *)p + SST - 1; |
2832 | 0 | int i; |
2833 | |
|
2834 | 0 | for (i = SST; --i >= 0; --q) { |
2835 | 0 | *q = (uint8_t)(n & 0xff); |
2836 | 0 | n >>= 8; |
2837 | 0 | } |
2838 | 0 | } |
2839 | | |
2840 | | static void |
2841 | | fill_mem_debug(debug_alloc_api_t *api, void *data, int c, size_t nbytes, |
2842 | | bool is_alloc) |
2843 | 0 | { |
2844 | | #ifdef Py_GIL_DISABLED |
2845 | | if (api->api_id == 'o') { |
2846 | | // Don't overwrite the first few bytes of a PyObject allocation in the |
2847 | | // free-threaded build |
2848 | | _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET(); |
2849 | | size_t debug_offset; |
2850 | | if (is_alloc) { |
2851 | | debug_offset = tstate->mimalloc.current_object_heap->debug_offset; |
2852 | | } |
2853 | | else { |
2854 | | char *alloc = (char *)data - 2*SST; // start of the allocation |
2855 | | debug_offset = _mi_ptr_page(alloc)->debug_offset; |
2856 | | } |
2857 | | debug_offset -= 2*SST; // account for pymalloc extra bytes |
2858 | | if (debug_offset < nbytes) { |
2859 | | memset((char *)data + debug_offset, c, nbytes - debug_offset); |
2860 | | } |
2861 | | return; |
2862 | | } |
2863 | | #endif |
2864 | 0 | memset(data, c, nbytes); |
2865 | 0 | } |
2866 | | |
2867 | | /* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and |
2868 | | fills them with useful stuff, here calling the underlying malloc's result p: |
2869 | | |
2870 | | p[0: S] |
2871 | | Number of bytes originally asked for. This is a size_t, big-endian (easier |
2872 | | to read in a memory dump). |
2873 | | p[S] |
2874 | | API ID. See PEP 445. This is a character, but seems undocumented. |
2875 | | p[S+1: 2*S] |
2876 | | Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads. |
2877 | | p[2*S: 2*S+n] |
2878 | | The requested memory, filled with copies of PYMEM_CLEANBYTE. |
2879 | | Used to catch reference to uninitialized memory. |
2880 | | &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc |
2881 | | handled the request itself. |
2882 | | p[2*S+n: 2*S+n+S] |
2883 | | Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads. |
2884 | | p[2*S+n+S: 2*S+n+2*S] |
2885 | | A serial number, incremented by 1 on each call to _PyMem_DebugMalloc |
2886 | | and _PyMem_DebugRealloc. |
2887 | | This is a big-endian size_t. |
2888 | | If "bad memory" is detected later, the serial number gives an |
2889 | | excellent way to set a breakpoint on the next run, to capture the |
2890 | | instant at which this block was passed out. |
2891 | | |
2892 | | If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks |
2893 | | for 3 * S extra bytes, and omits the last serialno field. |
2894 | | */ |
2895 | | |
2896 | | static void * |
2897 | | _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) |
2898 | 0 | { |
2899 | 0 | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
2900 | 0 | uint8_t *p; /* base address of malloc'ed pad block */ |
2901 | 0 | uint8_t *data; /* p + 2*SST == pointer to data bytes */ |
2902 | 0 | uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ |
2903 | 0 | size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */ |
2904 | |
|
2905 | 0 | if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { |
2906 | | /* integer overflow: can't represent total as a Py_ssize_t */ |
2907 | 0 | return NULL; |
2908 | 0 | } |
2909 | 0 | total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; |
2910 | | |
2911 | | /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] |
2912 | | ^--- p ^--- data ^--- tail |
2913 | | S: nbytes stored as size_t |
2914 | | I: API identifier (1 byte) |
2915 | | F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) |
2916 | | C: Clean bytes used later to store actual data |
2917 | | N: Serial number stored as size_t |
2918 | | |
2919 | | If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field |
2920 | | is omitted. */ |
2921 | |
|
2922 | 0 | if (use_calloc) { |
2923 | 0 | p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); |
2924 | 0 | } |
2925 | 0 | else { |
2926 | 0 | p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); |
2927 | 0 | } |
2928 | 0 | if (p == NULL) { |
2929 | 0 | return NULL; |
2930 | 0 | } |
2931 | 0 | data = p + 2*SST; |
2932 | |
|
2933 | | #ifdef PYMEM_DEBUG_SERIALNO |
2934 | | bumpserialno(); |
2935 | | #endif |
2936 | | |
2937 | | /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ |
2938 | 0 | write_size_t(p, nbytes); |
2939 | 0 | p[SST] = (uint8_t)api->api_id; |
2940 | 0 | memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); |
2941 | |
|
2942 | 0 | if (nbytes > 0 && !use_calloc) { |
2943 | 0 | fill_mem_debug(api, data, PYMEM_CLEANBYTE, nbytes, true); |
2944 | 0 | } |
2945 | | |
2946 | | /* at tail, write pad (SST bytes) and serialno (SST bytes) */ |
2947 | 0 | tail = data + nbytes; |
2948 | 0 | memset(tail, PYMEM_FORBIDDENBYTE, SST); |
2949 | | #ifdef PYMEM_DEBUG_SERIALNO |
2950 | | write_size_t(tail + SST, serialno); |
2951 | | #endif |
2952 | |
|
2953 | 0 | return data; |
2954 | 0 | } |
2955 | | |
2956 | | void * |
2957 | | _PyMem_DebugRawMalloc(void *ctx, size_t nbytes) |
2958 | 0 | { |
2959 | 0 | return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
2960 | 0 | } |
2961 | | |
2962 | | void * |
2963 | | _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) |
2964 | 0 | { |
2965 | 0 | size_t nbytes; |
2966 | 0 | assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); |
2967 | 0 | nbytes = nelem * elsize; |
2968 | 0 | return _PyMem_DebugRawAlloc(1, ctx, nbytes); |
2969 | 0 | } |
2970 | | |
2971 | | |
2972 | | /* The debug free first checks the 2*SST bytes on each end for sanity (in |
2973 | | particular, that the FORBIDDENBYTEs with the api ID are still intact). |
2974 | | Then fills the original bytes with PYMEM_DEADBYTE. |
2975 | | Then calls the underlying free. |
2976 | | */ |
2977 | | void |
2978 | | _PyMem_DebugRawFree(void *ctx, void *p) |
2979 | 0 | { |
2980 | | /* PyMem_Free(NULL) has no effect */ |
2981 | 0 | if (p == NULL) { |
2982 | 0 | return; |
2983 | 0 | } |
2984 | | |
2985 | 0 | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
2986 | 0 | uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ |
2987 | 0 | size_t nbytes; |
2988 | |
|
2989 | 0 | _PyMem_DebugCheckAddress(__func__, api->api_id, p); |
2990 | 0 | nbytes = read_size_t(q); |
2991 | 0 | nbytes += PYMEM_DEBUG_EXTRA_BYTES - 2*SST; |
2992 | 0 | memset(q, PYMEM_DEADBYTE, 2*SST); |
2993 | 0 | fill_mem_debug(api, p, PYMEM_DEADBYTE, nbytes, false); |
2994 | 0 | api->alloc.free(api->alloc.ctx, q); |
2995 | 0 | } |
2996 | | |
2997 | | |
2998 | | void * |
2999 | | _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) |
3000 | 0 | { |
3001 | 0 | if (p == NULL) { |
3002 | 0 | return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
3003 | 0 | } |
3004 | | |
3005 | 0 | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
3006 | 0 | uint8_t *head; /* base address of malloc'ed pad block */ |
3007 | 0 | uint8_t *data; /* pointer to data bytes */ |
3008 | 0 | uint8_t *r; |
3009 | 0 | uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ |
3010 | 0 | size_t total; /* 2 * SST + nbytes + 2 * SST */ |
3011 | 0 | size_t original_nbytes; |
3012 | 0 | #define ERASED_SIZE 64 |
3013 | |
|
3014 | 0 | _PyMem_DebugCheckAddress(__func__, api->api_id, p); |
3015 | |
|
3016 | 0 | data = (uint8_t *)p; |
3017 | 0 | head = data - 2*SST; |
3018 | 0 | original_nbytes = read_size_t(head); |
3019 | 0 | if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { |
3020 | | /* integer overflow: can't represent total as a Py_ssize_t */ |
3021 | 0 | return NULL; |
3022 | 0 | } |
3023 | 0 | total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; |
3024 | |
|
3025 | 0 | tail = data + original_nbytes; |
3026 | | #ifdef PYMEM_DEBUG_SERIALNO |
3027 | | size_t block_serialno = read_size_t(tail + SST); |
3028 | | #endif |
3029 | 0 | #ifndef Py_GIL_DISABLED |
3030 | | /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and |
3031 | | ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. |
3032 | | */ |
3033 | 0 | uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */ |
3034 | 0 | if (original_nbytes <= sizeof(save)) { |
3035 | 0 | memcpy(save, data, original_nbytes); |
3036 | 0 | memset(data - 2 * SST, PYMEM_DEADBYTE, |
3037 | 0 | original_nbytes + PYMEM_DEBUG_EXTRA_BYTES); |
3038 | 0 | } |
3039 | 0 | else { |
3040 | 0 | memcpy(save, data, ERASED_SIZE); |
3041 | 0 | memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST); |
3042 | 0 | memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); |
3043 | 0 | memset(tail - ERASED_SIZE, PYMEM_DEADBYTE, |
3044 | 0 | ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST); |
3045 | 0 | } |
3046 | 0 | #endif |
3047 | | |
3048 | | /* Resize and add decorations. */ |
3049 | 0 | r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); |
3050 | 0 | if (r == NULL) { |
3051 | | /* if realloc() failed: rewrite header and footer which have |
3052 | | just been erased */ |
3053 | 0 | nbytes = original_nbytes; |
3054 | 0 | } |
3055 | 0 | else { |
3056 | 0 | head = r; |
3057 | | #ifdef PYMEM_DEBUG_SERIALNO |
3058 | | bumpserialno(); |
3059 | | block_serialno = serialno; |
3060 | | #endif |
3061 | 0 | } |
3062 | 0 | data = head + 2*SST; |
3063 | |
|
3064 | 0 | write_size_t(head, nbytes); |
3065 | 0 | head[SST] = (uint8_t)api->api_id; |
3066 | 0 | memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); |
3067 | |
|
3068 | 0 | tail = data + nbytes; |
3069 | 0 | memset(tail, PYMEM_FORBIDDENBYTE, SST); |
3070 | | #ifdef PYMEM_DEBUG_SERIALNO |
3071 | | write_size_t(tail + SST, block_serialno); |
3072 | | #endif |
3073 | |
|
3074 | 0 | #ifndef Py_GIL_DISABLED |
3075 | | /* Restore saved bytes. */ |
3076 | 0 | if (original_nbytes <= sizeof(save)) { |
3077 | 0 | memcpy(data, save, Py_MIN(nbytes, original_nbytes)); |
3078 | 0 | } |
3079 | 0 | else { |
3080 | 0 | size_t i = original_nbytes - ERASED_SIZE; |
3081 | 0 | memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); |
3082 | 0 | if (nbytes > i) { |
3083 | 0 | memcpy(data + i, &save[ERASED_SIZE], |
3084 | 0 | Py_MIN(nbytes - i, ERASED_SIZE)); |
3085 | 0 | } |
3086 | 0 | } |
3087 | 0 | #endif |
3088 | |
|
3089 | 0 | if (r == NULL) { |
3090 | 0 | return NULL; |
3091 | 0 | } |
3092 | | |
3093 | 0 | if (nbytes > original_nbytes) { |
3094 | | /* growing: mark new extra memory clean */ |
3095 | 0 | memset(data + original_nbytes, PYMEM_CLEANBYTE, |
3096 | 0 | nbytes - original_nbytes); |
3097 | 0 | } |
3098 | |
|
3099 | 0 | return data; |
3100 | 0 | } |
3101 | | |
3102 | | static inline void |
3103 | | _PyMem_DebugCheckGIL(const char *func) |
3104 | 0 | { |
3105 | 0 | PyThreadState *tstate = _PyThreadState_GET(); |
3106 | 0 | if (tstate == NULL) { |
3107 | 0 | #ifndef Py_GIL_DISABLED |
3108 | 0 | _Py_FatalErrorFunc(func, |
3109 | 0 | "Python memory allocator called " |
3110 | 0 | "without holding the GIL"); |
3111 | | #else |
3112 | | _Py_FatalErrorFunc(func, |
3113 | | "Python memory allocator called " |
3114 | | "without an active thread state. " |
3115 | | "Are you trying to call it inside of a Py_BEGIN_ALLOW_THREADS block?"); |
3116 | | #endif |
3117 | 0 | } |
3118 | 0 | } |
3119 | | |
3120 | | void * |
3121 | | _PyMem_DebugMalloc(void *ctx, size_t nbytes) |
3122 | 0 | { |
3123 | 0 | _PyMem_DebugCheckGIL(__func__); |
3124 | 0 | return _PyMem_DebugRawMalloc(ctx, nbytes); |
3125 | 0 | } |
3126 | | |
3127 | | void * |
3128 | | _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) |
3129 | 0 | { |
3130 | 0 | _PyMem_DebugCheckGIL(__func__); |
3131 | 0 | return _PyMem_DebugRawCalloc(ctx, nelem, elsize); |
3132 | 0 | } |
3133 | | |
3134 | | |
3135 | | void |
3136 | | _PyMem_DebugFree(void *ctx, void *ptr) |
3137 | 0 | { |
3138 | 0 | _PyMem_DebugCheckGIL(__func__); |
3139 | 0 | _PyMem_DebugRawFree(ctx, ptr); |
3140 | 0 | } |
3141 | | |
3142 | | |
3143 | | void * |
3144 | | _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) |
3145 | 0 | { |
3146 | 0 | _PyMem_DebugCheckGIL(__func__); |
3147 | 0 | return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); |
3148 | 0 | } |
3149 | | |
3150 | | /* Check the forbidden bytes on both ends of the memory allocated for p. |
3151 | | * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, |
3152 | | * and call Py_FatalError to kill the program. |
3153 | | * The API id, is also checked. |
3154 | | */ |
3155 | | static void |
3156 | | _PyMem_DebugCheckAddress(const char *func, char api, const void *p) |
3157 | 0 | { |
3158 | 0 | assert(p != NULL); |
3159 | |
|
3160 | 0 | const uint8_t *q = (const uint8_t *)p; |
3161 | 0 | size_t nbytes; |
3162 | 0 | const uint8_t *tail; |
3163 | 0 | int i; |
3164 | 0 | char id; |
3165 | | |
3166 | | /* Check the API id */ |
3167 | 0 | id = (char)q[-SST]; |
3168 | 0 | if (id != api) { |
3169 | 0 | _PyObject_DebugDumpAddress(p); |
3170 | 0 | _Py_FatalErrorFormat(func, |
3171 | 0 | "bad ID: Allocated using API '%c', " |
3172 | 0 | "verified using API '%c'", |
3173 | 0 | id, api); |
3174 | 0 | } |
3175 | | |
3176 | | /* Check the stuff at the start of p first: if there's underwrite |
3177 | | * corruption, the number-of-bytes field may be nuts, and checking |
3178 | | * the tail could lead to a segfault then. |
3179 | | */ |
3180 | 0 | for (i = SST-1; i >= 1; --i) { |
3181 | 0 | if (*(q-i) != PYMEM_FORBIDDENBYTE) { |
3182 | 0 | _PyObject_DebugDumpAddress(p); |
3183 | 0 | _Py_FatalErrorFunc(func, "bad leading pad byte"); |
3184 | 0 | } |
3185 | 0 | } |
3186 | | |
3187 | 0 | nbytes = read_size_t(q - 2*SST); |
3188 | 0 | tail = q + nbytes; |
3189 | 0 | for (i = 0; i < SST; ++i) { |
3190 | 0 | if (tail[i] != PYMEM_FORBIDDENBYTE) { |
3191 | 0 | _PyObject_DebugDumpAddress(p); |
3192 | 0 | _Py_FatalErrorFunc(func, "bad trailing pad byte"); |
3193 | 0 | } |
3194 | 0 | } |
3195 | 0 | } |
3196 | | |
3197 | | /* Display info to stderr about the memory block at p. */ |
3198 | | static void |
3199 | | _PyObject_DebugDumpAddress(const void *p) |
3200 | 0 | { |
3201 | 0 | const uint8_t *q = (const uint8_t *)p; |
3202 | 0 | const uint8_t *tail; |
3203 | 0 | size_t nbytes; |
3204 | 0 | int i; |
3205 | 0 | int ok; |
3206 | 0 | char id; |
3207 | |
|
3208 | 0 | fprintf(stderr, "Debug memory block at address p=%p:", p); |
3209 | 0 | if (p == NULL) { |
3210 | 0 | fprintf(stderr, "\n"); |
3211 | 0 | return; |
3212 | 0 | } |
3213 | 0 | id = (char)q[-SST]; |
3214 | 0 | fprintf(stderr, " API '%c'\n", id); |
3215 | |
|
3216 | 0 | nbytes = read_size_t(q - 2*SST); |
3217 | 0 | fprintf(stderr, " %zu bytes originally requested\n", nbytes); |
3218 | | |
3219 | | /* In case this is nuts, check the leading pad bytes first. */ |
3220 | 0 | fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); |
3221 | 0 | ok = 1; |
3222 | 0 | for (i = 1; i <= SST-1; ++i) { |
3223 | 0 | if (*(q-i) != PYMEM_FORBIDDENBYTE) { |
3224 | 0 | ok = 0; |
3225 | 0 | break; |
3226 | 0 | } |
3227 | 0 | } |
3228 | 0 | if (ok) |
3229 | 0 | fputs("FORBIDDENBYTE, as expected.\n", stderr); |
3230 | 0 | else { |
3231 | 0 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
3232 | 0 | PYMEM_FORBIDDENBYTE); |
3233 | 0 | for (i = SST-1; i >= 1; --i) { |
3234 | 0 | const uint8_t byte = *(q-i); |
3235 | 0 | fprintf(stderr, " at p-%d: 0x%02x", i, byte); |
3236 | 0 | if (byte != PYMEM_FORBIDDENBYTE) |
3237 | 0 | fputs(" *** OUCH", stderr); |
3238 | 0 | fputc('\n', stderr); |
3239 | 0 | } |
3240 | |
|
3241 | 0 | fputs(" Because memory is corrupted at the start, the " |
3242 | 0 | "count of bytes requested\n" |
3243 | 0 | " may be bogus, and checking the trailing pad " |
3244 | 0 | "bytes may segfault.\n", stderr); |
3245 | 0 | } |
3246 | |
|
3247 | 0 | tail = q + nbytes; |
3248 | 0 | fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail); |
3249 | 0 | ok = 1; |
3250 | 0 | for (i = 0; i < SST; ++i) { |
3251 | 0 | if (tail[i] != PYMEM_FORBIDDENBYTE) { |
3252 | 0 | ok = 0; |
3253 | 0 | break; |
3254 | 0 | } |
3255 | 0 | } |
3256 | 0 | if (ok) |
3257 | 0 | fputs("FORBIDDENBYTE, as expected.\n", stderr); |
3258 | 0 | else { |
3259 | 0 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
3260 | 0 | PYMEM_FORBIDDENBYTE); |
3261 | 0 | for (i = 0; i < SST; ++i) { |
3262 | 0 | const uint8_t byte = tail[i]; |
3263 | 0 | fprintf(stderr, " at tail+%d: 0x%02x", |
3264 | 0 | i, byte); |
3265 | 0 | if (byte != PYMEM_FORBIDDENBYTE) |
3266 | 0 | fputs(" *** OUCH", stderr); |
3267 | 0 | fputc('\n', stderr); |
3268 | 0 | } |
3269 | 0 | } |
3270 | |
|
3271 | | #ifdef PYMEM_DEBUG_SERIALNO |
3272 | | size_t serial = read_size_t(tail + SST); |
3273 | | fprintf(stderr, |
3274 | | " The block was made by call #%zu to debug malloc/realloc.\n", |
3275 | | serial); |
3276 | | #endif |
3277 | |
|
3278 | 0 | if (nbytes > 0) { |
3279 | 0 | i = 0; |
3280 | 0 | fputs(" Data at p:", stderr); |
3281 | | /* print up to 8 bytes at the start */ |
3282 | 0 | while (q < tail && i < 8) { |
3283 | 0 | fprintf(stderr, " %02x", *q); |
3284 | 0 | ++i; |
3285 | 0 | ++q; |
3286 | 0 | } |
3287 | | /* and up to 8 at the end */ |
3288 | 0 | if (q < tail) { |
3289 | 0 | if (tail - q > 8) { |
3290 | 0 | fputs(" ...", stderr); |
3291 | 0 | q = tail - 8; |
3292 | 0 | } |
3293 | 0 | while (q < tail) { |
3294 | 0 | fprintf(stderr, " %02x", *q); |
3295 | 0 | ++q; |
3296 | 0 | } |
3297 | 0 | } |
3298 | 0 | fputc('\n', stderr); |
3299 | 0 | } |
3300 | 0 | fputc('\n', stderr); |
3301 | |
|
3302 | 0 | fflush(stderr); |
3303 | 0 | _PyMem_DumpTraceback(fileno(stderr), p); |
3304 | 0 | } |
3305 | | |
3306 | | |
3307 | | static size_t |
3308 | | printone(FILE *out, const char* msg, size_t value) |
3309 | 0 | { |
3310 | 0 | int i, k; |
3311 | 0 | char buf[100]; |
3312 | 0 | size_t origvalue = value; |
3313 | |
|
3314 | 0 | fputs(msg, out); |
3315 | 0 | for (i = (int)strlen(msg); i < 35; ++i) |
3316 | 0 | fputc(' ', out); |
3317 | 0 | fputc('=', out); |
3318 | | |
3319 | | /* Write the value with commas. */ |
3320 | 0 | i = 22; |
3321 | 0 | buf[i--] = '\0'; |
3322 | 0 | buf[i--] = '\n'; |
3323 | 0 | k = 3; |
3324 | 0 | do { |
3325 | 0 | size_t nextvalue = value / 10; |
3326 | 0 | unsigned int digit = (unsigned int)(value - nextvalue * 10); |
3327 | 0 | value = nextvalue; |
3328 | 0 | buf[i--] = (char)(digit + '0'); |
3329 | 0 | --k; |
3330 | 0 | if (k == 0 && value && i >= 0) { |
3331 | 0 | k = 3; |
3332 | 0 | buf[i--] = ','; |
3333 | 0 | } |
3334 | 0 | } while (value && i >= 0); |
3335 | |
|
3336 | 0 | while (i >= 0) |
3337 | 0 | buf[i--] = ' '; |
3338 | 0 | fputs(buf, out); |
3339 | |
|
3340 | 0 | return origvalue; |
3341 | 0 | } |
3342 | | |
3343 | | void |
3344 | | _PyDebugAllocatorStats(FILE *out, |
3345 | | const char *block_name, int num_blocks, size_t sizeof_block) |
3346 | 0 | { |
3347 | 0 | char buf1[128]; |
3348 | 0 | char buf2[128]; |
3349 | 0 | PyOS_snprintf(buf1, sizeof(buf1), |
3350 | 0 | "%d %ss * %zd bytes each", |
3351 | 0 | num_blocks, block_name, sizeof_block); |
3352 | 0 | PyOS_snprintf(buf2, sizeof(buf2), |
3353 | 0 | "%48s ", buf1); |
3354 | 0 | (void)printone(out, buf2, num_blocks * sizeof_block); |
3355 | 0 | } |
3356 | | |
3357 | | // Return true if the obmalloc state structure is heap allocated, |
3358 | | // by PyMem_RawCalloc(). For the main interpreter, this structure |
3359 | | // allocated in the BSS. Allocating that way gives some memory savings |
3360 | | // and a small performance win (at least on a demand paged OS). On |
3361 | | // 64-bit platforms, the obmalloc structure is 256 kB. Most of that |
3362 | | // memory is for the arena_map_top array. Since normally only one entry |
3363 | | // of that array is used, only one page of resident memory is actually |
3364 | | // used, rather than the full 256 kB. |
3365 | | bool _PyMem_obmalloc_state_on_heap(PyInterpreterState *interp) |
3366 | 0 | { |
3367 | 0 | #if WITH_PYMALLOC |
3368 | 0 | return interp->obmalloc && interp->obmalloc != &obmalloc_state_main; |
3369 | | #else |
3370 | | return false; |
3371 | | #endif |
3372 | 0 | } |
3373 | | |
3374 | | #ifdef WITH_PYMALLOC |
3375 | | static void |
3376 | | init_obmalloc_pools(PyInterpreterState *interp) |
3377 | 28 | { |
3378 | | // initialize the obmalloc->pools structure. This must be done |
3379 | | // before the obmalloc alloc/free functions can be called. |
3380 | 28 | poolp temp[OBMALLOC_USED_POOLS_SIZE] = |
3381 | 28 | _obmalloc_pools_INIT(interp->obmalloc->pools); |
3382 | 28 | memcpy(&interp->obmalloc->pools.used, temp, sizeof(temp)); |
3383 | 28 | } |
3384 | | #endif /* WITH_PYMALLOC */ |
3385 | | |
3386 | | int _PyMem_init_obmalloc(PyInterpreterState *interp) |
3387 | 28 | { |
3388 | 28 | #ifdef WITH_PYMALLOC |
3389 | | /* Initialize obmalloc, but only for subinterpreters, |
3390 | | since the main interpreter is initialized statically. */ |
3391 | 28 | if (_Py_IsMainInterpreter(interp) |
3392 | 0 | || _PyInterpreterState_HasFeature(interp, |
3393 | 28 | Py_RTFLAGS_USE_MAIN_OBMALLOC)) { |
3394 | 28 | interp->obmalloc = &obmalloc_state_main; |
3395 | 28 | if (!obmalloc_state_initialized) { |
3396 | 28 | init_obmalloc_pools(interp); |
3397 | 28 | obmalloc_state_initialized = true; |
3398 | 28 | } |
3399 | 28 | } else { |
3400 | 0 | interp->obmalloc = PyMem_RawCalloc(1, sizeof(struct _obmalloc_state)); |
3401 | 0 | if (interp->obmalloc == NULL) { |
3402 | 0 | return -1; |
3403 | 0 | } |
3404 | 0 | init_obmalloc_pools(interp); |
3405 | 0 | } |
3406 | 28 | #endif /* WITH_PYMALLOC */ |
3407 | 28 | return 0; // success |
3408 | 28 | } |
3409 | | |
3410 | | |
3411 | | #ifdef WITH_PYMALLOC |
3412 | | |
3413 | | static void |
3414 | | free_obmalloc_arenas(PyInterpreterState *interp) |
3415 | 0 | { |
3416 | 0 | OMState *state = interp->obmalloc; |
3417 | 0 | for (uint i = 0; i < maxarenas; ++i) { |
3418 | | // free each obmalloc memory arena |
3419 | 0 | struct arena_object *ao = &allarenas[i]; |
3420 | 0 | _PyObject_Arena.free(_PyObject_Arena.ctx, |
3421 | 0 | (void *)ao->address, ARENA_SIZE); |
3422 | 0 | } |
3423 | | // free the array containing pointers to all arenas |
3424 | 0 | PyMem_RawFree(allarenas); |
3425 | 0 | #if WITH_PYMALLOC_RADIX_TREE |
3426 | 0 | #ifdef USE_INTERIOR_NODES |
3427 | | // Free the middle and bottom nodes of the radix tree. These are allocated |
3428 | | // by arena_map_mark_used() but not freed when arenas are freed. |
3429 | 0 | for (int i1 = 0; i1 < MAP_TOP_LENGTH; i1++) { |
3430 | 0 | arena_map_mid_t *mid = arena_map_root.ptrs[i1]; |
3431 | 0 | if (mid == NULL) { |
3432 | 0 | continue; |
3433 | 0 | } |
3434 | 0 | for (int i2 = 0; i2 < MAP_MID_LENGTH; i2++) { |
3435 | 0 | arena_map_bot_t *bot = arena_map_root.ptrs[i1]->ptrs[i2]; |
3436 | 0 | if (bot == NULL) { |
3437 | 0 | continue; |
3438 | 0 | } |
3439 | 0 | PyMem_RawFree(bot); |
3440 | 0 | } |
3441 | 0 | PyMem_RawFree(mid); |
3442 | 0 | } |
3443 | 0 | #endif |
3444 | 0 | #endif |
3445 | 0 | } |
3446 | | |
3447 | | #ifdef Py_DEBUG |
3448 | | /* Is target in the list? The list is traversed via the nextpool pointers. |
3449 | | * The list may be NULL-terminated, or circular. Return 1 if target is in |
3450 | | * list, else 0. |
3451 | | */ |
3452 | | static int |
3453 | | pool_is_in_list(const poolp target, poolp list) |
3454 | | { |
3455 | | poolp origlist = list; |
3456 | | assert(target != NULL); |
3457 | | if (list == NULL) |
3458 | | return 0; |
3459 | | do { |
3460 | | if (target == list) |
3461 | | return 1; |
3462 | | list = list->nextpool; |
3463 | | } while (list != NULL && list != origlist); |
3464 | | return 0; |
3465 | | } |
3466 | | #endif |
3467 | | |
3468 | | #ifdef WITH_MIMALLOC |
3469 | | struct _alloc_stats { |
3470 | | size_t allocated_blocks; |
3471 | | size_t allocated_bytes; |
3472 | | size_t allocated_with_overhead; |
3473 | | size_t bytes_reserved; |
3474 | | size_t bytes_committed; |
3475 | | }; |
3476 | | |
3477 | | static bool _collect_alloc_stats( |
3478 | | const mi_heap_t* heap, const mi_heap_area_t* area, |
3479 | | void* block, size_t block_size, void* arg) |
3480 | 0 | { |
3481 | 0 | struct _alloc_stats *stats = (struct _alloc_stats *)arg; |
3482 | 0 | stats->allocated_blocks += area->used; |
3483 | 0 | stats->allocated_bytes += area->used * area->block_size; |
3484 | 0 | stats->allocated_with_overhead += area->used * area->full_block_size; |
3485 | 0 | stats->bytes_reserved += area->reserved; |
3486 | 0 | stats->bytes_committed += area->committed; |
3487 | 0 | return 1; |
3488 | 0 | } |
3489 | | |
3490 | | static void |
3491 | | py_mimalloc_print_stats(FILE *out) |
3492 | 0 | { |
3493 | 0 | fprintf(out, "Small block threshold = %zu, in %u size classes.\n", |
3494 | 0 | (size_t)MI_SMALL_OBJ_SIZE_MAX, MI_BIN_HUGE); |
3495 | 0 | fprintf(out, "Medium block threshold = %zu\n", |
3496 | 0 | (size_t)MI_MEDIUM_OBJ_SIZE_MAX); |
3497 | 0 | fprintf(out, "Large object max size = %zu\n", |
3498 | 0 | (size_t)MI_LARGE_OBJ_SIZE_MAX); |
3499 | |
|
3500 | 0 | mi_heap_t *heap = mi_heap_get_default(); |
3501 | 0 | struct _alloc_stats stats; |
3502 | 0 | memset(&stats, 0, sizeof(stats)); |
3503 | 0 | mi_heap_visit_blocks(heap, false, &_collect_alloc_stats, &stats); |
3504 | |
|
3505 | 0 | fprintf(out, " Allocated Blocks: %zd\n", stats.allocated_blocks); |
3506 | 0 | fprintf(out, " Allocated Bytes: %zd\n", stats.allocated_bytes); |
3507 | 0 | fprintf(out, " Allocated Bytes w/ Overhead: %zd\n", stats.allocated_with_overhead); |
3508 | 0 | fprintf(out, " Bytes Reserved: %zd\n", stats.bytes_reserved); |
3509 | 0 | fprintf(out, " Bytes Committed: %zd\n", stats.bytes_committed); |
3510 | 0 | } |
3511 | | #endif |
3512 | | |
3513 | | |
3514 | | static void |
3515 | | pymalloc_print_stats(FILE *out) |
3516 | 0 | { |
3517 | 0 | OMState *state = get_state(); |
3518 | |
|
3519 | 0 | uint i; |
3520 | 0 | const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; |
3521 | | /* # of pools, allocated blocks, and free blocks per class index */ |
3522 | 0 | size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
3523 | 0 | size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
3524 | 0 | size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
3525 | | /* total # of allocated bytes in used and full pools */ |
3526 | 0 | size_t allocated_bytes = 0; |
3527 | | /* total # of available bytes in used pools */ |
3528 | 0 | size_t available_bytes = 0; |
3529 | | /* # of free pools + pools not yet carved out of current arena */ |
3530 | 0 | uint numfreepools = 0; |
3531 | | /* # of bytes for arena alignment padding */ |
3532 | 0 | size_t arena_alignment = 0; |
3533 | | /* # of bytes in used and full pools used for pool_headers */ |
3534 | 0 | size_t pool_header_bytes = 0; |
3535 | | /* # of bytes in used and full pools wasted due to quantization, |
3536 | | * i.e. the necessarily leftover space at the ends of used and |
3537 | | * full pools. |
3538 | | */ |
3539 | 0 | size_t quantization = 0; |
3540 | | /* # of arenas actually allocated. */ |
3541 | 0 | size_t narenas = 0; |
3542 | | /* running total -- should equal narenas * ARENA_SIZE */ |
3543 | 0 | size_t total; |
3544 | 0 | char buf[128]; |
3545 | |
|
3546 | 0 | fprintf(out, "Small block threshold = %d, in %u size classes.\n", |
3547 | 0 | SMALL_REQUEST_THRESHOLD, numclasses); |
3548 | |
|
3549 | 0 | for (i = 0; i < numclasses; ++i) |
3550 | 0 | numpools[i] = numblocks[i] = numfreeblocks[i] = 0; |
3551 | | |
3552 | | /* Because full pools aren't linked to from anything, it's easiest |
3553 | | * to march over all the arenas. If we're lucky, most of the memory |
3554 | | * will be living in full pools -- would be a shame to miss them. |
3555 | | */ |
3556 | 0 | for (i = 0; i < maxarenas; ++i) { |
3557 | 0 | uintptr_t base = allarenas[i].address; |
3558 | | |
3559 | | /* Skip arenas which are not allocated. */ |
3560 | 0 | if (allarenas[i].address == (uintptr_t)NULL) |
3561 | 0 | continue; |
3562 | 0 | narenas += 1; |
3563 | |
|
3564 | 0 | numfreepools += allarenas[i].nfreepools; |
3565 | | |
3566 | | /* round up to pool alignment */ |
3567 | 0 | if (base & (uintptr_t)POOL_SIZE_MASK) { |
3568 | 0 | arena_alignment += POOL_SIZE; |
3569 | 0 | base &= ~(uintptr_t)POOL_SIZE_MASK; |
3570 | 0 | base += POOL_SIZE; |
3571 | 0 | } |
3572 | | |
3573 | | /* visit every pool in the arena */ |
3574 | 0 | assert(base <= (uintptr_t) allarenas[i].pool_address); |
3575 | 0 | for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { |
3576 | 0 | poolp p = (poolp)base; |
3577 | 0 | const uint sz = p->szidx; |
3578 | 0 | uint freeblocks; |
3579 | |
|
3580 | 0 | if (p->ref.count == 0) { |
3581 | | /* currently unused */ |
3582 | | #ifdef Py_DEBUG |
3583 | | assert(pool_is_in_list(p, allarenas[i].freepools)); |
3584 | | #endif |
3585 | 0 | continue; |
3586 | 0 | } |
3587 | 0 | ++numpools[sz]; |
3588 | 0 | numblocks[sz] += p->ref.count; |
3589 | 0 | freeblocks = NUMBLOCKS(sz) - p->ref.count; |
3590 | 0 | numfreeblocks[sz] += freeblocks; |
3591 | | #ifdef Py_DEBUG |
3592 | | if (freeblocks > 0) |
3593 | | assert(pool_is_in_list(p, usedpools[sz + sz])); |
3594 | | #endif |
3595 | 0 | } |
3596 | 0 | } |
3597 | 0 | assert(narenas == narenas_currently_allocated); |
3598 | |
|
3599 | 0 | fputc('\n', out); |
3600 | 0 | fputs("class size num pools blocks in use avail blocks\n" |
3601 | 0 | "----- ---- --------- ------------- ------------\n", |
3602 | 0 | out); |
3603 | |
|
3604 | 0 | for (i = 0; i < numclasses; ++i) { |
3605 | 0 | size_t p = numpools[i]; |
3606 | 0 | size_t b = numblocks[i]; |
3607 | 0 | size_t f = numfreeblocks[i]; |
3608 | 0 | uint size = INDEX2SIZE(i); |
3609 | 0 | if (p == 0) { |
3610 | 0 | assert(b == 0 && f == 0); |
3611 | 0 | continue; |
3612 | 0 | } |
3613 | 0 | fprintf(out, "%5u %6u %11zu %15zu %13zu\n", |
3614 | 0 | i, size, p, b, f); |
3615 | 0 | allocated_bytes += b * size; |
3616 | 0 | available_bytes += f * size; |
3617 | 0 | pool_header_bytes += p * POOL_OVERHEAD; |
3618 | 0 | quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); |
3619 | 0 | } |
3620 | 0 | fputc('\n', out); |
3621 | | #ifdef PYMEM_DEBUG_SERIALNO |
3622 | | if (_PyMem_DebugEnabled()) { |
3623 | | (void)printone(out, "# times object malloc called", serialno); |
3624 | | } |
3625 | | #endif |
3626 | 0 | (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); |
3627 | 0 | (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); |
3628 | 0 | (void)printone(out, "# arenas highwater mark", narenas_highwater); |
3629 | 0 | (void)printone(out, "# arenas allocated current", narenas); |
3630 | |
|
3631 | 0 | PyOS_snprintf(buf, sizeof(buf), |
3632 | 0 | "%zu arenas * %d bytes/arena", |
3633 | 0 | narenas, ARENA_SIZE); |
3634 | 0 | (void)printone(out, buf, narenas * ARENA_SIZE); |
3635 | |
|
3636 | 0 | fputc('\n', out); |
3637 | | |
3638 | | /* Account for what all of those arena bytes are being used for. */ |
3639 | 0 | total = printone(out, "# bytes in allocated blocks", allocated_bytes); |
3640 | 0 | total += printone(out, "# bytes in available blocks", available_bytes); |
3641 | |
|
3642 | 0 | PyOS_snprintf(buf, sizeof(buf), |
3643 | 0 | "%u unused pools * %d bytes", numfreepools, POOL_SIZE); |
3644 | 0 | total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); |
3645 | |
|
3646 | 0 | total += printone(out, "# bytes lost to pool headers", pool_header_bytes); |
3647 | 0 | total += printone(out, "# bytes lost to quantization", quantization); |
3648 | 0 | total += printone(out, "# bytes lost to arena alignment", arena_alignment); |
3649 | 0 | (void)printone(out, "Total", total); |
3650 | 0 | assert(narenas * ARENA_SIZE == total); |
3651 | |
|
3652 | 0 | #if WITH_PYMALLOC_RADIX_TREE |
3653 | 0 | fputs("\narena map counts\n", out); |
3654 | 0 | #ifdef USE_INTERIOR_NODES |
3655 | 0 | (void)printone(out, "# arena map mid nodes", arena_map_mid_count); |
3656 | 0 | (void)printone(out, "# arena map bot nodes", arena_map_bot_count); |
3657 | 0 | fputc('\n', out); |
3658 | 0 | #endif |
3659 | 0 | total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root)); |
3660 | 0 | #ifdef USE_INTERIOR_NODES |
3661 | 0 | total += printone(out, "# bytes lost to arena map mid", |
3662 | 0 | sizeof(arena_map_mid_t) * arena_map_mid_count); |
3663 | 0 | total += printone(out, "# bytes lost to arena map bot", |
3664 | 0 | sizeof(arena_map_bot_t) * arena_map_bot_count); |
3665 | 0 | (void)printone(out, "Total", total); |
3666 | 0 | #endif |
3667 | 0 | #endif |
3668 | |
|
3669 | 0 | } |
3670 | | |
3671 | | /* Print summary info to "out" about the state of pymalloc's structures. |
3672 | | * In Py_DEBUG mode, also perform some expensive internal consistency |
3673 | | * checks. |
3674 | | * |
3675 | | * Return 0 if the memory debug hooks are not installed or no statistics was |
3676 | | * written into out, return 1 otherwise. |
3677 | | */ |
3678 | | int |
3679 | | _PyObject_DebugMallocStats(FILE *out) |
3680 | 0 | { |
3681 | 0 | #ifdef WITH_MIMALLOC |
3682 | 0 | if (_PyMem_MimallocEnabled()) { |
3683 | 0 | py_mimalloc_print_stats(out); |
3684 | 0 | return 1; |
3685 | 0 | } |
3686 | 0 | else |
3687 | 0 | #endif |
3688 | 0 | if (_PyMem_PymallocEnabled()) { |
3689 | 0 | pymalloc_print_stats(out); |
3690 | 0 | return 1; |
3691 | 0 | } |
3692 | 0 | else { |
3693 | 0 | return 0; |
3694 | 0 | } |
3695 | 0 | } |
3696 | | |
3697 | | #endif /* #ifdef WITH_PYMALLOC */ |