Coverage Report

Created: 2024-09-08 06:05

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.14k
{
81
1.14k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.14k
  int ci, blkn, dctbl, actbl;
83
1.14k
  d_derived_tbl **pdtbl;
84
1.14k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.14k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.14k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
16
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
2.37k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
1.23k
    compptr = cinfo->cur_comp_info[ci];
96
1.23k
    dctbl = compptr->dc_tbl_no;
97
1.23k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
1.23k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
1.23k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
1.23k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
1.23k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
1.23k
    entropy->saved.last_dc_val[ci] = 0;
106
1.23k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
2.45k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
1.31k
    ci = cinfo->MCU_membership[blkn];
111
1.31k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
1.31k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
1.31k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
1.31k
    if (compptr->component_needed) {
117
1.31k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
1.31k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
1.31k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
1.31k
  }
124
125
  /* Initialize bitread state variables */
126
1.14k
  entropy->bitstate.bits_left = 0;
127
1.14k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.14k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.14k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.14k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
11.8k
{
146
11.8k
  JHUFF_TBL *htbl;
147
11.8k
  d_derived_tbl *dtbl;
148
11.8k
  int p, i, l, si, numsymbols;
149
11.8k
  int lookbits, ctr;
150
11.8k
  char huffsize[257];
151
11.8k
  unsigned int huffcode[257];
152
11.8k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
11.8k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
9
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
11.8k
  htbl =
162
11.8k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
11.8k
  if (htbl == NULL)
164
9
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
11.8k
  if (*pdtbl == NULL)
168
4.54k
    *pdtbl = (d_derived_tbl *)
169
4.54k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
4.54k
                                  sizeof(d_derived_tbl));
171
11.8k
  dtbl = *pdtbl;
172
11.8k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
11.8k
  p = 0;
177
200k
  for (l = 1; l <= 16; l++) {
178
189k
    i = (int)htbl->bits[l];
179
189k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
484k
    while (i--)
182
295k
      huffsize[p++] = (char)l;
183
189k
  }
184
11.8k
  huffsize[p] = 0;
185
11.8k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
11.8k
  code = 0;
191
11.8k
  si = huffsize[0];
192
11.8k
  p = 0;
193
126k
  while (huffsize[p]) {
194
409k
    while (((int)huffsize[p]) == si) {
195
294k
      huffcode[p++] = code;
196
294k
      code++;
197
294k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
114k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
19
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
114k
    code <<= 1;
204
114k
    si++;
205
114k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
11.8k
  p = 0;
210
200k
  for (l = 1; l <= 16; l++) {
211
188k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
82.4k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
82.4k
      p += htbl->bits[l];
217
82.4k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
106k
    } else {
219
106k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
106k
    }
221
188k
  }
222
11.8k
  dtbl->valoffset[17] = 0;
223
11.8k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
3.03M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
3.01M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
11.8k
  p = 0;
236
106k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
192k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
98.6k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.73M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.63M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.63M
        lookbits++;
244
2.63M
      }
245
98.6k
    }
246
94.3k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
11.8k
  if (isDC) {
255
105k
    for (i = 0; i < numsymbols; i++) {
256
95.0k
      int sym = htbl->huffval[i];
257
95.0k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
33
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
95.0k
    }
260
10.0k
  }
261
11.8k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
1.13M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
160k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
160k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
160k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
160k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
160k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
1.13M
    while (bits_left < MIN_GET_BITS) {
303
992k
      register int c;
304
305
      /* Attempt to read a byte */
306
992k
      if (bytes_in_buffer == 0) {
307
1.04k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.04k
        next_input_byte = cinfo->src->next_input_byte;
310
1.04k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.04k
      }
312
992k
      bytes_in_buffer--;
313
992k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
992k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
63.6k
        do {
323
63.6k
          if (bytes_in_buffer == 0) {
324
76
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
76
            next_input_byte = cinfo->src->next_input_byte;
327
76
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
76
          }
329
63.6k
          bytes_in_buffer--;
330
63.6k
          c = *next_input_byte++;
331
63.6k
        } while (c == 0xFF);
332
333
31.4k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
25.2k
          c = 0xFF;
336
25.2k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
6.18k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
6.18k
          goto no_more_bytes;
348
6.18k
        }
349
31.4k
      }
350
351
      /* OK, load c into get_buffer */
352
986k
      get_buffer = (get_buffer << 8) | c;
353
986k
      bits_left += 8;
354
986k
    } /* end while */
355
146k
  } else {
356
19.6k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
19.6k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.34k
      if (!cinfo->entropy->insufficient_data) {
368
1.34k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
1.34k
        cinfo->entropy->insufficient_data = TRUE;
370
1.34k
      }
371
      /* Fill the buffer with zero bits */
372
1.34k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.34k
      bits_left = MIN_GET_BITS;
374
1.34k
    }
375
19.6k
  }
376
377
  /* Unload the local registers */
378
159k
  state->next_input_byte = next_input_byte;
379
159k
  state->bytes_in_buffer = bytes_in_buffer;
380
159k
  state->get_buffer = get_buffer;
381
159k
  state->bits_left = bits_left;
382
383
159k
  return TRUE;
384
160k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.02M
#define GET_BYTE { \
392
1.02M
  register int c0, c1; \
393
1.02M
  c0 = *buffer++; \
394
1.02M
  c1 = *buffer; \
395
1.02M
  /* Pre-execute most common case */ \
396
1.02M
  get_buffer = (get_buffer << 8) | c0; \
397
1.02M
  bits_left += 8; \
398
1.02M
  if (c0 == 0xFF) { \
399
129k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
129k
    buffer++; \
401
129k
    if (c1 != 0) { \
402
90.7k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
90.7k
      cinfo->unread_marker = c1; \
404
90.7k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
90.7k
      buffer -= 2; \
406
90.7k
      get_buffer &= ~0xFF; \
407
90.7k
    } \
408
129k
  } \
409
1.02M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.97M
  if (bits_left <= 16) { \
416
171k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
171k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
30.1k
{
440
30.1k
  register int l = min_bits;
441
30.1k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
30.1k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
30.1k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
63.4k
  while (code > htbl->maxcode[l]) {
453
33.3k
    code <<= 1;
454
33.3k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
33.3k
    code |= GET_BITS(1);
456
33.3k
    l++;
457
33.3k
  }
458
459
  /* Unload the local registers */
460
30.1k
  state->get_buffer = get_buffer;
461
30.1k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
30.1k
  if (l > 16) {
466
392
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
392
    return 0;                   /* fake a zero as the safest result */
468
392
  }
469
470
29.7k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
30.1k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.40M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.40M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
65
{
514
65
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
65
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
65
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
65
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
65
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
260
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
195
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
65
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
65
  if (cinfo->unread_marker == 0)
539
65
    entropy->pub.insufficient_data = FALSE;
540
541
65
  return TRUE;
542
65
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
58.4k
{
554
58.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
58.4k
  BITREAD_STATE_VARS;
556
58.4k
  int blkn;
557
58.4k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
58.4k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
58.4k
  state = entropy->saved;
563
564
127k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
69.1k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
69.1k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
69.1k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
69.1k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
69.1k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
69.1k
    if (s) {
575
27.6k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
27.6k
      r = GET_BITS(s);
577
27.6k
      s = HUFF_EXTEND(r, s);
578
27.6k
    }
579
580
69.1k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
68.8k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
68.8k
      s += state.last_dc_val[ci];
592
68.8k
      state.last_dc_val[ci] = s;
593
68.8k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
68.8k
        (*block)[0] = (JCOEF)s;
596
68.8k
      }
597
68.8k
    }
598
599
69.1k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
269k
      for (k = 1; k < DCTSIZE2; k++) {
604
264k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
264k
        r = s >> 4;
607
264k
        s &= 15;
608
609
264k
        if (s) {
610
197k
          k += r;
611
197k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
197k
          r = GET_BITS(s);
613
197k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
197k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
197k
        } else {
620
66.1k
          if (r != 15)
621
63.6k
            break;
622
2.52k
          k += 15;
623
2.52k
        }
624
264k
      }
625
626
68.8k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
263
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
263
    }
647
69.1k
  }
648
649
  /* Completed MCU, so update state */
650
58.3k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
58.3k
  entropy->saved = state;
652
58.3k
  return TRUE;
653
58.4k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
350k
{
665
350k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
350k
  BITREAD_STATE_VARS;
667
350k
  JOCTET *buffer;
668
350k
  int blkn;
669
350k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
350k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
350k
  buffer = (JOCTET *)br_state.next_input_byte;
675
350k
  state = entropy->saved;
676
677
737k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
387k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
387k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
387k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
387k
    register int s, k, r, l;
682
683
387k
    HUFF_DECODE_FAST(s, l, dctbl);
684
387k
    if (s) {
685
132k
      FILL_BIT_BUFFER_FAST
686
132k
      r = GET_BITS(s);
687
132k
      s = HUFF_EXTEND(r, s);
688
132k
    }
689
690
387k
    if (entropy->dc_needed[blkn]) {
691
387k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
387k
      s += state.last_dc_val[ci];
696
387k
      state.last_dc_val[ci] = s;
697
387k
      if (block)
698
387k
        (*block)[0] = (JCOEF)s;
699
387k
    }
700
701
387k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.44M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.40M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.40M
        r = s >> 4;
706
1.40M
        s &= 15;
707
708
1.40M
        if (s) {
709
1.05M
          k += r;
710
1.05M
          FILL_BIT_BUFFER_FAST
711
1.05M
          r = GET_BITS(s);
712
1.05M
          s = HUFF_EXTEND(r, s);
713
1.05M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.05M
        } else {
715
356k
          if (r != 15) break;
716
3.07k
          k += 15;
717
3.07k
        }
718
1.40M
      }
719
720
387k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
387k
  }
738
739
350k
  if (cinfo->unread_marker != 0) {
740
15.4k
    cinfo->unread_marker = 0;
741
15.4k
    return FALSE;
742
15.4k
  }
743
744
335k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
335k
  br_state.next_input_byte = buffer;
746
335k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
335k
  entropy->saved = state;
748
335k
  return TRUE;
749
350k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
393k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
393k
{
772
393k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
393k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
393k
  if (cinfo->restart_interval) {
777
11.5k
    if (entropy->restarts_to_go == 0)
778
65
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
11.5k
    usefast = 0;
781
11.5k
  }
782
783
393k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
393k
      cinfo->unread_marker != 0)
785
34.6k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
393k
  if (!entropy->pub.insufficient_data) {
791
792
393k
    if (usefast) {
793
350k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
350k
    } else {
795
58.4k
use_slow:
796
58.4k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
58.4k
    }
798
799
393k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
393k
  if (cinfo->restart_interval)
803
11.5k
    entropy->restarts_to_go--;
804
805
393k
  return TRUE;
806
393k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
951
{
816
951
  huff_entropy_ptr entropy;
817
951
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
951
  std_huff_tables((j_common_ptr)cinfo);
824
825
951
  entropy = (huff_entropy_ptr)
826
951
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
951
                                sizeof(huff_entropy_decoder));
828
951
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
951
  entropy->pub.start_pass = start_pass_huff_decoder;
830
951
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
4.75k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.80k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.80k
  }
836
951
}