Coverage Report

Created: 2024-09-08 06:06

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
817
{
81
817
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
817
  int ci, blkn, dctbl, actbl;
83
817
  d_derived_tbl **pdtbl;
84
817
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
817
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
817
      cinfo->Ah != 0 || cinfo->Al != 0)
92
4
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
3.03k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
2.21k
    compptr = cinfo->cur_comp_info[ci];
96
2.21k
    dctbl = compptr->dc_tbl_no;
97
2.21k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
2.21k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
2.21k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
2.21k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
2.21k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
2.21k
    entropy->saved.last_dc_val[ci] = 0;
106
2.21k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
3.79k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
2.98k
    ci = cinfo->MCU_membership[blkn];
111
2.98k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
2.98k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
2.98k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
2.98k
    if (compptr->component_needed) {
117
2.98k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
2.98k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
2.98k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
2.98k
  }
124
125
  /* Initialize bitread state variables */
126
817
  entropy->bitstate.bits_left = 0;
127
817
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
817
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
817
  entropy->restarts_to_go = cinfo->restart_interval;
132
817
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
5.83k
{
146
5.83k
  JHUFF_TBL *htbl;
147
5.83k
  d_derived_tbl *dtbl;
148
5.83k
  int p, i, l, si, numsymbols;
149
5.83k
  int lookbits, ctr;
150
5.83k
  char huffsize[257];
151
5.83k
  unsigned int huffcode[257];
152
5.83k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
5.83k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
5.83k
  htbl =
162
5.83k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
5.83k
  if (htbl == NULL)
164
4
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
5.83k
  if (*pdtbl == NULL)
168
2.76k
    *pdtbl = (d_derived_tbl *)
169
2.76k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
2.76k
                                  sizeof(d_derived_tbl));
171
5.83k
  dtbl = *pdtbl;
172
5.83k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
5.83k
  p = 0;
177
99.0k
  for (l = 1; l <= 16; l++) {
178
93.2k
    i = (int)htbl->bits[l];
179
93.2k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
495k
    while (i--)
182
402k
      huffsize[p++] = (char)l;
183
93.2k
  }
184
5.83k
  huffsize[p] = 0;
185
5.83k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
5.83k
  code = 0;
191
5.83k
  si = huffsize[0];
192
5.83k
  p = 0;
193
68.6k
  while (huffsize[p]) {
194
464k
    while (((int)huffsize[p]) == si) {
195
402k
      huffcode[p++] = code;
196
402k
      code++;
197
402k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
62.8k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
3
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
62.8k
    code <<= 1;
204
62.8k
    si++;
205
62.8k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
5.83k
  p = 0;
210
98.9k
  for (l = 1; l <= 16; l++) {
211
93.1k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
59.1k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
59.1k
      p += htbl->bits[l];
217
59.1k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
59.1k
    } else {
219
34.0k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
34.0k
    }
221
93.1k
  }
222
5.83k
  dtbl->valoffset[17] = 0;
223
5.83k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
1.49M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
1.49M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
5.83k
  p = 0;
236
52.4k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
133k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
86.4k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
1.55M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
1.46M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
1.46M
        lookbits++;
244
1.46M
      }
245
86.4k
    }
246
46.5k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
5.83k
  if (isDC) {
255
33.5k
    for (i = 0; i < numsymbols; i++) {
256
30.8k
      int sym = htbl->huffval[i];
257
30.8k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
8
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
30.8k
    }
260
2.73k
  }
261
5.83k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
4.84M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
606k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
606k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
606k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
606k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
606k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
4.84M
    while (bits_left < MIN_GET_BITS) {
303
4.24M
      register int c;
304
305
      /* Attempt to read a byte */
306
4.24M
      if (bytes_in_buffer == 0) {
307
13
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
13
        next_input_byte = cinfo->src->next_input_byte;
310
13
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
13
      }
312
4.24M
      bytes_in_buffer--;
313
4.24M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
4.24M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
32.5k
        do {
323
32.5k
          if (bytes_in_buffer == 0) {
324
0
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
0
            next_input_byte = cinfo->src->next_input_byte;
327
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
0
          }
329
32.5k
          bytes_in_buffer--;
330
32.5k
          c = *next_input_byte++;
331
32.5k
        } while (c == 0xFF);
332
333
29.4k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
25.8k
          c = 0xFF;
336
25.8k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
3.60k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
3.60k
          goto no_more_bytes;
348
3.60k
        }
349
29.4k
      }
350
351
      /* OK, load c into get_buffer */
352
4.24M
      get_buffer = (get_buffer << 8) | c;
353
4.24M
      bits_left += 8;
354
4.24M
    } /* end while */
355
602k
  } else {
356
7.32k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
7.32k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
151
      if (!cinfo->entropy->insufficient_data) {
368
151
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
151
        cinfo->entropy->insufficient_data = TRUE;
370
151
      }
371
      /* Fill the buffer with zero bits */
372
151
      get_buffer <<= MIN_GET_BITS - bits_left;
373
151
      bits_left = MIN_GET_BITS;
374
151
    }
375
7.32k
  }
376
377
  /* Unload the local registers */
378
606k
  state->next_input_byte = next_input_byte;
379
606k
  state->bytes_in_buffer = bytes_in_buffer;
380
606k
  state->get_buffer = get_buffer;
381
606k
  state->bits_left = bits_left;
382
383
606k
  return TRUE;
384
606k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.04M
#define GET_BYTE { \
392
1.04M
  register int c0, c1; \
393
1.04M
  c0 = *buffer++; \
394
1.04M
  c1 = *buffer; \
395
1.04M
  /* Pre-execute most common case */ \
396
1.04M
  get_buffer = (get_buffer << 8) | c0; \
397
1.04M
  bits_left += 8; \
398
1.04M
  if (c0 == 0xFF) { \
399
13.8k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
13.8k
    buffer++; \
401
13.8k
    if (c1 != 0) { \
402
5.25k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
5.25k
      cinfo->unread_marker = c1; \
404
5.25k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
5.25k
      buffer -= 2; \
406
5.25k
      get_buffer &= ~0xFF; \
407
5.25k
    } \
408
13.8k
  } \
409
1.04M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.79M
  if (bits_left <= 16) { \
416
173k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
173k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
204k
{
440
204k
  register int l = min_bits;
441
204k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
204k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
204k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
470k
  while (code > htbl->maxcode[l]) {
453
266k
    code <<= 1;
454
266k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
266k
    code |= GET_BITS(1);
456
266k
    l++;
457
266k
  }
458
459
  /* Unload the local registers */
460
204k
  state->get_buffer = get_buffer;
461
204k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
204k
  if (l > 16) {
466
57
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
57
    return 0;                   /* fake a zero as the safest result */
468
57
  }
469
470
204k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
204k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
3.98M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
3.98M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
2.09k
{
514
2.09k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
2.09k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
2.09k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
2.09k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
2.09k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
8.24k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
6.15k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
2.09k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
2.09k
  if (cinfo->unread_marker == 0)
539
2.05k
    entropy->pub.insufficient_data = FALSE;
540
541
2.09k
  return TRUE;
542
2.09k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
74.7k
{
554
74.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
74.7k
  BITREAD_STATE_VARS;
556
74.7k
  int blkn;
557
74.7k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
74.7k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
74.7k
  state = entropy->saved;
563
564
365k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
290k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
290k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
290k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
290k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
290k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
290k
    if (s) {
575
178k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
178k
      r = GET_BITS(s);
577
178k
      s = HUFF_EXTEND(r, s);
578
178k
    }
579
580
290k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
290k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
290k
      s += state.last_dc_val[ci];
592
290k
      state.last_dc_val[ci] = s;
593
290k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
290k
        (*block)[0] = (JCOEF)s;
596
290k
      }
597
290k
    }
598
599
290k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
3.02M
      for (k = 1; k < DCTSIZE2; k++) {
604
3.02M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
3.02M
        r = s >> 4;
607
3.02M
        s &= 15;
608
609
3.02M
        if (s) {
610
2.71M
          k += r;
611
2.71M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.71M
          r = GET_BITS(s);
613
2.71M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.71M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.71M
        } else {
620
308k
          if (r != 15)
621
282k
            break;
622
26.5k
          k += 15;
623
26.5k
        }
624
3.02M
      }
625
626
290k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
75
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
75
    }
647
290k
  }
648
649
  /* Completed MCU, so update state */
650
74.6k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
74.6k
  entropy->saved = state;
652
74.6k
  return TRUE;
653
74.7k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
56.3k
{
665
56.3k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
56.3k
  BITREAD_STATE_VARS;
667
56.3k
  JOCTET *buffer;
668
56.3k
  int blkn;
669
56.3k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
56.3k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
56.3k
  buffer = (JOCTET *)br_state.next_input_byte;
675
56.3k
  state = entropy->saved;
676
677
393k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
337k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
337k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
337k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
337k
    register int s, k, r, l;
682
683
337k
    HUFF_DECODE_FAST(s, l, dctbl);
684
337k
    if (s) {
685
76.7k
      FILL_BIT_BUFFER_FAST
686
76.7k
      r = GET_BITS(s);
687
76.7k
      s = HUFF_EXTEND(r, s);
688
76.7k
    }
689
690
337k
    if (entropy->dc_needed[blkn]) {
691
337k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
337k
      s += state.last_dc_val[ci];
696
337k
      state.last_dc_val[ci] = s;
697
337k
      if (block)
698
337k
        (*block)[0] = (JCOEF)s;
699
337k
    }
700
701
337k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.35M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.35M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.35M
        r = s >> 4;
706
1.35M
        s &= 15;
707
708
1.35M
        if (s) {
709
1.02M
          k += r;
710
1.02M
          FILL_BIT_BUFFER_FAST
711
1.02M
          r = GET_BITS(s);
712
1.02M
          s = HUFF_EXTEND(r, s);
713
1.02M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.02M
        } else {
715
333k
          if (r != 15) break;
716
445
          k += 15;
717
445
        }
718
1.35M
      }
719
720
337k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
337k
  }
738
739
56.3k
  if (cinfo->unread_marker != 0) {
740
84
    cinfo->unread_marker = 0;
741
84
    return FALSE;
742
84
  }
743
744
56.2k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
56.2k
  br_state.next_input_byte = buffer;
746
56.2k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
56.2k
  entropy->saved = state;
748
56.2k
  return TRUE;
749
56.3k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
130k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
130k
{
772
130k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
130k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
130k
  if (cinfo->restart_interval) {
777
56.8k
    if (entropy->restarts_to_go == 0)
778
2.09k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
56.8k
    usefast = 0;
781
56.8k
  }
782
783
130k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
130k
      cinfo->unread_marker != 0)
785
24.9k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
130k
  if (!entropy->pub.insufficient_data) {
791
792
130k
    if (usefast) {
793
56.3k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
74.6k
    } else {
795
74.7k
use_slow:
796
74.7k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
74.7k
    }
798
799
130k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
130k
  if (cinfo->restart_interval)
803
56.8k
    entropy->restarts_to_go--;
804
805
130k
  return TRUE;
806
130k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
821
{
816
821
  huff_entropy_ptr entropy;
817
821
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
821
  std_huff_tables((j_common_ptr)cinfo);
824
825
821
  entropy = (huff_entropy_ptr)
826
821
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
821
                                sizeof(huff_entropy_decoder));
828
821
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
821
  entropy->pub.start_pass = start_pass_huff_decoder;
830
821
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
4.10k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.28k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.28k
  }
836
821
}